
D. Ślęzak et al. (Eds.): ASEA 2009, CCIS 59, pp. 253–263, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Execution Traces: A New Domain That Requires the
Creation of a Standard Metamodel

Luay Alawneh and Abdelwahab Hamou-Lhadj

Electrical & Computer Engineering Department, Concordia University

Abstract. Despite the fact dynamic analysis techniques of software systems
have been shown to be useful in many software engineering activities such as
software maintenance, software performance, testing, etc., there is no standard
format for representing run-time information, which hinders interoperability
and sharing of data. Runtime information is typically represented in the form of
execution traces. Traces can contain different information, and can contain dif-
ferent types of information depending on what is being traced and the purpose
of the trace. In this paper, we argue that traces represent vital knowledge about
software that needs to be organized and modeled. We support our arguments by
discussing the various types of traces used in the literature. We also discuss the
challenges when dealing with execution traces and why a trace metamodel has
to be carefully designed to overcome these challenges. We also discuss existing
attempts to model execution traces. Finally, we discuss how the Knowledge
Discovery Metamodel can be extended to support efficiently the modeling of
large and complex execution traces.

Keywords: Execution Traces, Trace Metamodel, Knowledge Discovery Meta-
model.

1 Introduction

An important issue in application modernization is the time it takes to understand how
the application is built and why it is built this way. In an ideal situation, any change
made to an existing software system must be based on information kept in up-to-date
documentation. However, for a variety of reasons, it has been shown, in practice, that
maintaining sufficiently good documentation is impractical in many organizations,
which renders program comprehension a difficult and tedious task. Reverse engineer-
ing techniques aim at reducing the impact of this problem by recovering high-level
views of the system from low-level implementation details. These views can be used
by software engineers to understand the main aspects of the system before diving into
the details.

Reverse engineering tools can be grouped into two categories depending on
whether they focus on static analysis of the system or on the understanding of its
dynamic characteristics. Static analysis techniques operate on the source code to
extract a system’s main components and their relations. Dynamic analysis, which is
the focus of this paper, focuses on the analysis of the behavioural aspects of a system
through the analysis of run-time information.

254 L. Alawneh and A. Hamou-Lhadj

Run-time information is typically represented using execution traces. There exist,
however, many types of traces that vary in their structure, the contained information,
and the level of abstraction of the contained information. An execution trace can be
used to describe the interacting modules involved in a particular scenario, or may be
detailed to capture the performed statements in each module’s procedure. Examples
of such traces include routine-call traces, statement-level traces, traces of inter-
process communication, etc.

Although this paper focuses on reverse engineering, dynamic analysis has been
shown to be useful in many software engineering activities such as program compre-
hension, runtime monitoring and performance analysis, testing, fault detection and
intrusion detection, etc. There exist many tools for execution trace visualization and
analysis. However, these tools use different format for representing traces, which
hinders interoperability. This is attributable to a lack of a standardized way for repre-
senting execution traces despite the increasing attention to dynamic analysis tech-
niques of software in recent years.

In this paper, we argue that execution traces form a new domain knowledge that
needs to be organized and modeled. We discuss the most important types of execution
traces, their applications, and their structures. We also discuss how these approaches
deal with the trace size problem. Finally, we discuss existing metamodels such as the
Knowledge Discovery Metamodel [1] from OMG [2], the UML metamodel [3], etc.,
and their limitations.

2 Execution Traces as a New Domain

Execution traces represent the sequence of execution in a running software system at
different levels of abstraction. Traces may exist in different structures according to the
degree of abstraction requested by the program analyzer. For example, statement-
level traces are linear and contain single executed statements. Routine-level traces
depict the sequence of routine calls for a program run and are often represented as a
tree structure. Inter-process execution traces capture the interactions between different
processes in terms of message passing, and they can be modeled using a graph.

In the following, we present an overview of different types of execution traces,
their structure and their application.

