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Abstract— High false alarm rates and execution times are 

among the key issues in host-based anomaly detection systems. 

In this paper, we investigate the use of trace abstraction 

techniques for reducing the execution time of anomaly 

detectors while keeping the same accuracy. The key idea is to 

represent system call traces as traces of kernel module 

interactions and use the resulting abstract traces as input to 

known anomaly detection techniques, such as STIDE (the 

Sequence Time-Delay Embedding) and HMM (Hidden Markov 

Models). We performed experiments on three datasets, namely, 

the traditional UNM dataset as well as two modern datasets, 

Firefox and ADFA. The results show that kernel module traces 

can lead to similar or fewer false alarms and considerably 

smaller execution times compared to raw system call traces for 

host-based anomaly detection systems.  

Keywords—Host-based Anomaly Detection System, Trace 

Analysis andAbstraction, System Call Traces, Software Security, 

Software Dependability 

I.  INTRODUCTION  

Host-based anomaly detection systems have gained 

popularity in recent years due to the increasing number of 

security threats. Unlike misuse-based detection systems 

which focus on detecting known attacks signatures, anomaly 

detection systems can detect both known and unknown 

attacks. The common approach is to use system call traces to 

model the normal behavior of the system, since system calls 

are the gateway between user and kernel spaces [35] [8]. The 

resulting model can then be used as a baseline for the 

detection of abnormal behavior during operation.  

Despite considerable efforts in the field, anomaly 

detection systems still suffer from high false alarm rates (see 

[32] [38] [35] [8] [12]). In addition, the execution time 

(including training, validating, and testing) of anomaly 

detection techniques can be quite high. For example, training 

the Hidden Markov Model (HMM) on large normal system 

traces [35] [4] [11] [12] may take days. This, by itself, is not 

an issue if the system needs to be trained only once. 

However, in practice, because of new patches and 

modifications to the system, it is common to train the system 

multiple times to adapt it to the new changes. Therefore, 

approaches that can reduce the execution time and the false 

positive rate while keeping the same detection accuracy are 

needed. 

After careful examination of different attacks found in 

publicly available Linux-based datasets (e.g., UNM [8] [31], 

ADFA [6]), we have noticed that attacks tend to crosscut 

different modules of the Linux operating system, such as, file 

system, architecture (arch), core kernel, memory 

management, etc. For example, to execute an arbitrary code 

in the system, an attacker might execute the system call 

“sys_execve” in the arch module, call “sys_brk” in the 

memory management module to increase the allocated 

memory, and manipulate system files using the system calls 

in the file system module.   

These observations have led us to investigate the use of 

OS kernel modules for the detection of anomalies. More 

precisely, we propose an approach for anomaly detection in 

which we transform the content of system call traces into 

traces of kernel modules by replacing each system call by the 

kernel module that defines it. Since the number of kernel 

modules (eight in a typical Linux distribution) is 

considerably less than the number of distinct system calls 

(around 300), this trace abstraction technique results in fewer 

distinct events, which should yield significant reduction in 

the time it takes to train and test anomaly detectors. As we 

will show in the case study, this trace abstraction method 

also results in similar, and sometimes better, accuracy when 

compared to the use of raw system call traces.  

In this paper, we choose to use two anomaly detection 

techniques: the Sequence Time-Delay Embedding (STIDE) 

[8] and the Hidden Markov Model (HMM) [35] [34]. We 

selected these two techniques because they have shown to 

produce best results [8] [35] [34]. We supplied these 

detection techniques with traces of kernel modules extracted 

from three publicly available system call based datasets. The 

first one is the University of New Mexico (UNM) dataset [8] 

[31]. Although the system call datasets from UNM have been 

criticized in related literature [29], they are still being used 

for benchmarking anomaly detection systems due to the lack 

of many publicly available datasets [2] [5]. The two other 

datasets consist of a newly developed Firefox dataset [22], 

and the ADFA Linux dataset [6]. We created the Firefox 

trace dataset by using contemporary software testing and 

hacking techniques on Linux [22]. The ADFA dataset is also 

a contemporary dataset for Linux, created by researchers at 

the University of New South Wales, Australia [13].   

