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Abstract—In recent years, we have seen notable changes in the way attackers infiltrate computer systems compro-
mising their functionality. Research in intrusion detection systems aims to reduce the impact of these attacks. In this
paper, we present a taxonomy of intrusion response systems (IRS) and Intrusion Risk Assessment (IRA), two important
components of an intrusion detection solution. We achieve this by classifying a number of studies published during
the last two decades . We discuss the key features of existing IRS and IRA. We show how characterizing security
risks and choosing the right countermeasures are an important and challenging part of designing an IRS and an
IRA. Poorly designed IRS and IRA may reduce network performance and wrongly disconnect users from a network.
We propose techniques on how to address these challenges and highlight the need for a comprehensive defense
mechanism approach. We believe that this taxonomy will open up interesting areas for future research in the growing
field of intrusion risk assessment and response systems.

Index Terms—Intrusion detection system, Intrusion response system, Intrusion risk assessment, Response time,
Prediction, Response cost, Attack graph, Service dependency graph.
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1 INTRODUCTION

T ODAYS society relies increasingly on network
services to manage its critical operations in a

variety of domains including health, finances, public
safety, telecommunication, and so on. It is therefore
important to maintain high-availability and adequate
response time of these services at all time. This
is threatened by the presence of hostile attackers
that look for ways to gain access to systems and
infect computers. To mitigate these threats, the
deployment of an appropriate defense mechanism
is needed. As Figure 1 illustrates, the defense life-
cycle includes four phases: Prevention, Monitoring,
Detection, and Mitigation. The prevention phase
ensures that appropriate safeguards are placed in
different locations to secure services and data. In the
monitoring phase, monitoring tools are deployed to
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gather useful host or network information to follow
the execution of the system. The detection phase is
where an Intrusion Detection System (IDS) analyzes
the running systems, looking for deviations from a
pre-established normal behaviour.

IDSs vary depending on whether they monitor
network traffic (Network-based IDS) or local hosts
(Host-based IDS) [16]–[20]. IDSs are divided into
two categories: anomaly-based and signature-based.
Anomaly-based techniques rely a two-step process.
The first step, the training phase, a classifier is
built using a machine learning algorithm, such as
a decision trees, Bayesian Network, a Neural Net-
work, etc. [21]–[23]. The second step, the testing
phase, tests the detection accuracy (by measuring
true positive and false positive rates). The anomaly-
based detection approach is able to detect unknown
attack patterns and does not need predefined sig-
natures. However, it suffers from the problem of
characterizing the normal behavior. Signature-based
techniques (also known as misuse detection) [24],
on the other hand, rely on known patterns (sig-
natures) of attacks. Pattern matching makes this
technique deterministic, which means that it can
be customized for various systems, although it is
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Fig. 1: Defense Life-cycle.

difficult to find the right balance between accuracy
and generality, which may lead to false negatives
and false positives [25], [26].

The last phase, mitigation, complements the de-
fense life-cycle by evaluating the severity of attacks
and selecting a correct response at the right time.
In the mitigation phase, an Intrusion Response Sys-
tem (IRS) is responsible for selecting appropriate
countermeasures to effectively handle malicious or
unauthorized activities.

An IRS has to assess the value of the loss incurred
by a compromised resource [1]. It also has to have
an accurate evaluation of the cost of the response
[2], [3]. Otherwise, an automated IRS may reduce
network performance, or wrongly disconnect valid
users from the network. Moreover, a badly designed
IRS may result in high costs associated with reestab-
lishing the services. This incurred overhead often
pushes the administrators to simply disable the IRS.

Designing an IRS poses several challenges. First,
the chain of vulnerabilities exploited by an attacker
can link services on either a single machine or
those on different machines [4], [5]. The complexity
of the attack makes it a challenge to accurately
calculate the risk impact. Then, there are the many
decisions that an IRS needs to make, which can be
summarized in the following questions:

• Is the attack harmful enough to warrant re-
pelling?

• What is the value (importance) of the compro-
mised target?

• Which set of responses is appropriate for re-

pelling the attack?
Intrusion Risk Assessment (IRA) is the process

of identifying and characterizing risks. The result of
risk assessment helps minimize the cost of applying
all available sets of responses. It may be enough in
some situation to only apply a subset of available
responses [6], [7]. That is said, risk assessment helps
an IRS determine the probability that a detected
anomaly is a valid attack that requires attention (in
the form of a response) [9].

In this paper, we classify existing IRS and IRA
design approaches. The goal is to identify the
strengths and weaknesses of existing approaches.
We also propose guidelines for improving IRS and
IRA.

The rest of this paper is organized as follows: in
Section 2, we propose our taxonomy of intrusion
response and risk assessment and describe their
main elements. Also, a review of recent existing
IRS and IRA is presented in this Section. Section
3, we discuss the current state of the intrusion
response and risk assessment, and suggestions for
future research which can improve the current weak-
nesses of IRS. Finally, in Section 4, we present our
conclusions.

2 A TAXONOMY OF INTRUSION RE-
SPONSE SYSTEMS AND RISK ASSESS-
MENT
The criteria we propose for classifying IRS and IRA
techniques are discussed in this section. The char-
acteristics of the proposed taxonomy are depicted
in Figure 2. These criteria are based on extensive
review of the literature.

• Level of Automation: An important feature of
an IRS is whether it can be fully automated
or requires administrator intervention after each
incident.

• Response Cost: Knowing the power of re-
sponses to attune the response cost with attack
cost plays a critical rule in IRS. The evaluation
of the positive effects and negative impacts
of responses are very important to identify
response cost.

• Response Time: This criterion refers to
whether the response can be applied with some
delay or before the attack affects the target.

