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Abstract—To minimize service downtime and ensure high 
system availability, Telecom companies must react quickly to 
failures and crashes of network services and applications. In this 
study, the focus is on the crash reporting process that normally 
goes through different levels of service support in a telecom 
company. To speed up this this repairing or recovering process, 
service support engineers and product developers rely on the 
analysis of runtime files (logs, traces, performance metrics, etc.) 
that are attached to crash reports submitted when an incident 
occurs. However, there is no clear understanding how these files 
are used and what their impact on the crash fixing time is. In this 
paper, we conduct an empirical study at Ericsson to study the use 
of runtime files in the crash resolution process. We tackle various 
research questions that revolve around the proportion of runtime 
files in a selected set of crash reports, the relationship between the 
severity of crashes and the type of files they contain, and the 
impact of different file types on the time to fix the crashes. We also 
study the prediction of the attachment of runtime files to crash 
reports during the creation of the reports. Our ultimate goal is to 
figure out how to collect enough information in the crash report 
system for support engineers and product developers to resolve 
the failures occurring in telecom network quickly and efficiently.  

Keywords—Network services and applications, Telecom systems, 
crash reports, empirical study in industry, quality of service. 

I. INTRODUCTION 

The handling of system crashes efficiently is a critical 

activity for ensuring high quality of service and system 

availability. This is particularly important for large Telecom 

companies such as Ericsson where system operations tasks are 

inherently complex because of the large client base the company 

serves. The company needs to react quickly when crashes are 

reported. Failing to do so may lead to increased operational 

costs.  

In a typical larger telecom company, the support service is 

provided through a multi-level support organization with a 

three-level support as the common practice. The handling of 

system crashes is triggered when a crash occurs, at which point 

a Level 1 support operator creates a crash report (CR) that 

contains information about the incident such as a description, the 

affected system components, the severity of the crash, and 

runtime data that are generated during the crash. The CR is saved 

in a CR database. The Level 1 support operator sends a 

notification to a Level 2 support engineer who retrieves and 

reviews the CR and performs root cause analysis to identify the 

reasons behind the incident and potentially provide a solution. A 

Level 2 support engineer may realize that the CR does not 

contain sufficient information and sends a request back to Level 

1 support to generate the missing data. This cycle is repeated 

several times until the support engineer is satisfied with the 

detailed description of the incident. If the solution requires 

modifications to the source code, the CR is forwarded to a Level 

3 support line to be reviewed by a product designer. Similar to 

the previous situation, the software designer may engage in a 

cycle of interactions with the service support teams to get more 

detailed information about the incident that would help uncover 

the root cause of the problem and provide a fix.  

These repeated cycles of interactions between the various 

support lines often delay the provision of fixes, which may cause 

inefficiencies and high costs. With the help of Telecom domain 

experts from Ericsson, it shows that key information that 

product designer and service support engineer often request 

consists of files that contain runtime data about the system. 

These files are attached to CRs and used to perform root cause 

analysis. There are different type of runtime files including logs, 

traces, and profiling metrics [1]. However, it is not always clear 

what types of files are needed and what the impact of including 

these files on the CR fixing time is.  

There exist studies that aim to improve the CR handling 

process by examining CR attributes including runtime data. 

Bettenburg et al. [3] conducted a user study and found that 

developers consider execution traces to be one of the most useful 

information that developers request when fixing a crash. Sabor 

et al. [11] introduced an approach to predict the severity of CRs 

using a combination of execution traces and other CR features. 

Koopaei et al. [7] proposed a method based on Hidden Markov 

Models (HMMs) and execution traces to predict duplicate CRs. 

Existing studies, however, do not specifically examine the role 

of runtime files in the CR resolution process. In addition, most 

studies are evaluated using open source systems. In this paper, 



we conduct an empirical study at Ericsson to understand the role 

of runtime files in the CR handling process. More particularly, 

we aim to answer the following four research questions: 

• RQ1: What is the distribution of various types of runtime 
files that are attached to CRs?   

• RQ2: What is the relationship between the severity of CRs 
and the type of files they contain? 

• RQ3: What is the impact of different file types on the CR 
fixing time? 