The results show that the use of kernel module traces 

reduces significantly the execution time of the selected 

anomaly detectors without necessarily compromising their 

accuracy. In fact, it resulted in better false positive rates in 



the case of STIDE, and almost similar accuracy when used 

with HMM.  

The rest of the paper is organized as follows: Section II 

presents a brief background and a literature review; Section 

III describes the methodology and the evaluation measures; 

Section IV presents the case study on datasets; Section V 

shows the threats to validity; and Section VI concludes with 

future work. 

II. BACKGROUND AND RELATED WORK 

Traditional Intrusion Detection Systems (IDS) rely on 

misuse detection, which compare software behavior with a 

database of known attributes extracted from known attacks. 

When a pattern of attack is found, the behavior is considered 

as anomalous. Another type of intrusion detection systems, 

the focus of this paper, works by building a robust baseline 

of the normal behavior of a system and then monitors for 

deviations from this baseline during system operation [25]. 

These systems are called anomaly detection systems. 

Anomaly detection systems can be classified into Host-

based Intrusion Detection Systems (HIDS) or Network-based 

Intrusion Detection Systems (NIDS). NIDS examine network 

traffic to detect anomalies; e.g., the use of Bayesian network 

on network traffic records to detect anomalies [32] and the 

extraction of rules by mining tcp-dump data to detect 

anomalies [27]. HIDS focus on using metrics present in a 

host system to detect anomalies. A type of HIDS uses 

different algorithms on normal audit records (logs) of a host 

(e.g., CPU usage, process id, user id, etc.). These systems 

measure an anomaly threshold and raise alerts when 

particular attribute values of a new record are above the 

threshold. For example, using multivariate statistical analysis 

on audit records to identify anomalies [37], and using 

frequency distribution based anomaly detection on shell 

command logs [38]. Another type of HIDS trains different 

algorithms on system calls of normal software behavior. 

These systems raise alerts when the deviation from normal 

system calls is observed in unknown software behavior (e.g., 

a trace). Anomaly-based HIDS focusing on system calls 

deviations are related to our work and are described below. 

Forrest et al. [8]  propose STIDE (Sequence Time-Delay 

Embedding), an anomaly detection system based on 

sequences of system calls. STIDE builds a database of 

normal sequences by sliding a window of length ‘n’ on 

normal traces. Sequences of similar length ‘n’ are also 

extracted from traces of unknown behavior and compared 

with the database. If an unknown sequence is found in a trace 

then it is considered as anomalous. Hofmeyr et al. [13] 

improve the binary decision of STIDE by computing the 

Hamming distance between two sequences to determine how 

much one sequence differs from another. Warrender et al. 

[35] use a locality frame count (i.e., the number of 

mismatches during the last ‘m>n’ calls) on the output of 

STIDE instead of the Hamming distance to compute the 

anomalous signal of an attack. Furthermore, Warrender et al. 

compare the performance of several anomaly detectors [35], 

among these STIDE and HMMs have shown the best 

performance on UNM datasets.  

When Warrender et al. [35] train HMM on system call 

sequences, they raise alerts as the probability of a system call 

in a sequence goes below a certain threshold. On the other 

hand, Wang et al. [34] train HMM on normal system call 

sequences and raise alerts when the probability of a whole 

sequence of system calls is below a threshold rather than 

individual calls in a sequence [35]. Similarly, Yeung and 

Ding [38] also employ HMM on system call sequences, and 

refer to this approach as dynamic modelling. Yeung and 

Ding [38] also measure frequency distributions for shell 

command logs and called it static modelling. They show that 

dynamic modelling performs better than static modelling.  