• Adjustment Ability: Usually, an IRS frame-
work is run with a number of pre-estimated
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responses. It is very important to readjust the
strength of the responses depending on the
attacks.

• Response Selection: The task of an IRS is
to choose the best possible response. Existing
techniques vary in the way response selection
is achieved.

• Applying Location: There are different loca-
tions in the network to mitigate attacks. The
location has different value in terms of online
users and service dependencies.

• Deactivation Ability: Another distinguishing
feature that separates IRSs is response deac-
tivation (response life-time), which can take
into account users needs in terms of quality of
service. Most countermeasures are temporary
actions which have an intrinsic cost or induce
side effects on the monitored system, or both
[10].

2.1 Level of Automation

Depending on their level of automation, an IRS
can be categorized as notification systems, manual
response systems, and automated response systems.

2.1.1 Notification systems

Notification systems mainly generate alerts when
an attack is detected. An alert contains information
about the attack including the attack description,
time of attack, source IP, destination IP, and user
account [13], [61]. The alerts are then used by
the administrator to select the applicable reactive
measures, if any. This approach is not designed to
prevent attacks or to bring back the systems to a
safe mode. Its aim is to notify system administrator
to select an appropriate response.

2.1.2 Manual response systems

In these systems, there are some preconfigured
sets of responses based on the type of attacks. A
preconfigured set of actions is applied by the ad-
ministrator when a problem arises. This approach is
more highly automated than the notification system
approach [34], [65]. The challenge of this approach
is the delay between the intrusion and the human
response [13], [28].

2.1.3 Automated response systems
Unlike the two previous methods which suffer from
delay between intrusion detection and response,
automated response systems are designed to be fully
automated and no human intervention is required
[31], [32]. One of the problems with this approach
is the possibility that an inappropriate response will
be executed when a problem arises [11]. Another
challenge with executing an automated response is
to ensure that the response is adequate to neutralize
the attack.

2.2 Response cost
First, we define the term response cost as follows:

Definition 1 (Response Cost). Response cost is
the impact of applying response in our network in
terms of continuing network services and users’
need. Although the strong response like disabling
daemon has strong ability to mitigate attack and
protect our network, has very high impact on con-
tinuing network service and online users.

Response cost evaluation is an important part
of an IRS. Although many automated IRS have
been proposed, most of them use statically evaluated
responses, avoiding the need for dynamic evalua-
tion [14]. However, the static model has its own
drawbacks, which can be overcome using dynamic
evaluation models for the responses. Dynamic eval-
uation will also more effectively protect a system
from attack, as threats will be more predictable.
Verifying the effect of a response in both dynamic
mode and static mode is a challenge. There is a
need to specify accurate parameters to evaluate the
quality of the response. For example, if we have an
Apache process under the control of an attacker, this
process is now a gateway for the attacker to access
the network. The accepted countermeasure would
be to kill this potentially dangerous process. When
we apply this response, we will increase our data
confidentiality and integrity (C and I of CIA) if the
process was doing some damage on our system. The
negative impact is that we lose the Apache availabil-
ity (A of CIA), since the Web server is now dead
which causes the user websites to be down. Let us
imagine another scenario, where we have a process
on a server consuming a considerable amount of
CPU resources that is doing nothing but slowing
down a machine (a kind of CPU DoS). This time,
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Fig. 2: Taxonomy of Intrusion Response Systems.

killing the process will improve service availability
(system performance), but will not change anything
in terms of data confidentiality and integrity. We
now have two very different results for the same
response. Also, of the effects of some responses may
depend on the network infrastructure. For example,
applying a response inside the external DMZ is
probably very different from doing so inside the
LAN or ”secure zone” in terms of CIA. Responses
cannot be evaluated without considering the attacks
themselves, which are generally divided into the
following four categories [28], [29]:

1) Denial of service (DoS): The attacker tries
to make resources unavailable to their in-
tended users, or consume resources such as
bandwidth, disk space, or processor time. The
attacker is not looking to obtain root access,
and so there is not much permanent damage.

2) User to root (U2R): An individual user tries
to obtain root privileges illegally by exploiting
system vulnerabilities. The attacker first gains
local access on the target machine, and then
exploits system vulnerabilities to perform the

transition from user to root level. After ac-
quiring root privileges, the attacker can install
backdoor entries for future exploitation and
change system files to collect information
[30].

3) Remote to local (R2L): The attacker tries
to gain unauthorized access to a computer
from a remote machine by exploiting system
vulnerabilities.

4) Probe: The attacker scans a network to gather
information and detect possible vulnerabili-
ties. This type of attack is very useful, in
that it can provide information for the first
step of a multi-step attack. Examples are
using automated tools such as ipsweep, nmap,
portsweep, etc.

In the first category, where the attacker attempts
to slow down the system, we are looking for a
response that can increase service availability (or
performance). In the second and third categories,
because the system is under the control of an
attacker, we are looking for a response that can
increase data confidentiality and integrity. In the
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fourth category, attackers attempt to gather informa-
tion about possible vulnerabilities from the network.
Thus, responses that improve data confidentiality
and service availability are called for. A dynamic
response model offers the best response based on the
current situation of the network, and so the positive
effects and negative impacts of the responses must
be evaluated online at the time of the attack. Eval-
uating the cost of the response in online mode can
be based on resource interdependencies, the number
of online users, the users privilege level, etc. There
are three types of response cost model:

2.2.1 Static cost model
The static response cost is obtained by assigning
a static value based on an experts opinion. So,
in this approach, a static value is considered for
each response (RCs = CONSTANT ). Lee et al.
[28] proposed an intrusion response system based
on cost factors. Attack damage and response costs
have been statically defined based on four cate-
gories (ROOT, R2L, DoS, and PROBE ). Maximum
damage cost is 100 considered for ROOT category
meanwhile minimum damage cost is 2 allocated
for PROBE category. Maximum response cost is
60 considered for ROOT category when attack is
trying from a remote host. In contrast, minimum
response cost is 5 considered for PROBE category
when probing is being done in a short period of
time. In this work there is not any list and evaluation
of responses. The important feature of this work
from response cost view is that response cost has
tight relationship with attack category.

