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Abstract Logging plays a crucial role in software engineering because it is key to
perform various tasks including debugging, performance analysis, and detection of
anomalies. Despite the importance of log data, the practice of logging still suffers
from the lack of common guidelines and best practices. Recent studies investigated
logging in C/C++ and Java open-source systems. In this paper, we complement these
studies by conducting the first empirical study on logging practices in the Linux ker-
nel, one of the most elaborate open-source development projects in the computer
industry. We analyze 22 Linux releases with a focus on three main aspects: the per-
vasiveness of logging in Linux, the types of changes made to logging statements, and
the rationale behind these changes. Our findings show that logging code accounts
for 3.73% of the total source code in the Linux kernel, distributed across 72.36% of
Linux files. We also found that the distribution of logging statements across Linux
subsystems and their components vary significantly with no apparent reasons, sug-
gesting that developers use different criteria when logging. In addition, we observed
a slow decrease in the use of logging—reduction of 9.27% between versions v4.3 and
v5.3. The majority of changes in logging code are made to fix language issues, modify
log levels, and upgrade logging code to use new logging libraries, with the overall
goal of improving the precision and consistency of the log output. Many recommen-
dations are derived from our findings such as the use of static analysis tools to detect
log-related issues, the adoption of common writing styles to improve the quality of
log messages, the development of conventions to guide developers when selecting log
levels, the establishment of review sessions to review logging code, and so on. Our
recommendations can serve as a basis for developing logging guidelines as well as
better logging processes, tools, and techniques.
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1 Introduction

Software logging is a practice that has long been used by developers to record valuable
runtime information (e.g., events and data) about a running system
[2012D; [Pecchia et al[2015; Miranskyy et al.[2016)). These records are in the form of log
messages, which are generated by logging statements in the source code. Studies have
shown that the analysis of log data can help with many tasks, including debugging
and diagnosis of system failures (Khatuya et al.[2018} [El-Masri et al.[2020)), detection
of security vulnerabilities (Yen et al.[2013; Zhou et al.[[2020)), profiling of distributed
systems (Pi et al.|2018), troubleshooting cloud computing environments (Kc and Gul
2011; Miranskyy et al.|2016)), detection of anomalies (Bertero et al.|[2017} Islam et al.
2018; |Oliner et al.[2008), and reliability evaluation of applications (Tian et al.[2004).

Despite the importance of log analysis, the practice of logging remains largely
ad-hoc with no recognized guidelines and systematic processes (Yuan et al.[2012a}
[Fu et al.[2014; [Pecchia et al.[2015). Software developers continue to insert logging
statements in the source code without clear and sufficient guidance. The decisions
on how and where to log are often left to the discretion of the developers, resulting
in inconsistencies even among developers working on the same projects. In a study
performed at Microsoft (Zhu et al|2015), the authors showed that 68% of the par-
ticipants (mainly Microsoft developers) found it challenging to make decisions on
how and where to log. The lack of systematic and automated approaches for logging
raises serious questions as to the validity of the generated log data as well as the
efficacy of existing log analytic tools, which may impede failure diagnosis and other
log-related tasks, threatening the stability of deployed software systems.

There exist studies that investigate the practice of logging in software engineer-
ing (e.g., (Zhou et al|[2020; [Yuan et al|2012a; |Chen and Jiang 2017b} [Zhu et al|
[2015} Zeng et al.|[2019)). [Yuan et al|(2012a)) made the first characterization of log-
ging practices in open-source projects. The authors studied logging practices in four
server-side C/C++ projects and provided many findings with respect to the perva-
siveness of logging code, how often logging code is changed, and what kind of changes
are made to it. [Chen and Jiang| (2017b) conducted an extensive replication study
of this work with a focus on open-source projects written in Java. These studies re-
vealed many issues related to the practice of logging. For example, they showed that
software developers use logging in an inconsistent way. In addition, they showed that
developers often have to change logging code in subsequent versions of the system
as afterthoughts, adding to the maintenance burden of software systems.

In this paper, we build on these studies by conducting the first empirical study
to understand the practice of logging in the Linux kernel. Linux is perhaps one
of the greatest collaborative efforts in the computer industry with more than a
thousand experienced developers contributing to its growth on a regular basis. Many
studies have examined the structure and evolution of the Linux kernel from different
perspectives (Bagherzadeh et al.|2018} Israeli and Feitelson|2010} [Lotufo et al.|2010;
[Passos et al|2012} [Lu et al.|2014} Fadel2011)), but little is known about the logging
practices followed by Linux kernel developers. Existing Linux development guidelines
do not include guidelines for making logging decisions.

Similarly to previous studies (Yuan et al|2012aj; |Chen and Jiang|[2017b), we ex-
plore three main aspects related to the practice of logging: (1) the pervasiveness of
logging in Linux, (2) the types of changes made to logging statements over several
releases, and (3) the rationale underlying changes to logging code. From this per-
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spective, this is a replication study with a focus on the Linux kernel. Because Linux
developers are considered as experienced developers, understanding how they log
their code provides useful insights into the practice of logging in software engineer-
ing, further contributing to the corpus of knowledge in this area. Our findings show
that there is a logging statement for every 27 lines of code in Linux v5.3 (the latest
version when we collected data for this study). The pervasiveness of logging, how-
ever, varies from one kernel subsystem to another, with filesystem and drivers being
the most logged subsystems. After investigating changes made to logging statements
across 22 releases of Linux, we found that developers tend to modify logging code to
improve the quality of the logging output by enhancing precision, conciseness, and
consistency. By means of a qualitative analysis of 900 commits that target fixes and
improvements of logging code, we found that the reasons behind these changes are
similar to those reported by other studies (Hassani et al.| 2018} |[Yuan et al.[[2012a;
Chen and Jiang)|2019} |2017a)), such as ambiguous log messages, redundant informa-
tion and logging the wrong variables. We also found many issues that pertain to
the Linux kernel such as revealing vulnerable data and problems related to early
logging. Based on these results, we derive many recommendations that are not only
applicable to Linux, but can be readily generalized to other software systems. Our
long-term goal is to help design better processes, techniques, and tools for effective
logging, and set the groundwork for establishing logging standards.
In summary, the main contributions of our work are listed as follows.

— We study the pervasiveness of logging in the Linux kernel. To our knowledge,
this is the first study that focuses on the practice of logging in Linux.

— We present a study that shows the evolution of logging statements in 22 releases
of the Linux kernel.

— We study the rationale behind changes made to logging statements across mul-
tiple releases of the kernel.

— Based on the analysis of afterthought changes to logging code in the Linux kernel,
we derive several guidelines that can help the maintenance of logging code in
Linux. These guidelines can possibly be applied to other systems as well.

This study can benefit researchers and practitioners interested in understanding
and improving the practice of logging in software engineering. The ultimate objective
is to better define guidelines and processes for logging software systems. Additionally,
Linux developers can directly refer to the findings of this paper to develop better
logging practices for Linux.

The remainder of this paper is structured as follows. We discuss existing work
related to logging in Section [2 Next, we present our study design in Section
The results obtained with the analysis of logging practices in the Linux kernel are
presented in Section [d] In Section [5] we discuss our findings and implications as well
as threats to validity. Finally, we conclude the paper in Section [6]

2 Related Work

In this section, we review existing studies on the practice of logging (i.e., how to
log). We also review related studies on what and where to log. We discuss how these
studies differ from ours at the end of the section.
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2.1 Research Studies on the Practice of Logging

In an attempt to understand the characteristics of software logging in open-source
projects, [Yuan et al.| (2012a) conducted one of the first studies that examines the
practice of software logging by mining the evolution history of four C/C++ projects
(Apache httpd, OpenSSH, PostgreSQL, and Squid). The authors found that logging
statements account for 3.30% of the source code. They also reported that developers
often find it challenging to get logging statements right at the first try. They showed
that developers changed 36% of all log messages at least once as afterthoughts. The
changes are categorized as changes to verbosity level, static content, and variables.
They observed that 75% of log modifications of the static content of the logs consist of
fixing inconsistent and confusing log messages. Additionally, the authors showed that
developers often struggle to use the right verbosity level. To address this problem,
they designed a simple verbosity level checker. |Chen and Jiang (2017b) conducted a
replication study of the work of [Yuan et al.|(2012a)) with the objective to understand
the practice of logging in Java systems. Their findings differ in many aspects from the
original study. For example, they found that consistency updates account for 41%
of all the logging code updates. These updates are much more present in C/C++
project and represent 67% of the logging code updates.

Pecchia et al. (2015)) investigated the practice of logging on the development
process of critical software systems in industry. They identified three main reasons
for using logging code: state dump, execution tracing, and event reporting. They
found that the logging practice lacks standardization over key-value representations
and missing contextual information, which hinders the adoption of automated log
analysis tools.

Shang et al.| (2014)) conducted a study on one large open-source and one indus-
trial software system to explore the evolution of logging statements (referred to as
communicated information) by mining the execution logs of these systems. They
found that logging statements change across versions, impacting log processing ap-
plications. They also showed that the use of advanced log analysis techniques can
reduce the impact of these changes on log preprocessing tools.

Zeng et al.| (2019) focused on understanding the practice of logging in Android
apps. Their findings suggest that there are differences between logging practices ob-
served in mobile apps when compared to desktop and server applications. They pro-
vided evidence that logging code in mobile apps is less pervasive and not maintained
as actively as in desktop and server applications.

The analysis of two open-source software systems conducted by |Shang et al.
(2015) showed a relationship between post-release defects and some log-related met-
rics. This study suggests that more maintenance effort should be devoted to files
with logging code as they are more susceptible to contain problems.

The quality of logging code was investigated by [Hassani et al.| (2018)). The authors
characterized log-related issues using the number of files involved in an issue, the time
required to fix it, and who provides the fix. In addition, they manually examined
log-related issues to identify common problems associated with logging code, which
served as the basis for developing a tool to automatically detect problems such as
spelling errors and empty catch blocks.

Cinque et al.| (2010) conducted a quantitative study in which they assessed the
effectiveness of logging mechanisms to generate logs when a fault is triggered. They
injected faults in three open-source systems and observed whether faults that lead
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to failures generate logs or not. The authors found that the percentage of logged
failures ranges between 35.6% and 42.1% among the three systems they used in the
case study. Their experimental results are then exploited to suggest places where to
place additional logs based on the analysis of memory dumps.

Recently, conducted a qualitative study to understand the benefits
of software logging and the costs associated with it by surveying 66 developers and
examining 223 logging-related issue reports. The found that developers do not have
a systematic strategy for reconciling the benefit and cost of logging. The authors
argued that the lack of clear strategies may lead to logging practices with a negative
impact.

proposed a predictive model that suggests the most appropriate
log levels for new logging statements based on features such as the average log level
and log churn. This is important in light of the findings of (Yuan et al.|[2012a} |Chen)
[and Jiang|[2017b} Hassani et al|2018)) who showed that developers have difficulties
determining the correct log level to be used.

|Chen and Jiang| (2017a) analyzed many code-independent log updates from three
open-source Java projects and identified five logging anti-patterns. A tool, called
LCAnalyzer, was developed to allow the automatic identification of these poor logging
practices.

[Zhou et al.| (2020) investigated the impact of logging practices on data leakage
with a focus on Android mobile applications. They studied logging code in 5,000
mobile apps and showed using taint analysis that out of 276 apps with taint flow
paths, 200 (72%) leaked sensitive data due to poor logging practices such as forgetting
to remove debug logging statements before deployment. They categorized the types of
data leakage that are related to logging practices into four types: network, account,
location, database. They manually analyzed source-sing paths of log-related taint
flow paths of the 200 apps and found that 49% of the data that is leaked is network-
related, followed by database sensitive data (45%).

2.2 Studies on where and what to log

(2014)) performed an empirical investigation on enterprise applications writ-
ten in C# in order to understand where developers insert logging statements. The

authors found that logging statements can be grouped based on where they are in-
serted in the code using these categories: assertion-check logging, return-value-check
logging, exception logging, logic-branch logging, and observing-point logging. They
also found that 39%-53% of logging statements are placed to capture information
when the software fails while 47%-61% of logging statements are used to trace the
normal execution flow. To complement their findings, the authors trained a decision
tree model that suggests where to log based on contextual keywords extracted from
code snippets. Their recommendation tool achieved a precision of 81.1%-90.2%, and
recall of 80.8%-90.4%. A similar tool, called LogAdvisor, was proposed by [Zhu et al|
. The tool aims to help developers by providing suggestions on where to log
with an accuracy of 84.6%-93.4%.