• RQ4: Can we predict if a CR should have a file attached to 
it before the CR is relayed to other lines of support? 

Answering RQ1, RQ2, and RQ3 help us understand the files 
that are attached and set up the priority to the type of files that 
are required for the crash report. The answer to RQ4 may lead 
to the development of a recommendation system that would 
suggest to the first support line the files they should include 
when submitting a CR. The goal would be to reduce the number 
of interactions between the distinct lines of support, which 
should result in a more optimized CR resolution process. To our 
knowledge, this is the first study that focuses solely on the 
importance on various runtime files in the processing of CRs of 
an industrial Telecom system. The outcome of this study should 
shed light on the role of runtime files in resolving crashes from 
an industrial perspective, contributing further to the 
advancement of the field of software maintenance, evolution, 
and operations.  

II. STUDY SETUP 

A. Procedure and Dataset 

Figure 1 shows the process of collecting the data and 
addressing the research questions RQ1, RQ2, and RQ3. RQ4, 
the prediction of runtime file attachments, is discussed in 
Section III. First, we extract data from the Ericsson CR database. 
We then mine the reports to extract the files attached to the CRs. 
The input of domain experts is needed throughout the process to 
help understand the data and interpret the results. 

The dataset we used in this study consists of CRs that cover 
almost two years of development of an Ericsson product (The 
exact number of CRs is not provided for confidentiality 
reasons). These CRs went through different lines of support until 
they were fixed. With the help of Ericsson experts, we wrote 
queries to extract CR information such as the CR heading, 
description, severity, the submitter, as well as the attached files. 
For each file, we retrieved the file name, the date at which the 
file was attached to the CR, the user who submitted the file, and 
the file size. Note that one CR may contain more than one file 
attached to it. In our dataset, the total number of files is five 
times larger than the number of CRs. We identified five types of 
files: 

• Node Dumps (NDs):  A ND file is required whenever a 
system crash is reported in a CR. It contains the output of a 
set of commands that are executed on the node, providing 
with a snapshot of the state of the node during the crash. This 
file is important for understanding what went wrong. The 
content of a ND may, for example, help spot configurations 
issues by the first line of support, eliminating the need to 
relay the CR to other lines of support. 

• Key Performance Indicators (KPIs):  A KPI file provides 
information on the performance of the system through 
performance counters. For example, a KPI file may show the 
degradation of the network, which can help network 
operators identify the cause of the problem.  

• Execution traces: They are used to find a causal relationship 
between the system artifacts. Examples includes traces of 
function calls, inter-process communication traces, 
distributed traces, etc. Tracing requires instrumentation of 
the system, which consists of insertion of probes in places of 
interest. Using a trace, an analyst can replay the execution of 
the system to understand and diagnose the problem.  

• User-defined Logs: Complex telecom systems such as the 
ones developed at Ericsson are composed of many hardware 
and software platforms. It is common for developers to insert 
logging statements that would help them later diagnose 
challenging problems. A logging statement typically 
contains a timestamp, a process id, a verbosity level, a 
logging function, a log message, and variables. Developers 
go through log messages to debug the system and perform 
root cause analysis. 

• Post-mortem Dumps (PMDs): They contain whatever data is 
available in memory during the crash, including the 
processes that were executing at the moment of the incident, 
the data exchanged between processes, etc. PMDs are rarely 
structured and may contain data related to multiple processes 
or even components. 

Fig. 1. Data collection and analysis process 

B. RQ1: What is the distribution of various types of runtime 
files that are attached to CRs?  

Objective: The answer to this question can help product design 
and support team understand the type of files that are used the 
most and should therefore be prioritized. This is because logs 
and traces are known to be large files [9] and generating and 
processing these files infer overhead and cost. Collecting all 
attached file types for each incident may turn out to be 
unproductive. One needs to develop parsers and analysis tools 
that are tailored towards a particular type of file.  

Variables: For each file type Ti ∈{ND, KPI, Log, Trace, 
PMD}, we use as variables the number of files of type Ti, the 
number of CRs that contain files of type Ti. We also need the 
total number of files and CRs to compute the ratios. 