Other researchers, Cho and Park [4], use HMM to model 

using system calls the execution of only normal root 

privilege acquisitions. This allows them to detect 90% of the 

illegal privilege flow attack. Hoang et al. [11] move a step 

ahead and propose a multiple layer detection approach in 

which one layer train the STIDE on system calls and another 

layer train HMM on system calls. They combine the output 

of both to detect anomalies. Hoang et al. [12] also improve 

their earlier work [11] by combining HMM and the STIDE 

using fuzzy inference engine. Although HMM has been 

commonly and successfully used in related work on system 

call anomaly detection, its large training time remains an 

issue. Researchers like Hu et al. [14] propose an incremental 

HMM training technique to reduce its training time by 50%.  

A large number of machine learning techniques have also 

been proposed for detecting anomalous system calls. For 

instance, researchers have employed standard multilayer 

perceptron [1], Elman recurrent neural network [10], self- 

organizing maps neural network [18], and radial basis 

functions based neural networks [2]. SVM, decision trees, 

and K-means clustering have also been used on system calls 

extracted from static analysis [39]. The researchers in [1] and 

[39] employed training on both normal and anomalous traces 

to detect anomalies. 

Jiang et al. [15] extract varied length n-grams from call 

traces of normal behavior, and build an automaton that 

represents the generalized state of the normal behavior: they 

use this automaton to detect anomalous behavior in traces. 

Tandon [28] propose different variations of LEARD, a 

conditional rule learning algorithm [24], to learn rules with 

sequences of system calls and their arguments. They also 

propose to generate new rules for the rules pruned due to 

false alarms on validation data. They argue that new rule 

generation increases detection rate and coverage on a limited 

training set. Several other researchers also consider the use 

of system calls and arguments to strengthen HIDS against 

the control flow, data flow, and mimicry attacks [17] [20] [3] 

[19]. However, these techniques remain constrained by 

selecting key system calls and arguments due to multitude of 

argument values. 

 Recently, Creech and Hu [5] propose to generate seen 

and unseen patterns of system calls from normal traces by 



using production rules of Context Free Grammar (CFG).  

They also propose a semantic rule that occurrences of 

patterns in normal traces are greater than anomalous traces 

and train ELM neural network on occurrences of patterns. 

They claim that the approach is applicable on multiple 

processes simultaneously but recognize that the accuracy 

will be higher on individual processes. This is because false 

alarm rate reach 20% (out of 4373 normal traces) in one 

dataset. They also claim portability across version of 

different operating systems but the results show up to 100% 

false positive rate for 80% of the attacks. 

In prior work, we proposed a method to automatically 

differentiate between normal and anomalous traces of kernel 

states [22]. Kernel state modeling detects anomalies by 

measuring deviation between normal and anomalous traces 

of kernel modules. In this paper, we investigate the effect of 

kernel modules in reducing the false positives and execution 

time of the existing well-known anomaly detection 

techniques, such as the STIDE and HMM. To the best of our 

knowledge, there has been no such work to evaluate HMM 

and STIDE on traces of kernel modules for the detection of 

software anomalies.  

 

III. METHODOLOGY 

Figure 1 shows the steps of our approach for detecting 

anomalies using kernel module traces instead of raw system 

call traces. We first transform the traces into kernel module 

traces. Then, we train the anomaly detection techniques on 

the normal kernel module traces. During training, an 

anomaly detection technique develops a model of traces. The 

next step is to validate the model on another set of normal 

traces. During validation, a technique may (or may not) 

adjust decision thresholds of its model to lower its false 

alarm rate. Finally, the model is used to evaluate traces 

coming from a system in operation to detect anomalies 

(testing phase). The best model is the one which has a low 

false alarm rate and a high true positive rate when applied to 

test traces.   

A. Transforming System Call Traces into Kernel Module 

Traces 

A system call trace is actually a temporally ordered 

collection of system calls. Examples of system calls include 

sys_open, sys_read, and sys_close, which open, read, and 

close a given file (specified in the argument list). To generate 

a trace of kernel modules from a trace of system calls, we 

replace each system call with the kernel module in which it 

is defined. Table I shows the list of modules and the total 

number of system calls that belong to each module
1
. For 

example, the File System (FS) module contains 131 system 

calls (i.e., sys_open, sys_read, sys_close, etc.). There are a 

                                                           
1
 The mapping of modules and system calls for Linux can be found at 

http://syscalls.kernelgrok.com and is applicable to a 32 bit kernel 2.6.35 

total of eight distinct modules in a typical distribution of 

Linux.  

