
Capturing and Formalizing SAF Availability
Management Framework Configuration Requirements

Completed Research

Abstract. The Service Availability Forum (SAF) defines a set of middleware

services to support and enable high availability in a standardized manner. The
Availability Management Framework (AMF) is the service in charge of

managing the high availability of the services provided by an application under

its control. In order to do so, the AMF service requires a configuration of the

application, referred to as an AMF configuration. We are currently defining a

UML profile for the modeling and analysis of AMF configurations. The
configuration model and the runtime behavior of an AMF service

implementation as a middleware are both defined in the AMF specification. It is

not straightforward to extract from the large standard document the domain

model, which requires the isolation of the configuration time characteristics

from the runtime characteristics of the AMF service. In this paper, we report on
our experience in designing a domain model for AMF configurations; we

discuss some of the challenges we encountered during this process. We also

discuss how this domain model is used for the validation of AMF

configurations.

Keywords: High-Availability, Service Availability Forum, Availability
Management Framework, Domain model, UML, OCL

1 Introduction

Availability is an important characteristic of dependable systems along with reliab ility

and security [1]. It is often achieved using proprietary solutions based on redundancy

and clustering in order to eliminate single point of failures. High Availability (HA) is

a more stringent requirement where the system should be up and running in the order

of five nines and higher (99.999%) [2]. Such a high level o f availability is expected

from service prov iders in telecommunicat ion and banking, for instance.

Service Availab ility Forum (SAF) [3], is a consortium of telecommunication and

computer companies , that defines and supports HA standard specifications. In

particular, the SAF Application Interface Specification (AIS) [4] includes the

specification of the Availability Management Framework (AMF) service [5], which is

the SAF middleware service responsible of managing service availability through the

coordination of redundant resources.

To manage the availability of the services delivered by an application under its

control, an AMF service implementation requires a configuration, which describes the

different resources in use, their capabilities and limitat ions, their organizat ion,

relations, the services to be provided, and their protection. The design and the

upgrade of such configurations have to be done very carefully in order to meet the

high availability requirement. We are undertaking a research project aiming at

devising methods and prototype tools for the design and analysis of AMF

configurations as well as their upgrade campaigns . In order to achieve this forma lly,

we started with the definition of a p rofile of the Unified Modeling Language (UML)

[16] for AMF configurations.

The first step in the process of defining a UML profile is the elaboration of a

domain model [6]. This model captures the main concepts of the domain, their

relationships and constraints. Our main input for establishing the domain model is

the AMF standard specification [5]. The B.03.01 version of this specificat ion is a 395-

pages document, which is mostly informal. This document defines informally an

AMF configuration as well as the runtime behavior of an AMF service

implementation. The domain model consists of a class diagram and a set of

constraints expressed formally with the Object Constraint Language (OCL) [15]. The

main challenge in the design of this domain model is how to capture properly the

concepts and their relat ionships and model exact ly what is an AMF configuration, not

more but not less?

During this process, we have been tempted to capture into the domain model every

single aspect, including runtime ones, either in the class diagram and/or using OCL

constraints. The close interaction with the domain expert allowed us to avoid some

pitfalls that would have led to over- or under-specification. The consequences would

be a profile that excludes perfectly valid AMF configurations due to over-

specification of the requirements including runtime characteristics or that accepts

invalid AMF configurations because of configuration requirements not taken into

account.

Our main contributions in this paper are: (1) we provide an overview of the domain

of availability management as it is defined in the SAF specifications; (2) we briefly

describe the domain model of our UML profile; (3) we d iscuss some of the challenges

encountered in the process of designing the domain model; and finally (4) we report

on the usage of the domain model for the validation of AMF configurat ions.

The remain ing part of this paper is structured as follows. In Section 2, we introduce

some important AMF concepts used throughout the paper. In Section 3, we discuss

the main issue of categorizing AMF requirements into configuration time versus

runtime, and present a compilation of sample AMF requirements used throughout the

paper. In Section 4, we describe the main characteristics of the domain model and we

discuss some design decisions. In Section 5, we share the main lessons learned with

respect to the under/over-specification problem through specific examples. We briefly

discuss the usage of the domain model for the validation of AMF configurations in

Section 6. In Section 7, we review related work before concluding the paper in

Section 8.