 



Method: To answer this research question, we use descriptive 
statistics [14]. More precisely, we measure the ratio of the 
number of files of type Ti to the total number of files and the 
ratio of the number of CRs that contain logs of file type Ti to 
the total number of CRs. 

C. RQ2. What is the relationship between the severity of CRs 
and the file types they contain? 

Objective: In this research question, we examine if there is a 
relationship between the severity of the CRs and the type of 
files they contain. The severity of a CR reflects the impact of 
the fault on the system functionality. The severity can be “A”, 
“B”, or “C” with “A” being the most severe CRs.  We want to 
establish whether the severity of a CR impacts the type of files 
that are attached to this CR. We state the following null 
hypothesis: 

• H01: The type of files that is attached to a CR is not 
dependant on the CR severity?  

Variables: We use as variables the number of CRs with file 
type Ti and the severity level of the CRs (A, B, C). Note that we 
exclude node dumps from this analysis because node dumps 
appear in all CRs. 

Method: To answer the research question, we build the 
contingency table with two qualitative variables, the CR 
severity (A, B, C) and the CR file type.  In each cell, we include 
the number of CRs that contain only files of that type. The last 
column contains the number of CRs that contain more than one 
file type. We use the Pearson’s Chi-squared independence test 
[14] to accept or reject the null hypothesis H01. The test is 
commonly used to examine the relationship between two 
qualitative variables, which are in our study, the CR severity 
and the CR attached file type. The result is considered 
statistically significant at alpha = 0.05. If p-value < 0.05 then 
we reject the null hypothesis H01 and conclude that the severity 
of the CRs and the types of files attached to the CRs are 
dependent.  

D. RQ3: What is the impact of file types on the time to fix the 

CRs? 

Objective: For this question, we analyze the impact of file 
types on the time it takes to solve the CR. The fixing time of a 
CR is measured in days. The answer to this question is useful 
to understand whether including a certain file type would 
improve the resolution process of CRs. For example, knowing 
that a CR that contains a PMD takes less time than a CR that 
does not have a PMD would encourage Ericsson designers to 
collect PMDs if they are available when a crash occurs.  To 
answer this question, we run a statistical test for each file type 

Ti ∈{ND, KPI, Log, Trace, PMD}. We state the following null 
hypothesis: 

• H02: There is no statistically significant difference 
between the fixing time of CRs with file type Ti and that 
of CRs that do not have files of type Ti. 

Variables: We use as variables the fixing time of a CR, which 

is in days and the file type Ti ∈{ND, KPI, Log, Trace, PMD}. 
Unlike the previous question, we do include node dumps in this 

question. In other words, we want also to know if the presence 
of a node dump file impacts the fixing time. 

Method: We compute the non-parametric Mann-Whitney test 
[14] to compare the CR fixing time with respect to the file type 
Ti attached to the CR and analyze. We use the Mann-Whitney 
test because we cannot assume that the data follows a normal 
distribution. The result of the test is considered as statistically 
significant at alpha = 0.05. Therefore, if p-value < 0.05, we 
reject the null hypothesis H02 and conclude that the fixing time 
of CRs with file type Ti is significantly different from the fixing 
time of CRs without file type Ti.  

III. RESULTS 

A. RQ1: What is the proportion of each type of runtime files 

(i.e., traces, logs, profiling metrics, etc.) in our dataset? 

Figure 2 shows the percentage of each file type in our dataset. 
As we can see, NDs are the most files that are collected. This is 
expected since NDs contain information about nodes after a 
crash occurs. It is also common to have multiple ND files for 
one CR.  

 
Fig. 2. Percentage of file types in our dataset 

 

 
Fig. 3. Percentage of CRs regarding the enclosed file type. 

PMDs and Logs occupy the second and third position with 
19.67% and 15.88% of all the file types. Traces and KPI files 
are used the least. This could be due to the fact that these two 
types of files incur an additional overhead to generate then. For 
example, tracing requires an external instrumentation tool and 
settings, which may deter users from generating this type of file. 
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The same applies to KPI files that contain profiling metrics, and 
necessitate the use of profiling tools. 