2.2.2 Static evaluated cost model
In this approach, a statically evaluated cost, ob-
tained by an evaluation mechanism, is associated
with each response (RCsc = f(x)). The response
cost in the majority of existing models is statically
evaluated. A common solution is to evaluate the
positive effects of the responses based on their con-
sequences on confidentiality, integrity, availability,
and performance. To evaluate the negative impacts,
we can consider the consequences for the other
resources in terms of availability and performance
[2], [40]. For example, after running a response
that blocks a specific subnet, a Web server under
attack is no longer at risk, but the availability of the
service has decreased. After evaluating the positive
effect and negative impact of each response, we then

calculate the response cost. One solution is as Eq. 1
illustrates [11], obviously the higher RC, the better
the response in ordering list:

RCse =
Positiveeffect
Negativeimpact

(1)

Papadaki and Furnell [67] proposed a static
evaluated cost response system. To evaluate the
characteristics of each response action, they have
proposed the following parameters: counter-effects,
stopping power, transparency, efficiency, and con-
fidence level. Also, the proposed model assesses
the static and dynamic contexts of the attack. A
database for analyzing the static context is needed to
manage important characteristics of an attack, such
as targets, applications, vulnerabilities, and so on.
In terms of evaluating the dynamic context of an
attack, there are some interesting ideas embodied in
the proposed model. The two main features of this
model are: 1) the ability to easily propose different
orders of responses for different attack scenarios;
and 2) the ability to adapt decisions in response to
changes in the environment.

Strasburg et al. [2] proposed a structured method-
ology for evaluating the cost of a response based
on three parameters: operational cost (OC), impact
of the response on the system (RSI), and response
goodness (RG). The response cost model is: RC =
OC + RSI - RG. OC refers to the cost of setting
up and developing responses. The RSI quantifies
the negative effect of the response on the system
resources. RG is defined based on two concepts: 1)
the number of possible intrusions that the response
can potentially address; 2) the amount of resources
that can be protected by applying the response.

2.2.3 Dynamic evaluated cost model
The dynamic evaluated cost is based on the network
situation (RCde). We can evaluate the response cost
online based on the dependencies between resources
[6], [48] and online users. For example, the effect
of terminating a dangerous process depends on the
number of other entities (other processes, online
users, etc.) that use this process. If the cost of
terminating the process is high then perhaps an-
other response should be selected. Evaluating the
response cost should take into account the resource
dependencies, the number of online users, and the
user privilege levels. In other words, we need an
accurate cost-sensitive response system.
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Dynamic evaluated response cost approach is
firstly proposed in [34]. Toth and Kruegel [34]
presented a network model that takes into account
relationships between users and resources, since
users perform their activities by utilizing the avail-
able resources. The goal of a response model is
to keep the system in as high a state of usability
as possible. Each response alternative (which node
to isolate) is inserted temporarily into the network
model and a calculation is performed to determine
which response has the lowest negative impact on
services. In this model, every service has a static
cost, and there is only the ”block IP” response to
evaluate as a way to repel an attack. When the IDS
detects an incoming attack, an algorithm attempts
to find the firewall/gateway that can effectively
minimize the penalty cost of the response action.

2.3 Response time

In point of response time, IRSs can be classified into
type categories: Delayed and Proactive [13], [41]. In
the delayed mode, the responses are formulate only
after an intrusion is detected. Most existing IRS use
this approach (e.g., [2], [67]) although it is known
to be ineffective for maximum security. This is
because an attacks can cause serious harm (stealing
confidential information) before an IDS can detect
it. This approach has been criticized because of
the fact that an attack. Take, for example, the case
where an attacker gains access to an unauthorized
database. An IDS may detect this intrusion only
after the attacker had illegally gained possession
of critical information. In such as case, a delayed
response would not be useful. Another important
limitation of the delayed approach is that it is often
difficult (if not impossible) to return the system
to a healthy state because of the damages that
an attack may cause before it is detected [18]. In
contrast, the proactive approach aims to control
and prevent a malicious activity before it happens.
This approach is considered critical for defending
hosts and networks against attacks. The proactive
IRS needs an intrusion prediction mechanism that
usually relies on probability measures [42] and it is
often hard to guarantee that the prediction result is
100 accurate [13].

In [3], Stakhanova et al. proposed a proactive
IRS. This model focuses on detecting anomalous
behavior in software systems. It monitors system

behaviors in terms of system calls, and has two lev-
els of classification mechanism to detect intrusion.
In the first detection step, when both normal and
abnormal patterns are available, the model attempts
to determine what kind of pattern is triggered when
sequences of system calls are monitored. If the
sequences do not match the normal or abnormal
patterns, the system relies on machine learning tech-
niques to establish whether the system is normal or
anomalous. These authors have presented a response
system that is automated, cost-sensitive, preemptive,
and adaptive. The response is triggered before the
attack completes.