 

 

Figure 1. Overview of the proposed approach 

Note that although this study is tuned towards Linux 

machines, it can easily be adapted to other operating systems 

(OS) given that the mapping between the OS modules and 

system calls is provided. 

Table I MAPPING BETWEEN SYSTEM MODULES AND SYSTEM 

CALLS  

Module  Module in Linux Source Code # of System Calls 

AC Architecture 10 

FS File System 131 

IPC Inter Process Communications 7 

KL Kernel 127 

MM Memory Management 21 

NT Networking 2 

SC Security 3 

UN Unknown 37 

 

The intuition behind using kernel module interaction to 

detect anomalies is that, to be effective, attackers must 

request different OS services including accesses to memory, 

files, and network. Our hypothesis is that such attacks can be 

detected by simply observing the interactions among kernel 

modules. If the hypothesis is valid then this higher level 

abstraction can help built anomaly detectors that are not only 

accurate but also scalable by reducing their execution time 

(training, validation, and testing) as well as storage space 

required to save normal models generated from large 

systems.  

We recognize, however, that not all attacks can be 

detected at this level of abstraction. There might be situations 

where an attack manifests itself through system call 

sequences that occur only within the same kernel module. 



We conjecture that such attacks may have a lesser effect that 

those that combine multiple OS services. Nevertheless, we 

anticipate that a tool that supports our approach should 

provide a mechanism to vary the level of abstraction as 

needed based, for example, on security risks and the level of 

security required. In this case, the main gain in terms of 

execution time is the time it takes to detect attacks in 

operation.  

B. Anomaly Detection Techniques  

As mentioned earlier, we have selected STIDE and 

HMM, since they are among the most commonly used and 

successful system call anomaly detectors, to assess the 

impact of kernel module traces on the detection accuracy and 

the execution time. 

STIDE works by extracting sequences of length ‘n’ from 

a trace by sliding a window one event (e.g., system call) at a 

time [8] [13] [35]. For example, for a trace having system 

calls “3, 6, 195, 195”, two sequences “3, 6, 195” and “6, 195, 

195” of length 3 can be extracted. STIDE extracts sequences 

from normal traces and then compares them against the 

sequences in an unknown trace. If a new sequence is found 

in an unknown trace then it is considered as anomalous. The 

Hamming distance between sequences can be used to adjust 

the decision threshold to reduce false alarms. For example, 

using exact matching the sequence “3, 5, 195” is considered 

as anomalous even though the mismatch occurs only at one 

position—i.e., a hamming distance of only one. If the 

minimum Hamming distance matching criterion is set to 

more than one, then it is considered as a normal sequence.   

HMM is a stochastic model for sequential data and hence 

it is naturally suitable for modeling temporal order of system 

call sequences [26]. The process is determined by a latent 

Markov chain having a finite number of states, N, and a set 

of output observation probability distributions, B, associated 

with each state. Starting from an initial state N0, the process 

transits from one state to another according to the matrix of 

transition probability distribution, A, and then emits an 

observation symbol Ok from a finite alphabet (i.e., M distinct 

observable events) according to the output probability 

distribution, Bj(Ok), of the current state Nj. HMM is 

typically parameterized by the initial state distribution 

probabilities (Π), output (emission) probabilities (B), and 

state transition probabilities (A). Baum-Welch algorithm is 

used to train the model parameters to fit the sequences of 

observations, T [26].  During the validation phase, HMM 

adjusts the decision threshold (log likelihood) of prediction 

of anomalous alarms on T sequences from traces. In the 

testing phase, if the probability value of any sequence in a 

trace is below the selected threshold, then we consider the 

trace as anomalous otherwise we consider it as normal.  