In their position paper, proposed a strategy for automatically
placing logs in the source code using information theory concepts by measuring the
software’s uncertainty using Shannon Entropy. Their approach respects a predefined
performance overhead (less than 2%). The idea is to place logs in execution paths
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that reduce uncertainty. The approach was tested on a small example. The authors
stated that the preliminary results show that their approach holds real promise for
automating the placement of logging statements. The problem with this technique,
however, is that it is completely agnostic to the semantic of the code blocks that are
being logged. It simply adds logs in paths that would most likely be executed. The
authors did not discuss the quality of the generated logging statements when used
for debugging and other tasks.

Yang et al.| (2018) proposed NanoLog, a logging mechanism that is 1-2 orders of
magnitude faster than existing logging systems and that achieves a high throughout
(80 million log messages per second), while exposing the traditional printf-like state-
ments. NanoLog modifies the log messages at compile-time, and uses compaction
techniques to output logs in a compact binary format. The authors showed that
their approach can improve the performance of log analytic tools.

Because there is no standard way to know what information should be included
in logs, developers insert logging statements into the code in an ad-hoc manner.
Sometimes, the information from these logs may be insufficient to diagnose software
failures. To handle this issue, [Yuan et al.| (2012b) designed LogEnhancer a tool that
can infer what information could be helpful to narrow down the root cause of failures
and to include that information into existing logging code automatically. To help
developers decide which variables should be included in the logging statements, a
recent study by [Liu et al.| (2019)) proposed a recurrent neural network-based model.
The work of He et al.| (2018]) also focuses on what to log, with the objective to
understand the goal of the static text used in these statements. Their results suggest
that static text is used essentially for describing program operation, error conditions,
and high-level code semantics. They also proposed an information retrieval approach
for generating logging messages automatically.

Li et al| (2018) used topic modelling to understand whether there is any rela-
tionship between topics of source code and having logging statements. Their findings
suggest that some source code topics are more likely to include logging statements
than others.

The single attempt to address the challenge of logging in Linux was made by
Tschudin et al.| (2015). The authors proposed a machine learning-based approach
to suggest the most appropriate logging functions, using the evolution history of
the Linux kernel. However, the approach consists of a conceptual description of a
framework that still needs to be implemented and validated.

2.3 Discussion

Our study focuses on understanding the practice of logging adopted by Linux de-
velopers. To our knowledge, this is the first study that focuses on the Linux kernel,
which makes our study unique. To achieve our goal, we address the same research
questions on characterizing the practice of logging as the ones discussed in related
work (Yuan et al[[2012a; |Chen and Jiang||2017b). In this sense, this study can be
considered as a replication study with a focus on the Linux kernel. It complements
the studies that aim to better understand of the practice of logging in software devel-
opment. We found that Linux developers tend to modify logging code to improve the
quality of the logging output by enhancing precision, conciseness, and consistency.
We also found that the reasons behind afterthought changes to logging statements
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include to the ones reported in other studies (Hassani et al.[|2018} [Yuan et al.|2012a;
Chen and Jiang[2019, [2017a). This confirms the need for better guidelines and pro-
cesses for logging in software engineering. We derive many recommendations from
our study that can improve the logging practices in Linux and other systems. Many
of these can be implemented in tools such as the ones discussed in the previous
subsection to make suggestions to developers as they write logging code.

3 Study Design
3.1 Research questions

Our goal is to characterize how logging is used in the Linux kernel so that we can
understand the adopted practices and identify the challenges. To achieve this goal,
we focus on answering the following research questions.

RQ1 What is the pervasiveness of logging in the Linuz kernel?

RQ2 How does the logging code in the Linux kernel evolve?

RQ3 What are the causes other than keeping consistency in the code that lead devel-
opers to change the logging code?

By answering RQ1, we aim to understand whether logging is a practice consis-
tently adopted by Linux kernel developers. This involves the analysis of the location
of logging statements to understand the rationale of why they are placed in specific
locations. In RQ2, we focus on investigating the lifecycle of logging statements, i.e.
when they are created, updated, or removed. By making such analyses, we are able
to understand the state of practice of the Linux kernel, that is, how much logging
exists in the code, how it is distributed, and its lifestyle. The goal is to observe
discrepancies in how logging is adopted so that we can raise questions related to
the adopted practices. Such questions can be the basis for future studies to better
understand logging decisions or to improve how logging is added and maintained in
the code.

These two research questions are similar to those answered in previous stud-
ies (Yuan et al|/2012a; |Chen and Jiang||2017b|). This would allow us not only to
understand these aspects in a project with distinguished characteristics but also
to contrast obtained results. These previous studies also further analyzed logging
changes to logging code, classifying them as consistent changes and afterthought
changes. The former refers to changes that are due to changes in other parts of
the code that requires the logging code to be updated to keep consistency, for ex-
ample, when a variable referred to in a logging statement has its name changed.
Afterthought changes, in turn, are changes made to logging statements to fix or im-
prove the logging statements for other purposes. In this paper, we investigate such
purposes in RQ3 to provide insights with respect to the effort required to maintain
logging code. We aim to identify the reasons behind afterthought changes, which
we hope can help researchers and practitioners develop techniques to automatically
prevent, detect and automate such changes.
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3.2 Subject project

The Linux kernel, our subject project, is a free and open-source software distributed
under the GPLVﬂ license. It is responsible for managing the interactions between
hardware components and higher-level programs that use these components. Used
across a wide range of computer systems, from mobile devices and server systems
to supercomputers, the kernel can be considered as one of the most important soft-
ware projects in the computing industry. In fact, we are surrounded by the Linux
kernel in one way or another. Being developed by roughly fifteen thousand develop-
ers throughout its history, as of 2020, it contains around 18M lines of C code. This
project is continuously evolving to meet both hardware manufacturers’ requirements
and end-user expectations.

For RQ1, we study the pervasiveness of logging in version v5.3 (the last version
when doing this study). This version received 14,605 commits from 1,881 developers,
adding 837,732 and removing 253,255 lines of code, which represents an increase of
584,477 lines of code when compared to its previous versioné)

To understand changes to logging code across various Linux releases and hence
answer RQ2 and RQ3, we need to select a number of releases to include in the
study. Our first attempt was to cover ten years of development going back starting
from v5.3 (the last version when we conducted this study), but the amount of data
that was generated was simply too high to conduct a viable analysis, especially that
there is a lot of manual work to answer RQ3 and part of RQ2. We therefore decided
to focus on a smaller dataset without loss of generality by going back 20 releases
starting from v5.3. We settled for v4.d§| to V5.6E| (22 releases to be exact). This
corresponds to an interval of four years of software development, from November
2015 to September 2019. All releases used in this study are available in the official
Linux kernel rcpositoryﬂ We believe that this dataset is representative since our
objective is not to uncover all the problems related to logging in Linux but rather
to provide insight into the practice of logging in software development by looking at
how Linux developers (even in a narrower scope) use logging.

3.2.1 Linuz subsystems

In our analysis, we frequently refer to Linux subsystems. The Linux kernel consists of
five major subsystems% each covering particular aspects of the project. Table shows
the system decomposition. The core subsystem is in charge of memory management,
inter-process communication, management of I/O operations, among others. The
filesystem subsystem is responsible for providing the file system interface as well as
individual file system implementations. The drivers subsystem provides device and
sound drivers as well as the implementation of cryptography algorithms used within
the system and other security-related code. Finally, the net and arch subsystems are
responsible for networking and architecture-specific code, respectively.

https://wuw.gnu.org/licenses/old-licenses/gpl-2.0.html
https://github.com/gregkh/kernel-history/
https://github.com/torvalds/linux/commit/6al3feb9
https://github.com/torvalds/linux/commit/4d856£72
https://github.com/torvalds/linux
https://github.com/gregkh/kernel-history/blob/master/scripts/genstat.pl
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Table 1: Linux kernel architectural decomposition.

Subsystem Top level directories

core init, block, ipc, kernel, lib, mm, virt
filesystem fs

drivers crypto, drivers, sound, security

net net

arch arch

Table 2: The eight possible log levels defined in the Linux kernel.

Log level Description

KERN_EMERG System is unusable

KERN_ALERT An action must be taken immediately
KERN_CRIT Critical conditions

KERN_ERR Error conditions

KERN_WARNING Warning conditions (default)
KERN_NOTICE Normal but significant condition
KERN_INFO Informational

KERN_DEBUG Debug-level messages

8.2.2 Logging in the Linuz kernel

Logging statements are used to record relevant information about a running system.
A logging statement usually comprises three elements: (i) the log level of the event
being recorded; (ii) a static message that describes that event; and, optionally, (iii)
values of variables related to the logged event. A log message is typically generated by
the execution of a function specifically created for that purpose. These functions can
be either project-specific or provided by external logging libraries and frameworks.

The Linux kernel provides developers with its own set of logging functions. One
of the simplest ways to write a message to the kernel log buffer is by using the
printk () function. It is the kernel’s equivalent of printf (), with the difference that
it allows developers to specify the log level of the event being recorded (Corbet et al.
2005). An example of a logging statement is as follows:

printk (KERN_ERR "Device initialized with return code %d\n", code);

where KERN_ERR corresponds to the log level, "Device initialized with return
code %d\n" is the static message, and code is the corresponding variable. There are
eight log levels defined in the Linux kernel, representing different degrees of severity
(see Table . KERN_WARNING is the default log level and is assigned to a message in
case no log level is specified when calling printk().

Additional sets of logging functions were introduced in the Linux kernel v1.3.983
with the aim of making logging statements more concise. These functions incorporate
log levels in their names. Therefore, in order to log a debug or informational mes-
sage, instead of using the printk() function with the KERN_DEBUG and KERN_INFO
levels as parameters, developers can use the pr_debug() and pr_info() functions,
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Table 3: New sets of logging functions.

Log level pr_*() function dev_x() function
KERN_EMERG pr_emerg() dev_emerg()
KERN_ALERT pr_alert() dev_alert()
KERN_CRIT pr_crit() dev_crit()
KERN_ERR pr_err() dev_err()
KERN_WARNING pr_warn() dev_warn()
KERN_NOTICE pr_notice() dev_notice()
KERN_INFO pr_info() dev_info()
KERN_DEBUG pr_debug () dev_dbg()

Metrics
metrics [

285,045 I
commits ificati

Identification 14,427 commits
/' \\ of changes to with updates in

/ . logging code logging statements

- I Extraction of commits
Linux kerne between Linux kernel L o Jomn 1
i 1
repository v4.3 and v5.3 - * Rg}/_R_Q_Z_I
Extraction of _.L/_r—

Logging code
modifications

Delete

Update

Manual
inspection

4,323 commits with
fixes/improvements
to logging code

Random 900
sampling|  commits

Fig. 1: Overview of the study procedure.

respectively. Another family of functions specifically designed for device drivers, e.g.
dev_dbg() and dev_info(), automatically include device names in their outputs,
making it easier to identify the origin of log messages. Table [3|lists both sets of func-
tions and their corresponding log levels. Currently, some kernel components present
their own logging functions, which are able to generate messages with service-specific
information. Examples include network device and TI wl1251 drivers, which provide
the netdev_x*() and wl11251_x*() families of logging functions, respectively.

3.3 Procedure

In this section, we detail how we collected logging data from the Linux kernel. Fig-
ure [I] summarizes the tasks that were carried out. In the following subsections, we
describe how we (1) extracted logging statements from the target project; (2) calcu-
lated metrics; (3) identified changes made to logging code between different versions;
and (4) selected a subset of changes in logging statements to be analyzed.
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3.3.1 Identification of logging functions

Traditional approaches to automatically locate logging statements into the source
code rely on logging functions that are known in advance (e.g., Log4j in Java) or use
regular expressions looking for variations of the term “log”. Although these methods
have been successfully adopted in previous studies (Shang et al.|[2015; |Zhu et al.
2015} |Chen and Jiang| 2017b; [Yuan et al.|2012a)), they are not applicable in the
context of the Linux kernel, which uses a wide variety of functions and macros for
logging purposes. It is common to find situations in which customized calls to these
macros are implemented by particular services (e.g., _ente).ﬂ pr_pic_unimplEb.
Listing [1| shows an example. A macro named adsp_dbg() is implemented with the
aim of ensuring the invocation of dev_dbg() with a particular set of parameters and
formatting (lines 2-3) so that there is no need to specify such elements in further
calls (line 5). This type of logging statements cannot be detected unless we know
that adsp_dbg() is a logging function.

[...]

#define adsp_dbg(_dsp, fmt, ...) \
dev_dbg(_dsp->dev, "Ys: " fmt, _dsp->name, ##__VA_ARGS_|)

[...]

adsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);

[...]

