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Abstract. Understanding the behavioural aspects and functional attributes of an ex-

isting software system is an important enabler for many software engineering activi-

ties including software maintenance and evolution. In this paper, we focus on under-

standing the differences between subsequent versions of the same system. This al-

lows software engineers to compare the implementation of software features in dif-

ferent versions of the same system so as to estimate the effort required to maintain 

and test new versions. Our approach consists of exercising the features under study, 

generate the corresponding execution traces, and compare them to uncover similari-

ties and differences. We propose in this paper to compare feature traces based on 

their main behavioural patterns instead of a mere event-to-event mapping.  Two trace 

correlation metrics are also proposed and which vary whether the frequency of the 

patterns is taken into account or not. We show the effectiveness of our approach by 

applying it to traces generated from an open source object-oriented system. 
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1 Introduction  

One of the main challenges that engineers face when maintaining an existing system 

is to answer questions like what the system does, how it is built, and why it is built in 

a certain way [1]. Understanding an existing system has been shown to account for 

almost 80% of the cost of the software life cycle [2, 3]. Documentation is normally 

the main source of information where answers to these questions should be found, but 

in practice documentation is rarely up to date when it exists at all. The problem is 

further complicated by the fact that the initial designers of the system are often no 

longer available.  

Execution traces have been used in various studies to observe and investigate the 

behavioural aspects of a software system. In most cases, traces have been found to be 

difficult to work with due to the large size of typical traces. Although many trace 

analysis tools and techniques have been proposed (e.g., [4, 5, 6, 7, 8]), most of them 

do not tackle the problem of correlating trace content.  One of the few research stud-

ies that focuses on comparing traces is the work of Wilde [9], in which the author 

introduced the concept of Software Reconnaissance. The author compared traces 

based on their distinct components. The objective was to identify the components that 

implemented a specific feature (also known as solving the problem of feature loca-



tion). However, the author‟s approach did not take into account the interaction be-

tween the components in the trace, which is needed to understand differences in the 

execution trace.  

In this paper, we focus on the problem of understanding the differences between 

subsequent versions of the same system, an activity that can help in many software 

engineering tasks including estimating the time and effort required to maintain new 

versions of the system, uncovering places in the code where faults have been intro-

duced, understanding the rationale behind some design decisions, and so on. We pro-

pose a novel approach that allows software engineers to compare the implementation 

of software features in different versions of the same software system. Our approach 

is based on information gathered from two sources. First, we generate execution 

traces (dynamic analysis) by exercising the target features of the system to identify 

the differences between implementation. Several studies (e.g. [10, 6]) have showed 

that trace patterns often characterize the main content of a trace. Consequently, we 

propose two new metrics to measure the correlation between two traces based on their 

patterns, and we measure the extent of the differences between them. Once these dif-

ferences are identified, we refer to the second source of information, the source code 

(static analysis), to understand the underlying changes. In other words, the result of 

the dynamic analysis not only shows the variation in the two implementations but is 

also used to guide software engineers in understanding where these variations appear.  

The rest of this paper is structured as follows: In the next section, we briefly define 

the concept of trace patterns and we present our novel pattern-based approach for 

correlating traces. Our two proposed correlation measures are also presented in that 

section. A case study is presented in Section 3. We conclude the paper in Section 4.  

2 Trace Correlation Approach 

The aim of our approach is to compare traces generated from different versions of the 

same system. Both versions of the system are first instrumented and run using the 

same usage scenario. The generated traces then go through two main phases. The first 

phase consists of pre-processing the traces by removing continuous repetitions and 

noise caused by the presence of low-level utility components. The second phase 

consists of extracting similar patterns common to both traces resulting from the first 

phase and using them to compare the traces. 

2.1 First Phase: Trace Pre-Processing 

During the pre-processing phase, we begin by eliminating contiguous repetitions due 

to the existence of loops and recursion in the code. We then filter out utility routines 

such as accessing methods (sets and gets) from the raw traces. These routines encum-

ber the traces without adding much to their content. We rely on naming conventions 

to identify such utilities. For example, any routine that starts with „set‟ or „get‟ is 

automatically removed. We can also refer to the system folder structure to identify 

utilities packages. This is aligned with Hamou-Lhadj and Lethbridge study and in 

which the authors showed that an effective analysis of a trace should include a utility 

removal stage that cleans up the trace from noise [5].  