C. Evaluation Criteria 

First, we evaluate the accuracy of an anomaly detection 

technique using the true positive rate (TP) and false positive 

rate (FP) measures. True positive (or detection) rate is 

measured by Equation 1. Similarly, false positive (or false 

alarm) rate is measured by Equation 2. 

𝑇𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 (𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠) 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 (𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠)
× 100 

Equation 1. True positive rate 

𝐹𝑃 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑟𝑎𝑐𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑎𝑠 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑟𝑎𝑐𝑒𝑠
× 100 

Equation 2. False positive rate 

Second, we evaluate the anomaly detection technique by 

measuring its execution time. The execution time is 

measured by accumulating the training time, validation time 

and testing time on the traces for the anomaly detection 

technique.  

We measure the TP rate, FP rate and the execution time 

for both system call traces and kernel module traces and for 

every anomaly detection technique. We then compare the 

measures to determine the differences in the use of the two 

types of traces. 

IV. CASE STUDY 

The objective of the case study is to address the 

following research questions: 

(RQ1) What is the effect on accuracy when an anomaly 

detection technique is trained on kernel module 

traces instead of raw system call traces? 

(RQ2) What is the effect on the execution time when an 

anomaly detection technique is trained on kernel 

module traces instead of system calls? 

A. Datasets 

We have used three different system call datasets: 

University of New Mexico (UNM) dataset [31], Firefox 

dataset [22], and ADFA Linux dataset [6].  UNM dataset is a 

common benchmark for system call anomaly detection ( [35] 

[13] [12] [38] [34] [11]). More information about the UNM 

dataset can be found in [31]. We have selected from UNM 

datasets the programs (Stide
2
 and Xlock) that are executed 

on Linux  and have a large number of traces for training and 

testing. The number of traces used in Stide and Xlock are 

presented in Table II. We have divided the normal traces 

randomly into three parts: training, validation, and testing as 

required by the techniques. 

Table II DESCRIPTION OF THE SUBJECT DATASETS    

Program # Normal Traces  #Attack 

Types 

#Attack 

Traces Training Validation Testing 

Stide 400 200 13126 1 105 

Xlock 91 30 1610 1 2 

                                                           
  2Stide is a dataset of system call traces collected from the STIDE anomaly 

detector itself. We will use Stide to refer to the dataset and STIDE for the 
anomaly detector. 



Firefox 125  75  500  5 19 

ADFA 833 300 4073 60 686 

 

Each trace for a program in the UNM datasets is a 

sequence of system calls generated from the execution of one 

process. A process corresponds to a task or a sub-task that is 

fulfilled by that program. Xlock and Stide include several 

traces for one attack (attack type in Table II). The Xlock 

program is intruded by a buffer overflow attack through one 

of its command line options. The attack on the Stide anomaly 

detector is a denial of service attack that affects the memory 

request of any program in execution. If an anomaly is 

detected in any of the traces of an attack, we consider that an 

attack has been detected. 

UNM datasets are still used as one of the main 

benchmarks for anomaly detection systems but they are more 

than a decade old.  Moreover, the normal traces in UNM 

datasets are collected by executing small programs for a 

longer period of time which resulted in the same system call 

execution paths. To overcome this, we have selected two 

additional datasets, namely the Firefox [22] and ADFA 

Linux [6] datasets. 

We created the Firefox dataset by collecting traces of 

normal behavior for Firefox 3.5 by executing seven different 

testing frameworks (test suites) [22]. Each test framework 

executed different components and functionalities of Firefox. 

We determined the completeness of normal behavior of 

Firefox by measuring its code coverage for test case 

executions. The execution of seven different test suites 

resulted into approximately 60% source code coverage and 

5931 passing test case files corresponding to approximately 

1.3 TB of traces. Due to such a large set of trace dataset, we 

randomly selected equal number of traces from each test 

suite. We also separated each trace into traces of individual 

processes of Firefox. Table II shows the number of per-

process traces of normal and anomalous traces of Firefox.  