Listing 1: Logging macro defined in /sound/soc/codecs/wm_ adsp.c.

DU W N

To identify Linux logging functions and macros in our study, we take advantage of
the pattern-based method presented by |Tschudin et al.| (2015]). The authors proposed
an identification method that consists of three semantic patterns. These patterns,
although describing general properties when taken individually, are able to correctly
characterize logging functions when combined, yielding a low number of false posi-
tives. The first pattern states that logging functions should be called at least once
inside an if block that ends with a return statement. The second pattern indicates
that logging functions have at least one string argument, representing a log message.
Finally, the third pattern requires logging functions to have a variable number of
arguments. Listing [2| shows how macro adsp_dbg() satisfies all three patterns and
thus can be considered as a logging function.

1 C[...]

2 |if (val == 0) {

3 adsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
4 return O;

5}

6 |[...]

7

adsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);

Listing 2: A logging macro defined in /sound/soc/codecs/wm__adsp.c that sat-
isfies the identification patterns.

7 https://github.com/torvalds/linux/blob/v5.3/fs/afs/internal . h#L1449
8 https://github.com/torvalds/linux/blob/v5.3/arch/x86/kvm/i8259. c#L37
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Although this approach yields good results, it might miss logging functions with
a fixed number of arguments (e.g., PRINTK_ﬂ and PRINTK_@. These functions do
not satisfy the third pattern. We therefore decided to relax the third pattern by
including logging functions that contain a fixed number of arguments (i.e., the ones
that are not overloaded).

We have carefully reviewed the list of logging functions extracted with this ap-
proach. Although we believe that this is a very comprehensive list of functions, we
cannot guarantee 100% coverage, which is a threat to internal validity of this study.
To mitigate this threat, we selected randomly 20 files and checked manually their
content to see if we missed any logging functions. We found that our list covered all
the logging functions invoked in these files. Further, we make the list of logging func-
tions (and the data used for RQ1, RQ2, and RQ3) available to the community.
Once we know which functions/macros are used for logging, we write a script to
detect all calls to these functions/macros to retrieve the specific logging statements.

Another alternative to handle the problem of the many forms of log printing
functions caused by macros would be to expand macro definitions using a compiler
preprocessor (e.g., gcc -E). However, [Tschudin et al.| (2015 found that this approach
may result in false positives because of the possibility of having non-logging functions
that contain calls to printk-like functions.

3.3.2 Logging code metrics

To assess the pervasiveness of logging in the Linux kernel, we consider four metrics,
summarized in Table 4] Similarly to previous studies (e.g., [Yuan et al.| (2012a))), we
extract the number of lines of source code (SLOC) and the number of lines of logging
code (LLOC). We only included .c files in our analysis, that is, header files were
not taken into account. Comments and empty lines are discarded when measuring
SLOC. These metrics are collected considering different levels of granularity: (i)
overall system and subsystems; (ii) files; and (iii) program constructs. The latter
comprises functions as well as blocks of control statements, namely do-while, if,
else, else-if, for, switch, and while. We also compute the Log Density (Yuan
et al.|2012a; |Chen and Jiang|[2017b} Zeng et al.||2019) and Log Ratio metrics (see
Equationsand. The Log Density measures the number of lines of source code per
logging statement, whereas the Log Ratio measures the number of logging statements
per line of source code. For example, a log density of 10 would mean that for every
ten lines of code, there is one logging statement. A log ratio of 0.2 means that 20%
of the code consists of logging statements.

SLOC LLOC

oc W Log Ratio =g756 (@)

Log Density =

9 https://github.com/torvalds/linux/blob/v5.3/drivers/char/mwave/mwavedd.h#L79
10 https://github.com/torvalds/linux/blob/v5.3/drivers/char/mwave/mwavedd . h#L89
I https://github.com/iamkeyur/linux-logging-2021
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https://github.com/torvalds/linux/blob/v5.3/drivers/char/mwave/mwavedd.h#L89
https://github.com/iamkeyur/linux-logging-2021
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Table 4: Extracted metrics related to logging code.

Metric Description

SLOC Number of lines of source code excluding comments and empty lines
LLOC Number of lines of logging code

Log Density  The number of lines of source code per logging statement

Log Ratio The percentage of number of lines of logging code per source line of code

3.8.8 Detection of changes in logging statements

To understand how logging code evolves in the Linux kernel, we study three types
of modifications made to logging code—log insertion, log deletion, and log update—
similarly to previous work (Yuan et al|[2012a; |Chen and Jiang |2017b; [Zeng et al.
2019). We further divide insertion and deletion of logging statements into two cat-
egories: logging statements that are added or deleted along with the addition or
deletion of files. To retrieve changes to logging statements, we wrote a script using
the git rev-list command with --no-merges option to retrieve the commits. Note
that the -—-no-merges option omits commits with more than one parent. This is nec-
essary in order to avoid duplicate commits. For each commit, we extract two adjacent
versions of each file that are changed in the commit. We only consider . c files. Then,
to generate an edit script representing syntactic modifications by inferring changes
at the level of abstract syntax tree, we use GumTree, which is the state-of-the-art
AST differencing tool (Falleri et al.[2014). As result, we found that 14,427 commits
modified at least one logging statement, which are those used to answer RQ2.

3.83.4 Selection of changes in logging statements

Considering the 14,427 commits used to answer RQ2, not all aim to provide fixes
or improvements to logging code, which is the type of change in logging code that
we are interested in to answer RQ3. To identify changes that were made targeting
logging code, previous studies (Hassani et al.|2018; |Mazuera-Rozo et al.||[2020) rely
on a keyword-based approach by searching for commits that contain in their message
variations of the word “log”. This strategy may miss many commits in Linux such as
the one described above. To address this, the first author of this study manually ex-
amined all 14,427 commits by reading the commit titles and messages. He identified
4,323 commits out of 14,427 commits that explicitly discuss changes to logging state-
ments. This task took several weeks to complete and required multiple iterations.
He then selected randomly 900 commits out of 4,323 for a qualitative analysis. This
subset is statistically representative with a confidence level of 99% and a margin of
error of + 4% (Boslaugh/[2012).

4 Results and Analysis

We followed the previously described study procedure and obtained the results de-
tailed in this section. We present and analyze the results by research question.
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Table 5: Summary of metrics collected from the Linux kernel and its subsystems.

Subsystem Component SLOC LLOC Log Density Log Ratio
lib 106,577 2,296 46 2.15%

kernel 208,000 4,396 47 2.11%

mm 86,921 1,940 45 2.23%

core block 31,846 713 45 2.24%
ipc 6,468 13 498 0.20%

init 2,935 192 15 6.54%

virt 16,839 184 92 1.09%

459,586 9,734 47 2.12%

filesystem fs 840,527 35,780 23 4.26%
drivers 9,358,913 384,269 24 4.11%

drivers sound 765,988 19,673 39 2.57%
security 57,974 1,192 49 2.06%

crypto 52,888 835 63 1.58%

10,235,763 405,969 25 3.97%

net net 746,263 14,490 52 1.94%
arch arch 1,107,992 32,924 34 2.97%
Total 13,390,131 498,897 27 3.73%

4.1 RQ1: Pervasiveness of logging in Linux kernel

To examine the pervasiveness of logging in the Linux kernel, we consider its lat-
est available version when we collected data for this study (v5.3). Based on the
introduced metrics, we quantitatively assess how logging statements are spread in
the code, considering four granularity levels: system (i.e., the entire Linux kernel),
subsystems, files, and programming constructs.

4.1.1 System and subsystem level

We first report the values obtained for each metric (SLOC, LLOC, Log Density and
Log Ratio) considering the system and subsystems levels. Tablepresents the results.
We found that from a total of 13,390,104 lines of source code, 498,897 (i.e., 3.73%)
are lines of logging code. It is equivalent to a logging density of 27, which means
that for every 27 lines of source code in Linux there is one logging statement. This
finding is in line with the observations made by [Yuan et al.| (2012a)) who reported an
average log density of 30 in the four C/C++ applications they examined. This result,
however, differs from the study by |Chen and Jiang| (2017b) who reported an average
log density of 50 in the 21 Java applications they studied. Although these results
are not conclusive, they suggest that the language in which the project is written
as well as the application domain may affect the prevalence of logging statements
in the source code. In addition, this gives evidence of the relevance of logging code.
Logging statements do not provide additional application functionality and they,
still, account for almost 4% of the written code in our target system. Consequently,
logging code should be maintained with the same practices of code associated with
other concerns. For example, developers should carefully review logging code in code
review.
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When looking at each subsystem individually, we obtain heterogeneous results.
The log ratio ranges from 1.94% to 4.26%. A deeper look at the components of
the Linux subsystems shows important discrepancies. For example, we observe that
the init component of core, which consists only of 2,935 SLOC, contains 192 lines
of logging code (Log Ratio = 6.54%). This is considerably higher than the other
components. This may be explained by the fact the init component is responsible
for the initialization of the console and other key kernel services such as the security
framework, scheduler, memory allocation (Bootlin|[2020). For these services, it is
important to log all possible errors in order to quickly debug potential failures.
However, the idea that critical components are logged the most does not always
hold. Take for example the ipc component from the core subsystem with the highest
log density (Log Density = 498). This component, which contains only six files, is
responsible for setting up the inter-process communication mechanisms on which the
kernel processes rely. Yet, despite being critical, this component is the least logged.

Without further studies, we can only attribute these variations to the fact that
different groups of developers are maintaining each subsystem, and there are no
recognized (or common) guidelines on how to log. This calls for future studies to un-
derstand the rationale for adding a large amount of logging statements in particular
modules of the code considering different goals, such as debugging or auditing. It is
important to understand when it is critical to have detailed logged information, e.g.
when a module have a specific role or is the target of frequent changes. Moreover,
given that logging can have a performance impact, certain components may have a
reduced number of logging statements due to that reason.

4.1.2 File level

Similarly to the study of [Lal et al.| (2015), we also calculate the log ratio at the
file level. Note that we do not use log density here due to the fact that many files
do not contain logging statements, and therefore this metric cannot be calculated
because SLOC cannot be divided by zero. The log ratio provides a more accurate
measurement by assessing the pervasiveness of logging across Linux files. Figure
shows the collected data. We found that 94.34% of the total number of files in Linux
v5.3 have a log ratio between 0% and 10%. More precisely, 7,134 files (27.64%) do
not contain any logging statements, while a significant number of files (66.70%) have
a log ratio greater than 0% and less than or equal to 10%. Files with a log ratio
greater than 10% account for only 5.66% of the total number of files. Figure [2] thus
highlights that the number of logging statements by file is a skewed distribution.
Having the majority of files with a few logging statements is expected because many
files may include code statements that can result in errors, and these are typically
logged. However, it is interesting to observe that there are files with a substantial
amount of logging statements. As discussed above, a qualitative study focusing on
these highly logged files could give directions why this occurs and is needed. We,
in particular, manually inspected 6 files with a log ratio close to 90%. We found
that they contain mostly debugging routines. For example, drivers/scsi/qladxxx/
ql4_dbg.c contains functions to dump relevant information about the Linux Host
Adapter structure.

The analysis of this distribution by the Linux subsystems can be seen in Fig-
ure 3] which shows the distribution of files by subsystem according to their log ratio.
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Fig. 2: Value of log ratio at the file level (Total #files = 25,814).

We can observe that 22%-44% of the files have no logging statements in the sub-
system files. This indicates that in some systems—core, net, and mainly arch—the
logging is concentrated in fewer files. Except filesystem, only a small percentage of
files (3%—5%) has a high log ratio, that is, having many logging statements is an ex-
ception. This is not the case of filesystem, which has 11% of the files with more than
10% of their code being logging statements. In all subsystems, the majority (some-
times nearly half) of the files have at most 10% of their code as logging statements,
but contain at least one. Similarly to what was discussed above, these differences
cannot be explained without future studies.

4.1.83 Programming construct level

In this section, we measure the number of logging statements in program constructs
of the Linux kernel including functions, do-while, if, else, else-if, for, switch,
and while. Determining where logging statements are located can help understand
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Fig. 3: Distribution of files by subsystem based on the log ratio.

Table 6: Number of functions that have a certain amount of logging statements.

#Logging Statements #Functions
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the purpose they serve. There exist studies that examine the location of logging state-
ments in the source code. In particular, the work by [Pecchia et al.| (2015) measured
the number of logging statements in the same program constructs as those listed
above. Their work targeted two large C/C++ industrial applications. We followed
the same approach and compared our results to theirs.