2. AMF Specification and Concepts

SAF has developed the Application Interface Specification (AIS), which specifies

a set of services including AMF. The AMF specification defines an API for

availability management and an informat ion model. Th is model describes the

organization of the resources and services, the different entities to be managed by

AMF in a running system; the types of these entities that describe common features of

the entities belonging to them; and the cluster nodes on which the entities are

deployed.

2.1 AMF Enti ties and Enti ty Types

The basic entity of an AMF configuration is an AMF component, which represents

a set of software and/or hardware resources that can provide some basic services

referred to as component service instances (CSIs). The components are logically

grouped into service units (SU) in order to combine their functionality into higher

level services referred to as service instances (SIs). In order to protect these services

using redundancy, SUs are grouped into service groups (SGs). An SG protects a set of

SIs that are assigned to its SUs in different roles. When a particular SI is assigned to

an SU, its composing CSIs are assigned to the components in the SU. The grouping of

service groups forms an AMF application. From a deployment perspective, each SU

is deployed on an AMF node, thus an SG is deployed on a node group. The set of all

AMF nodes forms the AMF cluster.

The notion of type is introduced in the AMF specification to capture common

characteristics shared by all the entities that belong to the same type. In addition, the

types define also the relation between entities. For example the SU type specifies the

set of component types it contains, which defines components of what types must

compose each of the SUs of the SU type. However, not all the entities are typed. The

typed entities (and their corresponding types) are: the application (application type),

the service group (SG type), the service unit (SU type), the component (component

type), the service instance (service type), and the component service instance (CS

type). The non-typed entities are: the cluster and the node. In a complete AMF

configuration each typed entity should refer to its type.

2.2 Redundancy Models

AMF coordinates the redundant entities (SUs and their components) of an SG

according to a certain redundancy model. This defines the number of active SUs

(respectively components), the number of standby SUs (respectively components) to

protect an SI (respectively CSI). For each SI AMF selects at runtime which SU shall

act in which role and makes the appropriate assignments via API callbacks to the

components. In the AMF specification [3], several redundancy models have been

defined. These are the „No redundancy‟, 2N, N+M, N-Way, N-Way-Active

redundancy models. For instance, in an SG protecting a set of SIs according to the 2N

model, at most one SU can be active for all the SIs, and at most one other SU can be

standby for all the SIs protected by the SG.

2.3 Component Capability Model

Within an SU, each component has its component capability model which is

defined as a triple (x, y, b), where x represents the maximum number of active CSI

assignments and y the maximum number of standby CSI assignments the component

can have for a particular component service type, and b determines whether it can

support these roles simultaneously or not. The redundancy model used by an SG

should be consistent with the capabilit ies of the components of its SUs. For example,

a component that can have only one active or only one standby CSI assignment at a

time (1, 1, false) can be used in an SG with a 2N redundancy model, but it is not valid

for a SG with an N-way redundancy model, where each of the SUs may be active for

some SIs and standby for others simultaneously, e.g. (n, m, true).

2.4 AMF Configuration Example

Figure 1 shows an example of configuration of AMF entities. In this example, a

cluster is composed of two nodes (A and B). It hosts an Application consisting of one

SG protecting one SI in a 2N redundancy model. The SG consists of two SUs, SU1

and SU2, each composed of two components. The distribution of the active and

standby assignments is shown in this figure. However, it is not part of the

configuration as defined by AMF. These assignments are decided by an AMF service

implementation at runtime.