Haslum et al. [29] proposed a real time intrusion
prevention model. They designed a prediction model
based on the hidden Markov model (HMM) to
model the interaction between the intruder and the
network [68]. The proposed HMM is based on
four states: Normal, Intrusion Attempt, Intrusion in
progress, and Successful attack. When the attacker
gets appropriate results in attack, system moves
from Normal state to the Intrusion attempt state
and so on. When the probability of Normal state is
down, it means the probability of other states are up.
That model can detect the U2R, R2L, and PROBE
categories of attacks, but not the DoS category.

2.4 Adjustment ability

There are two types of adjustment models: Non-
adaptive and Adaptive [13], [66]. In the non-
adaptive model, the order of the responses remains
the same during the life of the IRS software. In fact,
there is no mechanism for tracing the behaviors of
the deployed responses. Tanachaiwiwat et al. [65]
proposed a non-adaptive response system. Although
they claim that their method is adaptive, they have,
in fact, implemented a non adaptive mechanism.
They point out that verifying the effectiveness of
a response is quite expensive. They check, IDS
efficiency, alarm frequency (per week), and damage
cost, in order to select the best strategy. The alarm
frequency reveals the number of alarms triggered
per attack, and damage cost assesses the amount
of damage that could be caused by the attacker.
An appropriate list of response is available in the
proposed model.

In the adaptive model, the system has the ability
to automatically and appropriately adjust the order
of the responses based on response history [13].
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Definition 2 (Response Goodness (G)). Re-
sponse goodness represents the history of success
(S) and failure (F) of each response to mitigate
attack over time

The response goodness concept was introduced
by [3], [66]. This parameter guarantees that our
model will be adaptive and helps the IRS to prepare
the best set of responses over time. The following
procedure can be used to convert a non-adaptive
model to an adaptive one [3]:

Goodness(t) =
∑n

i=1 Si−
∑m

j=1 Fj∑n
i=1 Si+

∑m
j=1 Fj

Reffectiveness(t) = (RCs|RCse|RCde)×G(t)
Reffectiveness(t+ 1) = Reffectiveness(t)×G(t+ 1)

(2)
Foo et al. [66] presented a graph-based approach,

called ADEPTS. The responses for the affected
nodes are based on parameters such as confidence
level of attack, previous measurements of responses
in similar cases, etc. The model is adaptive and
ADEPTS uses a feedback mechanism to estimate
the success or failure of an applied response.

Stakhanova et al. [3] proposed an adaptive IRS.
There is a mapping between system resources, re-
sponse actions, and intrusion patterns which has
to be defined in advance. Whenever a sequence of
system calls matches a prefix in an abnormal graph,
the response algorithm decides whether to repel the
attack or not, based on a confidence level threshold.
Multiple candidate responses may be available, and
the one with the least negative effect is selected
based on utility theory. The effectiveness of each
applied response is measured for future response
selection. If the selected response succeeds in neu-
tralizing the attack, its success factor is increased
by one, otherwise it is decreased by one.

2.5 Response selection
There are three response selection models: static
mapping, dynamic mapping, and cost-sensitive map-
ping.

2.5.1 Static mapping
An alert is mapped to a predefined response. This
model is easy to build, but its weakness is that the
response measures are predictable by attackers [34].

Chen et al. [58] proposed an intrusion detection
and prevention system based on firewalls. The idea
is an attack response matrix which maps attack
types to some responses. They do not consider
trading off security enforcement levels and system
performance.

2.5.2 Dynamic mapping
The responses of this model are based on multiple
factors, such as the system state, attack metrics
(frequency, severity, confidence, etc.), and the net-
work policy [31]. In other words, responses to an
attack may differ, depending on the targeted host,
for instance. One drawback of this model is that it
does not learn anything from attack to attack, so
the intelligence level remains the same until the
next upgrade [32], [33]. Curtis et al. [31], [59],
[60] propose a complex dynamic mapping based on
an agent architecture (AAIRS). In AAIRS, multiple
IDS monitor a host and generate alarms. The alarms
are first processed by the Master Analysis agent.
This agent indicates the confidence level of the
attack and passes it on to an Analysis agent, which
then generates a response plan based on degree of
suspicion, attack time, attacker type, attack type,
attack implications, response goal, and policy con-
straints.

2.5.3 Cost-sensitive mapping
This is an interesting technique that attempts to
attune intrusion damage and response cost [11],
[34].

Definition 3 (Intrusion Damage Cost). Intrusion
damage cost represents the ”amount of damage to
an attack target when the IDS and other protective
measures are either unavailable or ineffective [8]”.

The results of a risk assessment are very impor-
tant, in terms of minimizing the performance cost
of applying strong responses, as a weak response
is enough to mitigate a weak attack. Some cost-
sensitive approaches have been proposed (e.g., [3],
[66], [67]) that use an offline risk assessment com-
ponent, which is calculated by evaluating all the
resources in advance. The value of each resource
is static. In contrast, online risk assessment compo-
nents can help accurately measure intrusion damage.
The challenge with online risk assessment is the
accuracy of calculating intrusion damage. In case of
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inaccurate calculation, the IRS may select an unduly
high impact response for the network or apply a
weaker response.

Lee et al. [28] proposed a cost-sensitive model
based on three factors: 1) operational cost, which
refers to the cost of processing the stream of events
by an IDS; 2) damage cost, the amount of damage
to a resource caused by an attacker when the IDS is
ineffective; and 3) response cost, which is the cost
of applying a response when an attack is detected.