 

 

2.2 Second Phase: Trace Correlation  

The trace correlation phase is comprised of two main steps: the pattern detection step 

and the trace correlation measure. The goal is to take the two traces, extract their be-

havioural patterns, and compare the extracted patterns using different similarity 

measures. Two traces exhibit the same behaviour if the pattern sets are deemed simi-

lar. A threshold needs to be identified beyond which one can consider two traces simi-

lar. We anticipate, however, that this threshold is application-dependent and that a 

tool that supports our technique should provide enough flexibility to modify this 

threshold.   

To reduce the size of the pattern space, several matching criteria have been pro-

posed in the literature to measure the extent to which two sequences of events could 

be deemed similar without being necessarily identical (see [6, 10] for some exam-

ples). Some of these criteria include ignoring contiguous repetitions, ignoring the 

order of calls, or treating subtrees as a set. For example, the sequence ABBBCCC
1
 and 

ABC can be considered similar if the contiguous repetitions are ignored. Similarly, the 

sequence ABBBCC and ACBBB could be considered instances of the same pattern if the 

contiguous repetitions and the order of calls are ignored during the correlation proc-

ess. Although it is still unclear how these matching criteria can be used for different 

maintenance tasks, the common consensus is that some sort of generalization is 

needed to reduce the size of the pattern space.  

In [10], Hamou-Lhadj et al. presented an algorithm to detect and extract the pat-

terns from a trace using predefined matching criteria. The algorithm uses one criterion 

at a time. Our method adopts the idea of the algorithm while providing the ability for 

using and applying more than one matching criteria to extract the similar patterns as 

desired. We also improved the performance of the algorithm when applied to large 

traces. 

In the rest of this section, we use the sample traces presented in Figure 1 to illus-

trate the concept of correlating traces based on their behavioural patterns. Tables 1 

and 2 show the patterns extracted from these traces. In this example, two matching 

criteria are used, which are ignoring the order of calls and removing utilities. We 

assume, in this example, that the utilities are the routines that start with „u‟.  

2.3 Trace Correlation Metrics 

We developed two new metrics to calculate the similarity between the traces of two 

versions of the same system based on their behavioural patterns. The two trace corre-

lation metrics are the non-weighted trace correlation metric and the weighted trace 

correlation metric. Both correlation metrics range between 0 and 1, where 0 is com-

plete dissimilarity and 1 is absolutely identical. 

The non-weighted trace correlation metric, NW_TCM, is used to compare two 

execution traces based on the proportion of similar extracted patterns they share in 

common. More formally, NW_TCM is defined as follows: 
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1 We use the notation AB to mean A calls B 



 

where CPtrnN is the total number of patterns common to both traces, and 

T1TotalPtrnN and T2TotalPtrnN are the total number of patterns of Trace 1 and Trace 

2 respectively. 
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Fig. 1. Two sample routine (method) call traces 

 

Table 1. Similar Patterns extracted from Sample Trace 1 of Figure 1 

Number  Pattern Frequency 

1 BCDE 3 

2 FIJ 3 

3 FGH 2 

4 BDE 2 

5 BR 3 

Total 13 

 
Table 2. Similar Patterns extracted from Sample Trace 2 of Figure 1 

Number Pattern  Frequency 

1 BDCE 3 

2 FIJ 4 

3 BL 4 

4 XYZ 4 

Total 15 

 



 

 

The weighted trace correlation metric, W_TCM, modifies the previous metric by 

taking into account the frequency of the patterns, i.e., the number of times the patterns 

occur in the traces. More formally, W_TCM can be calculated as follows: 

            
 
            
            

 
      

            
   

            
            

 
      

            
 

 
 

(2) 

where T1CPtrnFreqN and T2PtrnFreqN are the number of occurrence of the common 

similar patterns of both traces in Trace 1 and Trace 2 respectively, T1TotalFreqN and 

T2TotalFreqN are the total frequency of all patterns found in Trace 1 and Trace 2 

respectively, and CPtrnN, T1TotalPtrnN and T2TotalPtrnN have the same meaning as 

before. 

After we performed the pattern detection algorithm on the example traces of Fig-

ure 1, we obtained the five frequent patterns of Trace 1 and four frequent patterns of 

Trace 2 presented in Tables 1 and 2 respectively. The two common patterns between 

both traces, BCDE and FIJ, can be discovered from these frequent patterns. Referring 

back to Tables 1 and 2, we can see that these patterns account for 6 of the 13 frequent 

pattern occurrences in Trace 1, and 7 of the 15 occurrences in Trace 2. The results of 

applying the non-weighted and weighted correlation metrics are as follows: 

              
 
 
 
   

 
 
 

 
          

             
 
 
  

 
 
 
   

 
  

 
 
 
 

 
          

Applying the NW_TCM metric results in a 45% similarity between Trace 1 and 

Trace 2, reflecting the fact that nearly half the frequent patterns of each trace are 

common to both traces. The W_TCM metric, on the other hand, gives a similarity of 

21% due to the fact that it also takes pattern frequencies into account. We anticipate 

that the decision of which metric best reflects the similarity or dissimilarity between 

the traces will depend on the task at hand. For example, if one needs to understand the 

impact of a particular input on the resulting traces then the weighted metric could be 

considered since it takes into account the frequency of the patterns (which are often 

subject to the input data used to trigger the system). Further studies should provide 

more insight on situations where each of these metrics can be most informative.  