2.1 Statement-Level Traces

Statement-level traces contain the executed statements of a program run according to
a coverage that is usually specified by the user. This type of traces can profile a com-
plete behaviour of the software system and can be used to extract information regard-
ing the flow of control during execution and the dependencies among the executed
statements. Also, it helps in maintenance activities such as bug fixing by identifying
the cause of the problem.

One of the main challenges when using statement-level traces is the sheer size of
the generated trace which can reach millions of events. Therefore, a metamodel that
represents this type of traces must be built with scalability in mind. One simple ap-
proach to achieve this is to represent the repetitive information contained in a trace
only once.

 Execution Traces: A New Domain That Requires the Creation 255

Zhang et al. present a more advanced trace compaction technique called Whole
Execution Traces (WET) [4]. WET represents a compressed whole execution trace
which captures complete profile information that covers control flow, variable values,
variable memory addresses, and control and data dependencies. The framework can
respond to a wide range of queries that may require single or multiple types of profile
information in a fast and easy manner.

WET is a labelled graph that assigns a unique timestamp to every single instance
for each executed statement in order to track the ordering of execution. Furthermore,
the paper presents compression techniques that, according to the authors, reduce the
size of WET effectively. Moreover, the paper shows some benchmark values that
prove the efficiency of the used compression techniques.

2.2 Routine Call Traces

Routine-call traces and their object-oriented counterpart “method-call traces” capture
the sequence of routine calls in an execution path. This type of traces is at a higher
level of abstraction compared to statement-level traces and can be used to reveal sig-
nificant information about the system’s different scenarios. Routine-call traces, which
are represented as tree structures, can be used in many maintenance activities such as
bug-fixing [5], and feature-location [5]. Moreover, they can provide useful informa-
tion that can enable software engineers to perform many activities in an efficient
manner including restructuring, refactoring, and code optimization. Like any other
type of execution trace, routine-call traces can grow dramatically in size and complex-
ity. Therefore, compression and reduction techniques should be applied in order to
utilize them effectively. In the following we present several research studies related to
routine and method call traces.

Taniguchi et al. [7] proposed a new method for reverse engineering of UML se-
quence diagrams based on method-call execution traces. The purpose of this tech-
nique is to facilitate the understanding of object-oriented systems. Furthermore, the
paper presents a set of four compaction rules in order to solve the problem of large
execution traces. The proposed rules can be summarized as follows:

1. Rule 1 finds identical method-call subtrees and represents them in one sub-
tree. Identical method-call subtrees share the same objects. By using this
rule, the original call tree can be reconstructed.

2. Rule 2 finds repetitive method calls structures that correspond to different
objects and then compacts them by unifying the objects. Although this
method can detect repetitive structures that cannot be captured by the first
rule, the original subtrees cannot be reconstructed using this rule.

3. Rule 3 detects similar subtrees that may not have the same exact method
calls, i.e. one subtree may include one or more method calls than the other.
In this case, the compaction is done by using the subtree that contains more
method calls.

4. Rule 4 targets the compaction of recursive method calls by combining differ-
ent recursive calls into one node.

In [8], Wang et al. proposed a new approach for threat model-driven security testing
in order to detect threats at runtime. The approach uses UML sequence diagrams in

256 L. Alawneh and A. Hamou-Lhadj

order to model threats to security policies. A security policy defines what actions
should be permitted or refused by the system. In the design phase, threat scenarios are
constructed using sequence diagrams. These scenarios depict any expected threat to
the system. . In order to reduce the size of the trace, the source code is only instru-
mented with essential information relevant to threat scenarios. Finally, these con-
structed scenarios are used to verify if any execution trace matches any of the threat
scenarios.

Salah et al presented a study [9] that targets program comprehension. It presents a
hierarchy of dynamic views composed of different tools for program execution trace
analysis. The hierarchy includes feature-interaction, feature-implementation, class-
interaction, and object-interaction views. In the same field of program comprehen-
sion, Apiwattanapong et al. [10] proposed a new approach for impact analysis of
software changes based on dynamic analysis. The presented technique uses only es-
sential dynamic information collected from method-call execution traces.

