Towards A Formal Framework for Evaluating the
Effectiveness of System Diversity when Applied to
Security

Raphaél Khoury*, Abdelwahab Hamou-Lhadjfand, Mario Couturet
*Defence Research and Development Canada
Valcartier, Quebec, Canada,
raphael . khoury @drdc-rddc.gc.ca
fConcordia University
Software Behaviour Analysis (SBA) Research Lab
Department of Electrical & Computer Engineering
Montreal, Quebec, Canada
abdelw @ece.concordia.ca
{Defence Research and Development Canada
Valcartier, Quebec, Canada,
mario.couture @drdc-rddc.gc.ca

Abstract—N-version programming has been shown to be an
effective way to increase the reliability of systems. In this study,
we examine the possibility of extending this approach to address
security, rather than reliability concerns. We focus specifically
on how to evaluate the efficiency of the use of diversity for
security. We show that while several key elements must be
taken into account when N-version programming is used for
security rather than reliability, it is nonetheless possible to
devise a reasoning framework to evaluate the efficiency of this
development paradigm in a security context. This framework
allows us to reason about the most effective way to use diversity
for security.

I. INTRODUCTION

The fields of software reliability and security are closely
related and several methods simultaneously address both con-
cerns without distinguishing between a malicious and an
inadvertent failure. It is thus normal to ask if the N-version
programming paradigm, which was developed to address relia-
bility concerns, can likewise be deployed in a security context.
We believe this is possible, but that several key elements
must be taken into account when diversity is introduced in
an architecture for security purposes rather than to increase
reliability.

N-version programming [1] is a software development
paradigm that draws upon the concept of diversity to increase
the reliability of software. The guiding principle of this
approach is to produce several distinct versions of a given
software, and execute them in parallel with the same inputs.
A discrepancy between the outputs of the various instances is
an indication that at least one instance has malfunctioned. In
that case, a single output value is chosen from the outputs of
each program instance by majority voting. The intuition behind
this programming paradigm is that while it may be impossible
to produce a single flawless instance of any complex system,

multiple instances of this system would normally exhibit
different faults.

A key concept in the design of N-version architectures is
failure independence. Informally, this property describes the
behavior of a system for which the occurrence of a failure
in one instance for a given input value does not provide any
information in regard to the probability of failure of another
instance for the same input value. It is from the assumption
of failure independence that we derive the hypothesis that the
probability of coincident failure (i.e. two instances failing on
the same input) is very small and that gains in reliability can
be obtained through the use of N-version programming.

Researchers in security have also shown a great deal of
interest in diversity, though not in the context of an N-version
architecture. Instead, research in computer security proceeds
from the assumption that if the program instance of each user
differed from that of every other user, an attack cannot easily
be carried over from one system to the next. The attacker will
thus be forced to tailor each attack to the system he wishes
to compromise. Furthermore, the added uncertainty about the
target system increases the cost of the attack [2].

Diversity can thus serve as the basis for effective intrusion
detection. The main intuition underlying such an approach is
that, since attacks must be tailored to each program instance,
if several program instances are executed in parallel as part
of an N-version architecture and an input contains an attack
vector, it is likely that the attack will succeed only on some
of the several program instances. This in turn will cause the
executions of the affected and unaffected instances to diverge
observably from one another. Such a divergence can then serve
as the basis for intrusion detection and reaction. Initial research
shows this approach to be highly promising [3].

In this study, we propose a framework that can be used to

evaluate the effectiveness of the use of diversity for security.
We contrast the use of diversity for security purposes to
that of diversity for reliability and highlight a number of
key differences that must be taken into consideration in the
former case. We show that while several key elements must
be taken into account when N-version programming is used
for security rather than reliability, it is nonetheless possible to
devise a reasoning framework to evaluate the efficiency of this
development paradigm in a security context.