Figure 3 shows the percentage of CRs regarding the type of 
files they contain. Note that we excluded Node Dumps from 
this analysis since Node Dumps are collected for every crash. 
The figure shows that PMDs and Logs are the most used files, 
which clearly supports the idea that traces and KPIs receive less 
attention in problem diagnosis tasks. 

B. RQ2. What is the relationship between the severity of CRs 

and the file types they contain? 

Table 1 shows the percentage of each file type with respect to 
severity. Note that we show the percentages instead of the real 
values for confidentiality reasons. To compute the Chi-square 
test, we used the real value and not the percentages. We found 
that the p-value is < 0.00001. The result is significant at p-value 
< 0.05. Therefore, we reject the null hypothesis H01 and 
conclude that there is a relationship between the CR severity 
and the file types.  

TABLE 1. CONTINGENCY TABLE FOR RQ2 

Severity KPI Log Trace PMD 
More than 
one type 

A 3.57% 37.50% 7.14% 32.14% 19.64% 

B 7.78% 14.39% 7.34% 41.56% 28.93% 

C 19.64% 21.43% 5.36% 19.64% 33.93% 

 

 

Fig. 4. Percentage of file types attached to CRs with respect to CR severity. 

Figure 4 shows the distribution of the file types based on the 

CR severity. The data varies depending on the severity. The 

figure shows that the most severe CRs (CR with severity “A”) 

have logs as the most important files. This may be explained by 

the fact that logs contain information introduced by developers 

and therefore can be very useful in debugging these systems. It 

should be noted that CRs with severity “A” are almost always 

sent to developers to provide fixes. CRs of severity “B” rely on 

PMDs and more than one type to help diagnose the problems. 

The least severe CRs contain a combination of all file types. We 

found that in all CRs, traces seem to receive the least attention. 

C. RQ3: What is the impact of file types on the time to fix the 

CRs? 

Table 2 shows the results of the statistical tests. As we can 
see from the table, there is a statistically significant difference 
between CRs that contain Node Dumps and those that do not in 
terms of the fixing time. The same applies to KPI, Log, and 
Trace file types. The corresponding p-values are less than 0.05. 
However, we did not find a statistical difference between CRs 
with PMDs and those that do not.  

 

TABLE 2. RESULTS OF STATISTICAL ANALYSIS ON THE IMPACT OF FILE TYPES 

ON CR FIXING TIME 

Log Type p-value H0 

Node Dumps 0.006273 < 0.05 Reject 

KPI 0.000293 < 0.05 Reject 

Log 8.761203e-05 < 0. 05 Reject 

Trace 0.0102392 < 0.05 Reject 

PMD 0.6895507 > 0.05 Do not reject 

In other words, the fact that a CR contains a PMD does not 
necessarily result in a faster resolution. This may be due to the 
fact that PMDs may contain a large amount of unstructured data 
related to different parts of the system. Interpreting this data is 
usually a challenging task. Ironically, in RQ1, we found that 
PMDs are the second most collected runtime data after node 
dumps. Based on this finding, we suggest to review the 
relevance of PMDs for fixing CRs for improved efficiency and 
cost saving. The current practice of collecting PMDs whenever 
a crash occurs may not be productive. 

IV. PREDICTION OF ATTACHMENT OF RUNTIME FILES 

In this section, we answer RQ4: Can we predict if a CR 

should have a file attached to it before the CR is relayed to other 

lines of support? Predicting if a file needs to be attached during 

the creation of a CR is an important step towards reducing the 

time and effort it takes to solve the CR. We can implement a 

recommendation system that suggests to the CR reporter 

whether a file should be attached or not. This will reduce the 

number of interactions between the various lines of supports.  

To answer this question, we use machine learning 
techniques. We build a training model that learns from past CRs 
that can later be used in the second phase to predict the 
inclusion of attached files (the inference phase). We discuss the 
feature extraction, training and testing phase, as well as the 
evaluation metrics in the next subsection. 

A. Feature Extraction 

With the help of Ericsson domain experts, we selected the 
following features of crash reports to use for classification.  