Finally, Hamou-Lhadj and Lethbridge [11] presented a technique for large execu-
tion trace summarization that can be applied to enable top-down analysis of traces as
well as the recovery of the behavioural design model of the system. Additionally, the
paper proposes a new metric for detecting utility methods which are considered as
implementation details that can be removed in the process of abstracting out the main
content for large traces.

2.3 Inter-process Level Traces

Inter-process communication execution traces capture the interactions among differ-
ent processes in a software system. Processes may reside on the same computer or
different computers. Also, this type of traces captures the communication among
threads living within the same process. The main challenge when analyzing this type
of execution traces, in addition to size and complexity, is that different executions for
the same scenario could generate different traces, which makes it difficult to study
this type of traces. The variation in the generated execution traces is due to the non-
deterministic behaviour of multi-threaded applications.

Moe et al. [12] apply dynamic analysis through runtime execution traces in order to
understand the behaviour of distributed software systems. They propose a method to
support the understanding of distributed systems based on the analysis of execution
traces at the remote procedure calls level. Also, the work provides a tool for the visu-
alization of the processed execution traces. According to the authors, this work, when
applied during the maintenance phase, can help in detecting design flaws, configura-
tion and performance problems.

Bensalem et al. [13] presented an algorithm that uses a single execution trace of
multithreaded programs in order to detect occurrences of deadlocks. An advantage of
the proposed algorithm is the ability to detect deadlocks in running programs even
when examining a deadlock-free execution trace.

2.4 System Call Level Traces

A system-call is a request to the kernel by a user-level program in order to be permit-
ted to perform a set of predefined operations that the requesting program does not

 Execution Traces: A New Domain That Requires the Creation 257

possess the required permissions to execute on its own. A system call trace is the
sequence of calls made to the system by a running process.

System-call traces can be used to detect and control programs by verifying that
each system call conforms to a policy that confirms a program’s normal behaviour.
Many research works on intrusion detection such as [14-16] use system-call level
traces in order to detect and determine anomaly behaviour.

Another application for system-call traces is performance monitoring. Burns et al.
[17] used system call execution traces to extract the logical block addresses of a file
which are generated over a long period of time in order to evaluate the file system
performance.

2.5 Execution Traces for Performance Analysis

The increasing size and complexity of software systems require planning for better
memory management and CPU processing times. This led to the development of
software analysis tools, usually known as profilers, which help in pinpointing execu-
tion bottlenecks and aid code optimization consequently. Moreover, the analysis pro-
vided by these tools can benefit in decreasing the execution time and reducing the
resource utilization such as physical and virtual memory. The main weakness of this
type of tools is the overhead introduced from the statically instrumented executed
statements. However, Dynamic instrumentation [18] can be used in order to obtain a
very low profiling overhead.

Harkema et al. [19] presented a Java Performance Monitoring Toolkit (JPMT) for
analyzing the performance of Java applications. It uses event traces such as thread
creation, method invocations and locking contention which are annotated by perform-
ance attributes such as timestamps in case of method invocations. Instrumentation
overhead is overcome by only instrumenting for the types of events requested by the
user. Additionally, JPMT supports visualization of event traces and provides the abil-
ity of querying for certain types of events.

In his work [20], Putrycz presents a novel approach for analyzing performance in
COTS-based systems which uses low-level trace analysis in order to understand the
interactions between the communicating components. Pahl et al [21] presents a
service-specific approach for performance evaluation of model-driven developed
services. This work presents a new approach for instrumentation of model-based
languages in order to collect performance-relevant time information at execution time
from specific model elements such as services and flow operators.