We collected anomalous traces on Firefox by launching 

contemporary attacks against Firefox, selected from public 

advisories [23] and public resources, such as Metasploit [21]. 

We executed five different attacks on Firefox and collected 

their corresponding traces. The first attack was a memory 

corruption exploit that tried to execute an arbitrary code. The 

second attack was an integer overflow attack that caused a 

denial of service and executed an arbitrary code. The third 

attack manipulated dangling pointers in the tree data 

structure of Firefox causing an arbitrary code execution and 

denial of service. The fourth attack was a DOM exploit 

causing memory corruption and the fifth attack was a null 

pointer exploit causing denial of service. The number of 

attacks and corresponding traces are shown in Table II. The 

Firefox dataset can be downloaded from our website: 

http://www.ece.concordia.ca/~abdelw/sba/FirefoxDS.  

ADFA Linux dataset is publicly available on the site of 

University of New South Wales, Australia
3
 [5]. ADFA 

                                                           
3
 “www.cybersecurity.unsw.adfa.edu.au/ADFA IDS Datasets/” 

dataset was generated on a fully patched Ubuntu Linux 11.04 

operating system with Apache 2.2.17 web server, PHP 5.3.5 

server side scripting engine, TikiWiki 8.1 content 

management system, FTP server, MySQL 14.14 database 

management system and an SSH server. This configuration 

was chosen to represent a realistic modern target and 

publicly known security vulnerabilities were exploited in 

them [23]. Normal dataset of traces was collected by 

executing different activities, such as web browsing, Latex 

document preparation and etc. Each normal trace consists of 

sequences of system calls occurred during normal system 

activities. The traces in ADFA dataset contain sequences of 

system calls of all the processes and not separated on a per-

process basis. The ADFA dataset is described in Table II. 

In the ADFA dataset, anomalous traces were collected by 

attacking a system using a certified penetration tester. Sixty 

different attacks, belonging to six types of attack vectors, 

were executed on the system by using modern penetration 

testing tool like Metasploit [21]. These attacks included web-

based exploitation, simulated social engineering, poisoned 

executable, remotely triggered vulnerabilities, remote 

password brute force attacks and system manipulation using 

the C100 webshell. Each attack consists of multiple traces 

collected during the execution of attack. If an anomaly is 

detected in any of the traces of an attack, then we consider 

that the attack is detected. More detailed information about 

the ADFA dataset can be found in [6]. 

B. Measuring Accuracy of Anomaly Detection Techniques  

The results of evaluating STIDE, the first selected 

anomaly detector, on system call traces and kernel module 

traces of the datasets of Table II are shown in Table III. We 

chose to use STIDE with window size five. Other window 

sizes can also be used. Since it does not require optimization 

of parameters, STIDE was trained on the traces of both 

training set and validation set. 

Table III shows that when using window of width five, 

the false positive rate in the case of ADFA has been reduced 

from 83.37% to 12.69% while keeping the same true positive 

rate (i.e., 100%). We examined traces of ADFA to 

understand the root cause of such discrepancy. We found that 

a model that is based on kernel module traces has a better 

generalization property than the one based on system calls 

when used with STIDE. For example, consider the following 

two sequences S1 and S2: 

 
S1: fork, read, read, fork, read, read, fork, read,  

S2: fork, read, read, write, fork, read, read, fork, read 

An STIDE-based model that recognizes S1 will raise an 

alarm when encountering S2 (because of the use of the 

‘write’ system call that is not in S1). We believe that this is 

too restrictive (note that, for the purpose of illustration, we 

are taking here as an example a simple implementation of 

STIDE that uses exact matching only). It is reasonable to 

assume that the ‘write’ operation is legitimate because it was 



preceded and followed by the same sequence of system calls. 

An illegitimate ‘write’ will most likely trigger a different 

type of sequence. At the level of kernel module interactions, 

S1 and S2 are both represented in the same way: KL, FS, 

KL, FS, KL, FS (KL is used for the fork system call and FS 

is used to replace read and write) which reduces the number 

of false positives.  