Table [6] shows the distribution of logging statements in the kernel functions.
We found that from a total of 476,522 functions, 352,045 (73.88%) do not have
any logging statements. For the remaining functions (26.12%), 88.28% of these have
the number of logging statements in the range of one to five. Less than 1% of the
functions have more than eight logging statements. Here, again, the distribution of
logging statements is skewed. But differently, we observe that the vast majority of
functions do not contain any logging statements at all. This shows that a relatively
low number of functions need to have their information recorded in logs.

Complementing this information, Figure[4]shows the distribution of logging state-
ments in different program constructs. We found that 55.66% (168,539 out of 302,799)
of logging statements are used inside the if block and 4,585 (1.51%) are within else-
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Fig. 4: Distribution of logging statements across different program constructs.

if. Together, they represent 57.17% of the use of logging. These results are similar
to those of the study by [Pecchia et al.| (2015)), who reported that around 60% of the
logging statements are used inside the if blocks. These logs are typically used for log-
ging errors after checking the return value of function calls. The logging statements in
the else block accounts for 4.16% (12,586 out of total 302,799 logging statements).
The switch block, which is another control statement available in C, accounts for
6.05% of the total logging statements. The logging statements used directly inside
loop controls represent only 2.52% of the logging statements. The logging statements
used directly within functions (i.e., not in any of the program constructs) account for
30.10% of the total number of logging statements. This suggests that the cyclomatic
complexity of a function may be related to the presence of logging statements. Given
that developers may need to understand when a function follows a particular path
during the program execution, they add logging to conditional constructs. However,
this does not occur within loops. This can be explained by the fact that adding a
log statement to a loop may generate a high number of log messages and slow down
the function performance.

4.1.4 RQ1: Summary

RQ1 - Findings. The log density in Linux v5.3 is 27, i.e., on average there is one
logging statement for every 27 lines of code. This is similar to the study of [Yuan et al.



The Sense of Logging in the Linux Kernel 19

(2012a) on C/C++ systems, but different from the result obtained by |Chen and
Jiang| (2017b)) when working on Java projects. The logging code represents 3.73% of
the entire source code, with filesystem and drivers being the most logged subsystems
with a log ratio of 4.26% and 3.97% and a log density of 23 and 25, respectively.
We found that 72.36% of the total number of files in the Linux kernel have at least
one logging statement. However, only 26.12% of the functions in the Linux kernel
have one or more logging statements. Further studies, such as the work from |Li et al.
(2018), are needed in order to understand which topics of source code are more likely
to be logged. 57.17% of the logging statements are used within an if and else-if
blocks, while 30.10% are used inside code blocks in no particular program constructs.

RQ1 - Implications. The fact that logging code accounts for almost 4% of the
entire code base is a strong reason for developers to carefully review logging code
with the same rigour they use to review the other code. The discrepancies in the log
density of various Linux subsystems calls for future studies (with a protocol similar
to that by [Fu et al.| (2014)) to understand the goals of logging (e.g., debugging,
auditing, security, etc.) in the different parts of the kernel. This study should be
extended to the file and function levels where the distribution of logging statements
is also heterogeneous with no apparent reason. Another implication of these results
is the need for common guidelines for logging to ensure that best logging practices
are followed. Finally, we suggest to study the correlation between code quality (using
metrics such as cyclomatic complexity) and the need for logging, which may explain
the fact the majority of logging code is found in if-else blocks.

4.2 RQ2: Logging code evolution

As shown in the previous section, logging is widespread in Linux—for every 27 lines
of code, there is one line of logging code. Now, we focus on understanding how the
logging code evolves across various releases of the kernel in terms of size as well as
the type and the nature of changes.

4.2.1 Evolution of the size of logging code

We start by analyzing the logging code size by looking at two perspectives. First,
we observe how the proportion of logging code evolved, measured by the log ratio
metric. Second, we compare the evolution of SLOC and LLOC. The evolution of the
log ratio metric for the Linux system from v4.3 to v5.3 can be seen in Figure We
observe that it has been decreasing over the years. This can be due to the addition of
code that has fewer logging statements than the average or the deletion of code that
has more logging statements than the average. To better understand this observed
evolution, we complement this analysis with the data shown in Figure which
indicates how LLOC and SLOC, individually, increased across the different versions.
SLOC and LLOC are normalized using min-max normalization to fall in the [0, 1]
interval.

The SLOC and LLOC curves shown in Figure [5b| generally have a similar behav-
ior, except for versions v4.11 to v4.18. By going through the Linux kernel changelogs,
we found that these inconsistencies seem to be the result of the addition/removal of
drivers or filesystems, which contained a large amount of logging code. The Linux
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Fig. 5: Evolution of the use of logging code between Linux v4.3 and v5.3.

kernel v4.12 added Intel atomisp camera drivers (commit a49d253) and rt18723bs
sdio wifi driver (commit 554c0a3a). These two changes increased the number of log-
ging statements by 6,103, which contributed to a sharp increase in the number of
lines of logging code. Similarly, we can see a sudden decrease in SLOC and LLOC
between v4.16 and v4.18 releases. After inspecting the Linux kernel v4.18 changelogs,
we found that SLOC of the Linux kernel v4.18 was smaller than its previous release,
and that occurred just three times in the history of the Linux kernel before the
release of kernel v4.18. The reason for this can be attributed to removal of the lus-
tre filesystem (commit be65£9e) and the atomisp driver (commit 51b8dc51), which
earlier contributed to 10,442 logging statements. As discussed earlier, the amount
of logging statements within modules and files varies. Consequently, the removal of
particular parts of the system can largely affect the amount of logging code when
compared to the rest of the code.

Considering both the log ratio and the number of lines of logging code, it is thus
possible to observe that, though the number of lines of code increased as the Linux
kernel evolved, the log ratio decreased. This can be due to a number of reasons, such
as the types of changes made in the analyzed Linux versions—as it was discussed,
different subsystems have varying amounts of logging. This may also be explained by
the reliance on debugging and tracing tools, which can be used to diagnose problems
as shown by |Corbet| (2016 and [Edge| (2019)). These authors noticed an increase in the
use of tracepoints rather than simple printk() in recent versions of Linux. The term
tracing is used here to show the flow of execution of specific program constructs, e.g.,
traces of routine calls, and system calls (Hamou-Lhadj and Lethbridge|[2002} |2004))).
A discussion with one Linux expert (see Section 5.2) confirms this finding. We need to
conduct further studies including user studies with Linux developers to understand
the real causes behind this decline of logging code (see Section 5.3 on the implications
for future research for more discussion), including the identification of the impact
of the use of new tools that capture runtime information automatically without the
need for logging statements added manually. It is relevant to understand what types
of statements are removed and what types of statements remain in the code.
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Table 7: Distribution of modifications made to logging statements.

Subsystem Insertion Deletion Update

arch 3,987 4,620 2,962
core 1,863 647 1,700
driver 87,125 53,235 42,748
fs 2,776 1,626 3,502
net 1,490 1,677 1,479
Total 97,241 61,805 52,391

Percentage 45.99% 29.23% 24.78%

Similarly to previous studies (Yuan et al.[[2012a} |Chen and Jiang2017b} |Zeng
et al.||2019; |Li et al.|[2019a)), we calculate the ratio of the number of commits that
involve modifications to logging code (i.e., additions, deletions, or updates to logging
statements) to the total number of commits so that it is possible to understand
how often a source code revision involves a modification to logging code. Out a
total of 285,045 commits, we found that 39,351 (14%) commits involve modifications
to logging code. This result compares to that of the study of |[Yuan et al. (2012a)
on C/C++ systems, who found that 18% of the commits they studied involve log
modifications. It is also similar to the results reported by |Chen and Jiang| (2017b)
who found that there are around 21% of such commits in the studied Java systems.
Some changes are expected because logging statements should be kept consistent
with the corresponding code. However, it is relevant to understand why the logging
statements change when this is not the case. This is in fact investigated in our RQ3.

4.2.2 Types of modifications in logging statements

Given that logging code changes overtime, we now look at the types of modifications
that are made. Table [7| reports the number of logging statements added, deleted,
and updated across Linux versions v4.3 to v5.3. There are 211,437 logging statement
modifications, out of which 24.78% are log updates, 45.99% are log insertions, and log
deletions account for 29.23%. The drivers subsystem alone represents 86.60% of the
total modifications made to logging code, followed by arch (5.47%), and filesystem
(3.74%). This is somewhat expected because the drivers subsystem is considerably
larger (over 10 million SLOC) than the other subsystems (see Table [5]). In addition,
drivers are typically dynamic in operating systems. As new devices are released or
become obsolete, the operating system must be evolved accordingly. Consequently,
some of these modifications to the logging statements may be not due to changes
specifically done on these statements, but to the addition or deletion of drivers.
Moreover, as discussed in our RQI, drivers typically include much logging code.
This justifies why the drivers subsystem is associated with the vast majority of
modification on logging code.

The percentage of log additions in Linux is similar to that reported by |Chen and
Jiang (2017D), who showed that log additions contribute to 18%-41% of the total
log modifications. [Yuan et al.| (2012a) did not report the percentage of log additions
in their examination of C/C++ systems.



22 Keyur Patel et al.

Table 8: Impact of adding or deleting files on logging code.

Subsystem Additions in new files Deletions in a deleted files

arch 1,289 3,038
core 614 84
driver 51,178 30,452
fs 833 409
net 320 218
Total 54,234 34,201

55.77% of the additions 55.34% of the deletions

We found that the number of log deletions represents 29.23% of the total number
of modifications made to logging statements. This result differs significantly from the
work of [Yuan et al.| (2012a)) who reported that the number of log deletions is only
2% of the total number of modifications. Our result is similar to that of |(Chen and
Jiang| (2017b)) who reported that log deletion contributes to 26% of the total modi-
fications in Java systems. Such evolution of logging code may adversely impact the
bug triaging process as developers rely on the logs contained in the bug reports, as
noted by [Ran| (2019)). The authors found that it is not possible to rebuild the execu-
tion paths for bug reproduction from bug report logs in 34% cases. They also argued
that the continuous evolution of system logs can have an effect on the accuracy of
log processing tools and machine learning models deployed for identifying anomalous
activities, as models need to be retrained whenever logging statements are changed.

To drill down into the data, we grouped log additions and deletions into two
categories: added along with the addition of a new file and deleted along with the
deletion of an existing file. Table [§| shows a detailed breakdown. We found that
55.77% of all log insertions were made along with the addition of new files. Similarly,
we found that 55.34% of the deleted logging statements were deleted along with the
deletion of existing files. These data corroborate with our hypothesis of why the
drivers subsystem accounts for many modification on logging code. These type of
changes—that is, addition and deletion of files—have in fact a large impact in the
log ratio, as shown in Figure

4.2.83 Updates in logging statements

We now proceed to a deeper analysis of logging changes, analyzing how log state-
ments are updated. We classify log updates into three categories depending on which
part of the logging statement has been modified: (i) the logging function (or macro),
including the log level, (ii) the static content representing the log message, and (iii)
the dynamic content, i.e. the variables and function calls. Table |§| presents the re-
sults. Note that one update may consist of one or more changes to the same logging
statement. For example, if the log function and the static content of a logging state-
ment has changed, they appear as two updates. This explains why the total number
of log updates is higher than the total number of the updated logging statements.
We next analyze the different categories of updates.
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Table 9: Distribution of updates made to logging statements.

Subsystem Logging function Static content Dynamic content
arch 1,226 2,014 1,284
core 606 979 721
driver 15,685 23,127 28,501
fs 1,344 2,422 1,863
net 435 809 952
Total 19,296 29,351 33,321
% of updates 36.83% 56.02% 63.60%

Changes made to the logging function. Of the 52,391 updated logging statements,
19,296 (36.83%) include modifications to the used logging functions. A wide range
of changes are possible, as shown in Table In this table, we show only the most
frequent changes in logging function, i.e. those with a frequency higher than 100.

The analysis of the changes to the logging functions revealed that 6,512 (33.75%)
of these updates are changes between printk, pr_<*> and dev_<*> macros. For
example, in commit 26a0a10, a developer updated logging statements from printk
to using device-aware dev_err()/dev_info() logging functions for improving the
precision of the resulting logs by including device-specific information. This is further
cemented by an observation that there has been a steady decrease in the usage of the
printk () function, with a usage reduction of 29.32% between versions 4.3 and 5.3 of
the Linux kernel. However, we found that the use of pr_*() and dev_*() functions
has increased to replace printk() call sites (Corbet||2012). This gives evidence of
evolving the importance of logging code in Linux, that is, developers have been
modifying logging functions, possibly with the aim of creating standardised functions.