Fig. 1. Example of AMF Configuration

Active:

Standby:

Node B Node A

Application

SG

SU-1

Component-1

Component-2

SU-2

Component-3

Component-4

SI

CSI-1

CSI-2

3. Categorizing AMF Requirements

As the AMF specification is about defining what a valid AMF configuration is and

how it is manipulated at runtime by a compliant AMF service implementation, the

first step in our process is to distinguish clearly between configuration time and

runtime requirements. However, this is not straightforward and instead of two

categories, the requirements defined in the AMF standard specification can be

organized into three categories as shown in Figure 2. The first category, configuration

requirements, clearly encloses the requirements defining what an AMF configuration

is. These constraints can be checked at configuration time. They should be reflected

in the domain model in the class diagram or using OCL constraints. The second

category of requirements, run-time requirements, is clearly related to the dynamic

behavior of the AMF service and hence need to be satisfied by any AMF-compliant

middleware. These requirements are out of the scope of our profile and therefore

should not be captured either in the class diagram or using OCL constraints.

Configuration

requirements Run-time

requirements

?

Metamodel

OCL

Out of the scope of the

profile

Over/under specification

risks

Fig. 2. AMF Configuration vs. Run-time Requirements

The challenging aspect regarding the AMF requirements stems from the third

category, which is depicted by the overlapping region in Figure 2. O ften the

specification does not provide a clear cut as whether these are configuration

requirements or AMF service runtime related requirements. As a configuration

defines relations between the different entities involved, there is a temptation to

define all of them at configuration time. This is wrong as some of these relations are

defined only at runtime to allow more flexibility to the middleware implementing the

AMF service. Some of these relations defined at runtime are however based on other

related configuration time constraints to ensure that the configured application will

provide and protect the service independently from the decisions taken by the AMF

service implementation. Capturing and specifying these configuration time constraints

without the related runtime relationships between the entities is not straightforward.

Moreover, it is not clear which ones and to what extent these should be captured in

the domain model. Indeed, here we are facing the traditional over- vs. under-

specification problem. Over-specification occurs when we try to capture some

requirements in our domain model but these requirements are not configuration time

and related to the runtime behavior of the AMF service and to its manipulation of the

configuration. On the other hand, under-specification occurs when we mistakenly

consider a requirement as not checkable at configuration time. The consequence of

such misinterpretations is a profile that may exclude valid AMF configurations when

we over specify the requirements and/or that includes invalid configurations when all

configuration time requirements are not captured. In Section 5, we elaborate more on

this issue with specific examples.

Table 1 provides a set of requirements, taken from the standard, that we will use in

the next sections to illustrate different issues and some design decisions. In the

column Configuration/Run-time, we use the letter “C” to identify the requirements

that we deem belong to the configuration requirements subset and, hence, can be

checked in the configuration. The two other columns are used to indicate whether the

requirement is captured in the class diagram of the domain model, using OCL

constraints, or both. These issues are discussed further in the next sections. We use

the letter “R” for the requirements related to the dynamic behavior of the AMF

service and therefore are out of the scope of our profile. For the remaining set of

requirements, identified with “?”, it is not clear how to define the constraints that

would allow to check their satisfaction at configuration time without a risk of over-

/under-specification.

4. An Overview of the Domain Model for AMF Configurations

The AMF profile is organized into packages for distinguishing between service,

service provider and deployment concepts as defined in the standard. The service

package is for the description of the concepts related to the definition of the services

to be provided; the service provider package is for the description of the (logical and

physical) resources defined in a system to provide services and their organization in

terms of composition of their functionalities or in terms of redundancy. The AMF

specification emphasizes the idea of service and service provider separation to enable

the moving of services around service providers. The deployment package is fo r the

description of deployment concepts such as clusters and nodes. Our profile overall

architecture captures this idea as shown in Figure 3

Instance Level

Type Level

Service Provider

Instance

Level

Type Level

Service Side

Deployement

Fig. 3. AMF Profile Architecture

Table 1. A Sample of AMF Requirements

The domain model of the AMF profile is defined using a class diagram

complemented with a set of OCL constraints to capture the configuration

requirements. The requirement RQ 2 in Table 1, for instance, is captured explicit ly in

the model using a composition relationship between local service unit class and local

component class. This is highlighted in the dashed region A in Figure 4. Other

requirements, such as RQ 19 in Tab le 1, are more complicated to be captured in the

class diagram. Indeed, RQ 19 involves a relationship between components and SG,

which is not explicit in the class diagram. The requirement is therefore expressed in