Balepin et al. [50] presented a dynamic cost-
sensitive model and a response cost model. They
proposed a local resource dependency model to
evaluate responses. Their approach considers the
current state of the system so as to calculate the
response cost. Each resource has common response
measures associated with the current state. The
authors argue that designing a model to assess the
value of each resource is a difficult task, so they
rank the resources by their importance to produce
a cost configuration. Then, static costs are assigned
to high priority resources. Costs are injected into
the resource dependency model when associated
resources are involved in an incident. A particular
response for a node is selected based on three cri-
teria: 1) response benefit: sum of costs of resources
that response action restores to a working state,
2) response cost: sum of costs of resources which
is negatively affected by the response action, and
3) attack cost: sum of costs of resources that are
negatively affected by the intruder. This approach
suffers from multiple limitations. First, it is not clear
how the response benefit is calculated in terms of
confidentiality and integrity. Secondly, restoring the
state of resources alone cannot be used to evaluate
the response positive effect [48]. Finally, the pro-
posed model is applicable for host-based intrusion
response systems. Its application to network-based
intrusion response requires significant modifications
in the cost model [48].

Mu and Li [11] presented a hierarchical task
network planning model to repel intrusions. In their
approach, every response has an associated static
risk threshold that can be calculated by its ratio
of positive to negative effects. The permission to
run each response is based on the current risk
index of the network. When the risk index is
greater than the response static threshold, the next
response is allowed to run. The authors proposed a
response selection window, where the most effective

responses are selected to repel intrusions. There is
no evaluation of responses in this work. Also, it
is unclear how the positive and negative effects of
responses have been calculated. In that framework,
the communication component is responsible for
receiving alerts from multiple IDSs. The authors
proposed to use an intrusion response planning to
find a sequence of actions that achieve a response
goal. These goals are the same as those in [31]:
analyze the attack, capture the attack, mask the
attack, maximize confidentiality, maximize integrity,
recovery gracefully, and sustain service. Each goal
has its own sequence of responses. For example, if
the goal is to analyze an attack, the earlier responses
in the sequence have to be weak, but later responses
have to be strong.

Kheir et al. [48] proposed a cost-sensitive IRS
based on a service dependency graph to evaluate
the confidentiality and integrity impacts, as well
as the availability impact. The authors argue that
it is really difficult to identify the impact on data
confidentiality and integrity of other resources when
we apply a response on a resource. To address this
problem, the authors use a specific type of responses
(e.g., ”allow unsecure connections”) [49] in case of
an openSSL attack. They targeted specific response
that has negative effect on data confidentiality and
integrity.

Risk Assessment in Cost-sensitive mapping
Many real-time risk assessment models have been

proposed during the last decade. As illustrated in
Figure 2, the proposed approaches can be grouped
into three main categories:

(i) Attack Graph-based: The attack graphs not
only help to identify attacks, but also to quantita-
tively analyze their impact on the critical services
in the network, based on the attackers behavior
and vulnerabilities that can be exploited [6], [7],
[72]. The attack graph is a useful model that can
show the attack paths in a network based on ser-
vice vulnerabilities [5], [69]. It not only correlates
the intrusion detection system [70], [71] outputs,
but also helps intrusion response systems to apply
responses in a timely fashion, at the right place,
and with the appropriate intensity [6], [7]. One
challenge in this approach is attack modeling. The
correlation methods proposed in the last decade to
connect attack steps can be classified into three
categories [74], [75]: implicit, explicit, and semi-
explicit correlations.
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The implicit correlation attempts to find simi-
larities between alerts in order to correlate them.
In the explicit correlation, attack scenarios have to
be defined statically. The attack signatures form
the attack graph [76]. The semi-explicit correlation
type generalizes the explicit method by introducing
preconditions and postconditions for each step in
the attack graph [15].

Kanoun et al. [7] presented a risk assessment
model based on attack graphs to evaluate the sever-
ity of the total risk of the monitored system. The
LAMBDA [15] language is used to model attack
graphs when an attack is detected. When an attack
graph is obtained, the risk gravity model begins to
compute the risk, which is a combination of two
major factors: (i) Potentiality, which measures the
probability of a given scenario taking place and
successfully achieving its objective. Evaluating this
factor is based on calculating its minor factors:
natural exposition, and dissuasive measures. The
first of these minor factors measures the natural
exposure of the target system facing the detected
attack. To reduce the probability of an attack pro-
gressing, the second minor factor, dissuasive mea-
sures, can be enforced. (ii) Impact, which is defined
as a vector with three cells that correspond to the
three fundamental security principles: Availability,
Confidentiality, and Integrity. The interesting point
with this model is that the impact parameters are
calculated dynamically. That impact depends on the
importance of the target assets, as well as the impact
of the level of reduction measures deployed on the
system to reduce and limit the impact, when the
attack is successful.

Jahnke et al. [6] presented a graph-based ap-
proach for modeling the effects of attacks against
resources and the effects of the response measures
taken in reaction to those attacks. The proposed
approach extends the idea put forward by Toth and
Kregel in [34] by using general, directed graphs
showing dependencies between resources and by
deriving quantitative differences between system
states from these graphs. If we assume that G1
and G2 are the graphs we obtain before and after
the reaction respectively, then calculation of the
responses positive effect is the difference between
the availability plotted in the two graphs: A(G2)-
A(G1). Like [34], [50], these authors focus on the
availability impacts.

(ii) Service Dependency Graph-based: Three

properties are defined for each service: C(S), I(S),
and A(S), which denote the confidentiality, integrity,
and availability of service (S) respectively. The
impact of the attack on a service is propagated to
other services based on the type of dependency. In
this type of approach, the attack graph is not used
to evaluate attack cost [48].

Kheir et al. [48] proposed a dependency graph to
evaluate the confidentiality and integrity impacts, as
well as the availability impact. The confidentiality
and integrity criteria are not considered in [6]. In
[48], the impact propagation process proposed by
Jahnke et al. is extended to include these impacts.
Now, each service in the dependency graph is
described with a 3D CIA vector, the values of
which are subsequently updated, either by actively
monitoring estimation or by extrapolation using the
dependency graph. In the proposed model, depen-
dencies are classified as structural or functional
dependencies.