The use of our proposed framework would bring several
benefits. Most notably:

o This framework allows us to reason about the impact of
diversity on the security of a system, and thus determine
the most effective way to introduce diversity for security
purposes.

o It allows us to compare architectures in which diversity is
introduced at different layers of the system (OS, hardware
or software), or to compare the effectiveness of diversified
architectures built from different combinations of COTS
software.

« It can provide indications as to which architecture we can
expect to provide the best detection rate or the lowest rate
of false positives, and thus serve as a guide for design
choices.

The remainder of this paper is organized as follows. In
Section II we contrast the proposed use of N-version program-
ming for security with its more common use for reliability and
highlight the relevant differences between the two approaches.
Section III reviews the literature on both topics. Concluding
remarks and perspectives for future work are presented in
Section IV.

II. DIVERSITY FOR SECURITY VS DIVERSITY FOR
RELIABILITY

A. General Framework

We propose the following framework to study and reflect
about the use of diversity for security. We start with a
population P of programs, that represents a hypothetical set
of all possible programs able to solve a given problem. We let
7 range over possible programs.

P = {7T1,71’2,7T3...}

These programs take their input from a set of possible input
values X. Each input represents the entire interaction a user
has with a given program during a session. We let x range
over the possible input values.

X = {1’1,1'271‘3...}

Some inputs may be malicious, meaning that they hide
exploits that bring the system in a state that violates the
security policy. For instance, an input field may contain data
triggering a buffer overflow and allowing code injection to
occur. Such input values are said to be invalid. Normal input
values that do not contain an attack, are said to be valid. We
write X, for the set of valid inputs and &; for that of invalid
inputs. Note that X = &, UX; and that X,, and X} are disjoint.

Let () stand for the usage distribution of the values of X'.
This distribution naturally affects only valid executions, since

an attacker can alter the distribution of inputs by repeatedly
inputting the values he or she needs in order to alter the
system.

In the context of their study of diversity for security, Little-
wood et al. [4] propose a score function v : (P xX) — {1,0},
that indicates whether or not the execution of a given program
for a given value fails. The occurrence of such a failure
could be immediately observed by inspecting the program’s
output (for example if the program failed to produce a return
value), or discovered by contrasting this output with that of
another instance. The score function v thus serves as basis for
evaluating how reliable a given program is and a given diverse
architecture containing this program.

However, when the focus is on security, the program’s
output alone does not provide sufficient information for a
meaningful evaluation of the validity of the input. It is entirely
possible for an intruder to alter the execution in such a way
as to violate the security policy while keeping the output un-
changed. Indeed, an attacker who wishes to remain undetected
would favor such a course of action and many attacks are
not visible at the level of the output alone. It follows that
a diversity-based framework whose focus is security rather
than reliability, will necessarily rely on a complete trace of
the program’s execution, rather than simply on the output, as
the basis for its evaluation of the input. This is the first main
difference between using diversity for reliability and using it
for security.

Difference 1: Diversity for reliability is implemented by
comparing the outputs of multiple instances. When diversity
is used for security purposes however, it is necessary to
examine execution traces.

An execution trace is a sequence of atomic actions, per-
formed by the target program during its execution and recorded
by a reference monitor. It can hypothetically contain every
instruction performed by the target program, or be focused on
a subset of security-relevant actions tailored to the security
policy of interest or to a specific resource whose security
we seek to optimize. Let X stand for the set of all possible
execution traces and let o range over traces.

The trace function v : (P x X') — X thus replaces the score
function of Littlewood et al. This function is given as :

v(m,x) = o where o represents the trace of program 7
on input z.

