
 1

A Tool Suite for the Generation and Validation of
Configurations for Software Availability

A. Gherbi1, A. Kanso1, F. Khendek1, M. Toeroe2 and A. Hamou-Lhadj1
1Concordia University, Montréal, Canada

{gherbi, al_kan, khendek, abdelw}@ece.concordia.ca
2Ericsson Inc., Montréal, Canada

maria.toeroe@ericsson.com

Abstract
The Availability Management Framework (AMF) is

a service responsible for managing the availability of
services provided by applications that run under its
control. Standardized by the Service Availability Forum
(SAF), AMF requires for its operations a complete and
compliant AMF configuration of the applications to be
managed. In this paper, we describe two
complementary and integrated tools for AMF
configurations generation and validation. Indeed,
writing manually an AMF configuration is a tedious
and error prone task as a large number of requirements
defined in the standard have to be taken into
consideration during the process. One solution for
ensuring compliance with the standard is the validation
of the configurations against all the AMF requirements.
For this, we have designed and implemented a domain
model for AMF configurations and use it as a basis for
an AMF configuration validator. To further ease the
task of a configuration designer, we have devised and
implemented a method for generating automatically
AMF configurations.

Keywords: High-Availability, Availability
Management Framework, Automated Configuration
Generation, Validation, Domain Model.

1. Introduction
The Service Availability Forum (SAF) [1] is a

consortium of several telecommunications and
computing companies that work towards standardized
solutions for enabling the development of highly
available software systems. One of the main outcomes
of the SAF standardization effort is the Availability
Management Framework (AMF) [2], which is a service
responsible for managing redundant resources to ensure
high availability of services provided by software
applications.

The AMF service, implemented as part of a SAF
middleware, requires a configuration for any
application that operates under its control. An AMF

configuration describes the organization of the
resources and applications services. More precisely, it
describes a set of entities to be managed by AMF in a
running system, their types and relationships and their
deployment on the cluster nodes. The basic entity of an
AMF configuration is the component, which represents
a software and/or hardware resource that provides the
service that needs to be made available. The workload
assigned to a component is referred to as a component
service instance. Components are logically grouped into
service units in order to combine their functionality and
provide higher level services referred to as service
instances. To protect these services, service units are
grouped into service groups. A service group protects a
set of service instances (i.e., the workloads) assigned to
its service units according to a redundancy model.
When a particular service instance is assigned to a
service unit, its composing component service instances
are assigned to the components in this service unit. The
grouping of service groups forms an AMF application.
From a deployment perspective, each service unit is
deployed on an AMF node (i.e., a node on which AMF
implementation is running). The set of AMF nodes
forms the AMF cluster.

In the AMF specification, the notion of type is used
to capture common characteristics of entities that
belong to the same type. The types define also relations
among entities. For example, a service unit type
specifies the set of component types, which defines the
types of the components that must compose a service
unit of this service unit type.

Creating manually an AMF configuration can be a
tedious and error-prone task [8, 9]. The problem is that
there are many entities that a configuration designer
needs to handle. The grouping of these entities is
constrained by the information described in their types,
which requires several consistency checks to be
performed at various levels of the configuration design
process. There are also many dependencies that need to
be taken into account. For example, it is important to
understand how components depend on each other in
order to build a valid configuration.

 2

Keeping all these constraints in mind while writing a
configuration is a very demanding task for
configuration designers. Ensuring compliance with the
standard specification for configurations developed
manually is also complex if not impossible, especially
when creating an AMF configuration describing several
applications with a large number of components to be
deployed on a large cluster of nodes. In order to
alleviate this task we propose to use the domain model
of the UML profile for AMF [6], we are developing, for
the validation of configurations. The AMF model and
requirements have been captured in this domain model
using a class diagram and the Object Constraint
Language [7]. We introduce and discuss in this paper
the configuration validator.

To further alleviate the task of configuration
designers, we have developed a second tool for
generating automatically AMF configurations based on
the work presented in [8, 9]. This tool takes as input the
software characteristics as provided by the vendor in a
so-called Entity Types File(s) (ETF) [5], the services to
be provided and the deployment cluster. When the
provided software can be configured in the given
deployment cluster to provide and protect the services
as requested, a configuration is generated automatically.

2. Configuration Validation

An AMF configuration, created manually or
generated automatically, is saved in the IMM
(Information Model Management) XML format [4], and
made available to SAF services through the IMM
service [3]. In order to help validate third-party or
manually created configurations, we have captured
most of the concepts defined in the AMF specification
and their relationships in the domain model of the UML
profile for AMF that is currently under development.
The class diagram of this domain model describes the
different entity types, entities and their relationships. In
contrast to the AMF UML model provided in the
standard specification, our model organizes the entity
types and the entities, for instance the component types
and components, differently and uses extensively object
oriented paradigms such as multiple inheritance. Other
AMF constraints and requirements are formalized in
OCL. The corresponding Ecore model has been
generated using the Eclipse Rose importer and
implemented using the Eclipse Modeling Framework
(EMF) code generation feature [10].

The validation process, as shown in Figure 1,
includes a mapping of an instance of the AMF standard
model to an instance of the AMF domain model of the
profile and a validation of the later against the OCL
constraints. The AMF standard model instance is

created from the input provided by the user as an IMM
XML file, which is the standard carrier for AMF
configurations. The checking of the OCL constraints is
not completely separated from the mapping but
crosscuts its different steps.