(iii) Non Graph-based: Risk assessment is car-
ried out independently of the attack detected by the
IDS. This means that the IDS detects an attack and
sends an alert to the risk assessment component,
which performs a risk analysis based on alert statis-
tics and other information provided in the alert(s)
[1], [9], [47], [73].

In [47], Årnes et al. presented a real-time risk
assessment method for information systems and net-
works based on observations from network sensors.
The proposed model is a multi-agent system where
each agent observes objects in a network using sen-
sors. An object is any kind of asset in the network
that is valuable in terms of security. To perform dy-
namic risk assessment with this approach, discrete-
time Markov chains are used. For each object, a
Hidden Markov Model (HMM) is considered and
the HMM states illustrate the security state, which
changes over time. The proposed states are: Good,
Attacked, and Compromised. The compromised state
indicates that the host has been compromised. Thus,
each object in the network can be in a different state
at any time. In their model, it is assumed that there is
no relationship between objects and that the HHMs
work independently. A static cost, Ci, is allocated
to each state, Si. The total risk for each object at
time t can be calculated as: Rt =

∑n
i=1 γt(i)C(i).

The γt(i) value gives the probability that the object
is in state Si at time t.

Gehani et al. [1] presented a real-time risk man-
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agement model, called RheoStat. This model dy-
namically alters the exposure of a host to contain an
intrusion when it occurs. A host’s exposure consists
of the exposure of all its services. To analyze a
system’s risk, a combination of three factors is
considered: 1) the likelihood of occurrence of an
attack; 2) the impact on assets, i.e., the loss of
confidentiality, integrity, and availability; and 3)
the vulnerability’s exposure, which is managed by
safeguards.

Haslum et al. [73] proposed a fuzzy model for
online risk assessment in networks. Human experts
rely on their experience and judgment to estimate
risk based on a number of dependent variables.
Fuzzy logic is applied to capture and automate this
process. The knowledge of security and risk experts
is embedded in rules for a fuzzy automatic inference
system. The main contribution is the use of fuzzy
logic controllers. These were developed to quantify
the various risks based on a number of variables
derived from the inputs of various components.
The fuzzy model is used to model threat level,
vulnerability effect, and asset value. Threat level
(FLC-T) is modeled using three linguistic variables:
Intrusion frequency, Probability of threat success,
and Severity. The HMM module used for predicting
attacks provides an estimate of intrusion frequency.
The asset value (FLC-A) is derived from three other
linguistic variables: Cost, Criticality, Sensitivity, and
Recovery. In addition, the vulnerability effect (FLC-
V) has been modeled as a derived variable from
Threat Resistance and Threat Capability. Eventu-
ally, the risk is estimated based on the output of
the three fuzzy logic controllers FLC-T, FLC-A, and
FLC-V.

Mu et al. [9] proposed an online risk assessment
model based on D-S evidence theory. D-S evidence
theory is a method for solving a complex problem
where the evidence is uncertain or incomplete. The
proposed model consists of two steps, which iden-
tify: Risk Index and Risk Distribution. In the first
step, the risk index has to be calculated. The risk
index is the probability that a malicious activity
is a true attack and can achieve its mission suc-
cessfully. In D-S evidence theory, five factors are
used to calculate the risk index: Number of alerts,
Alert Confidence, Alert Type, Alert Severity, and
Alert Relevance Score. Risk distribution is the real
evaluation of risk with respect to the value of the
target host, and can be low, medium, or high. The

risk distribution has two inputs: the risk index, and
the value of the target host. The latter depends on
all the services it provides.

2.6 Applying location
Most IRSs apply responses either on the attacked
machine or the intruders machine if it is accessible.
By extracting the ”attack path”, we can identify
appropriate locations, those with the lowest penalty
cost, for applying them. Moreover, responses can
be assigned to calculate the dynamic cost associated
with the location type, as discussed in the ”Response
cost model” section. The numerous locations and
the variety of responses at each location will con-
stitute a more effective framework for defending
a system from attack, as its behavior will be less
predictable. An attack path consists of four points:
1) the start point, which is the intruder machine;
2) the firewall point, which includes firewalls and
routers; 3) the midpoint, which includes all the inter-
mediary machines that the intruder exploits (through
vulnerabilities) to compromise the target host; and
4) the end point (the intruders target machine).
Despite the research advances in the detection of
attack paths [51]–[53], this method has rarely been
implemented in actual IDSs or IRSs.

2.7 Deactivation ability
The need to deactivate a response action is not
recognized in the majority of existing automated
IRS. The importance of this need was first suggested
in [10]. The authors argue that most responses
are temporary actions which have an intrinsic cost
or can even induce side effects on the monitored
system. The question is how and when to deacti-
vate the response. The deactivation of policy-based
responses is not a trivial task. An efficient solution
proposed by Kanoun et al. in [10] is to specify two
associated event-based contexts for each response:
Start (response context), and End (response context).
The risk assessment component can also help decide
when a countermeasure has to be deactivated. In
[10], countermeasures are classified into one of two
categories, in terms of their lifetime: 1) One-shot
countermeasures, which have an effective lifetime
that is negligible. When a response in this category
is launched, it is automatically deactivated; and 2)
Sustainable countermeasures, which remain active
to deal with future threats after a response in this
category is applied.
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TABLE 1: Classification of existing IRSs based on proposed taxonomy.
IRS Year Response Risk Manage Response Adjustment Response Response