)
Once the system is executed on multiple instances, it is
necessary to contrast the execution traces in order to detect a
possible intrusion. Let 04 = v(71, x) and 09 = v(m2, x) be the
execution traces of programs m; and 7 respectively over the
same input value z. Let the correlation function corr (o1, 02)
stand for the degree of similarity observed between these two
executions. This correlation is expressed by way of a value
between O and 1, where 1 indicates identical sequences, and
0 identifies sequences that seem completely unrelated. Several

metrics could be used to compute this value. A natural choice
is the Levenshtein distance [5], a measure of the number
of insertions, deletions and replacements needed to turn one
sequence into the other. A similar metric was successfully
used in [6] for intrusion detection. However, other metrics
specifically designed for the problem of detecting divergence
between program executions could also be considered.

corr(oy,09) = The degree of similarity between executions
o1 and os.
2
The central idea that underlies the use of diversity as a
defence mechanism is that a given attack may succeed on
one system but fail on another. This in turn will lead to
an observable divergence in the execution traces, allowing
the attack to be detected. As discussed above, diversity can
be introduced at various levels, such as memory layout [7],
instruction set [8] or by using two distinct implementations
of the same software or operating system. The success of the
approach rests on the capacity to develop systems that are
sufficiently different so that most attacks cannot succeed on
multiple instances. It follows that while developers building a
N-version architecture with the goal of increasing reliability
must focus on minimizing the occurrence of coincident failure,
those building such architectures for security purposes should
seek to maximize the dissimilarity of internal behavior.

Difference 2: In the context of diversity for reliability,
the design of an N-version architecture must minimize the
occurrence of coincident failure. However, if the object is
security, the design should promote dissimilarity of behavior.

This second difference raises several interesting questions
related to the way to maximize the divergence between
systems while maintaining common functionalities between
instances, as well as the way to simultaneously update both
instances so as to preserve their behavioral equivalence.

Pairs of systems naturally differ as to how much similarity
they exhibit while executing normally (i.e. over valid inputs).
However, a baseline can be established by examining a suf-
ficiently large and representative sample of executions. This
yields a distribution 6 as follows:

O(my,) = Zcorr(u(m,mi), v(me, 2:))Qz) (3)

In effect, this distribution expresses the likelihood that when
executing a given input, two executions will differ by a given
amount'. Note that this distribution is only computed for valid
executions. We expect that an invalid execution for which
the attack succeeds on one instance only, will contrast with
a corresponding valid execution by a higher than average
amount, but at the present time this can only be a conjecture.

'Observe that this distribution only describes the behavior of a specific
version of each system.

Let corr(oy,02) be the level of similarity existing between
two trace executions o; and 9. Our goal is to contrast the ob-
served corr(oq,02) with the known value of 6(m,ms) of the
program that produced o1 and o9, as to attempt to determine
if the input value = hides an attack. Were we in possession
of statistical data about the relative distribution of valid and
invalid inputs, as well as of data relating to the expected level
of correlation between executions of the target programs over
invalid inputs, a statistical analysis could be performed. Such
an analysis could return a probability ¢ indicating that x is
malicious with a certain degree of confidence. Indeed, this
is similar to the method used to evaluate the reliability of
diversified components. However, as discussed above, it is not
meaningful to compute a distribution of invalid inputs when
reasoning about the possible behavior of a malicious attacker
capable of altering the systems’s inputs. Furthermore, while
statistical data could be gathered about systems behavior on
malicious inputs by simulating their execution using test cases
of known attacks, such data may not necessarily be generalized
to new or unknown attacks. Of particular interest are zero-day
exploits that use unknown vulnerabilities of software.

We propose instead a possibilistic approach. Possibility
theory [9], is an alternative to probability theory to reason
about uncertainty. Informally, a possibility is a value between
0 and 1 that describes the ease with which an event will occur,
or will belong to a set, as opposed to the likelihood that it will
occur, which is expressed as a probability.

A possibilistic analysis would thus indicate how “normal”
the level of observed correlation is and how unusual it would
be for a valid input to result in pair of executions exhibiting
this level of correlation. This information is captured by a
possibility function pos whose domain is the range of possible
correlation values and whose image is a possibility value in
the interval [0, 1]. Dubois et al. [10] show how a possibility
function reflecting this value can be computed directly from
the probability density function. The technique they propose
can thus be used to derive a possibility distribution for
correlation values. Formally, the possibility of a correlation
U occurring is

pos(u) = / 6(y)dy + /f 0wy @

where f : [a,ug] — [ug,b] is a function defined s.t. f(u) =
max{y|0(y) < 6(u)} with the interval [a, b] being the support
of 6 (possibility [0, 1]) and ug being its modal value?.