We also found an increasing use of the so-called “rate limited” logging functions
such as the <*>[_once/_ratelimited] family of macros, which can be seen in com-
mit 527aa2a, where all calls to pr_info were converted to pr_info_ratelimited.
The objective of this type of functions is to prevent overloading the log buffers by
controlling the amount of logs generated in a given period of time. Consequently,
while writing logging code, it is important to consider not only the information be-
ing logged, but also the amount of information being generated and its impact on
the application execution.

Moreover, we observed that many changes to logging functions are triggered by
the need to make them more concise. For example, in commit 466414a, a developer
introduced btc_alg_dbg and btc_iface_dbg logging macros, and converted all calls
to BTC_PRINTK to the new functions (btc_<*>_dbg). The benefit is that software
developers do not have to specify btc_msg_type, resulting in more concise logging
statements. Ten months later, in commit 10468c3, all calls to btc_<*>_dbg were
again changed to another logging function, named RT_TRACE, to be consistent with
the use of this function in other drivers.

We thus conclude from the above observations that changes to logging functions
aimed to improve the quality of the logging output by either enhancing precision,
conciseness, or consistency. However, after analyzing many commits related to log
updates, we could not find any evidence that there was a Linux-wide strategy, which
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Table 10: Frequency of changes made to logging functions (frequency > 100).

Old logging function New logging function Frequency

printk pr_err 950
printk pr_info 881
BTC_PRINT btc_alg_dbg 663
btc_alg_dbg RT_TRACE 621
printk pr_cont 606
printk pr_warn 591
PDEBUG gspca_dbg 477
pr_err dev_err 440
pr_info ioc_info 418
PDBG pr_debug 392
dev_err DRM_DEV_ERROR 387
pr_debug dev_dbg 369
test_msg test_err 345
bremf _err bphy_err 315
RT_TRACE pr_err 275
pr_warning pr_warn 262
pr_err ioc_err 231
printk pr_debug 226
BT_ERR bt_dev_err 205
DTRACE dml_print 173
PRINT_ER netdev_err 169
dev_dbg musb_dbg 163
pr_info dev_info 161
SSI_LOG_DEBUG dev_dbg 156
BUGMSG arc_printk 153
SSI_LOG_ERR dev_err 152
dev_info dev_dbg 151
dev_err dev_dbg 146
DRM_ERROR DRM_DEBUG 145
dev_info pci_info 139
PERR gspca_err 129
btc_iface_dbg RT_TRACE 119
BTC_PRINT btc_iface_dbg 119
pr_info pr_debug 119
gvt_err gvt_vgpu_err 118
DRM_ERROR DRM_DEV_ERROR 104
pr_warn dev_warn 102
pr_info pr_info_ratelimited 102
pr_err pr_debug 100

suggests that these updates are a result of established guidelines. It appears that the
decision on how to log is left to the discretion of the developers.

The second reason for logging function modification is changing the severity of
logging statements by specifying log levels. The printk function allows one of the
eight log levels defined in /include/linux/kern_levels.h. For example,

printk (KERN_ERR "GCT Node MAGIC incorrect - GCT invalid\n");

However, the new logging API introduced in Linux 1.3.9@ embedded log levels into
the function names, such as pr_debug and pr_info. This change makes the logging
API richer, as developers have dedicated functions for specific log levels.

12 mttps://repo.or.cz/davej-history.git?a=commit ;h=aa66269c


https://repo.or.cz/davej-history.git?a=commit;h=aa66269c

The Sense of Logging in the Linux Kernel 25

Table 11: Changes in the level of logging statements between Linux v4.3 and v5.3.

New

ol EMERG ALERT CRIT ERR WARN NOTICE INFO DEBUG
EMERG 0 1 10 51 30 0 1 0
ALERT 0 0 6 8 10 0 0 0
CRIT 1 0 0 8 3 0 0 0
ERR 1 0 5 0 242 19 195 720
WARN 22 2 14 343 0 14 336 346
NOTICE 0 0 0 10 5 0 21 22
INFO 1 0 1 188 62 23 0 562
DEBUG 0 0 0 616 7 6 145 0

Table provides the distribution of changes made to the severity of logging
statements. If the developer updates a logging statement to use a new logging func-
tion, while keeping the same log level, we do not consider this change as a log level
change. This avoids including in the analysis refactoring in the logging code that
preserved the log level. As stated in previous work (Yuan et al.|2012a)), developers
often fail at determining how critical an error is in the first attempt. This observa-
tion is confirmed by the finding from our study that, out a total of 4,127 log level
changes, approximately one third of the total log level changes were between ERR
and DEBUG log levels. Specifically, 720 (17.45%) logging statements lowered the
severity of the log message from ERR to DEBUG, and 616 (14.93%) from DEBUG
to ERR. We found a total of 1,522 (36.88%) instances where developers increased
the severity of a logging statement to increase their visibility. In addition, logging
debugging messages at the ERROR level would result in log flooding, making it diffi-
cult to diagnose the real problems. We found that a total of 2,605 (63.12%) instances
where developers reduced the severity of a logging statement in order to prevent log
flooding. In fact, of these 4,127 log level modifications, 3,832 (92.85%) changes are
between ERR, WARNING, INFO, and DEBUG log levels. This suggests, as stated
before, a lack of standards when logging, in particular, when choosing a log level.
Moreover, it indicates that it is by checking generated log messages generated by
already written logging statements that developers are better able to reason about
appropriate log levels.

Changes made to the static content. 56.02% of the 52,391 changed logging state-
ments, i.e. the majority, include modifications to the static content (i.e. the log mes-
sage). A similar result has also been observed by |Chen and Jiang| (2017b|) and [Yuan
et al.| (2012a), who reported a ratio of 14%—65% and 18%—56%, respectively. Prior
studies list fizing inconsistency, clarification, and spelling/grammar mistakes as the
major causes of this type of modifications (Chen and Jiang2017b; Yuan et al.|2012a;
Chen and Jiang)2019)). Because static content consists of qualitative data, we are not
able to make further claims about these changes in RQ2. However, this is further
investigated in RQ3, with a qualitative analysis of logging modifications.

Changes made to the dynamic content. Of the 52,391 updated logging statements,
33,321 (63.60%) include modifications to the dynamic content (i.e. variables and
function calls). [Yuan et al.| (2012a)) found that developers often add variables into
existing logging statements as afterthoughts, which can aid in the failure diagnosis
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process. However, changes to dynamic content represent only 27% of all log modifica-
tions in their study. Our finding is, however, in line with the study of |Li et al.|(2019a))
on 12 C/C++ open-source projects, where the authors found that 69.1% updates
to logging statement made modifications to the dynamic content. This high number
of changes to dynamic content has also been observed by |Chen and Jiang (2017b)
and |Zeng et al.| (2019), in which they studied server/desktop and Android applica-
tions written in Java, respectively. That is, despite[Yuan et al.|[(2012a) already claims
that the addition of variables to logging statement is frequent, in various projects—
including Linux—it is more than twice more frequent than they observed in their
target systems.

One possible explanation for this high number of changes of the logging state-
ment dynamic content in Linux can be seen in commit 6be9005, where the devel-
oper switched to DRM_DEV_DEBUG_<#> instead of DRM_DEBUG. DRM_DEV_DEBUG_<*>
are device-aware logging macros and they require struct *device as an argument
to include device name in the log output. In order to help developers decide which
variables should be included in the logging statement, a recent study by |Liu et al.
(2019) proposed a deep learning-based approach that achieved an average MAP score
of 0.84 on nine open-source Java projects. Such approaches tailored to Linux kernel
domain could be helpful to alleviate this problem of what information should be
included in a logging statement.

4.2.4 RQ2: Summary

RQ2 - Findings. The log ratio (LLOC/SLOC) has been decreasing slowly from
v4.3 to v5.3, with a log ratio of 4.10% and 3.72%, respectively. This represents a
reduction of 9.27%. SLOC and LLOC are closely correlated across most versions of
Linux kernel between v4.3 and v5.3. This seems to be caused by the increase use
of tracing mechanism as a substitute to logging. We found that 14% of the com-
mits made between the Linux kernel versions v4.3 and v5.3 involve modifications
to logging code. Out of the 211,437 logging statements modifications, 24.78% are
log updates, 45.99% are log insertions, and 29.23% are log deletions. The major-
ity of changes to logging code (86.60%) are made in the drivers subsystem. The
changes to logging functions are triggered by the need to improve the quality of the
logging output by either enhancing precision, conciseness, or consistency. We found
that 92.85% of the changes of log levels are between ERR, WARNING, INFO, and
DEBUG log levels, suggesting that it is difficult for Linux developers to decide on
which log level to use. We found that 63.60% of the updated logging statements
include modifications to the dynamic content, while 56.02% are changes to the static
content.

RQ2 - Implications. A study should be conducted to dig deeper into the reasons
behind the decline of the log ratio over the years. The study should explore the
correlation between logging and tracing as it appears that tracing is being used as
a substitute to logging in more recent versions of Linux. We recommend to examine
the benefits of logging, tracing, and other debugging mechanisms when used indi-
vidually and together. This may lead to better ways to optimize the use of these
mechanisms. For example, tracing has the advantage of being less dependent on the
developer’s input, and hence requires less maintenance. However, it comes with an
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added overhead due to the presence of trace points, which may limit its overall de-
ployment. Another implication of these results is related to the lack of guidelines
and best practices, which is the main trigger behind the many changes to logging
statements. This is also evidenced in the high number of changes to log levels, which
clearly show that developers face challenges when deciding on the log levels to use.
These issues should be addressed by developing a set of guidelines and best practices
that do not only consider the information being logged (i.e., what to log), but also
the amount of information that is generated and its impact on the application exe-
cution. Finally, the high number of changes to the dynamic variables is problematic
since many errors can occur, leading to faults and crashes. To address this issue, we
suggest to use tools that would automatically recommend updates to the dynamic
variables of logging statements when these variables have been modified in others
parts of the code.

4.3 RQ3: Afterthought changes in logging code

For this research question, we look into afterthought changes, which are those that
explicitly address a bug caused by or is used to enhance the logging code (Yuan et al.
2012a; |Chen and Jiang|[2017b)). It is essential to study afterthought changes because
they add to the overall maintenance effort. Having a large number of afterthought log
changes may defeat the very purpose of logging, which is to reduce the maintenance
effort by facilitating debugging and other failure diagnosis tasks.

An example of a commit addressing a problem associated with logging code can
be seen in Listing [3] In this code snippet, there is an error message displayed by
the thinkpad__acpi driver when brightness interfaces are not supported, encouraging
the user to contact IBM for this problem. However, according to the developer that
handled this commit, back-light interfaces on newer devices are supported by the
1915 driver. The developer decided to change the log level from “error” to “info” to
reduce the visibility of the log message. Another example consists of a commit in
which a developer decided to enhance the existing logging statements by including
gp_num(gp) in debug messages to improve debugging tasks (commit e404£94).

--- a/drivers/platform/x86/thinkpad_acpi.c
+++ b/drivers/platform/x86/thinkpad_acpi.c
@@ -6459,8 +6459,7 @@ static void __init
> tpacpi_detect_brightness_capabilities(void)
pr_info("detected a 8-level brightness capable ThinkPad\n");
break;
default:
- pr_err("Unsupported brightness interface, "
- "please contact %s\n", TPACPI_MAIL);
+ pr_info("Unsupported brightness interface\n");
tp_features.bright_unkfw = 1;
bright_maxlvl = b - 1;
}

Listing 3: Commit d618651 - thinkpad_ acpi: Don’t yell on unsupported brightness
interfaces.
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Table 12: Characterization of fixes to the logging code.

Group Logging Fix #Commits
Lack of Information LFO01: Missing variables and statements 92
LF02: Imprecise logging messages 62
Issues in LF03: Null pointer dereference 13
variable usage LFO04: Uninitialized variables 9
LF05: Logging wrong variables 28
Inadequate logging LF06: Fixing incorrect log levels 156
configuration LFO07: Fixing inconsistencies 163
LF08: Deleting redundant information 31
Writing issues LF09: Language mistakes 171
LF10: Fixing format specifiers 125
LF11: Message mistakes 6
LF12: Formatting issues 71
Disclosure of LF13: Revealing kernel pointers 16
Sensitive data
Total 900

To understand the nature of afterthought changes made to logging code, we con-
ducted a qualitative analysis, detailed in Section (3} in which we manually examined
the corresponding fixes provided by the Linux developers. The ultimate goal is to
gain deep insight into the reasons behind these changes, which can help develop-
ers and researchers design new approaches and tools to prevent these problems. To
analyze the resulting 900 commits, for each commit, the first author reviewed the
commit message, the commit diff, related artefacts such as bug reports, and discus-
sions on the Linux kernel mailing lists, if available. He classified the reasons behind
these afterthought changes into 13 categories, which were reviewed and validated by
the other authors. These categories are shown in Table[12|and are discussed in more
detail in the subsequent sections, split into five groups.