3 Existing Metamodels

There exist several metamodels that are used to capture runtime execution traces such
as Compact Trace Format (CTF) [28] and UML [3]. UML sequence diagrams can be
used to capture procedure calls among different objects. The problem with the exist-
ing metamodels is their inability to model all types of execution traces captured from
different software architectures and the lack of support to trace compaction tech-
niques. In this section, we present some of the existing metamodels that are being
used or can be used to model different types of execution traces.

258 L. Alawneh and A. Hamou-Lhadj

3.1 Compact Trace Format

Hamou-Lhadj et al. [28] developed a metamodel called the Compact Trace Format
(CTF) to model traces of routine (method) calls. CTF was designed to deal with the
enormous size of typical traces based on the idea that dynamic call trees can be turned
into ordered directed acyclic graphs, where repeated sub-trees are factored out. CTF
supports traces defined at different levels of abstraction including object, class and
package level. It also supports the specification of threads of execution. Additional
information such as timestamps and routine execution time are added to enable profil-
ers to use CTF.

Trace data conforming to CTF can be expressed using GXL [29] or any other data
‘carrier’ language. However, the authors suggest using a compact representation in
order to support the compactness objective of CTF. CTF is lossless such that the
original trace can be reconstructed from its compact form.

3.2 Unified Modeling Language

UML is a modeling language adopted by OMG in 1997 that enables software design-
ers to specify, visualize, and document software models. These models are abstract
representations of the implementation details of software systems. The UML meta-
model is based on the Meta Object Facility [30] (MOF) language. MOF defines an
abstract language and framework for specifying, constructing and managing technol-
ogy neutral metamodels.

UML diagrams are classified into two categories: structural and behavioural dia-
grams. The latter includes a subset known as interaction diagrams. The structural
diagrams include those that capture the static structure of software systems such as
class and package diagrams. The class and package diagrams help in building meta-
models that capture execution traces. On the other hand, behavioural diagrams depict
the dynamic behaviour of software systems. Behavioural diagrams include use case
diagram, activity diagram, state machine diagram, sequence diagram and others.

The sequence diagram shows object interactions arranged in a time sequence. Se-
quence diagrams identify the communication required to fulfill an interaction. More-
over, they show the objects that participate in an interaction and the messages used to
trigger the interactions among the objects.

There exist some research works that used UML sequence diagram to model run-
time execution traces. Briand et al [31] proposed a framework for reverse engineering
of UML sequence diagrams using execution traces. This work defines a metamodel
for execution traces and maps the execution trace elements to its corresponding se-
quence diagram elements. The work uses code instrumentation to probe the parts of
code that will be used to generate the execution trace. In [32], Delamare et al. used
UML 2.0 sequence diagrams to capture the program state from its execution traces for
the purpose of program understanding.

In [33], the authors used UML State Machine diagrams as the basis for their ap-
proach to runtime verification of Java programs. The approach studies the temporal
order of message receiving based on consistency checking between the behaviour of
state machine diagrams and the program execution traces.

 Execution Traces: A New Domain That Requires the Creation 259

3.3 Knowledge Discovery Metamodel

The Knowledge Discovery Metamodel (KDM) [1] is a metamodel that targets a wide-
spread set of software applications, platforms and programming languages such as
modern enterprise applications which involve multiple technologies and programming
languages. The goal of KDM is to facilitate the integration between different tools
that capture information about complex enterprise applications. The structure of KDM
offers a common interchange format, using XMI schema, which allows interoperabil-
ity between existing tools and their models. Moreover, KDM captures the physical
and logical software assets at various levels of abstraction as entities and relations.
This nominates it as a favorable basis for different software domains.

KDM is designed based on the separation of concerns principle in order to enable
different compliant tools to support the same or compatible metamodel subsets. This
modular structure of the metamodel allows a tool vendor to select only its desired or
needed parts of the metamodel. Furthermore, the structure of KDM consists of differ-
ent packages that represent each domain in enterprise applications. This modular
structure allows for the extensibility of the KDM metamodel by adding new domains
to the metamodel as needed.