Once a possibilistic value has been assigned to the cor-
relation between two sequences, action can be taken based
on the environment-specific tradeoff between security and
functionality.

One way to control this tradeoff is to state a threshold «,
a level of divergence below which any pair of executions is
deemed suspect.

2This solution is thus only applicable to the cases where 6 is continuous
and monomodal, but it is reasonable to think that this will usually be the case
of any correlation probability density function.

9 — 1, if¢p>a;
"1 0, otherwise.

The choice of the threshold value o will determine the
sensitivity of the detection. However, in the absence of data
about the level of divergence observable in invalid execution
it is not possible to give a numerical value to our confidence
in this judgement.

Once the attack is detected, the system administrator can
react, usually by terminating the execution. In this distinction
lies another consequential difference between using diversity
for reliability and using diversity for security: in the first case,
the goal is to maximize the number of input values for which
a correct service is provided, whereas in the latter, the goal
is to weed out and deny service if the input value betrays a
malicious intent on the part of its originator. While information
from the unaffected instance may be used to recover from the
attack, it is undesirable to provide service to a malicious user
since doing so betrays information about the system.

®)

Difference 3: When diversity is implemented with the goal of
increasing reliability, the object is to maximize the number of
inputs for which a service is provided. In the case of diversity
for security, we seek to weed out invalid inputs.

This is more than a simple difference in the reaction to
the discovery of a vulnerability and translates into profound
changes as to how an architecture must be evaluated. In
particular, it poses a new risk which does not exist when
diversity is implemented for reliability: that of the occurrence
of false positives when two valid executions diverge to the
point that the monitor wrongly marks one of them as being
invalid.

Difference 4: The fact that some inputs will not be answered,
coupled with the imperfection present in any security
architecture, leads to the occurrence of false positives.

The likelihood that a pair of executions will be mistakenly
marked as malicious is a factor of the decision threshold «
used to rule out executions and of the distribution 6. We write
fp(a, 6) for the probability of false positives occurring if the
threshold is a set of o and the similarity distribution between
valid executions is 6.

This risk is expressed by the following equation:

fo(.0) = [6(u)du

0

(6)

where y is the maximal value for which pos(y) < a.

The occurrence of false positives can at first sight be thought
of as analogous to the occurrence of coincident failures in
the diversity for reliability context and could thus presumably
be studied using the same analytical tools that have already
been developed for the latter case. This analogy does how-
ever obscure two critical differences. First, coincident failures

are the result of unwanted commonalties between different
instances, and various strategies are employed to minimize and
eliminate these commonalities (see for e.g. [11], [12]). False-
positives, however, result from the desired divergence between
instances and we believe that, in general, the approach grows
stronger as these differences increase. Future research should
determine if there exists an optimal amount of divergence that
provides the best ratio of attack detection to false-positives for
a given threshold. In the meantime, abstraction and correlation
algorithms should be developed to discern the divergence
between executions associated with successful intrusion from
those which occur naturally because of differences in the
underlying programs.

Secondly, the modeling of false positives also differs from
that of coincident failures in that the latter relies upon a
distribution over all inputs to assess the rate of coincident
failures and contrasts it against that of faults which are
successfully tolerated by the N-version architecture. However,
while a distribution of valid inputs can be constructed and the
rate of false positives estimated from it, we can never hope
to compute a distribution that includes invalid inputs, since
the occurrence of invalid inputs implies the presence of an
attacker capable of querying the system with inputs of his
choice calibrated for the purpose of his attack. The best we
can do in this case is thus to estimate the rate of occurrence
of false positives of the system when it is not under attack.