4.8.1 Lack of information

LF01: Missing variables and statements. We found that 10.22% of the studied com-
mits are about improving debuggability by adding information to logging code with
the aim of reducing the time needed to diagnose program failures. This is in line
with the finding of [Yuan et al.| (2012a)), who concluded that developers often add
information to the existing logging statements to narrow down the root causes of
the underlying problems. For example, in commit d0de579, a developer mentioned:
“Identify Namespace failures are logged as a warning but there is not an indication
of the cause for the failure. Update the log message to include the error status.”
Another example is commit 077c066, which added to the logging statement a local
variable representing a section index (idx), as shown in Example 1 of Table The
reason for this change is given by the developer as: “ While debugging a bpf ELF
loading issue, I needed to correlate the ELF section number with the failed relocation
section reference. Thus, add section numbers/index to the pr_debug.” We also found
many cases where developers added logging statements to record additional runtime
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Table 13: Examples of lack of information.

Example 1  tools/libbpf: improve the pr__debug statements to contain
section numbers | linux@077c¢066
Original pr_warning("failed to alloc name for prog under
— section %s\n", section_name);
Updated pr_warning("failed to alloc name for prog under
— section(%d) %s\n",idx, section_name);
Example 2 ASoC: tas6424: Print full register name in error message |
linux@919869214
Original dev_err(dev, "failed to read FAULT1 register: %d\n",
< ret);
Updated dev_err(dev, "failed to read GLOB_FAULT1 register:
— %d\n", ret);
Example 3 mmc: dw__mmec: fix misleading error print if failing to do
DMA transfer | linux@d12d0cb
Original /* We can't do DMA */
dev_err (host->dev, "%s: failed to start DMA.\n",
— __func__);
Updated /% We can't do DMA, try PIO for this one */
dev_dbg (host->dev,
< "%s: fall back to PI0 mode for current transfer\n"
< , __func__);
Example 4 x86/fault: Reword initial BUG message for unhandled page
faults | linux@f28blla
Original pr_alert("BUG: unable to handle kermel ¥%s at %px\n",
<> address < PAGE_SIZE ? "NULL pointer
< dereference" : "paging request",
< (voidx)address) ;
Updated if (address < PAGE_SIZE && !user_mode(regs))

pr_alert("BUG: kernel NULL pointer dereference,
< address = Jpx\n", (void *)address);
else
pr_alert("BUG: unable to handle page fault for
— address = %px\n", (void *)address);

information. This is exemplified by commit 9e£8690, where a developer inserted few
additional logging points in order to make errors more visible: “ The NCSI driver is
mostly silent which becomes a headache when trying to determine what has occurred
on the NCSI connection. This adds additional logging in a few key areas such as ...”

LF02: Imprecise logging messages. Ambiguity in an error message can delay the
process of diagnosis as it does not allow end users to easily uncover the part of the
programs that failed as in, for instance, Example 2 of Table In this example, a
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developer chose to use the full register name in the error message because a short
version of the register name may be ambiguous when diagnosing a fault. A similar
example can be found in commit 2e5d04dad, where the iwlagn driver uses exactly
the same error message in three different functions. Therefore, the developer chose
to add the name of the function to the error string to disambiguate from where the
error originated.

Another common problem is the ambiguity of a log message, which can be mis-
leading during the analysis phase. Example 3 of Table |13| shows an example where
the original log message “failed to start DMA” together with an error log level
might mislead users to think that a fatal error occurred. In fact, although DMA
could not be used, the transfer could still be completed by PIO mode. The updated
message thus makes this clear as well as has a debug log level.

Another example of this type of logging fix is when developers reword the log-
ging message to make the logs more informative and facilitate analysis. This is
shown in Example 4 of Table where developers decided to reword NULL pointer
dereference message. The logging message was modified to drop “wunable to han-
dle” from the message, because it might imply that in some cases the kernel ac-
tually handles NULL pointer dereference, which is not valid. A similar example is
found in commit 135e535, where the developer clarified an error message to avoid
user confusion. He reported that: “Some user who install SIGBUS handler that
does longjmp out therefore keeping the process alive is confused by the error mes-
sage [188988.765862] Memory failure: 0x1840200: Killing cellsrv:33395
due to hardware memory corruption. Slightly modify the error message to im-
prove clarity.” In conclusion, poorly worded log messages may lead to user confusion
and fixing these logs takes up maintenance time and effort.

Using the same static text in a single file is also a case that contributes to
ambiguity in logging statements. This practice of duplication in logging code was
rightfully reported by [Li et al.|(2019b) as a logging code smell. One example of this
practice is depicted in commit a15e824 and commit 90cc7f1, where the developer
added additional information so that log messages can be uniquely identified using
search techniques.

4.8.2 Issues in variable usage

LF03: Null pointer dereference. In 1.44% of the cases, a developer attempted to
dereference a pointer that may have a NULL value or an empty variable. This is
something that can occur in Example 5 of Table which illustrates a fix made
in commit 95d2a321§| In this commit, the original logging statement included the
dereferencing of the skb pointer, which can be NULL. A NULL pointer dereferencing
causes a runtime crash. To prevent this type of problems, developers should incorpo-
rate tools such as CoccinelleE| in their workflow for detecting dereferences of NULL
pointers.

LF04: Uninitialized variables. Out of 900 commits, we found 9 cases in which log
messages refer to device names before they are registered. These logs contain mes-

13 Note that the change made to the logging statement is not semantically equivalent to the
original statement, but with the bug fixed. The goal in the change was to fix the NULL pointer
and the change was accepted to fix this issue.

14 mttp://coccinelle.lip6.fr/rules/#null
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Table 14: Examples of issues in variable usage.

Example 5 staging: ks7010: don’t print skb->dev->name if skb is null |

linux@95d2a32
Original printk (KERN_WARNING "%s: Memory squeeze, dropping
<~ packet.\n",skb->dev->name) ;
Updated printk (KERN_WARNING "ks_wlan: Memory squeeze,

— dropping packet.\n");

Example 6 staging: fsl-dpaa2/eth: Don’t use netdev__err too early |
linux@O0f4c295

Original netdev_err(net_dev, "Failed to configure hashing\n");
Updated dev_err(dev, "Failed to configure hashing\n");

Example 7 btrfs: tree-log.c: Wrong printk information about namelen

| linux@286b92f
Original btrfs_crit(fs_info, "invalid dir item name len: %u",
— (unsigned)btrfs_dir_data_len(leaf, dir_item));
Updated btrfs_crit(fs_info, "invalid dir item name len: %u",

— (unsigned)btrfs_dir_name_len(leaf, dir_item));

sages referring to “unnamed net device” or “uninitialized”, which lead to logs
that may confuse end users. Example 6 of Table [14]shows a fix to one of these prob-
lems. The logging statements consists now of a call to the function dev_err, which
considers the possibility that the first parameter is null. In this case, it will add
“NULL net_device” to the log message.

LF05: Logging wrong variables. Developers specified the wrong variables as argu-
ments of the logging function calls in 28 cases. The root causes of these issues are
simple copy/paste mistakes or typographical crrorsm This is illustrated in Exam-
ple 7 of Table in which the original and updated logging functions have similar
names, but the former calls the function btrfs_dir_data_len, reporting data_len
in the error message. However, the correct function is btrfs_dir_name_len, which
reports name_len in the message. Such errors are difficult to detect using static anal-
ysis tools, because both btrfs_dir_name_len and btrfs_dir_data_len have the
same return type.

4.3.8 Inadequate logging configuration

LF06: Fizing incorrect log levels. We found that in 17.33% of the cases there are
changes in the log levels. This includes cases where developers failed to make a
distinction between fatal errors and errors that are recoverable. Moreover, using a
non-error log level for logging error conditions would make it hard to diagnose such
errors as the corresponding error messages would go unnoticed. Likewise, logging
debugging messages as errors will also result in a flood of log messages making it

15 mttps://cwe.mitre.org/data/definitions/688.html
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Table 15: Examples of inadequate logging configuration.

Example 8 i2c: imx: notify about real errors on dma
i2¢c_imx_dma_request | linux@5b3a23a

Original dev_dbg(dev, "can't configure rx channel\n");

Updated dev_err(dev, "can't configure rx channel (%d)\n", ret);

Example 9 mei: bus: remove redundant uuid string in debug messages

| linux@2bcfdc2
Original dev_dbg(&cldev->dev, "running hook %s on %pUl\n",
— __func__, mei_me_cl _uuid(cldev->me_cl));
Updated dev_dbg(&cldev->dev, "running hook %s\n", __func__);

hard to concentrate on the real problems. In example of such an issue is shown
in Example 8 (Table 7 where the developer mentioned that “... In contrast real
problems that were only emitted at debug level before should be described at a higher
level to be better visible and so understandable.” Thus, the developer decided to
change the log level from DEBUG to ERROR.

Developers need to carry out logging activities taking into account performance
constraints (Ding et al.[2015; [Sigelman et al.|[2010). One of the most frequent issues
is log spamming, which often leads to degradation of system performance. This
occurred in commit 7£20d483, where the developer downgraded the log message to
DEBUG level to suppress frequent “VTU miss violations” messages, as “VTU miss
violations” are rather common.

LFO07: Fizing inconsistencies. We found 163 commits (18.11%) that were the result
of ongoing modernization of logging code. Usually, such improvements do not address
severe problems associated with the logging code; instead, they arise from attempts
to improve the consistency of logging code across various parts of the Linux kernel.
One such change is the use of device-managed logging macros in order to simplify
error handling, reduce source code size, improve readability, and /or reduce the risks
of bugs. Another improvement is the use of __func__ and pr_fmt rather than hard-
coded function names and module names in error messages. For example, in commit
a8ab042, a developer mentioned: “Instead of having the function name hard-coded
(it might change and we forgot to update them in the debug output) we can use
__func__ instead and also shorter the line so we do not need to break it.” As Yuan
et al.| (2012a)) pointed out, inconsistency in the function names referred in the log
message is one of the main reasons for changes made to logging code.

LF08: Deleting redundant information. We found 31 cases in which developers report
information that is redundant or not needed. One illustration of this case found in
commit 2bcfdc?2 is shown in Example 9 (Table [15)), where the developer removed
uwuid from the debug messages in bus-fixup.c as this was already part of the device
name. Another common pattern that we observed is the removal of __func__ from
dev_dbg() calls. The reason for this change is given in commit 814735 as “ Dynamic
debug can be instructed to add the function name to the debug output using the +f
switch, so there is no need for the nfit module to do it again. If a user decides to add the
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Table 16: Examples of writing issues.

Example 10 usbip: vhci: fix spelling mistake: “synchronuously” —
“synchronously” | linux@ch48326

Original dev_dbg(&urb->dev->dev, "urb seq# %u was unlinked
< %ssynchronuously\n",seqnum,status == -ENOENT ?
% ||||:||all);

Updated dev_dbg(&urb->dev->dev, "urb seq# %u was unlinked
— %ssynchronously\n",seqnum,status == -ENOENT ?
(% nn B Ilall ;

Example 11  ti_sci: Use %pS printk format for direct addresses |

linux@>595{3a9
Original dev_err(dev, "Mbox timedout in resp(caller: %pF)\n",
< (void *)_RET_IP_);
Updated dev_err(dev, "Mbox timedout in resp(caller: %pS)\n",

<> (void *)_RET_IP_);

Example 12 greybus: gpb: Fix print mistakes | linux@b908dec

Original if (gb_usb_protocol_init()) {
pr_err("error initializing usb protocol\n");
goto error_usb;
}
if (gb_i2c_protocol_init()) {
pr_err("error initializing usb protocol\n");
goto error_i2c;
}
Updated if (gb_usb_protocol_init()) {
pr_err("error initializing usb protocol\n");
goto error_usb;
}
if (gb_i2c_protocol_init()) {
pr_err("error initializing i2c protocol\n");
goto error_i2c;

}

+f switch for nfit’s dynamic debug this results in double prints of the function name
..... Thus remove the stray __ func__ printing.” In addition, removing __func__ from
dev_x () callsites helps reduce the Linux kernel size as pointed out by Wolfram Sang,
the current maintainer of the Linux I2C subsystem
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4.8.4 Writing issues

LF09: Language mistakes. 19% of the 900 studied log updates are caused by spelling
or grammar mistakes. Example 10 (Table shows an example where the word “syn-
chronously” was misspelt as “synchronuously” in the static text. Another example
can be seen in commit 748ac56. To correct a grammatical mistake, the static text
was changed from “Failed to registered ssb SPROM handler” to “Failed to
register ssb SPROM handler”. We also noticed that there is no standardization
over the use of capitalization, grammatical style, punctuation, etc.