Selection Assessment False Positive Time Ability Cost Lifetime
DC&A [54] 1996 Dynamic mapping No Delayed Non-adaptive Static Cost Sustainable
CSM [32] 1996 Dynamic mapping No Delayed Non-adaptive Static Cost Sustainable
EMERALD [33] 1997 Dynamic mapping No Delayed Non-adaptive Static Cost Sustainable
BMSL-based response [55] 2000 Static Mapping No Delayed Non-adaptive Static Cost Sustainable
SoSMART [56] 2000 Static Mapping No Delayed Non-adaptive Static Cost Sustainable
PH [57] 2000 Static Mapping No Delayed Non-adaptive Static Cost Sustainable
Lee’s IRS [28] 2000 Cost-sensitive Static Value No Delayed Non-adaptive Static Cost Sustainable
AAIRS [31], [59]–[61] 2000 Dynamic mapping No Delayed Adaptive Static Evaluated Cost Sustainable
SARA [62] 2001 Dynamic mapping No Delayed Non-adaptive Static Cost Sustainable
CITRA [63] 2001 Dynamic mapping No Delayed Non-adaptive Static Cost Sustainable
TBAIR [64] 2001 Dynamic mapping No Delayed Non-adaptive Static Cost Sustainable
Network IRS [34] 2002 Cost-sensitive Static Value No Delayed Non-adaptive Dynamic Evaluated Cost Sustainable
Tanachaiwiwat’s IRS [65] 2002 Cost-sensitive No Delayed Non-adaptive Static Cost Sustainable
Specification-based IRS [50] 2003 Cost-sensitive Service Dependency Graph-based No Delayed Non-adaptive Dynamic Evaluated Cost Sustainable
ADEPTS [66] 2005 Cost-sensitive Static Value No Proactive Adaptive Static Cost Sustainable
FAIR [67] 2006 Cost-sensitive Static Value No Delayed Non-adaptive Static Evaluated Cost Sustainable
Stakhanova’s IRS [3] 2007 Cost-sensitive Static Value No Proactive Adaptive Static Evaluated Cost Sustainable
DIPS [29] 2007 Cost-sensitive Non Graph-based No Proactive Non-adaptive Static Cost Sustainable
Jahnke [6] 2007 Cost-sensitive Attack Graph-based No Delayed Non-adaptive Dynamic Evaluated Cost Sustainable
Strasburg’s IRS [2] 2008 Cost-sensitive Static Value No Delayed Adaptive Static Evaluated Cost Sustainable
IRDM-HTN [11] 2010 Cost-sensitive Non Graph-based Yes Delayed Non-adaptive Static Evaluated Cost Sustainable
OrBAC [10] 2010 Cost-sensitive Service Dependency Graph-based No Proactive Adaptive Static Evaluated Cost Deactiveable
Kheir’s IRS [48] 2010 Cost-sensitive Service Dependency Graph-based No Proactive Non-adaptive Dynamic Evaluated Cost Sustainable

3 DISCUSSION
A complete list of overview of research studies
on intrusion response systems and intrusion risk
assessment systems in the last two decades is given
in Table 1. As we can see, the Cost-sensitive
approaches have been the common paradigm for
designing IRSs.

3.1 Risk Assessment
As seen in Table 1, recent proposed approaches use
either attack graph-based [6] or service dependency-
based [10], [48] methods to calculate multi-step
attack costs online. We propose to use both of these
to compute the damage cost and accurately react
to attacks. In fact, when we use the attack graph
approach for calculating risk, we do not have any
knowledge about the true value of the compromised
service, nor do we know the real impact of an at-
tacker gaining full access to a compromised service
based on predefined permissions among services.
In contrast, when we use the second method to
calculate the risk separately, we do not have any
information about the intruders knowledge level.
Therefore, an accurate attack cost is obtained based
on information provided by service dependency and
attack graphs. Eventually, the response selection
module applies a response in which the attack and
response costs are in proportion.

3.2 Manage false positives
Many IRS models choose responses according to
raw IDS alerts. This may lead to false positive

responses because of the high IDS false positive
alert rate. In terms of tolerance to false positive IDS
alerts, only [11] proposes a model to control false
positives in IRS. They define a risk threshold for
each countermeasure. Then, an online risk assess-
ment module measures the alert risk. Since the risk
value for a false positive is not high, it cannot reach
the countermeasures risk threshold.

3.3 Adjustment ability
As seen in Table 1, only five IRS supports adjust-
ment ability [3], [10], [11], [31], [66]. The response
goodness (G) concept plays a critical role in adap-
tive approach that was introduced by Stakhanova et
al. and Foo et al. [3], [66]. This parameter shows
the history of each response in the past to mitigate
an attack. One way to measure the success or failure
of a response is to use the result of the online
risk assessment component. G can be calculated as
proposed by Stakhanova et al. in [3]: if the selected
response succeeds in neutralizing the attack, its
success factor (S) is increased by one, otherwise,
its failure factor (F) is increased. Unfortunately, the
current solutions to calculate response goodness do
not consider the time in calculation. The important
point to keep in mind is that the most recent results
must be considered more valuable than the earlier
ones. For example, assume the results of S and
F for a response are 10 and 3 respectively, the
most recent result being F= 3. If we calculate the
response goodness based on Eq. 2, G is equal to
0.54. Unfortunately, although G= 0.54 indicates that
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this response is a good one, and it was appropriate
for mitigating the attack, over time and with the
occurrence of new attacks, this response is not
sufficiently strong to stage a counter attack.