3. Case Study 

3.1   Target System 

We have applied our proposed trace correlation technique to traces generated from 

two versions of the Java-based software system called Weka [11], an open-source 

software which was developed in the University of Waikato, New Zealand. It is a 

machine learning tool that supports several algorithms such as classification algo-

rithms, regression techniques, clustering, and association rules. We selected this sys-

tem because its framework and components are well documented [12], and detailed 



description of its architecture are available online. The versions of Weka that have 

been selected for this case study are versions 3.4 and 3.7. Weka version 3.4 is com-

prised of 55 packages, 732 classes, 8,980 methods and 147,335 lines of code (ap-

proximately 147 KLOC) while Weka version 3.7 contains 76 packages, 1129 classes, 

14111 methods and 224,556 lines of code (approximately 224 KLOC). 

3.2 Usage Scenario 

We have applied our trace correlation technique to a specific software feature sup-

ported in both versions of Weka, namely the J48 classification algorithm used to con-

struct efficient decision trees. In order to generate the execution traces for the selected 

feature, we instrumented Weka using the open source Eclipse Test and Performance 

Tool Platform Project (TPTP) [13]. Probes were inserted at each entry and exit 

method of the intended system, including the constructor and all invoked routines, in 

order to instrument it. 

We used a sample input data provided in the documentation and the source code 

package of the Weka system to exercise the J48 feature. Executing the two instru-

mented versions of Weka with that data generated the two execution traces for that 

feature that we used in this study. 

3.3 Applying the Trace Correlation Algorithm 

The first phase of the algorithm is to pre-process the traces by filtering out utilities, 

contiguous repetitions, and the methods responsible for generating the GUI and ini-

tializing the environment. This allows us to focus only on those parts of the traces 

concerned with the implementation of the J48 algorithm.  

In Table 3, we present statistical information regarding the size of the traces before 

and after the pre-processing stage. We can see that the removal of contiguous repeti-

tions and utilities reduces the size of the raw traces considerably, but the resulting 

traces are still in the order of thousands of method calls. The size of the initialization 

routine is also very small compared to the total size of the entire traces. We can also 

see in Table 3 that the J48 trace in Weka 3.7 is considerably longer than the equiva-

lent trace generated from the older version Weka 3.4. This indicates that significant 

changes have been made to this algorithm in the newer version. The objective of our 

research is to evaluate the extent of these changes and to uncover the exact nature and 

location of these changes in the source code. 

Table 3. The size of execution traces of Weka system for versions 3.4 and 3.7. 

Properties of Execution Traces               Weka  3.4 Weka  3.7 

Original (raw) trace size 35,974 103,009 

Original trace after removing contiguous repetitions 6,850 26,978 

Initialization trace size 5,919 17,534 

Initialization trace after removing contiguous repetitions 682 1,288 

Original trace after removing initialization trace 5,510 24,700 

Quantitative Analysis. The second phase of our approach begins by applying the 

pattern detection algorithm. We used the “ignore order” matching criterion during the 

extraction process. Future work should focus on experimenting with other matching 

criteria to study their impact on the final result. We discover 162 frequent patterns in 



 

 

Weka 3.4 and 299 frequent patterns in Weka 3.7, almost twice as many. This result 

shows immediately that the implementation of the J48 algorithm in Weka has under-

gone several changes. 

Next, we apply the correlation metrics to measure the differences between the two 

pattern sets extracted from the Weka traces. This finds only 64 similar patterns com-

mon to both traces. This means that less than half of the total patterns relevant to each 

version of Weka are shared in both versions. Applying our trace correlation metrics 

gives a non-weighted correlation (NW_TCM) of 30.45% and a weighted correlation 

(W_TCM) of only 5%. The results show again that these traces are considerably dif-

ferent from each other. To be able to explain these differences, we perform next a 

qualitative examination of the patterns that are not common between the two traces by 

exploring the source code of the two Weka versions.  