LF10: Fizing format specifiers. We found 13.89% of the 900 studied revisions are
the result of using improper format specifiers in logging statementsm A typical
issue related to printk format specifier is shown in Example 11 (Table . In the
example, the developer decided to use the %pS printk format specifier for printing
symbols from direct addresses. Moreover, the explanation for this change was given
as “This is important for the iab4, ppc64 and parisc64 architectures, while on other
architectures there is no difference between %pS and %pF. Fix it for consistency
across the kernel.” Tt appears that most of this type of changes are motivated by the
intention to fix build warnings, which developers should have addressed at commit-
time. We found that developers often get around using proper format specifiers by
resorting to unnecessary castsﬁ This practice was rightfully reported by |Chen and
Jiang] (2017a)) as a logging anti-pattern.

LF11: Message mistakes. We identified six instances where developers made mis-
takes in the static messages. Similarly to LF05 (Logging wrong variables), it seems
that developers aimed at save time by copying and pasting a few snippets of code.
However, some of the necessary modifications are left behind. This happens in Ex-
ample 12 (Table , where the developer entered an incorrect logging message in
the gpbridge_init method, likely caused by a copy/paste mistake. It seems that
the developer copied the line if (gb_usb_protocol_init()) and corrected it. How-
ever, the debugging statements were not updated accordingly, referring to the i2c
protocol, as in the updated statement.

LF12: Formatting issues. Developers fixed formatting of log messages in 71 cases.
Poorly formatted messages make it difficult to search for matching text in the log
file. We can see this issue in commit a790634, where certain messages were appearing
on separate lines resulting in a strange output. This was fixed using line continua-
tions where necessary. Another issue that falls under this category is that developers
frequently break log message strings over several lines to meet the checkpatch’s 80
characters per line restriction. According to commit 4bd69e7b, this is no longer con-
sidered a good practice, because it makes it more difficult to grep for strings in the
source code.
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Table 17: Example of sensitive data.

Example 13 drm/exynos: Print kernel pointers in a restricted form |
linux@9cdfOed

Original dev_dbg(dev, "< xfer ¥%p: tx len %u, done %u, rx len
<~ %u, done %u\n", xfer, length, xfer->tx_done,
— xfer->rx_len, xfer->rx_done);

Updated dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len
> %u, done %u\n", xfer, length, xfer->tx_done,
< xfer->rx_len, xfer->rx_done);

4.8.5 Disclosure of sensitive data

LF13: Revealing kernel pointers. Insufficient information in log messages can delay
the diagnosis process. However, revealing sensitive information such as cryptographic
keys or kernel addresses can lead to information leaksm We found 16 commits, which
mentioned these cases. An example can be seen in commit 9cdf0ed shown in Example
13 (Table . It states in the commit message that “Printing raw kernel pointers
might reveal information which sometimes we try to hide (e.g. with Kernel Address
Space Layout Randomization). Use the "%pK” format so these pointers will be hidden
for unprivileged users.” Other examples of such cases can be seen at CVE-2018-599
and CVE—QOlS—?Q?ﬂ where developers print kernel addresses into logs, which can
allow an attacker to extract sensitive information. The problem of accidental data
leakage through the misuse of logs has recently been examined by Zhou et al.| (2020).
The authors showed that logs could reveal sensitive information in Android apps.
Similar studies should be conducted for larger systems such as the Linux kernel to
understand the extent of this serious problem.

4.8.6 RQ3: Summary

RQ3 - Findings. After manually analyzing 900 commits randomly selected from
those that include fixes or improvements in logging code, we identified 13 types of
logging fix, categorized into five groups: lack of information, issues in variable usage,
inadequate logging configuration, writing issues, and disclosure of sensitive data.
The most common type of logging fix consists of language mistakes, appearing in
19% of the commits, followed by fixing inconsistencies (18%), log levels (17%), and
format specifiers (13%). The last three types of logging fix indicate a lack of logging
standards. Another type of fix that appeared with a certain frequency is missing vari-
ables and statements (10%), which suggests that developers should further consider
all information that is needed for debugging when adding logging information.

16 https://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux.git/commit/?h=
strings/rtc-no-func&id=762c5af234c5b816b7da3687a3e703cf8cdc2214

17 https://www.kernel.org/doc/Documentation/printk-formats.txt

18 https://github.com/torvalds/linux/commit/3fcb3c836ef413d3fc848288b308eb655608d853

19 https://cwe.mitre.org/data/definitions/200.html
20 https://nvd.nist.gov/vuln/detail/CVE-2018-5995
21 https://nvd.nist.gov/vuln/detail/CVE-2018-7273
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RQ3 - Implications. The findings show that there are many errors in the logging
code, which may have a significant impact on log analysis tasks. Based on these
findings, we derived a list of guidelines and recommendations to help address each
of the issues raised in this section. The proposed guidelines can be found in Section
54.

5 Discussion

In this section, we discuss insights derived from our study. First, we focus on lessons
learned associated with the pervasiveness of logging, followed by comparison of our
findings to previous similar studies. Then, we present guidelines and point out direc-
tions for automated support for logging. Next, we detail the feedback provided by a
Linux expert regarding the findings of our study. Finally, we discuss threats to the
validity of our study.

5.1 On the Pervasiveness of Logging

Logging code represents 3.69% of the Linux kernel, being pervasive in its source
code. However, when we evaluate the pervasiveness of logging at the file and method
levels, we found that the distribution of logging code is highly skewed, suggesting
that certain aspects of the Linux kernel are more likely to have logging code than
others. It would be interesting to assess the correlation between the log ratio of a
method and its cyclomatic complexity in future studies.

Although logging code corresponds to only less than 4% of the Linux kernel code,
this type of code is actively maintained. We found that 14% of commits related
to Linux kernel versions 4.3 to 5.3 involves modifications to logging code resulting
in a total of 211,437 logging statements modifications, which represents 66.19% of
the total number of logging statements present in Linux kernel v5.3. Moreover, we
identified that logging code deletion accounts for 29.23% of the total modifications
to logging code, in contrary to findings reported by [Yuan et al. (2012a). Despite
the majority of logging code deletion happens when a file is deleted, there is a non-
negligible amount (44.66%) of deletion of logging code occurring as afterthoughts.
A possible explanation for this might be observed in commit a8d5dad, where a
developer deleted two logging statements that report memory allocation failures.
There is a rule in checkpatch.pl to check for possible unnecessary out of memory
message. However, it seems that developers do not care to fix this issue at commit
time, because there is a large number of commits removing out of memory error
messages as afterthoughts. Logging statements are also deleted in cases in which
they are redundant. For instance, in commit c99a23e55, a developer removed an
error message present within error handling code when i2c_mux_add_adapter fails
because i2c_mux_add_adapter already prints an error message when it fails.

We found that developers often face difficulties to specify the right log level in
the first attempt, because there is no such a static verification of whether a log
level is correct. For example, in commit 3b364c659, a developer downgraded the
logging message from WARN to INFO log level, and reason for this change was: “On
an embedded system it is quite possible for the bootloader to avoid configuring PCle
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Table 18: Lack of consistency in the text of the error messages

spear_thermal = thermal_zone_device_register(...);
if (IS_ERR(spear_thermal)) {
dev_err (&pdev->dev, "thermal zone device is NULL\n");

[...]

drivers/thermal/spear__thermal.c

priv->zone = thermal_zone_device_register(...);
if (IS_ERR(priv->zone)) {
dev_err(dev, "can't register thermal zone\n");

[...]

drivers/thermal/rcar_ thermal.c

sensor->thermal_dev = thermal_zone_device_register(...);

if (IS_ERR(sensor->thermal_dev)) {
dev_err(dev, "failed to register thermal zone device\n");
[...]

}

drivers/thermal/st/st__thermal.c

devices if they are not needed.” It is surprising that it took the developers 26 months
to notice this problem.

The majority of the logging statements (55.66%) are used within an if block.
Moreover, most of them is used for logging errors after checking the return value of
function calls. As the decision regarding logging is left to developers, we noticed many
inconsistencies in the text of an error message, logging function used, and information
included in an error message. Table shows an example of this situation. A call
to thermal_zone_device_register() returns a pointer to the newly created struct
thermal_zone_device, and in case of error it returns an ERR_PTRE All these three
drivers perform a registration of a new thermal zone device and check the return
value using IS_ERR() macros and, in case of an error, log an error using dev_err ().
Even though all three drivers are performing the same action, there is no consistency
among the error messages. This can prevent automated post-mortem analysis.

We also observed inconsistencies in the information included when logging an
error message. For example, there are many locations that report an error when
there is a failure when calling the function devm_request_irq. However, plenty of
the callers of this function do not include the irq requested and the returned error
code@ A possible solution to avoid such inconsistencies would be centralizing error
reporting rather than leaving the decision to the developers. One such a change made
to get more consistent error reporting can be seen in commit 7723f4c, the reason

22 https://github.com/torvalds/linux/blob/v5.3/drivers/thermal/thermal_core.c#
L1211

23 https://github.com/torvalds/linux/blob/v5.3/drivers/usb/dwuc2/gadget . c#L4846
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for this change is that “A grep of the kernel shows that many drivers print an error
message if they fail to get the irq they’re looking for. Furthermore, those drivers all
decide to print the device name, or not, and the irq they were requesting, or not, etc.
Let’s consolidate all these error messages into the API itself, allowing us to get rid of
the error messages in each driver.” This centralization of error reporting helps reduce
the size of the Linux kernel code. This also decreases the need for commits made as
afterthoughts to add additional information or fixing typographical mistakes.

5.2 Comparison to Existing Studies

Our study replicates existing studies that had as target systems C/C++ and Java
projects. We, in turn, analyzed the Linux kernel, which is one of the greatest collab-
orative efforts in the computer industry. Based on these previous studies and their
results, we show in Table [19) a comparison of the results obtained in our study and
those from [Yuan et al.| (2012a) and |Chen and Jiang| (2017b)), which explore similar
aspects related to the practice of logging.

5.3 Feedback from a Linux Expert

We reached out to a Linux development expert, who has also been very active in
discussing the use of logging libraries in Linux, to obtain feedback on this study and
discuss possible improvements. We also gave him an early version of the paper to
review. In general, the expert agreed with the fact that logging is not a practice that
is well governed in Linux, which explains the fact that logging varies significantly
from one component of the system to another, depending on the development teams
of the components. He added that most of the findings related the change of the
logging code are caused by a lack of guidelines across all the development teams in
Linux. He added that he had himself committed many updates to fix issues related
to logging code to improve the quality of the logging statements.

Further, the Linux expert made three suggestions that do not only provide in-
sights into the results, but can also be used to drive future studies. The first sugges-
tion is to separate code written specifically for Linux from that ported to Linux such
as some external drivers. This would perhaps provide a better picture of the logging
landscape of Linux-specific code. Having said, our answer to RQ1 shows that the
most logged components are "filesystem” and ”core”, which are specific to Linux. In
other words, it is not clear whether excluding the drivers would have an important
effect on the results of RQ2 and RQ3. Besides drivers are an integral part of Linux,
removing them may weaken the study. The second suggestion is related to the use
of various tools (codespell, integrated spelling tests in checkpatch, coccinelle, etc)
that have recently been made available to Linux developers. These tools are now
recommended to improve the quality of code. On one hand, this comment confirms
our findings with respect to RQ3 where we concluded that many errors in the log-
ging code could have been avoided using this type of tools. On the other hand, the
point raised by the expert warrants a study on how these tools are used to check
logging code and what the impact on the quality of logging statements would be.
Finally, the expert explained that in recent years, there has been an increase in the
use of tracing tools such as ftrace to log the entry/exit of function, which justifies
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Table 19: Comparison of results from our study and previous work.

Research Our study Yuan et al. Chen _and
Question (20124) Jiang| (2017Db))
RQ1: On average, every  On average, every  On average, every

Pervasiveness of
logging in Linux
kernel

27 lines of code
contained one line
of logging code in
the Linux kernel.

