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Abstract 

For most critical systems, the requirement of providing services with minimal to 

no interruption is essential. The Service Availability Forum (SA Forum) is a 

consortium of several telecommunications and computing companies that defines 

standard middleware services for supporting and managing high-availability of 

applications. One of the most important SA Forum services is the Availability 

Management Framework (AMF), which is responsible for managing the 

availability of applications. To achieve this, AMF requires a configuration of the 

application, which consists of various entities organized according to specific 

rules and constraints defined in the AMF standard. Creating such configurations 

can be a difficult task due to the large number of possibly constrained entities 

involved. In this paper, we present a language and a supporting implementation 

that models the AMF domain to provide configuration designers with the tools 

needed to design, edit, and potentially analyze AMF configurations. Our language, 

called UACL (The UML-based AMF Configuration Language), is an extension of 
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UML through its profiling mechanism. UACL has been carefully designed to 

represent AMF concepts, their relations, and constraints. It has also been 

implemented using the IBM Rational Software Architect (RSA). We show the 

effectiveness of UACL in designing AMF configurations through a case study. 

We also report on our experience in designing this language and the challenges we 

encountered. 

Keywords: Domain-specific modeling languages; UML profiles; High-

Availability; Availability Management Framework Standard; Service Availability 

Forum. 

1 Introduction  

Service availability has long been an important software requirement, especially 

for safety-critical systems for which any service interruption may have fatal 

results, hence, the latest increase in attention to effective solutions that usually 

take the form of high-availability middleware for the development of highly 

available (HA) systems. The common practice is to have some sort of redundancy 

models so as failing nodes are detected and their workload is shifted to standbys. 

However, most existing solutions are proprietary and platform specific, which 

hinders the portability of the applications from one platform to another. To 

address this issue, many telecommunications and computing companies have 

joined forces in the Service Availability Forum (SA Forum) [SAF 2014], a 

consortium whose objective is to define open standard specifications in order to 

support the development and management of HA applications and to enable 

portability and reusability across different platforms. More specifically, the SA 

Forum standard service interfaces enable the use of Commercial-Off-The-Shelf 

(COTS) building blocks for an HA system, which results in the enhanced 

portability and flexibility of the components. Moreover, since the developers need 

only to focus on the application logics, SA Forum standards reduce the 

complexity of the application development.  

The SA Forum specifications can be grouped into two categories: 
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 The Application Interface Specification (AIS) [SAF 2010a] which defines 

a set of services that are needed to fully support the high availability of the 

application’s components.  

 The Hardware Platform Interface (HPI) [SAF 2010b] which provides 

standard means to control and monitor hardware components. 

There are several implementations of AIS provided by different groups. OpenAIS 

is an open source project that started at MontaVista [MontaVista 2015] as an 

implementation of AIS and later became part of Linux implementation and was 

licensed under the Revised BSD license [OpenAIS 2015]. Other projects such as 

Corosync also were derived from OpenAIS [Corosync 2015]. The most popular 

implementation AIS is OpenSAF which is supported by various 

telecommunication and software companies through OpenSAF Foundation 

[OpenSAF 2015].  

The major implementation of HPI is OpenHPI, which is provided by the open 

source community [OpenHPI 2015]. 

Among the services defined in AIS, perhaps the most important one is the 

Availability Management Framework (AMF) [SAF 2010c], which is the 

middleware service that manages the high availability of the applications’ services 

by coordinating the applications’ redundant components. An AMF configuration 

for a given application is a logical organization of resources that enables AMF to 

perform workload assignments to provide service availability 

The design of AMF configurations requires 1) the description of the software 

components provided by the vendor in an Entity Types File (ETF), which follows 

a standard format defined in [SAF 2010d], 2) the description of the deployment 

infrastructure, 3) the definition of the services to be provided, and 4) the required 

redundancy model. Such a design requires a good understanding of AMF concepts 

and their relations. This is a complex task due to the large number of entities and 

parameters that need to be designed and generated. There are also several 

constraints imposed by the AMF domain, which tend to crosscut various entities, 

making the configuration design process very complex. Also, the specifications 

are described in an informal way, leaving room for ambiguity and 

misinterpretations. 
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To address these issues, we have designed a precise and complete modeling 

language, called UACL1 (a UML-based AMF Configuration Language) to enable 

the design and analysis of AMF configurations. Our language is a new domain-

specific modeling language (DSML) tailored to capture the AMF domain's 

concepts and semantics.  

Using UACL, one can benefit from the advantages of a domain specific modeling 

language (e.g. usability, the reuse and conservation of domain knowledge and the 

ease of communication) [Selic 2003] as well as from the advantages associated 

with UML, including its standard design notation and accessible tool support.  

UACL is a UML profile [OMG 2012c] for the modeling of AMF domain 

concepts, their attributes, their relationships, and the domain specific constraints. 

It has been implemented using IBM Rational Software Architect (RSA) [IBM 

2014]. We believe that it is an important contribution to the service high 

availability community since it aims to enable different activities, such as the 

design of configurations using domain concepts as first class artifacts, model 

driven generation of valid AMF configurations, the validation of third party AMF 

configurations. 

In this paper, we also report on our experience in designing such a profile by 

discussing the challenges we have encountered and that we attribute mainly to 

three aspects: (a) the lack of a systematic approach for creating profiles, especially 

for the mapping of the domain concepts to the UML metamodel – in many 

situations, we have found that there were many alternatives and it was not always 

obvious which one to choose; (b) the use of Object Constraint Language (OCL) 

[OMG 2014a] which turned out to be problematic, since most of the domain 

constraints needed extensive OCL expressions that crosscut several domain 

contexts; and (c) the lack of flexible tool support. These challenges are discussed 

along with the lessons learned from the overall project, with the aim of 

contributing to the modeling community with the results of this experience. It is 

worth noting that the work described in this thesis is part of a larger research 

project called MAGIC1 —a collaboration between Concordia University and 

                                                 
1 MAGIC (Modeling and Automatic Generation of Information and upgrade Campaigns for 

service availability). The acronym MAGIC is used throughout the description of UACL to reflect 

concepts and elements that have been newly introduced or further refined compared to standard 

specifications. 
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Ericsson— and the results of this thesis are being used in other MAGIC research 

streams. The term MAGIC is used throughout the profile. 

The remaining part of this paper is structured as follows. In Section 2, we 

introduce the main concepts in the AMF specification. In Section 3, we present 

the related work where we reviewed different UML profiles relevant to our 

domain. In Section 4, we describe the methodology used for the design of our 

profile, the domain model of the profile, as well as the description of the language 

and its mapping to theUML metamodel. In Section 5, we present the 

implementation of UACL and a case study, followed by a discussion of the 

challenges in Section 6. We conclude the paper in Section 7. 

2 AMF Configurations  

AMF [SAF 2010c] is part of the AIS middleware, responsible for managing the 

availability of the services provided by an application. AMF fulfills this 

responsibility by managing the redundant components of an application by 

dynamically shifting workloads of faulty components to the healthy components. 

In order to manage the services, AMF requires a configuration that specifies the 

organization and the characteristics of the entities under its control. These entities 

model the service providers, the provided services, and the deployment 

information. An AMF configuration consists of two different sets of concepts: 

AMF entities and the associated AMF entity types. AMF entities are categorized 

into different logical entities representing services and service providers’ 

resources. The basic entities are called Components. Components represent 

hardware or software resources capable of supporting the workload of the 

application services. Such a workload is referred to as a Component Service 

Instance (CSI). For example, an instance of MySQL server could be a component 

called MySQL_1 which is capable of supporting a specific set of clients. The IP 

addresses of these clients form the description of the workload for this specific 

instance of MySQL component which is captured through a CSI 

(MySQL_1_CSI). Components are aggregated into Service Units (SU), logical 

entities representing the basic redundancy unit for AMF. The aggregation of 

components (e.g. MySQL_1, Driver Manager_1, and JDBC Connector_1) enables 

the combination of their functionalities to form higher level services. More 
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specifically, the workloads of the components of an SU are aggregated into a 

Service Instance (SI), which represents the aggregated workload assigned to the 

SU. An SI also represents the combined higher level service of the collaborating 

components within the SU. In our example, the combination of MySQL_1, Driver 

Manager_1, and JDBC Connector_1 forms a database tier (SU) which can provide 

service for software systems, developed using Java based technologies. 

Table 1 Description of AMF entities 

Entity  Description  

Component Represents a hardware or software resource that can provide a service.  

Component Service 

Instance (CSI) 

Represents a service workload assigned to a component. AMF assigns a 

workload to a component at run-time. 

Service Unit (SU) 
Groups a set of components in a node, which collaborate to provide 

services. 

Service Instance (SI) Represents a service an SU can provide. It is an aggregation of CSIs.  

Service Group (SG) 
It consists of a set of redundant SUs. It protects the SIs assigned to these 

SUs.  

Application 

Represents a logical entity that contains one or more SGs and combines 

the individual functionalities of the constituent SGs to provide a higher-

level service.  

Node Represents a computational resource for the deployment of artefacts. 

Node Group (NG) A set of AMF nodes that can be configured for an SG or an SU. 

Cluster 
Represents the aggregation of the complete set of AMF nodes in an AMF 

configuration. 