Qualitative Analysis. The dissimilarity between the two versions in terms of the 

number patterns (without taking into account the frequency) is almost 70%. After 

exploring the content of both traces, we found that the number of distinct methods of 

the J48 trace in Weka 3.4 was 656, whereas the number of distinct methods in the 

trace generated from Weka 3.7 was 1024. This led to the generation of many patterns 

that were in one trace and not in the other trace, patterns that were triggered by the 

new methods.  

We focused on the patterns that exist in both traces and which derive from the 

same root nodes. This revealed that refactoring tasks have been used in Weka 3.7 to 

modify the way these methods were implemented. This includes adding new classes 

and methods, changing the names of existing methods, and moving classes and rou-

tines to other (existing or new) classes and components. For example, the size() 

method of the FastVector class of Weka 3.4 has been replaced by the utility routine 

size() implemented in the built-in Collection interface class of the Java package 

java.util. Consequently, the size() method was included in patterns in Weka 3.4 but 

did not appear in the extracted patterns of Weka 3.7 since it is an external utility 

method of that system. 

Another difference we have observed when examining the patterns and the source 

code of both versions is that some invoked methods have been moved to new classes 

that were introduced in Weka 3.7. For example, the method hasMoreElements() was 

part of the FastVectorEnumeration class of the old version but moved to the new class 

WekaEnumeration in the new version. Refactoring the code in this manner leads to 

the discovery of patterns that begin from the same parent nodes in both version of the 

trace, but diverge in the lower levels.  

The above discussion demonstrates the usefulness of using a pattern-directed ap-

proach not only to measure the similarity between two versions of the same system 

but also to guide the process of investigating the root causes of dissimilarities.  

4. Conclusions and Future Directions 

In this paper, we presented a new approach for comparing the implementation of dif-

ferent features in subsequent versions of the same system. Our method discovers simi-

larities between two traces generated from the different versions of the software. In 

particular, we focused on calculating the trace correlation based on all the behavioural 

patterns extracted from the execution traces. Future work includes the need to conduct 



more experiments with multiple versions of a given software system to further assess 

the efficiency of our approach. There is also a need to compare our results with other 

software comparison techniques; this could lead us to expand our method by adapting 

some of their strengths. 

References 

1.  Dunsmore, A., Roper, M., Wood,, M.: The role of comprehension in software inspection. 

In: Journal of Systems and Software, 2(3), pp.  121-129 (2000) 

2.  Martin, J., Mcclure, C.: Software Maintenance: The Problem and its Solutions. Prentice-

Hall: Englewood Cliffs NJ (1983) 

3.  Pigoski, T.  M.: Practical Software Maintenance: Best Practices for Managing Your Soft-

ware Investment, John Wiley and Sons, New York NY, pp. 384 (1997) 

4.  Cornelissen, B., Moonen, L.: On Large Execution Traces and Trace Abstraction Tech-

niques, Delft: Software Engineering Research Group, ISSN 1872-5392 (2008) 

5.  Hamou-Lhadj, A., Lethbridge, T. C.: Summarizing the content of Large Traces to Facilitate 

the Understanding of the Behaviour of a Software System. In: Proceedings of the 14th 

IEEE International Conference Program Comprehension, pp. 181-190 (2006) 

6. De Pauw, W., Lorenz, D., Vlissides, J., Wegman, M.: Execution Patterns in Object-

Oriented Visualization. In: Proceedings of the 69 4th USENIX Conference on Object-

Oriented Technologies and Systems (COOTS), Santa Fe, NM, pp. 219-234 (1998) 

7.  Systä, T.: Understanding the Behaviour of Java Programs. In: Proceedings of the 7th Work-

ing Conference on Reverse Engineering, pp. 214-223, (2000) 

8. Jerding, D., Rugaber, S.: Using Visualization for Architecture Localization and Extraction. 

In: Proc. of the 4th Working Conference on Reverse Engineering, pp. 219-234 (1997) 

9.  Wilde, N., Scully, M. C.: Software Reconnaissance: Mapping Program Features to Code. 

In: Software Maintenance: Research and Practice, pp. 49-62 (1995) 

10. Hamou-Lhadj,  A., Lethbridge, T.: An Efficient Algorithm for Detecting Patterns in Traces 

of Procedure Calls. In: Proceedings of the 1st ICSE International Workshop on Dynamic 

Analysis (WODA), Portland, Oregon, USA (2003) 

11. Weka 3: Data Mining Software in Java. www.cs.waikato.ac.nz/ml/weka/ 

12.  Witten, I. H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques 

with Java Implementations, Morgan Kaufmann (1999) 

13.  http://www.eclipse.org/tptp/  

Acknowledgement 

This work is partly supported by the Natural Sciences and Engineering Research 

Consortium (NSERC), Canada. 

 