30 lines of code
contained one line
of logging code in
four open-source
C/C++ projects.

51 lines of code
contained one line
of logging code in
21 Java projects.

RQ2: Logging
code evolution

Logging code is
modified in 14%
of all analysed
commits.

Logging code is

modified in 18%
of all committed
revisions.

Logging code is

modified in 16%
of all committed
revisions.

Logging deletions
account for 29%
of the number of
modifications
made to logging
code.

Logging deletions
account for 2% of
the number of
modifications
made to logging
code.

Logging deletions
account for 26%
of the number of
modifications
made to logging
code.

RQ3:
Afterthought
changes in
logging code

30% of analyzed

33% of updates

59% of updates

commits are to the log to the log
related to printing code are  printing code are
afterthought afterthought afterthought
updates. updates. updates.

Fixing incorrect Fixing incorrect Fixing incorrect
log levels log levels log levels
accounts for 17%  accounts for 26%  accounts for 21%
of analyzed of afterthought of afterthought
commits. updates. updates.

Almost 16% of 27% of the 32% of

analyzed commits afterthought afterthought

are related to updates are updates are
issues in variable related to related to

usage or missing
variables and
statements.

variable logging.

variable logging.

Fixing language
mistakes is the
most frequent
update to static
text.

Fixing misleading
information is the
most frequent
updates to the
static text.

Fixing misleading
information is the
most frequent
updates to the
static text.
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the decrease in the use of logging. This comment is inline with our finding in RQ2
where we showed that despite the increase of the number of LOCs across versions,
the number of logging statements have decreased. We attributed this to the emer-
gence of tracing and other debugging mechanisms as substitutes to logging on the
premise of the studies of Corbet (2016) and Edge (2019). The Linux expert’s opinion
converges with this finding. The input provided by the Linux expert encourages us
to conduct a formal user study to gain more insights into the way logging is used in
Linux. This study should build on the results obtained in this paper, which are an
important first step to understand the logging landscape in Linux in particular and
in software engineering in general.

5.4 Logging Guidelines

Based on the analysis of the afterthoughts changes in the logging statements in
the Linux kernel source code, we derived the following guidelines that can help the
maintenance of logging code. For each listed guideline, we also indicate the identified
types of logging fix that serves as a foundation for it and a description. We also
indicate opportunities for automation when applicable.

A. Be precise, concise and consistent in logging statements. (LF02, LF07,
LF08, LF10, LF12) In order for logs to be useful, they should be precise (not leaving
room for ambiguity), concise (to not create huge amounts of logs with redundant
information) and consistent (to facilitate post-mortem analysis). An example of spe-
cific recommendations is to not use hard-coded module or function names and refer
to complete variable names.

Developers should strive for writing concise logging statements to prevent redun-
dant information. Automatic tools can be developed to detect redundancies. How-
ever, some redundancies may require domain knowledge. These can be detected b
developers when reviewing the code. There are static analysis tools such as smatchl%
and sparsﬂ that are useful at detecting incorrect format specifiers. Developers
should consider using these tools to detect this type of problems at commit time
rather than fixing the corresponding code as afterthought.

It is recommended to use a spell checker, as provided by many IDEs. This is an

initial step to prevent the need for corrections in language issues. Additional tools
for grammar checking could be embedded in current IDEs. Guidelines for a common
writing style should be developed and promoted. Tools such as kernelscaﬂ should
be incorporated into build pipelines.
B. Specify (in advance) and follow logging conventions. (LF06, LF08) Even
though there are existing descriptions of how the different log levels should be used in
the Linux kernel, a suggestion is to further detail logging conventions. For instance,
the error level should only be used in situations in which components may fail and
compromise system operation. Moreover, conventions can be used to avoid redun-
dant or missing information, and use similar static messages, because for the same
situation, such as an error, different messages and variables are logged in distinct
code locations. This can be aided by dedicated logging functions.

24 https://repo.or.cz/w/smatch.git
25 https://sparse.wiki.kernel.org/
26 https://github.com/ColinlanKing/kernelscan
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C. Program for debuggability. (LF01, LF12) To prevent posterior logging changes,
we recommend that developers provide beforehand detailed information on where the
failures are located and any other information relevant to failure that can facilitate
debugging. For example, including error code in the logging statement, if available, is
always a good idea. In addition, developers should avoid breaking log message lines
to facilitate post-mortem analysis of the logs.

D. Reason about possible variable values. (LF03, LF04) NULL pointer deref-
erencing causes a runtime crash. Consequently, it is crucial to reason if a referred
pointer can be NULL or a variable can be empty. A potential NULL pointer derefer-
encing can be avoided by adding automatic checks to logged variables, and function
return values that are used as logging statements arguments. Furthermore, develop-
ers should only use the device or network-specific logging macros after checking that
the devices were correctly initialized and registered. Static analysis tools can be used
to check that all variables are initialized before they are used for logging.

E. Be careful with copy-paste. (LF05, LF11) Developers should avoid copying
and pasting logging statements, as this is a source of mistakes. If the statements
do not match the targeted subject, they may confuse and mislead developers when
debugging and analyzing logged messages. In the case of a copy-paste of a logging
statement, it is essencial to check if (i) a called logging function has been updated;
(ii) the static message has been adequately changed; and (iii) referred variables are
correct.

F. Consider security issues. (LF13) Tests should be put in place to verify that
logs do not accidentally cause security and data privacy breaches. This effort should
adhere to the broader task of ensuring the security of the Linux kernel.

G. Review logging code. (LF02, LF09) To avoid many of the raised issues, such
as imprecise, redundant, and inconsistent logging statements as well as copy-paste
mistakes, can be detected at commit time during a code review process. Therefore,
we recommend logging code to be carefully reviewed. This task can be done before
accepting the commits.

H. Use recommender systems. (LF01, LF05, LF06, LF(07) There is an ongoing
research in developing recommendation tools to assist developers in logging. For
example, [Panthaplackel et al.| (2020) proposed a deep-learning-based approach to
automatically update the static text in the logging statements based on changes
made to the surrounding source code. [Fu et al.| (2014) conducted a study at Microsoft
where they showed that it is possible to use machine learning techniques to predict
with a good accuracy where to log. Developers should consider including these tools,
if shown effective in the context of the Linux kernel, to predict log levels, variables
that need to be logged, static analysis of logging statements, etc.

5.5 Implications for Future Research

Our study allowed us to understand how logging is present in the Linux kernel and
to identify issues that caused the evolution of logging statements. The analysis of
collected data revealed facts related to logging in the Linux kernel, leaving room for
future research work. We discuss directions for future studies as follows.

The analysis of the pervasiveness of the logging in the Linux kernel showed that
the log ratio in the many Linux subsystems and components varies. This can be
explained by various arguments, such as: (i) long-lived less-changed components may
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be stable and are the cause of few bugs, so they do not need to be as logged as other
components; (ii) logging can have an impact on system performance and, therefore,
certain code parts may be less logged to prevent performance decay; and (iii) different
parts of the code may be maintained by different teams of developers, with diverging
logging practices. Based on the data collected for this study, it is not possible to
reach a conclusion regarding the rationale for the current logging decisions and their
variability across the different Linux subsystems and files. This calls for future studies
that investigate this. Possible types of studies that are suitable for testing these
hypotheses are:

— a user study in which developers think out loud, justifying the logging statements
that they add, modify or delete;

— interviews with developers immediately after they commit a code change that
involves logging changes; or

— a qualitative study of code review comments, in which there are requests for
changes in logging statements with an accompanying rationale for the change.

With respect to our logging guidelines, a future study can be conducted to evalu-
ate their impact on the evolution of logging practices. The presented guidelines were
derived using the principles of grounded theory—the guidelines are grounded on the
conducted qualitative analysis. Although there are supporting evidences for each de-
rived guideline, it is important to assess if their adoption in the Linux kernel (or a
software project) can have a positive impact on the standardization of the logging
statements, reducing the need for constant modifications due to inadequate logging.
An experimental study in which the intervention is the use of our derived guidelines
is suitable for answering this question.

5.6 Threats to Validity

Internal Validity. Threats to internal validity are associated with factors that may
impact our results. In this study, a source of bias is the automated data collection
process. To identify logging statements, we rely on the semantic patterns specified
by [Tschudin et al.| (2015). However, this approach may not identify statements that
lack variability in their use. To mitigate this issue, we manually examined macros
containing calls to basic functions, such as printk(), pr_*(), and dev_x*(), in or-
der to identify missed logging functions. The set of functions collected by combining
both processes was thus manually reviewed with the aim of eliminating obvious false
positives. In addition, although we believe that the list of logging functions extracted
with this approach is a very comprehensive, we cannot guarantee 100% coverage. To
mitigate this threat, we selected randomly 20 files and checked manually their con-
tent to see if we missed any logging functions. We found that our list covered all the
logging functions invoked in these files. We also want to emphasize that we do not
think that the missing of some logging functions affects much the conclusions of this
study. For RQ1 (the pervasiveness of logging), we already established that logging is
pervasive in Linux (on average for every 27 lines of code, there is one logging state-
ment), so finding more logging statements can only confirm this fact. For RQ2-The
evolution of logging code, we found that logging code is constantly maintained by
Linux developers (14% of commits modify logging statements). Additional logging
statements will eventually confirm this finding. The nature of changes are due to the
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need to improve the quality of the logging output by either enhancing precision,con-
ciseness, or consistency. RQ3 (analysis of afterthought log changes) is based on a
sample of commits and is not affected by the number of logging statements.

In order to automatically identify and classify changes made to logging code, we
use a pipeline that consists of GumTree (Falleri et al.|2014)) and a script specifically
developed for this study. To mitigate possible misclassifications, we manually in-
spected a sample of 100 randomly selected modifications, which showed an accuracy
of 98% on classified modifications. Although 2% have been misclassified, given the
amount of analyzed code, it can be considered noise in the data.

Another threat to this study is the manual classification of log-related commits.
We manually examined all commits by their title and message whenever necessary.
However, we cannot eliminate the possibility that errors may have occurred during
this manual analysis. We thus do not claim that our dataset is complete. This threat
is mitigated by the fact that our goal was to collectively study the nature of the
problematic logging code rather than collecting every possible revision made to fix
or improve logging. Because we perform a qualitative analysis in order to categorize
changes made to logging code and the nature of problematic logging code, researcher
bias also becomes a threat to the internal validity of our study. In this kind of
analysis, results are associated with researcher interpretation of the data. Therefore,
to mitigate it, every classification that raised questions were discussed by the authors
until they reached an agreement. In addition, all the results were largely discussed
and validated among all authors.

Eaxternal Validity. Threats to external validity are related to which extent our results
can be generalized. One threat to external validity is due to the fact that we only
examined 22 releases (v4.3 - v5.3) of the Linux kernel to answer part of RQ2 where
we measure the evolution of logging code in these releases. A larger dataset may
provide different results. This said, we still think our dataset is representative for
the study as a whole since our objective is not to uncover all the problems related to
logging in Linux but rather to provide insight on the practice of logging in software
development by looking at how Linux developers, even in a narrower scope, use
logging. In addition, the fact that we focused solely on the Linux kernel project,
which is known for having its own development culture, may be a threat to external
validity. We believe that this threats is mitigate by the fact that Linux is a large
scale, open-source project maintained by developers from different companies, which
constitutes a representative sample of C/C++ projects.

6 Conclusion

In this paper, we presented an empirical study that aims to shed light into existing
logging practices in the Linux kernel. Although the logging code accounts for 3.73%
of the total source code in the Linux kernel, we observed that the distribution of
logging code is skewed when evaluated at file and program construct level. Future
studies may employ survey methods to understand the circumstances in which log-
ging is needed and the rationales of logging activities. We also found that 32.37%
of the log-level changes are between error and debug log levels, suggesting that it
is also difficult for Linux developers to decide between fatal errors and errors that
are recoverable. We observed that the major causes underlying fixes to problematic
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logging code occurring in the Linux kernel are language mistakes, appearing in 19%
of the commits. Other common causes for changes are fixing inconsistencies (18%),
log levels (17%), and format specifiers (13%). Based on our results, we discussed
insights associated with the pervasiveness of logging code in the Linux kernel. In
addition, we derived eight practical guidelines that can help developers to maintain
logging code, including the need for automated support for logging.

As future work, we aim to perform an in-depth qualitative analysis of logging
code to further understand common patterns in logging statements. Our present
study targeting the Linux kernel, complemented by this future qualitative analysis,
will be the basis for the next generation of tools to provide automated support to
develop and evolve logging code.
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