 

SUs are further grouped into Service Groups (SG) in order to protect a set of SIs 

by means of redundancy. SGs are characterized by redundancy models. AMF 

supports the No-Redundancy, 2N, N+M, N-Way and N-Way-Active redundancy 

models. These redundancy models differ on the number of SUs that can be active 

and on standby for the SIs and on how these assignments are distributed among 

the SUs. In the 2N redundancy model, one SU is active for all the SIs protected by 

the SG and one is on standby for all the SIs. In the N+M model, N SUs support 

the active assignments and M SUs support the standbys. N+M allows at the most 

one active and one standby assignment for each particular SI. An SG with N-Way 

redundancy model contains N SUs. Each SU can have a combination of active and 

standby assignments. However, each SI can be assigned active to only one service 

unit while it can be assigned as on standby to several service units. An SG with 
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the N-Way-Active redundancy model has N SUs which are assigned only as 

active. It has no SU assigned as on standby. Furthermore, each of the SIs 

protected by this SG can be assigned to more than one SU. In contrast to N-Way-

Active, in the No-Redundancy redundancy model each SI is assigned to at most 

one SU and each SU can protect at most one SI. An AMF application is composed 

of one or more service groups. Each SU is deployed on an AMF node and the set 

of all AMF nodes forms the AMF cluster. Table 1 summarizes the AMF entities 

and their descriptions. 

AMF entity types are used to define the common characteristics among multiple 

instances of the same type. For example, a component type can define all the 

characteristics/attributes of the MySQL server which are common among all 

instances of this server. In AMF, all entities except for the deployment entities 

(i.e., node, NG, and cluster) have a type. The types are derived from a vendor’s 

description of the application in the ETF [SAF 2010d].  

  

Figure 1 An example of AMF configuration 

Figure 1 shows an example of an AMF configuration. In this example, a cluster is 

composed of two nodes (Windows Server 1 and Windows Server 2). It hosts an 

application consisting of one SG (MySql SG_1) protecting two SIs (MySql Java 

Connection_1 and MySql Java Connection_2) in a 2N redundancy model. The 

MySql SG_1 consists of two SUs, MySql Db Tier_1 and MySql Db Tier_2, each 

being composed of three components. Although shown in Figure 1, the 

distribution of the active and standby assignments is not part of the configuration 

as defined by AMF, since this is decided by AMF at run-time. The types, part of 
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the configuration, are shown in the right hand side of the figure. The relationship 

between the type entities and the entities presented in the configuration are as 

follows: MySQL_1 and MySQL_2 are from the Component Type MySQL Server. 

JDBC Connector_1 and JDBC Connector_2 are from MySQL Connector/J. Both 

the SUs are represented by the same SUType called MySQL Db Tier for Java. 

MySql SG_1 and App1 are from the type MySql Service Group and APT-A, 

respectively. At the service level, both SIs (MySql Java Connection_1 and MySql 

Java Connection_2) are from the type MySql Java Connection while the CSIs are 

from three different types. More specifically, MySQL_CSI_1 and MySQL_CSI_2 

are of the type MySQL_CST, JDBC_Con_CSI_1 and JDBC_Con_CSI_2 are from 

the type MySQL Connector/J_CST and finally, Drv_Mng_CSI_1 and 

Drv_Mng_CSI_2 are from Driver Manager_CST. 

3 Related Work 

There are several UML profiles (some of them standardized) that model concepts 

such as components and services, which are also key concepts in AMF. The 

question is therefore: Do we need to define a UML profile from scratch or simply 

reuse (or extend) an existing one? This question has always been a matter of 

debate since each option has its own benefits and disadvantages. Unfortunately, 

there is no formal process of finding out whether it is better to extend an existing 

profile or to create a new one. In this section, we present a brief review of related 

UML profiles together with the rationale supporting our decision to create a new 

profile, instead of extending an existing one.  

There are three main UML profiles defined and standardized by OMG [OMG 

2014b] which represent some concepts that are also found in AMF. These profiles 

are: SPT [OMG 2005], MARTE [OMG 2011], and the UML profile for QoS&FT 

[OMG 2008]. There are also other profiles related to the AMF concepts, namely 

the DAM Profile [Bernardi 2011] and the profile introduced in the HIDENETS 

project [Kövi 2007]. These two profiles are to some extent either extending or 

reusing parts or all of one of the aforementioned OMG profiles.  

The UML SPT profile [OMG 2005] focuses on the properties related to the 

modeling of time and time-related aspects such as the concept of clocks, the key 

characteristics of timeliness, performance, and schedulability. Despite the fact that 
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the authors introduce a set of sub-profiles in order to extend the core of SPT, 

which is the general resource modeling framework and which can be used by 

other profiles for availability analysis, there are no specific means for modeling 

availability related issues such as redundancy models in SPT. Consequently, when 

reusing SPT, one should define all necessary constructs for AMF configurations. 

However, basing this definition on SPT’s abstract syntax may complicate the 

design process of our language by imposing extra constraints inherited from SPT 

and which are not related to the AMF domain.  

The MARTE profile [OMG 2011], an extension of SPT, defines a package for 

Non-Functional Properties (NFP) which supports new user-defined NFPs for 

different specialized domains [OMG 2011]. It also defines a package for the 

purpose of analysis called the Generic Quantitative Analysis Modeling (GQAM). 

UML profile for QoS&FT defines a general QoS catalogue including a set of 

general characteristics and categories [OMG 2008]. In particular, this profile 

defines a package for availability related concepts, focusing on representing 

attributes, such as mean time to failure that can be used to measure the availability 

of services.  Similarly to SPT, these profiles omit to model key concepts of high-

availability including the redundant structures which play a critical role in highly 

available systems. Extending them has the same drawbacks as for SPT. 

Both NFA and GQAM packages (from the MARTE Profile) have been reused in 

the design of the Dependability Analysis Modeling (DAM) profile (an extension 

to MARTE) in order to enhance modeling facilities for the purpose of analysing 

dependability [Bernardi 2011]. In the DAM profile, the building blocks of a 

system are limited to components (DaComponent mapped to 

MARTE::GRM::Resource) and services (DaService mapped to 

MARTE::GQAM::GaScenario). The DAM profile does not model many key 

AMF concepts including proxies, service units, component service instance, and 

so on. In addition, the concept of services in the DAM profile describes the 

service itself, whereas in AMF, the service describes the workload to be assigned 

to a service provider at run-time. Adapting the DAM profile to AMF would 

require as much effort as creating a new profile, if not more. We have decided to 

opt for the development of a new profile to avoid being restricted with the DAM 

semantics.  
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The HIDENETS profile [Kövi 2007] was introduced to model software that runs 

on the HIDENETS platform. The HIDENETS middleware provides a basis for 

mobility-awareness and for the distribution of applications. The designers of this 

profile have reused several standard UML profiles such as SPT, QoS&FT, SysML 

[OMG 2012b], AUTOSAR Profile [AUTOSAR 2006], and MAM-UML [Belloni 

2004]. In addition, the HIDENETS profile is compliant with the AMF 

specification [SAF 2010c].  

HIDENETS utilizes AMF concepts using the façade design pattern. In this profile 

the authors provided a general AMF façade, the point through which the 

middleware interacts with the AMF elements.  In other words, a set of well-

designed AMF compliant components can interact with the HIDENETS 

middleware through the AMF façade. HIDENETS profile does not model AMF 

configuration concepts and therefore, cannot be used to fulfill our goal of 

specifying and analyzing AMF configurations. 

The work described in [Szatmári 2008] is probably the work most related to this 

paper. The authors introduced an MDA (Model-Driven Architecture) approach for 

the automatic generation of SA Forum compliant applications. They have 

introduced a metamodel for SA Forum compliant applications based on the class 

diagram introduced for AMF configurations in AMF specification [SAF 2010c]. 

Based on their work, an application should be first modeled using their metamodel 

and then, by using an MDA approach, the SA Forum compliant APIs are added 

and the source code for the application is generated. The authors have also 

provided the configuration for the subject application. Although this work 

concentrates more on application development, it also generates the required AMF 

configuration for the application. This work is limited to in-house software 

development and does not handle third party software. Moreover, the software 

development and configuration design are handled at the same time which does 

not leave much flexibility for configuration and deployment time. After careful 

examination of the profile described in [Szatmári 2008], we found that it does not 

take into account many AMF domain constraints. Capturing and specifying the 

constraints is an important step in the definition of a UML profile. In particular, in 

complex domains such as AMF configurations, class diagrams alone are not 

sufficient to express all domain specific concepts and their relations. A non-
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constrained domain model does not guarantee a profile that can be used to validate 

third party configuration written in this profile, which is one of the objectives of 

our work. From the implementation point of view, one of the goals of our work is 

to develop a CASE tool to support different activities. In the case of extending 

existing profiles, we need to have access to their implementation such as the OMG 

XML Metadata Interchange (XMI) [OMG 2007a] format that serializes the profile 

model. We found that the non-standard profiles do not provide open access to 

their implementation. Although the implementation is available for some of the 

standard OMG profiles (e.g., MARTE), due to the characteristics of the AMF 

domain concepts, we could use only small fractions of these implementations. At 

the same time, building an extension requires importing and handling the whole 

implementation package. This may result in complexity at the tool development 

phase as well as performance issues at run-time. For instance, the run-time 

evaluation of the newly defined constraints of the new language may require the 

evaluation of several constraints of the referred profile. 

In the work by Turenne et al [Turenne 2014a and Turenne 2014b], the authors 

improve on their previous work [Kanso 2008 and Kanso 2009], by adding a model 

for the description of software components specified in ETF. Their model captures 

the description of the software components which is used to generate the 

configuration when these components are deployed and not the AMF 

configuration itself.  