It does seem intuitive that as instances grow more different,
so does the benefit of using diversity for security. Indeed, it
is more likely that an attack will succeed on only one of two
instances if they are very different from one another than if
they are alike. However, as executions grow more divergent
it will also become more difficult to identify similarities
and correlations between valid executions. This in turn could
lead to an increase in the rate of false positives. It follows
that unless the increase in divergence between instances is
matched by a corresponding increase in the sophistication of
the correlation algorithm, benefits by increasing the divergence
between instances will be offset by an increase in the number
of false positives

B. Multiple Instances

Research on diversity for reliability shows that the overall
reliability of the system can be improved (up to a point) by
increasing the number of instances present in a IN-version
architecture (i.e. by increasing the value of N) [13]. This is
a strategy designed to cope with the unavoidable presence of
coincident failures: even if two or more instances fail on the
same input, other instances running concurrently may succeed.
Such multi-versions architectures take two forms: one-out-of-
N systems, which succeeds if at least one instance succeeds,
and majority voting systems (or m-out-of-N systems, with
m = [N/2]) that succeeds if a majority of the composing
instances succeed.

The previous idea can also be carried over to the context
of diversity for security. Running multiple instances will
increase the odds that a malice will be detected by making it

harder on the attacker to devise an input that can compromise
every instance simultaneously. A final key difference between
diversity for reliability and diversity for security is that, in the
latter case, rather than a rigid choice between one-out-of-N or
majority voting a diverse architecture can be devised for any
m < N, indicating that this attack is deemed to have occurred
if at least m instances diverge from the others. As the number
of instances deviating from the others increases, the input can
be treated as malicious with an increasing level of confidence.

Difference 5: One-out-of-N and majority voting are no
longer the only possible voting paradigms. Instead, a threshold
dictating how many instances can deviate from the others
before the input is treated as malicious must be chosen in
such a way as to balance security concerns with the need to
minimize false-positives.

However, comparing several instances raises a number of
difficulties. In particular, the system becomes subject to a
variation of the consistent comparison problem raised in [14].
Consider a system with three instances, 71, 72 and w3 which,
for a given input value x, produce three traces o1, 09 and o3
respectively. Three pairs of comparisons are possible between
these three sequences, namely oy with o9, o1 with o3 and
o9 with 3. Let p1, p2 and ps be the outputs of these three
comparisons and let 9 be the threshold by which we consider
that an instance has diverged from the other (and thus that the
input is malicious). It may become possible that |p; — pa| < ¥,
|p2 — p3| < O but that |p; — ps| > 9.

C. System Health and Self Monitoring Execution

In addition to contrasting the various executions between
themselves to detect a violation, each execution can be con-
trasted with a model of the system’s desired behavior to
detect if the ongoing execution violates the system’s security
property. This would have several benefits: first, it would
reduce the number of false positives by giving an indication as
to whether or not a deviation observed between two execution
rallies does correspond to a violation of the security policy.
Secondly, it would indicate which of two diverging instances
is the one for which the attack has succeeded, thus allowing
us to isolate the compromised system and use the healthy one
for recovery.

The execution monitoring, like the correlation analysis,
would return a probability that the execution under consid-
eration is malicious. This is given by the function eval : ¥ —
[0, 1].

eval(o) = p the probability that ¢ is malicious. (7)

The evaluation given by eval is then contrasted with that of
the correlation analysis. We can state with greater confidence
that two diverging executions hide an attack if they not
only diverge, but if they also have a high probability of
maliciousness according to eval. Once again, the decision as to
whether or not a specific execution is to be treated as malicious

will be based on a tradeoff between security concerns and the
desire to minimize the rate of false positives.

In the presence of a self-diagnostic for each execution
sequence, the equations for detecting an attack and to compute
the rate of false positives can be stated in a variety of ways,
depending on how much weight is given to each type of
judgement. An elegant solution is to merge the two judgements
of the ewval functions into a single value that gives the
probability that at least one of the two instances is malicious
(according to the self-diagnostic) and then adjust the threshold
according to this value. The detection should be more sensitive
to divergence between the two instances if the self-diagnostic
raises alarms, and conversely more tolerant if no abnormal
behavior is detected in either instance.