This structure of KDM means that users need only to learn about the domain of
their interest. For example, the Structural domain provides users with information
about the architectural elements from the source code of the target system. On the
other hand, the Business Rules domain provides users with behavioural elements of
the system such as features or process rules.

The KDM metamodel is organized in four different layers. The KDM infrastruc-
ture layer defines the basis for the KDM metamodel. Its packages are used by the
packages in the other layers. The Program Elements Layer defines a large set of meta-
model elements whose purpose is to provide a language-independent intermediate
representation for various constructs determined by common programming languages.
The Runtime Resource Layer describes common patterns for representing the operat-
ing environment of existing software systems. Finally, the Abstraction Layer defines
a set of metamodel elements whose purpose is to represent domain-specific and appli-
cation specific abstractions, as well as the engineering view of the existing software
system.

4 Proposed Execution Trace Metamodel

Runtime execution traces represent a separate domain in software modernization.
They provide proper understanding of the different parts of the system under study.
Also, they can facilitate different software maintenance and performance monitoring
activities. Execution traces may exist in different levels of abstraction. The objective
of this work is to support execution traces in all levels of abstraction and to define a
standardized form for execution traces that supports meaningfulness, abstraction and
expressiveness.

Execution traces can be generated using a technique known as program instrumen-
tation. Instrumentation of the source code should be performed properly in order to
generate an execution trace, at a certain level of abstraction, which can be applied
feasibly in order to achieve the goal of the analysis task.

260 L. Alawneh and A. Hamou-Lhadj

The proposed metamodel should be flexible to cover the aforementioned types of
execution traces. Therefore, it should be based on a metamodel that supports extensi-
bility in order to cope with newer types of traces. Our discussion on KDM shows that
it can be a proper candidate for our proposed metamodel because of the following
advantages:

1. KDM is a metamodel that targets a widespread set of software applications, plat-
forms and programming languages such as modern enterprise applications which
involve multiple technologies and programming languages.

2. Separation of concerns concept. This helps in extending KDM to support differ-
ent domains by adding new packages to the metamodel.

3. KDM uses the XMI schema to store the software artifacts. XMI is an OMG stan-
dard for exchanging metadata information via Extensible Markup Language
(XML). It can be used for any metadata whose metamodel can be expressed in
Meta-Object Facility (MOF) such as UML.

4. KDM captures the physical and logical software assets at various levels of ab-
straction as entities and relations.

5. KDM metamodel defines program element entities and their relationships which
can play a main role in building a comprehensive execution trace metamodel.
Executed traces can be mapped easily to their corresponding program elements
since KDM assigns a unique identifier for each program element.

We are interesed in the KDM Runtime Resource Layer because it represents the dy-
namic structures, instances of logical entities and their relationships, which exist at
runtime such as processes and threads. Therefore, a new package to represent the
Runtime Execution traces can be created in this layer. Figure 1 depicts the structure of
KDM packages along with our new Trace package that will represent the execution
traces domain.

The advantages of our approach are manifold and can be summarized as:

1. Our metamodel will utilize the structure of KDM. Therefore, runtime execution
traces can be exchanged easily among different analysis tools.

2. The new Trace package will reuse various KDM packages such as Core, Code
and Action.

3. The execution trace model can follow the Directed Acyclic Graph structures.
Therefore, different graph reduction and summarization techniques can be ap-
plied to our metamodel.

4. Polymorphism and dynamic binding in object oriented systems will be supported
in our metamodel easily since KDM assigns a unique identifier to every element
in the source code. Therefore, each method will be instrumented with its KDM
unique identifier. Thus, a method call in the execution trace can be linked to its
class using its unique identifier.

5. Processes and Threads are already supported in KDM and will be reused in our
Trace package.

6. The Trace package can be extended to support newer types of execution traces
easily due to the extensibility nature of KDM.