In the area of standardization, Lightweight Fault Tolerance (LWFT) [OMG 

2012a], which extends the Fault Tolerance (FT) CORBA [OMG 2010] 

specification, provides an availability management solution to support real-time 

applications. The applications however, need to follow CORBA architecture. In 

[Toeroe 2012], the authors discuss the difference between CORBA based 

solutions and SA Forum in detail.  

4 Designing the Profile  

Unfortunately, there has been little material written on how to create UML 

profiles. As a result, most existing UML profiles have been defined in an ad hoc 

manner, ending up being either technically invalid, contradicting the UML 

metamodel, or of poor quality [Selic 2007, Lagarde 2007, Lagarde 2008]. In the 
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work presented in this paper, we followed the approach proposed by Selic in 

[Selic 2007]. This approach consists of the following two steps:  

 Specifying the domain model (or domain metamodel): The domain model 

specifies the concepts that pertain to the domain specific modeling 

language and how these concepts are represented. The output of this phase 

consists of fundamental language constructs, relationships between domain 

concepts, and any constraints imposed by the domain. The concrete syntax 

or the notation used to render these concepts, and the semantics of each 

language construct are also described at this stage. 

 Mapping the domain model to the UML metamodel: This step consists of 

identifying the most appropriate UML base concepts for each domain 

concept specified in the previous step. In this step, the profile designer 

needs to choose the base UML metaclass which is semantically closest to 

the semantics of the domain concept. Moreover, the constraints, attributes, 

and related associations of the selected meta-elements should be verified in 

order to prevent the contradiction of the domain concepts. 

4.1 Defining the AMF domain model 

The AMF domain model has been developed by studying the AMF specifications 

and through constant interactions with an AMF domain expert. A class diagram 

describing the different types, entities and some of their relationships is provided 

in the standard. This class diagram is kept simple for the purpose of administration 

and runtime management. It is not appropriate for the purpose of configuration 

design and validation as it does not capture all the properties and constraints for an 

AMF configuration.  

The AMF domain elements are modeled as UML classes and the relationships 

among them are modeled through different types of UML relationships. The well-

formedness rules of the AMF domain model elements have been specified using 

OCL. Figure 2 represents the process of specifying the AMF domain model. 
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Figure 2 Domain Modeling Process 

4.1.1 AMF domain concepts and relationships 

As discussed in the previous sections, AMF concepts are classified into AMF 

entities and AMF entity types. Accordingly, we group such concepts into two 

packages named AMF Entity and AMF Entity Type. A further classification 

distinguishes the entities that provide the services (included in the Service 

Provider packages) from those representing the services themselves (in the 

Service package). Similarly, two packages called Service Provider Type and 

Service Type have been defined to capture the AMF entity types. In addition, the 

AMF Entity package includes the Deployment package, which contains elements 

corresponding to the cluster and the nodes. There is no corresponding type 

package for the Deployment package since the deployment entities are not typed. 

The following sections summarize the key AMF domain model elements and their 

relations. 

In the standard specification, we can distinguish different AMF component 

categories along four orthogonal criteria: locality, service availability awareness 

(SA-awareness for short), containment, and mediation (see Figure 3). The SA-

awareness criterion distinguishes the components that implement the AMF APIs 

and directly interact with an AMF implementation to manage service availability. 

SA-aware components are further specialized using other criteria. The 

containment criterion identifies the contained components that do not run directly 

on an operating system but instead use an intermediate environment, referred to as 

the container component, like a virtual machine (for example, to support Java-like 

Verification and Validation by Domain Expert

Studying the AMF 
Standard Spec.

Specifying Domain 
Concepts 

Specifying 
Relationships 

Specifying Well-
formedness Rules 

in OCL 

AMF Profile 
(Domain Model)
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programs). SA-aware components can be categorized further into proxy and 

container components. Proxies are used to give AMF control over hardware or 

legacy software, called proxied components. Container components allow AMF to 

control the life-cycle of contained components. Finally, the locality criterion 

distinguishes components that reside within an AMF cluster from the external 

ones. External components are always proxied to be controlled by AMF. These 

categories are captured in Figure 3 differently from the standard specification 

where they are distinguished with attributes. 

 

Figure 3 AMF Component Categories 

Unlike the component classification, the component types do not take into 

consideration the locality criterion. This is because the component type cannot 

specify whether its components have to be located outside or inside the AMF 

cluster. In fact, a component type can specify whether its implementation captures 

1) the APIs required to interact with AMF or 2) the necessary states for being 

proxied by another component type. As a result, the component type class models 

the types of the SA-aware components, the proxied components, and the non-

proxied-non-SA-aware components. The SA-aware component type is further 

specialized to model the type of standalone components whose life cycle is 

managed directly by the AMF. Moreover, the standalone component type is 

further specialized into the proxy component type and the container component 

type which are the types of the proxy and container components, respectively. 

Figure 4 presents the different categories of AMF component types. 
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Figure 4 AMF Component Type Categories 

To provide a higher level service, components are grouped into SUs. We 

distinguish between local and external SUs (see Figure 5) depending on whether 

or not they contain local or external components. SUs are organized into SGs to 

protect services using different redundancy models: 2N, N+M, N-Way, N-Way-

Active and No-redundancy. SGs are specialized based on the redundancy models 

used to protect their SIs (see Figure 5). Each redundancy model has different 

characteristics and therefore, different sets of attributes and relationships with 

other elements (e.g. SUs). The specialisation of SGs based on the redundancy 

models facilitates the design and analysis of AMF configurations by reducing the 

complexity of the configuration. The original SG configuration attributes depicted 

in the AMF specification have been re-organized according to their relevance to 

the newly introduced SG classes. At the type level, the AMF specification defines 

an attribute to distinguish between the local and the external SUTypes. In our 

domain model, we specialize the SUTypes into two classes: 

MagicAmfLocalSUType and MagicAmfExternalSUType. The SGType and 

ApplicationType are the same as in the AMF specification as there is no specific 

reason to specialize them. The CSI and SI entities are captured in our domain 

model as shown in Figure 6. 

 

Figure 5 Service Unit and Service Group Categories 
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Figure 6 Component Service Instance and Service Instance 

The AMF cluster, the AMF node and the node group represent part of our model 

for the deployment entities (see Figure 7). An AMF cluster is the complete set of 

AMF nodes in the AMF configuration. An AMF node represents a cluster node 

that can host AMF entities A node group represents a set of AMF nodes and is 

used for the deployment of local SUs and SGs. More specifically, each local SU 

can be configured to be deployed on one of the nodes of a node group and AMF 

decides the hosting node at runtime.  

 

Figure 7 AMF Nodes, Node Groups, and Cluster 

A detailed description of all domain elements, their attributes and relationships is 

presented in [Salehi 2012]. 

4.1.2 Specifying Well-formedness Rules 

We used OCL to describe the constraints on the AMF domain model elements. 

We have categorized the well-formedness rules into three different groups: 1) 

configuration attributes, 2) structural constraints, and 3) constraints for ensuring 

the protection of services that a configuration claims to achieve. The first two 

groups can be seen as syntactical constraints while the last group of constraints is 

more about the semantic correctness of the configuration.  The complete list of 

constraints is presented in [Salehi 2012]. In this paper, we provide examples from 

each category of constraints. 
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4.1.2.1 Configuration Attributes Well-formedness Rules  

As discussed earlier in this paper, one of the main reasons for the complexity of 

AMF configurations is the large number of configuration attributes, parameters to 

be considered and the related constraints. These constraints among the attributes 

form the category of configuration attributes well-formedness rules.   For instance, 

among the attributes of a component type, the magicSaAmfCtDefDisableRestart 

attribute specifies whether the restart recovery action is disabled by default for the 

components of this component type and the magicSaAmfCtDefRecoveryOnError 

attribute specifies the default recovery action that should be taken by the 

middleware for the components of this type in case of a failure. Based on the 

standard, for a certain component type, if the magicSaAmfCtDefDisableRestart is 

configured to true, then the attribute magicSaAmfCtDefRecoveryOnError must 

not be set as SA_AMF_COMPONENT_RESTART or 

SA_AMF_NO_RECOMMENDATION. This constraint is captured in the domain 

model and specified in OCL as: 

context MagicSaAmfCompType  

inv:  

magicSaAmfCtDefDisableRestart = true) implies   

(magicSaAmfCtDefRecoveryOnError <> SA_AMF_COMPONENT_RESTART 

    and  

 magicSaAmfCtDefRecoveryOnError <> SA_AMF_NO_RECOMMENDATION) 

 

Several other restrictions on the attributes defined in the AMF specification are, 

however, complex and not straightforward to express. This complexity stems from 

the fact that, in an AMF configuration, these requirements crosscut entities and 

concepts from different levels. This is the case, for example, when a constraint 

involves different concepts such as the component capability and the redundancy 

model.  