3.4 Response Cost
As we can see in Table 1, the majority of the
proposed IRSs use Static Cost or Static Evalu-
ated Cost models [2], [3], [10], [11], [28], [29],
[31]–[33], [54]–[57], [59]–[67]. Only three dynamic
evaluated cost models have been used [6], [34],
[48], [50]. Several works have been devoted to
building a response selection mechanism based on
the positive effects (P ) and negative impacts (N ) of
the responses [2], [3], [11]. A common solution is
to evaluate the positive effects based on their conse-
quences for the CIA triad and for the performance
metric. To evaluate the negative impact, we can
consider the consequences for the other resources, in
terms of availability and performance. There are two
approaches for the response ordering mechanism:
(i) the first approach is to order responses based
on response cost (RC). RC can be obtained by
combining the positive and negative factors. If the
positive and negative factors are static, the sorted
list of responses will remain static throughout an
attack, and so it may be predictable by an intruder.
We can use the Goodness factor to convert this list
to a dynamic one, as illustrated in Eq. 3.

RC = f(P,N) ∗G (3)

Even though the strong response is not at the top
of the ordered list when we initialize the response
system, G being a dynamic factor causes it to move
to that position over time. The higher the Goodness
factor, the higher the response places in the ordered
list over time. One drawback to using G is that
it blocks the response selection mechanism after a
while. Since a strong response is better able to repel
an attack, its Goodness attribute increases all the
time. If we sort the responses based on G, we will
be selecting the strong response all the time after a
while, which is not what we want. Another draw-
back is that Quality of Service (QoS) in the network
is not considered. As we know, many services are
available and accessed by large numbers of users. It
is extremely important to maintain the users’ QoS,
the response time of applications, and the critical
services that are in high demand. Since, when we

use G, the strongest response is selected in case of
attack, we are restricting network functionality until
the response is deactivated. (ii) The second approach
that we propose for future research is not to consider
G in the response cost formula, and instead start
with a poor response when the response system
decides to deactivate all the applied responses. It
does not matter if a poor response is applied,
because in this case the risk level slips under the
threshold, based on the response Goodness, and
brings us very close to the threshold again. This
approach has two important benefits. The first is that
all the non optimal responses will be reconsidered,
and one or more of them may be able to prevent
the attack this time. So, even if one of the responses
applied previously was inefficient, it may work for
a new attack. The second is that users needs are
considered in terms of QoS. So, in this approach, we
start with a poor response, and, when the attack is
likely to prove dangerous for our network, stronger
responses are applied and network functionality is
reduced slowly.

3.5 Dataset

Almost all the security works are based on the
very old Datasets [35], [37]. Their accuracy and
ability to reflect real-world conditions has been a
major concern. Also, many datasets are internal and
cannot be shared due to privacy issues, others are
heavily anonymized or they lack certain statistical
characteristics. These shortcomings are important
reasons why a perfect dataset is yet to exist [36].
In order to better test and optimize the selection
of these parameters, and compare with other IRS
systems, it would be interesting to assemble a large
dataset of recent attacks. However, this dataset of
attacks would need to be executable and include
the attacking and attacked systems images (soft-
ware packages, data, configuration, etc.), a major
undertaking for any single research group. The main
suggestion for future research on the development
of IRS is preparing a strong, real dataset of single
and multi-step attacks. Such a dataset is needed
by all security researchers and will be useful for
testing the efficiency and scalability aspect of the
intrusion response systems in real-time in the large
environments. Shiravi et al. [36] proposed a set of
guidelines to outline valid datasets, which set the
basis for generating profiles.
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4 CONCLUSION

The paper surveys existing techniques and tools for
Intrusion Risk Assessment and Intrusion Response
Systems. The main findings of this paper are, that
despite two decades of research in the area, existing
approaches suffer from serious limitations. First the
online risk assessment component is not tightly
integrated and attuned with the response system. As
we discussed earlier, perfect coordination between
the risk assessment mechanism and the response
system leads to an efficient framework that is able
to manage false positive and select appropriate
response in which to be attuned to attack cost.

We also found that most adaptive IRSs do not
support effective algorithms for updating response
history over time. Many studies claim to achieve this
but the review of the literature shows that they only
support very basic mechanisms. For example, they
do not consider time in their calculation of response
goodness. Not considering time causes these tech-
nique to overlook the most recent results while they
must be considered more valuable than earlier ones.
Moreover, it is not clear how most studies measure
response goodness (success or failure).

Another important limitation of existing studies
lies in the assessment method used to evaluate the
effectiveness of the approach. Most researchers only
consider true positives (i.e., the number of correct
responses). While true positive is an indication of
accuracy, it only draws a partial picture. Fals posi-
tive must also be taken into account. It is important
to know how responses for IRSs and risks for IRA
have been wrongly identified.

In addition, most IRSs focus only on response ac-
tivation. They do not consider response deactivation,
which can take into account users needs in terms of
quality of service. Finally, most attack graph meth-
ods look at the generation of complex attack graphs
and the complexity of analyzing these large attack
graphs. There has been little attention paid to real
live implementations for calculating damage costs.
The response selection is also ineffective unless the
attack context is taken into account, which is not
the case is most studies.

We believe that these limitations are the main
reasons that prevent these techniques from finding
their place in commercial tools. To build on existing
work, we propose, in this paper, to conduct further
research in the following areas: 1) Adaptive IRS,

2) Attack context-aware response selection mecha-
nism in IRS, 3) Dynamic response cost evaluation
framework for IRS that meet network demands,
4) Elastic IRSs that consider response activation
and deactivation by considering the rate of attack
or network risk tolerance, and 5) Building dataset
of single and multi-step attacks. Such a dataset is
needed by all security researchers and will be useful
for testing the IRSs and IRAs approaches.
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