OCL as follows:

 context MagicAmfContainerComponent

inv: self.magicAmfLocalComponentMemberOf.
magicSaAmfSUMemberOf.
oclIsKindOf(MagicAmfN-WayActiveSG)

The domain model reflects component categories as defined in the specificat ion,

namely SA-aware, container, contained, proxy, proxied, local, external and pre-

instantiable components . The class diagram in Figure 4 shows the hierarchy of

components for the first seven categories . We model pre-instantiable components

differently; we use a specific configuration attribute, magicAmfCtIsPreinstantiable, at

component type level (i.e . in the MagicSaAmfComponentType class as shown in

Figure 4) instead of using a specific class for this category of components. The

rationale behind our decision is that modeling pre-instantiable component category

with a specific class would have required a further specialization of the local proxied

components into a new class that represents non-pre-instantiable components. This is

indeed necessary to account for the requirement RQ 15 in Table 1. Obviously, this

would have complicated further the component hierarchy. As a consequence of our

modeling of the pre-instantiable component category, the requirements RQ 13 and

RQ14 in Table 1 are captured in OCL using this new configuration attribute as

follows:
 context MagicSaAwareCompType

inv: self.magicSaAmfCtIsPreinstantiable = true

 context MagicAmfNon-ProxiedNon-SaAwareCompType
inv: self.magicAmfCtIsPreinstantiable = false

5 Over/Under-specification of the Domain Model

In this section, we discuss some aspects of AMF configuration constraints over-

/under-specification, which we have encountered during the process of defining the

domain model. We limit, however, this discussion to only two situations because of

the lack of space.

5.1 Component Capability Model

The capability of a component, defined in the standard and introduced in Section 2,

depends on the target component service type (CsType). Therefore, we capture the

component capability model using two association classes as shown in the Figure 5.

The first association class, called MagicSaAmfCtCsType, captures the fact that a

component type might support several CsTypes, each with different capability. The

second is to capture that the capability of a particular component of a component type

is further restricted with respect to a certain CsType by putting limitations on the

number of active and standby that a component can take. In our domain model, this

second association class is called MagicSaAmfCompCsType.

MagicSaAmfComp

MagicAmfLocalComponent

MagicAmfNon-SaAwareComponentMagicAmfSaAwareComponent

MagicAmfNon-ProxiedNon-SaAwareComponentMagicAmfLocalProxiedComponentMagicAmfContainedComponent

MagicAmfContainerComponent MagicAmfProxyComponent

MagicAmfContainer-ProxyComponent

MagicSaAmfRegularAwareComponent

MagicAmfExternalComponent

MagicSaAmfSU

MagicAmfExternalServiceUnit MagicAmfLocalServiceUnit

A

MagicSaAmfSG

MagicAmfNwaySG

MagicAmfNwayActiveSG

MagicAmfTwoNSG

MagicAmfNPlusMSG

MagicAmfNoRedundancySG
magicAmfLocalComponentMemberOf

m
a

g
ic

S
a

A
m

fS
U

M
e

m
b

e
rO

f

MagicSaAmfComponentType

magicAmfCtIspreinstantiable

Fig. 4. Partial Domain Model

MagicSaAmfCompType MagicSaAmfCSType

magicSafSupportedCSType: SaNameT

magicSaAmfctCompCapability: SaAmfCompCapabilityModelT

magicSaAmfctDefMaxActiveCSI: SaUint32T

magicSaAmfctDefMaxStandbyCSI:SaUint32T

MagicSaAmfComponent

MagicSaAmfCtCSType

magicAmfSupports

1..n

magicAmfSupportedby

1..n

*
magicSafSupportedCSType: SaNameT

magicSaAmfCompNumMaxActiveCSIs: SaUint32T

magicSaAmfCompNumMaxStandbyCSIs:SaUint32T

MagicSaAmfCompCSType

Fig. 5. Component Capability Model

The issue related to the component capability shows up when the components

grouped into an SU support overlapping sets of CsTypes and, in addition, the

capability models of the components with respect to the common supported CsTypes

are different. As stated in RQ 4 in Tab le 1, an AMF service implementation uses the