Figure 8 depicts part of the AMF domain model which represents the relationships 

of the CSType with the component type and the component. Both relationships 

are represented through association classes. The AMF domain specification states 

that: for all CSTypes which are provided by a component, the value of the 

attribute magicSaAmfCompNumMaxActiveCSIs in the association class between 

component and CSType should be lower than or equal to the value of the attribute 

magicSaAmfCtDefNumMaxActiveCSIs which is located in the association class 

between the CSType and the component type of that component. This is an 
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example of a cross-context constraint which has been captured in the domain 

model and specified in OCL as follows: 

context MagicSaAmfComp 

inv: 

self.magicSaAmfCompCsType-> 

forAll(compcst|compcst. magicSaAmfCompNumMaxActiveCSIs <= 

    self.magicSaAmfCompType.magicSaAmfCtCsType ->   

     select(ctcst | ctcst.magicSafSupportedCsType = 

             compcst.magicSafSupportedCsType)-> 

      asSequence.at(1). magicSaAmfCtDefNumMaxActiveCSIs) 

 

 

Figure 8 Relationship of CSType with component and component type 

4.1.2.2 Structural Well-formedness Rules 

The elements of the AMF configurations are strongly related, resulting in a 

complicated organization of configuration elements. More specifically, the 

configuration entities and entity types form two levels of abstraction which need 

to be compliant with each other. In addition, in each level there are nested 

relationships among the elements (e.g. SG groups SUs and each SU groups 

components). Therefore, the second category of well-formedness rules is 

concerned with ensuring the structural consistency of the configuration with 

respect to the standard. As an example of a structural constraint definition, let us 

consider the definition of the following property specified by the AMF 

specification: the only valid redundancy model for the SGs whose SUs contain a 

container component is the N-Way-Active redundancy model. This is expressed in 

OCL in the context of the container component category represented by the class 

MagicAmfContainerComponent, and by using our specific class for the SG 

associated with the N-Way-Active redundancy model, MagicAmfN-
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WayActiveSG (see Figure 9). We can therefore easily capture this restriction in 

OCL as follows: 

context MagicAmfContainerComponent 

inv:  

self.magicAmfLocalComponentMemberOf.  

     magicAmfLocalServiceUnitMemberOf. 

       oclIsTypeOf(MagicAmfN-WayActiveSG) 

 

Figure 9 Series of relationship between Container Component and N-Way-Active Service Group 

4.1.2.3 Service Protection Constraints 

A configuration is semantically valid only if it is capable of providing and 

protecting the services as required and according to the specified redundancy 

model. More specifically, given a set of SUs grouped in an SG, one needs to 

ensure that the set of SUs is capable of handling the SIs configured for the SG. 

We formalized the service protection problem for all the redundancy model using 

higher order logic (HOL). Ensuring this (referred to as SI protection problem) 

requires the exploration of all possible SI-SU assignments. In some cases it is 

necessary to consider different combinations of SIs, which make the problem 

complex in most redundancy models. For instance, the problem has combinatorial 

aspects in N-Way and N-Way-Active, and N+M redundancy models where the SIs 

can be assigned to more than one SU, so there are many valid assignment 

combinations. For these cases the problem is NP-hard [Salehi 2009]. We tackled 

the problem by providing the necessary and sufficient conditions for ensuring the 

SI protection for each redundancy model. In the case of the 2N redundancy model 

and the No-Redundancy redundancy model, we have been able to characterize the 

necessary and sufficient conditions for the general case and specified this in the 
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form of well-formedness rules in OCL. For example the conditions for the 2N 

redundancy model are summarized as:  

A service unit in the MagicAmfTwoNSG should be able to be active for all service 

instances protected by the service group and a service unit in the 

MagicAmfTwoNSG should be able to be on standby for all service instances 

protected by the service group (see Figure 10). 

The OCL constraints (for simplicity we present the constraint for local service 

units) specifying the well-formedness rule for the active/standby assignment of 2N 

redundancy model is: 

context MagicAmfTwoNSG 

inv:  

 (self.magicAmfSGGroups->forAll(su |  

    su.oclIsTypeOf(MagicSaAmfLocalServiceUnit))  

  implies  

(su.magicSaAmfSUType.magicSaAmfSutProvidesSvcType->  

  forAll(svct | svct.magicSaAmfSvcTypeCSType.   

   magicSafMemberCSType->  

    forAll(cst | su.magicAmfSUMemberOf.    

      magicAmfSGProtects -> 

       iterate(si; b:integer = 0 | si.magicAmfSIGroups->     

         select(csi |  

           csi.magicSaAmfCSType = cst)->size()+b) <= 

             su.magicAmfLocalServiceUnitGroups-> 

              iterate(c ; a:integer = 0|    

               c.MagicSaAmfCompCsType-> 

                select (compcst | compcst.  

                  magicSafSupportedCsType = cst)->       

                   asSequence.at(1). 

                    magicSaAmfCompNumMaxActiveCSIs+a))))) 

and  

 

(self.magicAmfSGGroups->forAll(su |  

    su.oclIsTypeOf(MagicSaAmfLocalServiceUnit))  

  implies  

(su.magicSaAmfSUType.magicSaAmfSutProvidesSvcType->  

  forAll(svct | svct.magicSaAmfSvcTypeCSType.   

   magicSafMemberCSType->  

    forAll(cst | su.magicAmfSUMemberOf.    

      magicAmfSGProtects -> 

       iterate(si; b:integer = 0 | si.magicAmfSIGroups->     

         select(csi |  

           csi.magicSaAmfCSType = cst)->size()+b) <= 

             su.magicAmfLocalServiceUnitGroups-> 

              iterate(c ; a:integer = 0|    

               c.MagicSaAmfCompCsType-> 

                select (compcst | compcst.  

                  magicSafSupportedCsType = cst)->       

                   asSequence.at(1). 

                    magicSaAmfCompNumMaxStandbyCSIs+a))))) 
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Figure 10 Partial view of the domain model involved in 2N Service Group well-formedness rule 

For overcoming the complexity in the case of the N+M, the N-Way-Active, and 

the N-Way redundancy models, we have characterized some specific cases, where 

the necessary and sufficient conditions can be checked efficiently and specified 

them as OCL constraints. The details of the formal description of the SI protection 

problem as well as the complexity analysis and the proposed solutions are 

presented in [Salehi 2009]. 

4.2 Mapping the AMF Domain Model to the UML 

Metamodel 

Although in [Selic 2007], the author proposes the separation of the domain 

modeling phase and the mapping phase, he does not provide any guidelines for 

this mapping, which is perhaps the most challenging activity in defining a well-

formed UML profile. The International Telecommunication Union (ITU) also 

provides guidelines [ITU 2007], which mainly focus on the profile document, 

common conventions, and recommendations on how to present the text and 

notations but not on the mapping phase. A lack of a systematic approach (or at 

least insightful guidelines) for selecting the most suitable metaclasses makes this 

phase dependent on the experience of the profile’s designer. Other studies 

[Lagarde 2007, Lagarde 2008] propose patterns which are based on a few types of 

relationships that may exist between domain elements and the corresponding 
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metaclasses. However, these guidelines focus on specific scenarios and do not 

provide a general solution to the mapping problem. In other words, there is no 

“ready to use” solution that addresses the general issue of selecting the most 

appropriate UML metaclass for a specific domain element.  

During the design of our profile, we have selected the UML metaclasses that carry 

semantics similar to the domain concepts being represented. As such, the newly 

defined stereotypes must neither contradict nor violate the UML metamodel. In 

the presence of multiple candidates, we favoured the metaclasses that permitted 

the reuse of as many UML relationships between the stereotyped elements as 

possible. Reusing the associations among the metaclasses decreases the 

complexity of the design. Hence, if it is necessary to have a relationship between 

two stereotypes, it is better to reuse (if possible) the existing relationships between 

the corresponding metaclasses. We also opted for the metaclasses that minimized 

the number of constraints needed to constrain the UML metamodel elements (i.e., 

to restrict the stereotyped UML metaclasses so as to have them behave according 

to the rules imposed by the domain). A large number of constraints is an 

indication that the selected metaclasses might not be the most suitable ones.  

One needs to proceed step by step through the full set of domain concepts 

(specified as classes in the domain model), identifying the most appropriate UML 

base concepts for each of them. In this step, the objective is to find the UML base 

concept (UML metaclass) which is conceptually and semantically similar to each 

domain concept. The output of the mapping phase is a set of new stereotypes and 

the UML metaclass from which each stereotype is derived. It is important to 

mention that, since UML 2.0 supports the inheritance relationship between 

stereotypes, not all domain concepts need to be directly derived from a 

corresponding UML metaclasse. Some of them will be derived from the newly 

created stereotypes. Figure 11 illustrates the process of mapping the domain 

model to the UML metamodel, the definition of the concrete syntax for the 

language, and the specification of the metamodel level constraints. We follow 

systematically the steps of this process to guarantee the quality of our profile and 

the remainder of this section is dedicated to presenting each step in detail. 
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Figure 11 The process of mapping to the UML metamodel and concrete syntax definition 

 

4.2.1 Mapping AMF Domain Model Concepts to UML 

Metaclasses 

For each stereotype a suitable metaclass is presented (see Appendix A). This 

selection has been made by mainly considering the semantic alignment of the 

domain concepts with respect to UML metaclasses. However, the first choice 

might not be the most appropriate (most semantically aligned) one and further 

investigation is necessary. More specifically, after finding the candidate 

metaclasses for each domain concept, two different scenarios may occur: 

1. The candidate metaclass semantically appears to be appropriate: in this 

case it is always beneficial to look at the child metaclasses specializing the 

candidate metaclass. In other words, since the child metaclasses specify 

more features, we may find them semantically more accurate for aligning 

with the description of the domain concept. 