Figure 1. Configuration validation tool

One of the main tasks in this validation is checking
the created AMF domain model instance of the profile
against the OCL constraints. For this purpose, we have
experimented with some UML modeling tools. As
mentioned earlier we have used Rational Rose to build
the class diagram of the domain model and the Eclipse
EMF Rose importer to build the Ecore model [10]. We
have used Rational Software Architect (RSA) [11] to
specify the OCL constraints and checked them against
the domain model for static consistency. However,
these tools do not support the validation of instances of
the domain model (object diagrams) against the OCL
constraints, which actually capture constraints on the
domain model class diagram and other constraints from
the standard defining a valid AMF configuration. We
have considered the Dresden OCL toolkit [12] for this
instance validation; however several of our constraints
are not supported and cannot be checked with the
current release of the tool. We have therefore
implemented our OCL constraints in Java.

3. Configuration Generation
To further ease the task of a configuration designer

we have devised a method for the automatic generation
of AMF configurations [8, 9]. This work has been done
in parallel with the design of the profile and is therefore
based on the AMF model as provided in the standard
instead of the AMF profile. The method and the
corresponding tool for configuration generation take as
input the description of the software as provided by the
vendor in the ETF(s) and the configuration designer
requirements in terms of services to be provided,

 3

protected with a certain redundancy model and the
description of the deployment cluster and nodes. In the
ETF file(s) the vendor describes the software in terms
of AMF meta-types reflecting the complete range of
AMF features supported by the software. The main
steps in the generation method are captured in Figure 2,
where the Type Finder selects the appropriate ETF
types for creating the AMF types to provide the
required services. The AMF entities are then generated
from these AMF types. The ETF type selection is based
on the services to be provided. For instance the
component types are selected from the ETF in order to
match the component service instances provided by the
configuration designer as a requirement. Other criteria
have to be checked, for instance whether the component
capability model satisfies the requested redundancy
models. Moreover, a service unit type is defined in
terms of possible component types and the maximum
number of components of each type allowed in a
service unit. Therefore when selecting component
types, we need to keep in mind the maximum number
of components of this type in the service unit and the
necessary capacity in terms of component service
instances for a given component service type. Several
calculations are necessary as described in [8, 9]. An
example of those calculations is to carefully configure
the order in which the components need to be
instantiated by AMF based on the component
dependency relationships. A misconfiguration of this
aspect could lead either to the failure of the component
instantiation or malfuncting of the component causing
AMF to either resort to another service unit to provide
the services or to a recovery procedure.

Figure 2. Configuration generation tool

The configuration generation tool is built as an
Eclipse plug-in. It reads ETF(s) and takes constraints
and requirements from the designer. It builds an
instance of the AMF model as defined in the standard
[2], which is then saved in the IMM XML format.

4. Conclusion
In this paper, we presented a tool suite that allows

for the automatic generation and validation of AMF
configurations. The next step will be the completion of
the profile by developing a concrete syntax for the
AMF profile. The configuration generation approach
will be fully integrated with the profile for the
generation and analysis of multiple configurations.

5. Acknowledgment
This work has been partially supported by the

Natural Sciences and Engineering Research Council of
Canada (NSERC) and Ericsson Software Research.

6. References
[1] Service Availability Forum™, URL:
http://www.saforum.org
[2] Service Availability Forum, Application Interface
Specification. Availability Management Framework
SAI-AIS-AMF-B.03.01.
[3] Service Availability Forum, Application Interface
Specification. Information Management Service SAI-
AIS-IMM-A.02.01.
[4] Service Availability Forum. IMM XML Schema,
SAI-AIS-IMM-XSD-A.01.01.xsd.
[5] Service Availability Forum, Application Interface
Specification. Software Management Framework SAI-
AIS-SMF-A.01.01.
[6] A. Gherbi, P. Salehi, M. Toeroe, F. Khendek, A.
Hamou-Lhadj, “Towards a UML Profile for AMF
Configurations Modeling and Analysis”, Technical
Report, Electrical and Computer Engineering,
Concordia University, April 2009.
[7] OMG, Object Constraint Language (OCL), Version
2.0, OMG Available Spec.: formal/06-05-01, 2006.
[8] A. Kanso, M. Toeroe, F. Khendek, A. Hamou-
Lhadj, “Automatic Generation of AMF Compliant
Configurations”, In Proc. of ISAS’2008, LNCS, Vol.
5017, pp.155-170, 2008.
[9] A. Kanso, M. Toeroe, A. Hamou-Lhadj, F.
Khendek, “Generating AMF Configurations from
Software Vendor Constraints and User Requirements”,
In Proc. of ARES’2009, Fukuoka, Japan, 2009.
[10] D. Steinberg, F. Budinsky, M. Paternostro, E.
Merks. EMF: Eclipse Modeling Framework, Second
Edition. Addison-Wesley Professional, 2009.
[11] IBM, Rational Software Architecture,
http://www-01.ibm.com/software/awdtools/swarchitect/
[12] Dresden OCL Toolkit, http://dresden-
ocl.sourceforge.net/

 4

Appendix A: The Tool Suite Screen Snapshots

Figure 3. Snapshot of the GUI through which the configuration designer inputs the services to be provided

Figure 4. An Example of an AMF configuration, the left hand side of the figure shows the

configuration entities, the right hand side shows their attributes

 5

Figure 5. Mapping from the AMF model to the MAGIC model. This snapshot shows how a part of the validation
process is performed through the mapping of AMF standard model to the newly created model.

Figure 6. An Example of OCL constraint violation during the validation of an AMF configuration