III. RELATED WORKS

The N-programming development paradigm [1], also called
design diversity, grew from the longstanding practice of using
multiple redundant components to increase the reliability of
safety-critical hardware. This practice has a rich literature
dating back to the late 70s, that includes various experiments
conducted in academic settings to evaluate the feasibility and
efficiency of the approach as well as theoretical enquiries
aimed at modeling and reasoning about the behavior of N-
version systems.

The latter studies begin with Eckhardt et al. [15], who
proposed an initial model to study the impact of coincident
failures on the effectiveness of using diversity for security.
The authors modeled the occurrence of such failures by an
intensity function that represents the propensity of program-
mers to introduce faults in such a way that failure does
not occur independently on some inputs. Building upon their
work, Littlewood et al. [4] proposed an alternative model,
that includes an important dimension of methodology, to
model the impact of different development strategies on the
distribution of coincident failures in software. Both models are
contrasted and discussed in [16]. A final approach is proposed
by Partridge et al. [17] to model the distinction between the
different ways several instances may fail, even if they fail over
the same inputs.

The question of using N-version programming for security,
rather than for reliability, was raised in a number of studies.
Littlewood et al. examined the question in [18]. In [19],
Bessani, et al. argued in favor of using diversity for security
on the basis of the recorded distribution of vulnerabilities in
several operating systems. In [20], the various layers where
diversity can be inserted are examined from the perspective
of maximizing security. The use of design diversity to protect
against computer viruses were examined in [21]. The use of
diversity for security, termed automated diversity, was first
suggested by Forrest et al. in [2], where it was observed that
the homogeneity of computer systems constitutes an important
vulnerability. Drawing on an analogy to biological systems,
Forrest et al. argued that the robustness of systems could be
improved if the program instance used by each user differed
slightly from that of every other user. As a case study, they

proposed a method for stack layout randomization and showed
that it is effective at disrupting a buffer overflow attack. In [3],
Gao et al. propose an intrusion detection scheme based on the
behavioral distance between two processes.

Following on this line of enquiry, several studies have
proposed introducing diversity at different layers of software
systems. These include the instruction set [8], [22], [23],
address space [7], [24], data space [25], and system calls [26].
A survey of these techniques is provided in [27].

IV. CONCLUSIONS AND PERSPECTIVES FOR FUTURE
WORK

This study proposes a new reasoning framework to evaluate
the effectiveness of the use of diversity for security purposes.
In this regard, we combine the complementary fields of design
diversity, which is traditionally used for the purposes of
increasing the reliability of systems, and automated diversity,
which is focused on security.

Several questions must still be answered before diversity
can be effectively used for security purposes.

o As discussed above, the central assumption that underlies
the use of diversity for security is that if two systems
are sufficiently different, attacks targeted at one system
cannot be carried over to the other by using the same
input values. One of the most pressing topics for further
investigation is to test the validity of this hypothesis. In
this context, it is important to recall that researchers in the
field of diversity for security had assumed that indepen-
dent development was a sufficient condition to achieve
failure independence, until research by [28] showed this
was not necessarily the case.

o A second assumption often made in this context is that
the more different two systems are, the more likely it
is that an attack will succeed on one instance but fail
on the other. If this is the case, it becomes necessary
to make a difficult compromise between risking a higher
rate of false positives by increasing the amount of diver-
sity between the program instances, or risking a lower
detection rate by using more similar systems. Answering
this question may lead to the development of new metrics
to measure the level of divergence between two systems.

o A related problem lies in determining if there are areas
of the system for which a greater benefit is derived
by introducing diversity. It may happen that introducing
diversity in a few key aspects of a system is sufficient
to produce two instances for which few attacks can
simultaneously succeed. Since the cost of building diverse
instances may be prohibitive, targeting the introduction
of diversity to a few key subsystems can allow a more
cost-effective enforcement.