2. The candidate metaclass turns out to have features which are semantically 

too restrictive compared to the description of the domain concept. In this 

case, one should consider the parent metaclass which technically has fewer 

features.  
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These guidelines highly support the semantic alignment of the domain concepts 

with respect to the UML metamodel. Considering these guidelines in the rest of 

this section, we present the complete set of stereotypes defined in our profile for 

each domain concept. For each stereotype we also present the most suitable UML 

concept for mapping. In addition, the rationale behind the selection of each UML 

metaclass is presented. It is worth noting that, for most domain concepts, there is 

more than one UML metaclass as an alternative for mapping and the most 

appropriate alternative has been selected after an extensive study of the UML 

metamodel and the AMF domain model.  

Component  

The component in AMF represents the encapsulation of the functionality of 

software that provides the services. This is similar to the concept of the 

component in UML, which is defined as “a modular part of a system that 

encapsulates its contents and whose manifestation is replaceable within its 

environment” [OMG 2007b]. Therefore, we mapped the AMF component to the 

UML component defining a new stereotype called <<MagicSaAmfComponent>>. 

Similarly, a stereotype is defined for each component category and is indirectly 

mapped (through inheritance relationships between stereotypes) to the Component 

metaclass.  

Service Unit  

Based on the definition of SUs in the AMF domain, an SU is a logical entity that 

aggregates a set of components by combining the individual functionalities of 

these components to provide a higher level service. From this perspective, one 

could see an SU as a service provider, similar to a component, but at a higher level 

of abstraction. We therefore decided to map the SU to the UML Component 

metaclass as well. The stereotype <<MagicSaAmfSU>> is used to represent an 

SU. Local and external SUs are represented using the stereotypes 

<<MagicAmfLocalServiceUnit>> and <<MagicAmfExternalServiceUnit>>. 

Service Group  

One of the key characteristics of a SG is the grouping of SUs. Given the fact that 

in UML “a package is used to group elements, and provides a namespace for the 

grouped elements” [OMG 2007b], it may appear that the metaclass Package could 

be a suitable base class for an SG. However, in addition to its ability to group 
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SUs, an SG also ensures the availability of services by means of redundancy 

models for a certain set of SIs (assigned to the SUs grouped by the SG). 

Moreover, UML Component can liberally provide any kind of service. 

Consequently, we can consider the protection of SIs as a sort of service that is 

provided by the SG through importing SUs in its namespace. Therefore, similar to 

an SU, an SG can map to the UML Component metaclass. Considering the fact 

that the Component metaclass also has a grouping capability, it is the most 

appropriate candidate base class for the SG.  

There are different categories of SGs based on their redundancy model, and so, for 

each category we have introduced a stereotype. The topmost stereotype 

(<<MagicSaAmfSG>>), however, has been mapped to the UML Component 

metaclass.  

Application 

An application is a logical entity that contains one or more SGs. An application 

combines the functionalities of the constituent SGs in order to provide a higher 

level service. Similar to an SU, a UML Component has been found to be the most 

suitable base class for the stereotype designed to represent an AMF application 

(<<MagicSaAmfApplication>>). 

Component Service Instance (CSI)  

In the UML specification, a Classifier is an abstract metaclass which is a 

namespace whose members can include features. A BehavioralClassifier is a 

specific type of Classifier that may have an interface realization [OMG 2007b]. 

Since we can consider CSIs as realizations of services which AMF dynamically 

assigns to components in terms of workload, BehavioredClassifier could be a 

good candidate for CSI. However, a CSI is the description of the characteristics of 

the workload which will be assigned to the component at run-time and not the 

description of the service itself. Therefore, BehavioredClassifier has been 

discarded. On the other hand, in UML, “a class describes a set of objects that 

share the same specifications of features, constraints, and semantics” [OMG 

2007b], and thus, the metaclass Class is semantically closer to a CSI. As a result, 

we have used the metaclass Class as a base class for the stereotype that has been 

defined for CSI (<<MagicSaAmfCSI>>). 
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Service Instance (SI)  

An SI is an aggregation of all component service instances (CSIs) to be assigned 

to the individual components of the SU in order for the SU to provide a particular 

service. In fact, semantically, an SI shares most of the characteristics of the CSI 

but at a higher level of abstraction. Consequently, similar to CSI, the metaclass 

Class can be used as a base class for the stereotype defied for an SI 

(<<MagicSaAmfSI>>). The only difference existing between the two is that the 

SI is capable of grouping a set of CSIs. This capability is also captured by the 

metaclass Class in UML due to the existence of an inheritance relationship 

between the metaclass Class and the metaclass Classifier. 

Node  

A node in the AMF domain is a logical entity that represents a complete inventory 

of SUs and their components. We mapped the AMF node to the UML metaclass 

Node since, similar to AMF, a node in UML “is a computational resource upon 

which artefacts may be deployed for execution” [OMG 2007b]. We created the 

stereotype <<MagicSaAmfNode>> to refer to an AMF node.  

Cluster and Node Group 

Based on the UML specification, “a package is used to group elements, and 

provides a namespace for the grouped elements” [OMG 2007b]. On the other 

hand, the complete set of AMF nodes in the AMF configuration defines the AMF 

cluster. The role of an AMF cluster and nodegroup is the grouping of different 

AMF nodes. Therefore, the metaclass Package seems to be the most appropriate 

base class for the AMF cluster and nodegroups. The stereotypes 

<<MagicSaAmfCluster>> and <<MagicSaAmfNodeGroup>> are used to refer to 

these two entities. 

AMF Entity Type elements 

In general, the type entity describes the characteristics and features common to all 

entities of this type. All entities of the same type share the attribute values defined 

in the entity type. Some of the attribute values may be overridden, and some other 

ones may be extended by the entity at configuration time. In other words, the type 

is the generalization of similar entities. For example, the SGType is a 

generalization of similar SGs that follow the same redundancy model, provide 

similar availability, and are composed of units of the same SUTypes. Considering 
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the fact that, in UML, the metaclass Class describes a set of objects that share the 

same specifications of features, constraints, and semantics [OMG 2007b], it can 

be used as a base class for all AMF entity types. 

Appendix A presents the summary of the stereotypes defined for AMF entities and 

entity types as well as the graphical syntax of our language for each stereotype. 

4.2.2 Mapping the AMF relationships to the UML Metamodel 

We distinguish six different categories of relationships between domain concepts: 

 Provide: This relationship is used between service providers and service 

elements and represents the capability to provide services. 

 Type: It represents the relationship which is used between AMF entities 

and their type (e.g. the relationship between component and component 

type). 

 Group: It represents the relationship which is used between grouping and 

grouped elements (e.g. the relationship between an SU and its enclosing 

components).  

 Protect: It represents the relationship which is used between an SG and SIs 

in order to protect the services they represent.  

 Deploy: It represents the installation relationship which is used for 

deployment purposes (e.g. between a service unit and a node or between 

service group and a node group). 

 Member node: represents the relationship which is used between a node 

and a nodegroup or cluster. It is non-exclusive, as a node may be member 

of different node groups. 



28 

 

 

Figure 12 Relationship between SI and CSI 

A careful selection (i.e. semantic alignment) of metaclasses for our domain 

concept related stereotypes allowed us to reuse many associations in the UML 

metamodel for the aforementioned relationships. Reusing the association from the 

UML metamodel decreases the complexity of the process of defining the profile 

while improving the quality of the profile. More specifically, if we consider the 

related associations of each metaclass as part of its semantic, reusing these 

associations will implicitly support the semantic alignment and compliance of the 

domain concepts with respect to the UML metamodel. Each relationship has been 

stereotyped accordingly and mapped to either Association, AssociationClass, or 

Dependency.  

For example, both <<MagicSaAmfSI>> and <<MagicSaAmfCSI>> stereotypes 

are mapped to the UML metaclass Class and, since the metaclass Class inherits 

indirectly from the metaclass Classifier in the UML metamodel, there is an 

association between the classes Class and Classifier called “nestedClassifier”, 

which allows classifiers to group other classifiers. We reused this association to 

express the fact that an SI (represented as <<MagicSaAmfSI>>) groups CSIs 

(represented as <<MagicSaAmfCSI>>). Consequently, as shown in Figure 12, we 

defined the stereotype <<groups>> to capture the relationship and map it to 

metaclass Association. Appendix B summarizes the stereotypes defined for the 

AMF relationships, their base metaclasses, and the relationship reused from the 

UML metamodel. More details can be found in [Salehi 2012].  
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4.2.3 Specifying Constraints 

This phase aims at ensuring that the UML stereotyped base metaclasses do not 

have attributes, associations, or constraints that conflict with the semantics of the 

domain model. If this is the case, UML itself needs to be restricted in order to 

match the domain related semantics and to guarantee the consistency of the profile 

with the semantics of the domain model. To this end, a set of constraints were 

defined. These constraints can be grouped into two different categories: 

Constraints on relationships 

For example, the previously defined stereotype <<groups>> can be used only 

between specific AMF entities. However, UML has the capability of using 

associations between all sorts of UML elements, including the metaclasses Class, 

Component, and Node. Therefore, without any constraints it would be possible to 

use the <<groups>> relationship to group CSIs into an AMF application, which 

is semantically invalid with respect to the AMF domain. Consequently, different 

constraints have been defined and expressed in OCL to restrict the UML 

metamodel in the context of AMF. For instance, the following constraint restricts 

the UML metamodel to use the <<groups>> stereotype between component and 

SU: 

context <<groups>> 

inv : 

(self.endType()->at(1).oclIsKindOf(MagicSaAmfComp) 

     or  

      self.endType()-> at(1).oclIsKindOf(MagicSaAmfSU)) 

and 

(self.endType()->at(2).oclIsKindOf(MagicSaAmfComp) 

      or  

       self.endType()->at(2).oclIsKindOf(MagicSaAmfSU))  