7. The new metamodel can be integrated easily with several visualizations schema
such as GXL.

 Execution Traces: A New Domain That Requires the Creation 261

Infrastructure Layer

Abstractions Layer

Program Elements Layer

Runtime Resource Layer

Core

Source
kdm

Code Actions

Data
(Data domain)

Event
(Event

domain)

UI
(UI domain)

Platform
(Platform domain)

Trace
(Execution trace

domain)

Conceptual
(Business rules domain)

Build
(Build domain)

Structure
(Structure domain)

Fig. 1. Updated KDM Structure with Trace Package

5 Conclusion and Future Work

This paper presented runtime information through execution traces as a new domain in
software engineering supported by several research studies that target or utilize execu-
tion traces to achieve their objectives. We discussed a few metamodels that are used to
capture execution traces. Our discussion showed that the available metamodels lack the
possibility of capturing all types of execution traces. Moreover, these metamodels
except for [28] do not apply trace compaction techniques. Finally, we proposed build-
ing a new metamodel based on KDM for its numerous advantages. The resulting
metamodel should be able to model any type of execution traces in a compact form.

Our future work will focus on building the new metamodel for the execution trace
domain. We will continue studying all the available types of execution traces in order
to support them in our metamodel.

References

1. Object Management Group. Knowledge Discovery Metamodel: KDM Version 1.1 Beta 3
(March 2008)

2. OMG: Object Management Group, http://www.omg.org/

262 L. Alawneh and A. Hamou-Lhadj

3. Object Management Group. Unified Modeling Language: Infrastructure and Superstruc-
ture, Version 2.0, formal/2007-11-04 (November 2007)

4. Zhang, X., Gupta, R.: Whole execution traces and their applications. ACM Transactions on
Architecture and Code Optimization (TACO) 2(3), 301–334 (2005)

5. Cleve, H., Zeller, A.: Locating causes of program failures. In: ACM/IEEE International
Conference on Software Engineering, ICSE (2005)

6. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature Location via Information Re-
trieval based Filtering of a Single Scenario Execution Trace. In: Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering, pp. 234–243
(2007)

7. Taniguchi, K., Ishio, T., Kamiya, T., Kusumoto, S., Inoue, K.: Extracting Sequence Dia-
gram from Execution Trace of Java Program. In: Proceedings of the Eighth International
Workshop on Principles of Software Evolution, pp. 148–154 (2005)

8. Wang, L., Wong, E., Xu, D.: A Threat Model Driven Approach for Security Testing. In:
Proceedings of the Third International Workshop on Software Engineering for Secure Sys-
tems, pp. 111–112 (2007)

9. Salah, M., Mancoridis, S.: A Hierarchy of Dynamic Software Views: From Object-
Interactions to Feature-Interactions. In: Proceedings of the 20th IEEE International Con-
ference on Software Maintenance, pp. 72–81 (2004)

10. Apiwattanapong, T., Orso, A., Harrold, M.: Efficient and precise dynamic impact analysis
using execute-after sequences. In: Proceedings of the 27th international conference on
Software engineering (2005)

11. Hamou-Lhadj, A., Lethbridge, T.: Summarizing the Content of Large Traces to Facilitate
the Understanding of the Behaviour of a Software System. In: Proceedings of the 14th
IEEE International Conference on Program Comprehension, pp. 181–190 (2006)

12. Moe, J., Carr, D.: Understanding Distributed Systems via Execution Trace Data. In: Pro-
ceedings of the 9th International Workshop on Program Comprehension, pp. 60–67 (2001)

13. Bensalem, S., Havelund, K.: Scalable deadlock analysis of multi-threaded programs. In:
Proceedings of the Parallel and Distributed Systems: Testing and Debugging (PADTAD)
Track of the 2005 IBM Verification Conference. Springer, Heidelberg (2005)

14. Varghese, S.M., Jacob, K.P.: Anomaly Detection Using System Call Sequence Sets. Jour-
nal of Software 2(6) (2007)

15. Fetzer, C., Suesskraut, M.: SwitchBlade: Enforcing Dynamic Personalized System Call
Models. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems (2008)