o Another possible avenue of future research is to use
multiple correlations between instances. Each correlation
would be based on its own trace abstraction, and focussed
on preventing a specific class of attacks or on protecting
a specific key resource. This opens up the possibility
of feedback oriented analysis, where the detection of a

possible malice in one of the sequences triggers more
scrutiny for all other traces before a final decision can be
made about the validity of the trace under observation.

o A final ongoing challenge for future research lies in
developing trace analysis and trace abstraction tools that
are sufficiently refined to distinguish an attack occurring
in a given execution but not in another, from the normal
divergence present in a pair of homologous execution
traces that are simultaneously executing on diverse sys-
tems.

We have already performed initial experiments to implement
the ideas proposed in this paper. Initial testing was performed
with two diversified html servers, running on the same hard-
ware and operating systems and executing the same requests
in parallel. The output of both servers is then contrasted to
detect a higher than usual divergence between their behaviors.
At this stage we have so far experimented only with normal
traces.

These experiment consisted first in a short training phase
in which the enforcement mechanism recorded the observed
behaviors of both systems when running the same input.
This was followed by a test phase in which the enforcement
mechanism attempted to predict the expected behavior of one
of the system based after having monitored the execution of
the other. A deviation between this predicted behavior, and the
actual observed behavior would be seen as an indication of an
attack.

The results we have obtained are highly encouraging. In-
deed, in most cases, the observed difference between both
executions was minimal. These results indicate that whenever
the execution is valid, the proposed intrusion detection method
can successfully detect an attack (i.e., the risk of false positives
is not prohibitively high).

The next step is to test the approach with attack traces, and
determine the efficiency of the approach using the reasoning
framework proposed in the previous sections. For lack of time,
we were unable to complete this phase of this experiment.
Nonetheless, a survey of the relevant literature indicates that
in most cases, an intrusion would incur a greater amount of
disturbance in the sequence in system calls than the level (often
nil) of the difference we observed between the sequences of
each matched pair. It follows that the approach proposed in
this section will likely be able to detect intrusions effectively
with a minimal false positive rate.

This type of experiment can then be replicated with diversity
introduced in other components of the system’s architecture
(such as the OS or hardware), to gather knowledge about the
best way to introduce diversity for security. Other types of
analyses, such as principal component analysis, or experiments
based on machine learning or data mining techniques could
also offer useful insight about the effective use of diversity.

REFERENCES

[1]1 A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on Software Engineering, vol. 11, pp. 1491-1501, Decem-
ber 1985.

[2]

[3]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Proceedings of the Sixth Workshop on Hot Topics in
Operating Systems. 1EEE Computer Society Press, 1997, pp. 67-72.
D. Gao, M. K. Reiter, and D. X. Song, “Behavioral distance mea-
surement using hidden markov models,” in Proceedings of the Recent
Advances in Intrusion Detection, 9th International Symposium, (RAID)
2006, Hamburg, Germany,, ser. Lecture Notes in Computer Science,
D. Zamboni and C. Kriigel, Eds. Springer, September 2006, pp. 19—
40.

B. Littlewood and D. R. Miller, “Conceptual modeling of coincident
failures in multiversion software,” IEEE Transactions on Software En-
gineering, vol. 15, no. 12, pp. 1596-1614, 1989.

V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4,
pp. 845-848, 1965, original in Russian — translation in Soviet Physics
Doklady 10(8):707-710, 1966.

S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151-180, 1998.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in In Proceed-
ings of the ACM Computer and Communications Security (CCS) 2004,
B. Pfitzmann and P. Liu, Eds. ACM Press, 2004, pp. 298-307.

G. S. Kc, “Countering code-injection attacks with instruction-set ran-
domization,” in In Proceedings of the ACM Computer and Communica-
tions Security (CCS) Conference. ACM Press, 2003, pp. 272-280.

L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets and Systems, vol. 100, pp. 9-34, April 1999.