The result obtained on ADFA is consistent with the one 

obtained when applying the approach to the Firefox dataset, 

which is another large dataset. The false positive rate is 

reduced from 44.6% to 10.6%. Note that Firefox model for 

normal behavior was generated with high code coverage so 

as to obtain a representative model. This explains why 

STIDE (with system calls) had only 40.6% false positive rate 

compared to ADFA. For smaller systems, Stide and Xlock, 

kernel module traces outperformed system call traces when 

applied with STIDE, though the false positive rate in both 

cases is small (up to 4%), due mainly to the size of these 

systems.  

Table III RESULTS USING STIDE  

Dataset Trace Type TP rate FP rate 

Window width 5 

ADFA System Calls 100% 83.37% 

 Kernel Modules 100% 12.69% 

Xlock System Calls 100% 1.43% 

 Kernel Modules 100% 0.31% 

Stide System Calls 100% 4.97% 

 Kernel Modules 100% 0.015% 

Firefox System Calls 100% 44.60% 

 Kernel Modules 100% 10.6% 

The results of the evaluation of HMM are shown in Table 

IV. We evaluated HMM with different number of states 

(𝑁 = {5,10, 15, 20}). Each trace is segmented into 

contiguous sequences of length 100 events, using a sliding 

window shifted by one event. In our previous work on 

system call anomaly detection [22], we empirically found 

that HMM trained on sequences of length 100 events provide 

a high level of detection accuracy. To improve the execution 

time of HMM, we removed the duplicate sequences from all 

the traces of training, validation and testing set. This reduced 

the number of sequences by approximately 90%. We then 

applied HMM on the adjusted traces by implementing it in R 

[30].The number of states selected for each trace type and 

dataset are also shown in Table IV. Note we deliberately 

varied the number of states so as to obtain 100% detection 

accuracy. This tuning of HMM during training is needed for 

HMM to be effective in operation.  

Table IV shows the reduction in the false positive rate 

achieved by HMMs trained using the kernel modules. In all 

cases, except for ADFA, we obtained almost the same false 

positive rate with a 100% true positive rate. This is because, 

unlike STIDE which relies merely on measuring similarity, 

HMM uses a probability model that generalizes to new 

(unseen) sequences.  

For ADFA, HMM using kernel modules did not perform 

as well as with system calls. We think that this is due to the 

nature of the ADFA dataset itself. The dataset was collected 

by exercising various scenarios on multiple Linux systems. 

The number of normal traces used for training HMM is too 

small (833), which resulted in many unseen cases during 

operation, hence a high positive rate for both representations 

(system call and kernel module traces) than in other datasets. 

We are still not sure as to why kernel module traces resulted 

in more false positives than system calls. We think that 

HMM is sensitive to the number of unique alphabets in the 

dataset (eight in the case of kernel module traces and 57 

unique system calls used in ADFA). More investigation is 

warranted. 

Table IV RESULTS USING HIDDEN MARKOV MODEL (HMM) 

Dataset Trace Type States TP rate FP rate 

ADFA System Calls 100 100% 40% 

 Kernel Modules 100 100% 60% 

Xlock System Calls 10 100% 0.00% 

 Kernel Modules 10 100% 0.00% 

Stide System Calls 100 100% 2.0% 

 Kernel Modules 100 100% 1.0% 

Firefox System Calls 50 100% 23.0% 

 Kernel Modules 50 100% 23.0% 

Despite the results we obtained using HMM on ADFA, 

we have demonstrated through this case study that kernel 

module traces when using STIDE perform better than when 

using system calls sequences. They provide similar results in 

most cases when using HMM. This answers the first research 

question (RQ1). 

C. Measuring Execution Time of Anomaly Detection 

Techniques 

Table V shows the execution time of STIDE and HMM. 

The execution time shown includes training, validation and 

testing time. The timing information is collected on a 

machine having Intel core i5, 8GB RAM and 64 bit Ubuntu 

12.04. We implemented STIDE in Java, and evaluated the 

same implementation on both system call traces and kernel 

module traces. Similarly, we implemented HMM in R [30]. 