    

 and 

      (self.endType()->at(1).oclIsKindOf(MagicSaAmfComp) 

         implies 

        self.endType()-> at(2).oclIsKindOf(MagicSaAmfSU)) 

   

 and 

      (self.endType()->at(2).oclIsKindOf(MagicSaAmfComp) 

         implies 

        self.endType()-> at(1).oclIsKindOf(MagicSaAmfSU)) 
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Constraints on model elements 

Similar to the constraints on relationships, there is another group of constraints 

that should be taken into account. This group targets UML elements in order to 

restrict the UML metamodel. For example, based on the AMF domain model, 

components cannot inherit from other components. However, the UML 

metamodel allows designers to use inheritance between elements that are mapped 

to UML metaclass Component. Therefore, another set of constraints was required 

to restrict the standard UML elements according to what is allowed by AMF. We 

have defined and specified this set using OCL. The following constraint restricts 

the inheritance on components: 

context <<MagicSaAmfComponent>> 

inv:  

self.general()->isEmpty() 

5 Implementation and Case Study 

5.1 Environment 

We implemented the extension to the UML metamodel in order to model AMF 

concepts in IBM Rational Software Architect (RSA) [IBM 2014]. RSA is a UML 

2.4.1 compliant integrated software development environment which supports 

UML extension capabilities and which is built on top of the Eclipse platform 

[Eclipse 2014a]. The combination of RSA and Eclipse Modeling Framework 

(EMF) [Eclipse 2014b] provides a powerful capability for integrating new domain 

concepts with UML in a single toolset. By using the visualization and metamodel 

integration services, RSA integrates different metamodels, allowing them to 

reference one another. Therefore, it facilitates the model-driven approach for 

generating, validating, and analyzing models [Leroux 2006]. 

Compared to other modeling tools, RSA provides its users with a quicker and 

simpler way of creating UML profiles in order to address domain-specific 

concerns [Leroux 2006]. In addition, since RSA’s internal model representations 

are based on EMF metamodels, RSA allows users to visualize and integrate 

models and model elements from different domain formats. Therefore, RSA has a 

high degree of interoperability with other modelling tools [Leroux 2006]. 
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Our choice of using RSA also lies in the conclusions of the study conducted by 

Amyot et al. [Amyot 2006]. The authors compare different UML integrated 

software development environments which support the design of UML profiles. 

This comparison is based on the capabilities of the tools such as integration with 

other tools and the effort required for defining a profile. RSA was found one of 

the most complete tools in its category. Figure 13 shows the implementation of the 

UACL using RSA. UACL is primarily designed for the automation of the 

configuration generation process. In previous work, we have used the XML 

Metadata Interchange (XMI) format of the profile generated by RSA in a model 

driven configuration generation process.  UACL has also been used for the 

validation of AMF configurations. Configuration design experts can also view, 

modify and manipulate the AMF configurations using our tool and benefit from 

RSA’s validation engine [Salehi 2010 and Salehi 2012]. 

 

Figure 13 An RSA snapshot of the modeling framework for AMF 

Finally, it is worth noting that, based on the AMF standard specification, the 

configuration needs to be deployed on an SA Forum compliant middleware using 

an XML file following an Information Model Management (IMM) XML schema.  

In addition to the tool we have presented in this paper, we have developed a 

program to map the UACL models into the IMM XML [SAF 2010c] format. 

5.2 Case Study  

In order to demonstrate its effectiveness, we used our framework to develop a 

configuration for an online banking system which allows customers to conduct 
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financial transactions using a secure web interface. The features of this system 

include account transfers, balance inquiries, bill payments, and credit card 

applications. This case study does not focus on the process of generating the 

configuration, instead, it presents how a sample AMF configuration can be 

specified using UACL. In previous work [Salehi 2010], we presented a model- 

driven solution for the automatic generation of AMF configurations which uses 

UACL as a core metamodel. The online banking application was designed based 

on three tier architecture [Sheriff 2006]. Figure 14 presents the architecture of the 

online banking system. In this paper we focus on the design of an AMF 

configuration for the business tier of this system which consists of the following 

subsystems: 

 The electronic billing service which allows clients to view and manage 

their invoices sent by e-mail.  It also provides online money transfers from 

the client’s account to a creditor’s or vendor’s account. 

 The authentication service which is responsible for confirming the identity 

of the clients. 

 The fund transfer module which provides four different categories of 

money transfer services: 

o Transferring money between the different accounts belonging to 

the same client (e.g. between saving and chequing accounts)  

o Performing money transfers from one client’s account to another 

client’s account(s) within the same banking institution 

o Performing money transfers from a client’s account to an account 

held by a different banking institution  

o Transferring funds to the Visa account of a client  

 



33 

 

 

Figure 14 Architecture of the Online Banking System 

In this system the user interacts with the system through a web interface and the 

application layer is supported by an application server. For instance, the 

application server could be the Red Hat JBoss AS which is an open-source Java 

EE-based application server [Redhat 2012]. User requests are transferred to the 

server through Http and the responses are provided accordingly. The availability 

of the entire set of components in the application layer is managed by the AMF 

middleware. Moreover, we assume that the APIs required by the AMF 

middleware are implemented in the software modules and they are capable of 

supporting all redundancy models. 

Figure 15 and Figure 16 represent the entity type view of the FundTransfer part of 

the configuration. It consists of an SGType grouping the FundTransfer SUType, 

which provides the FundTransfer service type. The SUType consists of three 

different component types, namely VisaPayment, MoneyTransfer, and 

ExternalAccountManager. The first two provide the services for transferring funds 

to other bank accounts and visa accounts while the ExternalAcountManager is 

responsible for establishing the connection to the accounts to which the money 

will be transferred. For this purpose,  
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Figure 15 The fund transfer part of the online banking application 

MoneyTransfer component type supports LocalMoneyTransfer and 

ExternalMoneyTransfer CSTypes for transferring the money to other bank 

accounts held within the same banking institution or in other institutions. The 

provision of these services depends on the provision of the 

LocalAccountCommunication and ExternalBankCommunication CSType by 

ExternalAccountManager. The VisaPayment also provides PayVisaBalance 

CSType which depends on the provision of the VisaAccountCommunication 

CSType by ExternalAccountManager. MoneyTransfer component type also 

provides the InternalMoneyTransfer CSType for transferring funds between the 

various accounts belonging to the same client (e.g. between savings and chequing 

accounts) which can be carried out independently. 
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Figure 16 Component types of the fund transfer part of the online banking application 

Figure 17 shows the entity type view of the Billing SUType grouped aggregated 

by BillingSGT. Billing SUType groups BillManager component type which 

provides ViewBill and PayBill CSTypes. Provision of the ViewBill CSType 

depends on the provision of the EPostService by EPostCommunication 

component type. The provision of the the PayBill CSType is also sponsored by 

ExternalBankCommunication CSType which is provided by 

ExternalAccountManager component type (the same component type used in the 

fund transfer part). Notice that ExternalAccountManager and 

EPostCommunication component types are aggregated by Billing SUType as well. 

 

Figure 17 Entity type view of the billing part of the online banking application 



36 

 

Figure 18 presents the entity type view of the authentication part of the online 

banking configuration which includes the Security SGType grouping 

Authentication SUType. Authentication SUType consists of one component type 

CertifiedAuthentication which provides CertifiedAuthenticationService CSType. 

 

Figure 18 Entity type view of the security part of the online banking application 

Figure 19 represents the entity view of AMF configuration for the online banking 

application.  FundTransfer service group (see Figure 20) which supports N+M 

redundancy model groups three SUs from FundTransfer SUType, namely 

FT_Su1, FT_Su2, and FT_Su3. Each SU includes one component from 

MoneyTransfer, VisaPayment, and ExternalAccountManager component types. 

For instance, in FT_Su1 Trans_1, Visa_1, and ExtAccMng_1 are instances of the 

MoneyTransfer, VisaPayment, and ExternalAccountManager, respectively.  

 

Figure 19 Service groups of the online banking application 

On the service side, LocalTransServ, VisaServ, and ExternalTransServ SIs are 

protected by FundTransfer SG. These SIs are instances of the 

FundTransferService SvcType. However, the CSIs grouped within each one of 

these SIs are not instances of the same CSTypes. This is possible since the 

minimum number of the CSIs of each one of the CSTypes in the SIs is zero due to 

the configuration properties of the FundTransferSevice SvcType and its CSTypes. 
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It is worth noting that this property has been overridden from the description of 

the software entities provided by the vendor.  

 

Figure 20 Entity view of the fund transfer part of the online banking application 

More specifically, LocalCom is an instance of the LocalAccountCommunication 

CSType and LocalTransfer is an instance LocalMoneyTransfer while VisaCom is 

an instance of the VisaAccountCommunication and PayVisa is an instance of the 

PayVisaBalance. Moreover, ExtTransfer and ExtCom_1 are instances of the 

ExternalMoneyTransfer and the ExternalBankCommunication CSTypes, 

respectively.  

Figure 21 shows the entity view of the billing part consists of an SG which 

protects BillingServ SI from the BillingService SvcType. This SG supports the 2N 

redundancy model and thus groups two identical SUs (BillingSu1 and BillingSu2) 

which are instances of the Billing SUType. Each SU includes one component of 

EPostCommunication, BillManager, and ExternalAccountManager component 

types. On the service side, the BillingServ SI groups EPost, BillView, 

BillPayment, and ExtCom_2 CSIs which are instances of the EPostService, 

ViewBill, PayBill, and ExternalBankCommunication CSTypes, respectively. 
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Figure 21 Entity view of the billing part of the online banking application 

Figure 22 presents the entity view of the security module of the online banking 

system which includes Security SG with the N-Way-Active redundancy model. 