D. Dubois, H. Prade, and S. Sandri, “On possibility/probability transfor-
mations,” in Proceedings of Fourth IFSA Conference. Kluwer Academic
Publishing, 1993, pp. 103-112.

A. Avizienis, M. R. Lyu, and W. Schutz, “In search of effective
diversity: A six-language study of fault-tolerant flight control software,”
in Proceedings the IEEE Eighteenth Annual International Symposium
on Fault-Tolerant Computing (FTCS-18), June 1988, pp. 15-22.

M. R. Lyu and A. Avizienis, “Assuring design diversity in n-version
software: A design paradigm for n-version programming,” Dependable
Computing and Fault-Tolerant Systems, vol. 6, pp. 197-218, 1991.

D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis
of redundant software subject to coincident errors,” National Aero-
nautics and Space Administration (NASA), Tech. Rep. NASA-TM-
8636919850015006, 1985.

S. S. Brilliant, J. C. Knight, and N. G. Leveson, “The consistent
comparison problem in n-version software,” IEEE Transactions on
Software Engineering, vol. 15, pp. 1481-1485, 1989.

D. Eckhardt and L. Lee, “A theoretical basis for the analysis of
multiversion software subject to coincident errors,” IEEE Transactions
on Software Engineering, vol. 11, pp. 1511-1517, 1985.

B. Littlewood, P. P. L., and Strigini, “Modeling software design diversity:
a review,” ACM Computing Surveys, vol. 33, pp. 177-208, June 2001.
D. Partridge and W. Krzanowski, “Distinct failure diversity in multiver-
sion software,” Department of Computer Science, University of Exeter,
U.K., Tech. Rep., 1997.

B. Littlewood and L. Strigini, “Redundancy and diversity in security,”
in 9th European Symposium on Research Computer Security,(ESORICS
2004) LNCS 3193. Springer, 2004, pp. 423-438.

A. N. Bessani, R. R. Obelheiro, P. Sousa, and I. Gashi, “On the effects of
diversity on intrusion tolerance,” Department of Informatics, University
of Lisbon, DI/FCUL TR 08-30, December 2008.

Y. Deswarte, K. Kanoun, and J.-C. Laprie, “Diversity against accidental
and deliberate faults,” in Computer Security, Dependability, and Assur-
ance: From Needs to Solutions. 1EEE Press, 1998, pp. 171-181.

M. K. Joseph and A. Avizienis, “A fault tolerance approach to computer
viruses,” in Proceedings of the 1988 IEEE conference on Security and
privacy, ser. SP’88. Washington, DC, USA: IEEE Computer Society,
1988, pp. 52-58.

E. Barrantes and S. Forrest, “Increasing communications security
through protocol parameter diversity,” in In Proceedings of the XXXII
Latin-American Conference on Informatics (CLEI 2006), August 2006.
A. D. Keromytis, “Randomized instruction sets and runtime environ-
ments past research and future directions,” IEEE Security and Privacy,
vol. 7, pp. 18-25, 2009.

[24]

[25]

[26]

[27]

[28]

J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime randomiza-
tion for security,” in In proceedings of the 22nd International Symposium
on Reliable Distributed Systems (SRDS’03), 2003.

S. Bhatkar and R. Sekar, “Data space randomization,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, 5th International
Conference, DIMVA 2008, Paris, France, July 10-11, 2008. Proceedings,
ser. Lecture Notes in Computer Science, vol. 5137. Springer, 2008, pp.
1-22.

M. Chew and D. Song, “Mitigating buffer overflows by operating system
randomization,” Carnegie Mellon University, Tech. Rep. CMU-CS-02-
197, 2002.

A. Gherbi, R. Charpentier, and M. Couture, “Redundancy with diversity
based software architectures for the detection and tolerance of cyber-
attacks,” DRDC Valcartier, Tech. Rep. TM 2010-287, 2010.

J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multi-version programming,” IEEE
Transactions on Software Engineering, vol. 12, pp. 96—-109, 1986.