 Table V shows the execution time of STIDE with 

window of width five events. It can be observed that the gain 

in term of execution time when using STIDE is between 

70% (Stide) to 99% (Firefox). In the case of HMM, kernel 

module representation achieves an execution time gain of up 

to 96%. Table VI shows the storage space that both 

representations require. As expected kernel module traces 

consume less space (up to 93% less), which clearly shows 

the advantage of to the use of kernel module traces, 

especially when applied to large (and more realistic) 

systems. 

We can therefore conclude that kernel module traces can 

be used to significantly reduce the execution time of the 

anomaly detection techniques. This answers the research 

question (RQ2). 



Table V EXECUTION TIME IN MINUTES INCULDING TRAINING, 

VALIDATION AND TESTING OF STIDE AND HMM ON SYSTEM 

CALLS (SC) AND KERNEL MODULES (KM). 

 

STIDE  
SC 
(A) 

STIDE  
KM 
(B) 

Gain 
(1-B/A) 

HMM 
SC 
(C) 

HMM 
KM 
(D) 

Gain 
(1-D/C) 

Xlock 9.2 1.11 88% 1.74 0.93 47% 

Stide 2.53 0.75 70% 6.32 0.49 92% 

Firefox 60.96 0.6 99% 150.6 6.65 96% 

ADFA 23.9 1.43 94% 3.97 1.35 66% 

 

Table VI  COMPARISON OF TRACE SIZES IN BOTH 

REPRESENTATION 

 
Size of 
SC (A) 

Size of KM 
(B) 

Size Gain 
(1-B/A) 

Xlock 47.4 30.3 36% 

Stide 37.2 4 89% 

Firefox 270.6 18 93% 

ADFA 10.9 3 72% 

V. THREATS TO VALIDITY 

We describe threats to validity in four categories: 

conclusion validity, internal validity, construct validity, and 

external validity [36].  

A threat to conclusion validity exists in the use of only 

two anomaly detection techniques, HMM and STIDE. It is 

possible that other techniques might not be able to detect 

attacks as efficiently as HMM and STIDE on kernel 

modules. However, this threat is mitigated by the fact that 

HMM and STIDE are the two techniques which yield best 

results in prior research. These techniques also detected all 

the attacks using kernel module traces in this study.  

A threat to internal validity exists in the implementation 

of anomaly detection techniques. We have mitigated this 

threat by manually verifying the outputs of the techniques on 

pre-known examples.  

A threat to construct validity exists in the use of only 

system calls as the foundation of kernel modules. Some 

attacks might go undetected due to the transformation of 

finer grain events like system calls to higher level modules, 

which could reduce the sensitivity of detection. In general, it 

is possible that an attacker might evade detection by crafting 

an attack using system call sequences that belong to the 

normal system behavior only, such as the mimicry attacks 

[33]. To capture the manifestation of mimicry attacks, 

several authors proposed to include additional features such 

as system call arguments [20] [3] and return values [17]. In 

addition, and in contrast to prior believes, recent work has 

shown that, in practice, it is difficult to launch a mimicry 

attack without being detected [16]. 

A threat to external validity exists in generalizing the 

results of this study. We have experimented only using four 

different datasets that focused on Linux kernel. More 

experiments are required to generalize these results to other 

operating systems and other programs. 

VI. CONCLUSION AND FUTURE WORK 

We showed that system call traces when abstracted out in 

the form of kernel module interactions can result in good 

detection accuracy while reducing false positive rates. The 

added value is the low execution time and storage space that 

kernel module traces have as an advantage over system call 

events. When put together, we believe that kernel module 

traces hold real promise in allowing existing anomaly 

detection such as STIDE and HMM to scale up to large 

datasets without compromising accuracy. To build on this 

work, we need to continue experimenting with other datasets. 

We also need to study malwares and understand situations 

where attacks do not manifest themselves at the level of 

kernel module interaction.  
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