This redundancy model aims at balancing the load of the authentication service on 

the protected SIs. Security SG includes two SUs, namely Sec_Su1 and Sec_Su2 

from Authentication SUType. Each of these SUs aggregates one component of 

CertifiedAuthentication component type. On the service side, Security SG protects 

three identical SIs which are the instances of the AuthenticationService SvcType 

and each one has one CSI of the CertifiedAuthenticationService CSType. 

 

Figure 22 Entity view of the security part of the online banking application 
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It is worth noting that, since the entity and entity type views are presented 

separately in this paper, the relationship between each entity and its type entity is 

not visible in the diagrams. For instance, Figure 23 presents the type relationship 

between the entities and entity types of the authentication module of the online 

banking system. 

 

Figure 23 The relationship between entity and entity type view of the security parts 

The configuration is deployed in a cluster called OnlineBanking_Cluster which 

consists of three AMF nodes (Node1, Node2, and Node3). Node1 is hosting 

Sec_Su1 and FT_Su1 while Node3 is hosting FT_Su3 and Billing_Su1. Sec_Su2, 

FT_Su2, and Billing_Su2 are hosted by Node3. Figure 24 shows the deployment 

view of the AMF configuration designed for online banking application using 

UACL. 
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Figure 24 Deployment view of the AMF configuration for online banking application expressed in 

UACL 

Finally, it is worth noting that RSA’s live mode validation of OCL constraints 

ensures the validity of the designed configuration according to the standard 

specification. Live validation mode is not practical, however, for complex 

constraints involving various modeling elements, as it decreases the tool’s level of 

performance. For this group of constraints, batch mode validation is the most 

preferable option. This results in the need to validate the entire configuration 

using RSA after having completed the design. In the occurrence of an error, RSA 

locates the error so that the designer can detect the cause and fix it.  

6 Challenges  

After the analysis of the AMF domain and the design of the domain model, the 

first issue we faced was how to define the UACL language. Although a UML 

profile may result in a less precise language than a MOF-based language, we 

avoided a MOF-based solution as it would suffer from a lack of tool support. In 

general, the advantages of an UML profile seem to far outweigh its drawbacks 

[Fuentes 2004]. The second issue was in deciding whether to extend existing 

profiles or to create a new one. We investigated existing profiles related to 

dependability and availability. We targeted both OMG standardized profiles, such 

as MARTE [OMG 2011], SPT [OMG 2005], and QoS&FT [OMG 2008], as well 

as the non-standardized profiles reported in the literature, such as the DAM 

[Bernardi 2011] profile and the profile presented by Szatmári et al. in [Szatmári 
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2008]. The evaluation and analysis of these profiles were based on different 

criteria:  

1. The capability of the profiles’ constructs in capturing the concepts and 

semantics of the AMF domain and the complexity of extending these 

constructs when needed. The main goal of this extension is to take 

advantage of the profile features and reuse their constructs as much as 

possible. If the concepts of the AMF domain cannot be defined as a 

combination or extension of the basic constructs of the profile, the 

extension will be handled in the underlying UML metamodel. This 

outweighs the benefits of the extension. Most of the analyzed profiles 

turned out to be unsuitable. For example, the concept of service in the 

DAM profile addresses the description of the service itself, while in the 

AMF domain, the service is the description of attributes for the workload 

that will be assigned to service providers at run-time. In fact, there is a 

substantial distinction between the concept of service in DAM and in the 

AMF domain. Therefore, to capture this concept, we need to directly refer 

to the UML metamodel and not go through the DAM profile. 

2. The implementation of the existing profiles. One of the goals of this work 

was to develop a CASE tool to support different activities, such as the 

design and validation of AMF configurations. In the case of extending 

existing profiles, we needed to have access to their implementation such as 

the XMI format that serializes the profile model. We found that the non-

standard profiles do not provide open access to their implementation. The 

implementation is available for some of the standard OMG profiles (for 

instance, for MARTE). However, due to the characteristics of the AMF 

domain concepts, we could use only small fractions of these 

implementations. At the same time, building an extension requires 

importing and handling the whole implementation package. This may 

result in complexity at the tool development phase as well as performance 

issues at run-time. For instance, the run-time evaluation of newly defined 

constraints of the new language may require the evaluation of several 

constraints of the referred profile. 

Because of the characteristics of the AMF domain and the fact that the required 

additional complexity does not justify the very few benefits of a possible 
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extension, we decided to extend the UML metamodel instead of reusing another 

profile and adapting it to AMF. 

The AMF specification defines the run-time behaviour of the middleware with 

respect to the management of the AMF configurations. At the domain modeling 

stage, one of the most challenging issues was to capture only the configuration 

time aspects. In other words, we extracted the configuration time aspects of the 

configuration by analyzing the run-time behaviour of the AMF. It was not 

straightforward to extract the domain model from the large standard document, as 

the domain model requires the isolation of the configuration time characteristics 

from the run-time characteristics of the AMF. More specifically, some of the 

concepts defined at run-time are based on other related configuration time 

constraints in order to ensure that the configured application will provide and 

protect the service independently from a particular AMF service implementation. 

This also increases the complexity of the domain model, both in the design of the 

class diagram and in the process of specifying the OCL constraints. For instance, 

SA Forum standards support the notion of proxied components –the components 

which need proxy components to interact with the AMF middleware. However, 

the links between a proxy component and its proxied components are established 

only at run-time when an AMF service implementation selects and assigns a 

particular proxy component to a particular proxied component. On the other hand, 

a configuration time relationship between a proxy and a proxied component is 

specified through the proxyCSI. This is a particular CSI through which a proxy 

component is assigned the task of “proxying” a particular proxied component. The 

concept of proxyCSI was captured in our model through the association end 

magicSaAmfCompProxyCSI of the association between 

MagicLocalProxiedComponent and MagicSaCSI classes as shown in Figure 25. In 

order to configure a certain proxy component for its proxied components, one can 

only use the proxyCSI. Therefore, the well-formedness of the configuration can be 

expressed and checked at configuration time to the extent allowed by the 

proxyCSI configuration attribute. At configuration time, we have to ensure that 

there is at least one proxy component capable of being the proxy component for 

the proxied component. This constraint translates to the existence of a proxy 

component that supports a component service type (CSType) to which the 
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proxyCSI of the proxied component in question belongs. The OCL expression 

formalizing this domain constraint is as follows: 

contex MagicAmfLocalProxiedComponent  

inv:  

(MagicSaAmfSI.allInstances-> 

  select(s : MagicSaAmfSI | s.magicSaAmfSiGroups->  

    includes(self.magicSaAmfCompProxyCsi))-> 

      forAll(s2 :MagicSaAmfSI|     

       s2.magicSaAmfSiProtectedbySG.magicAmfSGGroups-> 

        forAll(su : MagicSaAmfSU |  

         su.oclIsTypeOf(MagicAmfLocalServiceUnit) 

          and  

           su.magicAmfLocalServiceUnitGroups->    

            select(c|c.oclIsTypeOf(MagicAmfProxyComponent)->    

             iterate(v:MagicAmfProxyComponent , a = Set{} |    

              v.oclIsTypeOf(MagicAmfProxyComponent))  

               implies  

               (a-> union(v.MagicSaAmfCompCsType.    

                  magicSafSupportedCsType))-> includes 

            (self.magicSaAmfCompProxyCsi.magicSaAmfCsType)) 

 

 

Figure 25 Proxy-proxied Component Relationship 

Another challenge that we encountered was the identification of UML metaclasses 

for mapping purposes. More precisely, we had to identify the most appropriate 

UML metaclasses to extend in order to support the AMF domain concepts. To the 

best of our knowledge, there is no systematic approach to guide this process.  

In addition, a complementary and important aspect needs to be taken into 

consideration: the tool support. We chose RSA because of its features. However, 

our experience with RSA also revealed some of its weaknesses when dealing with 
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the implementation of OCL constraints. More specifically, to support the OCL 

functions that require access to stereotyped elements, RSA implements additional 

functions like getAppliedSubstereotypes() and isStereotypeApplied(). The main 

issue with these functions is that they are not compliant with the standard OCL 

specification and therefore, standard OCL constraints cannot directly be 

implemented in RSA. For instance, in the context of an entity, if we want to verify 

the stereotype as being set to <<MagicSaAmfLocalSU>>, we will need the 

following OCL constraint: 

self. isStereotypeApplied 

(MAGICAMFProfile::MagicSaAmfSU.oclAsType(uml::Stereotype)) 

  

As observed in the above example, additional type casting commands are required 

in order for the constraint to perform properly. Considering the fact that almost all 

of the constraints in the UML profiles deal with stereotypes, this drawback has a 

great impact on the readability of the OCL constraints and therefore, the 

maintainability of the tool.  

Moreover, using tagged definitions in cross-context constraints is rather 

challenging. An example would be the specification of a typical OCL constraint in 

the context of one of the stereotypes associated with <<MagicSaAmfSU>> (e.g. 