configuration time relat ionship between components and CsTypes to assign CSIs to

components. However, this assignment of CSIs to components happens only at

runtime and under the control of an AMF service implementation. Different

behaviors/runtime decisions of AMF for the same configuration, i.e. different

assignments of CSIs to components, may lead to different availab ility levels. The

configuration is not the right place where to control the assignments and therefore the

level of availability obtained from AMF and this is not a configuration time decision

We were tempted to capture and fix in our domain model these assignments at

configuration time. This was wrong, and this over-specification has been avoided with

the help of the domain expert.

5.2 Proxy and Proxied Components

Several requirements in the AMF specification relate the proxy and their proxied

components. For instance, the requirement RQ 17 in Table 1 specifies a location

constraint between a proxy and a proxied component. In the initial version of our

domain model, we related formally proxy and proxied components with an

association as shown by the dashed association (A) in Figure 6. The interactions with

the domain expert showed that this relationship is not a configuration time

relationship and it is only at run-time that an AMF service implementation selects

and assigns a particular proxy component to a particular proxied component

according to the requirement RQ 4 in Table 1. This association is therefore removed

from our model as it represents a typical case of over-specification, which fixes

runtime relationships at configuration time.

The requirement RQ 16 on the other hand specifies a configuration time

relationship between a proxy and a proxied component through the proxyCSI. This,

however, needs to be captured in our model and this is achieved with the association

end magicSaAmfCompProxyCSI of the association between

MagicLocalProxiedComponent and MagicSaCSI classes as shown in Figure 6. Th is is

a particular CSI through which a proxy component is assigned the task of “proxying”

a particular proxied component. Consequently, the constraints on the proxy-proxied

relationship, such as the requirement RQ 17, can be expressed and checked at

configuration time to the extent allowed by the proxyCSI configuration attribute. At

configuration time we have to ensure that there is at least a proxy component that is

able to be the proxy component for the proxied component. This constraint translates

to the existence of a proxy component that support a component service type

(CsType) to which the proxyCSI of the proxied component in question belongs . The

domain model should capture this constraint otherwise we fall into an under-

specification case and may mistakenly consider as valid, configurations that do not

satisfy AMF requirements . Several other situations like the ones related to container

and contained component as shown in Figure 6 (A) and (B) are not discussed here due

to space limitations.

MagicSaCSI

CSType

magicSaAmfCompProxyCSI

MagicAmfProxyComponentMagicAmfLocalProxiedComponent

*

1

MagicAmfContainedComponent MagicAmfContainerComponent

*

m
a

g
ic

S
a

A
m

fC
o

m
p

C
o

n
ta

in
e

rC
S

I

11

collocatedWith

(A)

(B)

(C)

Fig. 6. Proxy-proxied Component Relationship

6. An Application: AMF Configuration Validation

A straightforward applicat ion of the domain model is the validation of AMF

configurations. These are often built manually and deployed in a SAF system through

the Information Model Management (IMM) service [13] using the IMM XML format

[14]. The design of an AMF configuration is a tedious and error prone task due to the

large number of AMF requirements that have to be taken into consideration.

Consequently, checking the compliance of AMF configurations against the AMF

specification is crucial.

We have implemented a prototype tool for the validation of AMF configurations.

The designer creates an AMF configuration in the IMM XML standard format. An

AMF model instance is created from the IMM XML file. The validation starts by

mapping this instance into an instance of our domain model, and then in a second step

the OCL constraints are checked against this later instance as illustrated in Figure 7.

IMM XML

<<Instance of>> ?

Configuration Validation

create

AMF Model

IMM XML

<<Instance of>>

Validation

Log

AMF Domain Model

Fig. 7. Configuration Validation Tool

7. Related Work

One of the UML profile standardized by the OMG [7] and which is related to our

research work is described in [8]. The study of this profile revealed however that it

cannot be mapped to the concepts introduced in the AMF standard specification.