16. Goel, A., Feng, W., Maier, D.: Automatic high-performance reconstruction and recovery.
The International Journal of Computer and Telecommunications Networking 51(5), 1361–
1377 (2007)

17. Burns, R., Rees, R., Peterson, Z., Darrell, D.E.: Allocation and Data Placement Using Vir-
tual Contiguity, iNIST/SSRC/01-001, pp. 1–6 (2001)

18. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of production
systems. In: Proceedings of the USENIX Annual Technical Conference 2004 on USENIX
Annual Technical Conference (2004)

19. Harkema, M., Quartel, D., van der Mei, R., Gijsen, B.: JPMT: a Java performance moni-
toring tool. In: Proceedings of the 13th International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation (2003)

20. Putrycz, E.: Using trace analysis for improving performance in COTS systems. In: Pro-
ceedings of the 2004 conference of the Centre for Advanced Studies on Collaborative re-
search, pp. 68–80 (2004)

21. Pahl, C., Boskovic, M., Hasselbring, W.: Model-Driven Performance Evaluation for Ser-
vice Engineering. In: Proceedings of the 2nd European Conference on Web Services
Workshop on Web Services Technology (2007)

 Execution Traces: A New Domain That Requires the Creation 263

22. McGavin, M., Wright, T., Marshall, S.: Visualisations of Execution Traces (VET): An In-
teractive Plugin-Based Visualisation Tool. In: Proceeding of the 7th Australasian User In-
terface Conference, pp. 153–160 (2006)

23. Fischer, M., Oberleitner, J., Gall, H., Gschwind, T.: System Evolution Tracking through
Execution Trace Analysis. In: Proceedings of the 13th International Workshop on Program
Comprehension, pp. 237–246 (2005)

24. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., van Wijk, J.: Exe-
cution trace analysis through massive sequence and circular bundle views. Journal of Sys-
tems and Software 8(12) (2008)

25. de Kergommeaux, J.C., de Oliveira Stein, B.: Pajé: An Extensible Environment for Visual-
izing Multi-threaded Programs Executions. In: Proceedings of the 6th International Euro-
Par Conference on Parallel Processing, pp. 133–140 (2000)

26. Roberts, J., Zilles, C.: TraceVis: An Execution Trace Visualization Tool. In: Proceedings
of the Workshop on Modeling, Benchmarking, and Simulation (2005)

27. Malnati, G., Cuva, C.M., Barberis, C.: JThreadSpy: teaching multithreading programming
by analyzing execution traces. In: Proceedings of the Parallel And Distributed Systems:
Testing and Debugging Conference (2007)

28. Hamou-Lhadj, A., Lethbridge, T.C.: A Metamodel for Dynamic Information Generated
from Object-Oriented Systems. Electronic Notes Theoretical Computer Science, vol. 94,
pp. 59–69. Elsevier Press, Amsterdam (2004)

29. Winter, A., Kullbach, B., Riediger, V.: An Overview of the GXL Graph Exchange Lan-
guage, Revised Lectures on Software Visualization. In: International Seminar, pp. 324–336
(2001)

30. Object Management Group. Meta Object Facility (MOF) Specification (2000)
31. Briand, L.C., Labiche, Y., Miao, Y.: Towards the Reverse Engineering of UML Sequence

Diagrams. In: Proceedings of the 10th Working Conference on Reverse Engineering
(2003)

32. Delamare, R., Baudry, B., Traon, Y.L.: Reverse-engineering of UML 2.0 Sequence Dia-
grams from Execution Traces. In: Workshop on Object-Oriented Reengineering at ECOOP
(2006)

33. Li, X., Qiu, X., Wang, L., Lei, B., Wong, W.E.: UML State Machine Diagram Driven
Runtime Verification of Java Programs for Message Interaction Consistency. In: Proceed-
ings of the 23rd Annual ACM Symposium on Applied Computing (ACM SAC 2008),
pp. 384–389 (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