<<MagicSaAmfComp>>) to restrict one of the attributes of 

<<MagicSaAmfSU>> –such as magicSaAmfSURank– so as not to have a value 

of zero. Despite its common occurrence, this constraint needs to be implemented 

using a complex expression such as: 

self.ownedAttribute-> 

 select(ct:Property|ct.type.getAppliedSubstereotypes 

 (MAGICAMFProfile:: 

     MagicSaAmfSU.oclAsType(uml::Stereotype)) ->  

       notEmpty())->at(1).    

        opposite.owner.oclAsType(uml::Class). 

        getValue(MAGICAMFProfile::MagicSaAmfSU. 

         oclAsType(uml::Stereotype),'magicSaAmfSURank'). 

           oclAsType(uml::Integer) <> 0 

As presented above, accessing the attribute magicSaAmfSURank is only possible 

through a function called getValue() and through specifying the name of the 

stereotype and the tagged definition. In addition, at the end of the function we 

need to cast the type of the output of the function to uml::Integer. 
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One of the main limitations of UACL comes from its inherent complexity rooted 

in the intricate concepts and their relationships defined in the standard 

specifications. This complexity does pose limitations on the manual manipulation 

of the configurations and requires designers to possess a strong understanding of 

the language and its elements. This complexity can also hinder the maintainability 

of the profile. Since the main objective of UACL is to provide a modeling 

framework for the automatic generation of configurations, the complexity of the 

language has minimal consequences on the effectiveness of the language. This 

complexity does not affect the automatic configuration generation process 

The other limitation comes from the lack of formal processes to validate the 

language in order to ensure its compliance with the standard specifications. We 

have invested a great deal of effort in defining our profile by refining and reusing 

a generic process discussed in [Selic 2007]. In addition, our work has undergone 

an intensive and effective review process with the domain expert and with a team 

of experienced software designers. However, the lack of a well-defined evaluation 

mechanism and metrics for (formally) evaluating our UML profiles seems to be a 

limitation that needs to be addressed in the future. The applicability and 

usefulness of UACL will be evaluated empirically over time. This will help us 

improve the profile, enhance the guidelines for defining a UML profile, and 

perhaps design an evaluation framework. 

 

7 Conclusion  

An AMF configuration is the artefact used by an implementation of the AMF 

middleware service for managing the high availability of services provided by 

applications under its control. In this paper we reported on the design of UACL, a 

UML profile for AMF Configurations, and its implementation using the IBM RSA 

toolkit. The profile has been defined as an extension to the UML2 metamodel. 

The definition consisted of 1) the analysis of the AMF configuration domain, 

capturing all the AMF domain concepts, 2) the definition of the concrete syntax of 

the language, and 3) the specification of the semantics through the mapping to the 

UML2 metamodel and the definition of constraints. 
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The experience, as discussed in Section 4, has shown that the most critical aspects 

of this process were 1) the domain analysis, like dropping the run-time attributes 

and classes from the domain model, which led to difficulties in specifying the 

related configuration concepts, such as the domain constraints necessary for the 

definition of AMF configurations, 2) the identification of metaclasses for mapping 

purposes, and 3) having adequate tool support. Due to the existing relationships at 

the level of the UML metaclasses, the selection of inappropriate base classes may 

result in the definition of a language that is not compliant with the UML 

semantics. UACL can support AMF configuration design, analysis and validation. 

Currently, it is being used with other models for the development of a model-

based configuration generation approach [Salehi 2010]. 
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Appendix A 

Table 2 The summary of the stereotypes defined for AMF entities and entity types 

Stereotype  Generalization  Notation 

<<MagicSaAmfCompGlobalAttributes>> metaclass Class 

 

<<SaAmfCompBaseType>> metaclass Class 

 

<<MagicSaAmfCompType >> <<SaAmfCompBaseType>>  

<<MagicAmfSaAwareCompType>> <<MagicSaAmfCompType>> 

 

<<MagicAmfStandaloneSaAwareCompType >> <<MagicAmfSaAwareCompType>> 

 

<<MagicAmfProxyCompType>> <<MagicAmfStandaloneSaAwareCompType>> 

 

<<MagicAmfContainerCompType>> <<MagicAmfStandaloneSaAwareCompType>> 

 

<<MagicAmfContainer-ProxyCompType>> 

<<MagicAmfProxyCompType>> 

<<MagicAmfContainerCompType>>  

<<MagicAmfProxiedCompType>> << MagicSaAmfCompType>> 
 

<<MagicAmfNon-ProxiedNon-

SaAwareCompType>> 
<< MagicSaAmfCompType>> 

 

<<MagicSaAmfHealthcheckType>> metaclass Class 
 

<<SaAmfSUBaseType>> metaclass Class 

 

<<MagicSaAmfSUType>>  <<SaAmfSUBaseType>>  

<<MagicAmfLocalSUType>>  <<MagicSaAmfSUType>>  

 

<<MagicAmfExternalSUType>> <<MagicSaAmfSUType>>  
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<<SaAmfSGBaseType>> metaclass Class 

 

<<MagicSaAmfSGType>> <<SaAmfSGBaseType>> 

 

<<SaAmfAppBaseType>> metaclass Class 

 

<<MagicAmfAppType >> <<SaAmfAppBaseType>> 

 

<<SaAmfCSBaseType>> metaclass Class 
 

<<MagicSaAmfCSType>> <<SaAmfCSBaseType>> 
 

<<SaAmfSvcBaseType>> metaclass Class 
 

<<MagicSaAmfSvcType>> <<SaAmfSvcBaseType>> 
 

<<MagicSaAmfComp>> metaclass Component   

<<MagicAmfLocalComponent>> <<MagicSaAmfComp>>  

<<MagicAmfExternalComponent>> <<MagicSaAmfComp>> 

 

<<MagicAmfSaAwareComponent>> <<MagicAmfLocalComponent>>  

<<MagicAmfNon-SaAwareComponent>> <<MagicAmfLocalComponent>>  

<<MagicAmfStandaloneSaAwareComponent>> <<MagicAmfSaAwareComponent>> 

 

<<MagicAmfContainedComponent>> <<MagicAmfSaAwareComponent>> 
 

<<MagicAmfLocalProxiedComponent>> <<MagicAmfNon-SaAwareComponent>> 
 

<<MagicAmfNon-ProxiedNon-
SaAwareComponent>> 

<<MagicAmfNon-SaAwareComponent>> 

 

<<MagicAmfContainerComponent>> <<MagicAmfStandaloneSaAwareComponent>> 

 

<<MagicAmfProxyComponent>> <<MagicAmfStandaloneSaAwareComponent>> 
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<<MagicAmfContainer-ProxyComponent>> 

<<MagicAmfContainerComponent>> 

<<MagicAmfProxyComponent>>  

<<MagicSaAmfHealthcheck>> metaclass Class 
 

<<MagicSaAmfSU>> metaclass Component   

<<MagicAmfLocalServiceUnit>> <<MagicSaAmfSU>> 

 

<<MagicAmfExternalServiceUnit>> <<MagicSaAmfSU>> 

 

<<MagicSaAmfSG>> metaclass Component  

<<MagicAmfTwoNSG>> <<MagicSaAmfSG>> 

 

<<MagicAmfNPlusMSG>> <<MagicSaAmfSG>> 

 

<<MagicAmfNWaySG>> <<MagicSaAmfSG>> 

 

<<MagicAmfNWayActiveSG>> <<MagicSaAmfSG>> 

 

<<MagicAmfNoRedundancySG>> <<MagicSaAmfSG>> 

 

<<MagicSaAmfApplication>> metaclass Component 

 

<<MagicSaAmfCSI>> metaclass Class 
 

<<MagicSaAmfSI>> metaclass Class 
 

<<MagicAmfCSIAttributeName>> metaclass Class 
 

<<MagicSaAmfNode>> metaclass Node 

 

<<MagicSaAmfNodeGroup>> metaclass Package 
 

<<MagicSaAmfCluster>> metaclass Package 
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<<MagicSaSmfSwBundle>> metaclass Class 
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Appendix B 

Table 3 Summary of Stereotypes Related to the Relationships between Domain Concepts in AMF 

Stereotype  UML metaclass Reused relationship from UML metamodel  

 

<<groups>> 

metaclass 

Association 

nestedClassifier relationship between Class 

and Classifier  

packagedElement relationship between 

Componnet and Packageable Element 

<<protect>> 
metaclass 

Association 
nestedClassifier relationship between Class 

and Classifier  

<<provide>> 
metaclass 

Association 
nestedClassifier relationship between Class 

and Classifier 

<<type>> 
metaclass 

Association 

superClass relationship between Componnet 

and Class 

Reflective superClass relationship on Class 

<<membernode>> 
metaclass 

Dependency 
packagedElement relationship between 
Packageable Element and Package 

 

<<deploy>> 

metaclass 

Dependency 
packagedElement relationship between  
Packageable Element and Package 

<<MagicSaAmfSut

CompType>> 

metaclass 

AssociationClass 
nestedClassifier relationship between Class 

and Classifier 

<<MagicSaAmfSvc

TypeCSType>> 

metaclass 

AssociationClass 
packagedElement relationship between 

Componnet and Packageable Element. 

<<MagicSaAmfCt

CSType>> 

metaclass 

AssociationClass 
nestedClassifier relationship between Class 

and Classifier 

<<MagicSaAmfCo

mpCsType>> 

metaclass 

AssociationClass 
nestedClassifier relationship between Class 

and Classifier 

<<MagicSaAmfSI

Dependency>> 
AssociationClass nestedClassifier relationship between Class 

and Classifier inherited by AssociationClass 

 

 