Consequently, we could not use it as a leverage to define our profile. Another profile

intended to support the modeling and analysis of reliability and availability is

described in [9]. This profile is completely unrelated to the concepts defined in the

AMF specification and hence cannot be used to support the modeling and analysis of

AMF configurations. As mentioned earlier in this paper, the AMF specification

defines what an AMF configuration is and the behavior expected from an AMF

service implementation. This has not been the common path for most of the existing

profiles that focus on formalizing general availab ility and dependability concepts.

The work reported in [10] is related to this paper. The authors describe an

approach based on MDA to generate AIS configurations. They present in particular a

platform independent model (PIM) for AIS configurations. Such PIM is not, however,

supported with a specific UML profile that would provide a comprehensive coverage

of AMF concepts.

An UML profile related to HIDENETS [11] architecture and services is presented

in [12]. The metamodel of this profile relates HIDENETS art ifacts to some SAF AIS

services using “façade objects”. This metamodel does not specify any of the concepts

relevant to the AMF service or AMF configurations.

8. Conclusions

In this paper, we discussed our work in designing a profile for AMF

configurations. We briefly introduced our approach and current results before

elaborating on the challenges of capturing only necessary requirements into the

domain model. These challenges are mainly due to the fact that the AMF standard

specification defines simultaneously what a valid AMF configuration is and what the

expected behavior from an AMF service implementation is. An AMF configuration

is defined at configuration time, while an AMF service implementation decides at

run-time of several assignments and relationships.

In our initial attempts in defining the domain model we have been tempted to

capture more than what is required and go beyond configuration time requirements.

Several iterations with the domain expert have been necessary to distinguish between

the different categories of requirements in the AMF specification. Dropping the

runtime requirements from the domain model has led to other difficulties in

specifying related configuration requirements that are necessary for the definition of

AMF configurations.

Our goal is to enable the rigorous modeling of AMF configurations and their

analysis. The analysis package will be investigated and the dynamic behavior of the

AMF service will be part of this package in order to enable the analysis of AMF

configurations.

References

1. A. Avizienis, J.C. Laprie, B. Randell and C. E. Landwehr: Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Transactions on Dependable and Security

Computing 1(1): pp. 11--33 (2004)

2. Gary Audin: Reality Check On Five-Nines. Business Communications Review, pp 22--27,
(2002)

3. The Service Availability Forum, http://www.saf.com

4. Service Availability Forum: Application Interface Specification. Overview SAI-Overview-

B.04.01.

5. Service Availability Forum, Application Interface Specification. Availability Management
Framework SAI-AIS-AMF-B.03.01.

6. Bran Selic: A Systematic Approach to Domain-Specific Language Design Using UML.

Proceedings of the 10th IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing (ISORC 2007), pages 2--9. IEEE Computer Society,

(2007)
7. Object Management Group (OMG), http://www.omg.org/

8. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and

Mechanisms, Version 1.1, OMG Document Number: formal/2008-04-05 (2008)

9. Simona Bernardi, José Merseguer: A UML profile for dependability analysis of real-time

embedded systems. Proceedings of the 6th International Workshop on Software and
Performance, WOSP (2007)

10. A. Kövi, D. Varró: An Eclipse-Based Framework for AIS Service Configurations.
ISAS‟2007. LNCS, vol. 4526, pp. 110–126. Springer (2007)

11. HIDENETS Research Project, http://www.hidenets.aau.dk/

12. HIDENETS: A UML Profile and Design Pattern Library, Deliverable D 5.1 (2007)

13. Service Availability Forum, Application Interface Specification. Information Model

Management Service SAI-AIS-IMM-A.02.01
14. SAI-AIS-IMM-XSD-A.01.01.xsd

15. OMG: Object Constraint Language, Version 2.0, OMG Available Specification: formal/06-

05-01 (2006)

16. OMG, Unified Modeling Language (OMG UML), Infrastructure, V2.1.2, OMG Document

Number: formal/2007-11-04 (2007)