• Submitter Priority: It is the severity of the defect and the 
CR’s priority (i.e., A, B, or C). 

• Priority Rate: This is an internal priority assigned to the 
CR. 

• Observation Fault: This field represents the fault type. 

• Faulty Product Design Responsible Office: This field 
represents the team within Ericsson that is responsible for 



the defective product. This field changes as the CR is 
reassigned over the course of its life.  

• Node Level Name:  The node level product name. 

• Node Level Product Number:  The product number at the 
node level that is affected by the failure.  

• Faulty product: This fields refers to the faulty product. 

• Product affected system area: This field represents the 
functionality that is affected by the failure. 

B. Training and Testing 

We use three machine learning algorithms to predict 
whether a CR should have a file attached to it.  These are 
Support Vector Machine (SVM), Random Forest (RF), and K-
Nearest Neighbor (KNN). SVM is a classification algorithm 
that uses a hyperplane to differentiate different classes of 
examples in high-dimension space. KNN is a lazy learning 
algorithm based on instances. KNN returns the K most similar 
instances to a feature vector when given one. As a result, the 
method provides the K closest relevant instances based on the 
value of (K), which is a fixed variable that defines the number 
of returned neighbours. RF is a machine learning technique 
based on the decision tree algorithm. The model was created 
using a logic-based approach.  

We use ten-fold cross-validation to test the model. This 
method randomly shuffles the dataset and divides it into 10 
folds. The training is done using 90% of the data, which results 
in a model that is later tested with the remaining 10%. The 
approach is repeated 10 times by choosing different folds each 
time. The accuracy of the classification algorithm is the average 
accuracy obtained using the 10-fold cross-validation.  

C. Evaluation Metrics  

We used precision, recall, and F1-score to assess the 
performance of the algorithms. These metrics are used 
extensively in the literature, which are calculated as follows: 

• Precision = TP/(TP + FP). 

• Recall = TP/(TP + FN).  

• F1_score = 2*Precision*Recall / (Precision + Recall) 

Where TP (True Positives) is the number of CRs that are 
classified properly. FP (False Positives) represents the number 
of CR for which the algorithm wrongly predicted that an 
attachment is needed. FN (False Negatives) represents the 
number of CRs that have file attached files, but the algorithm 
missed. 

D. Results 

Table 3 shows the results of applying SVM, RF, and KNN. 
All algorithms perform relatively well. However, Random 
Forest yields best results with an F1-score of  84%. The 
precision and recall are 81% and 87.5%, respectively. Our 
comparative study of the different classifications techniques 
reveals that RF outperforms the other techniques when 
predicting the presence of files in CRs. These results are very 
promising and suggest that we can develop a recommendation 
system that predict if a file should be attached to a CR, which 

may reduce the number of interactions between the various 
lines of support.  

TABLE 3. PREDICTION OF CR RUNTIME FILE ATTACHMENTS 

Evaluation  
Metric 

SVM RF KNN 

Precision 75% 81% 76.8% 

Recall 88.5% 87.5% 88% 

F1-Score 81% 84% 82% 

V. RELATED WORK 

Maiga et al. [8] conducted an empirical study using Ericsson 

data to better understand how internal and external CRs are 

handled. Internal CRs refer to CR that are reported internally 

by testing teams, whereas external CRs refer to crashes that 

occur in the released products. The study focused on the 

percentage of internal vs. external CRs, time taken to fix each 

type of CR, and time to assign the CRs to developers.  

Zimmermann et al. [13] showed that the main issue that 

developers face when addressing bug and crash reports is 

incomplete information. By surveying developers and users, the 

authors synthesized the information that makes a good report. 

The authors went on creating the CUEZILLA recommendation 

tool to assess the quality of submitted reports and make 

recommendations on how to enhance them.  

Bhattacharya et al. [4] conducted an empirical study to learn 

more about the bug fixing procedure in Android apps and 

platforms and found that most Android app bug reports are of 

high quality, with lengthy textual descriptions, steps to 

reproduce errors, and explanations of expected output. A 

lengthy description usually indicates a high-quality bug report, 

which aids in the fast resolution of the bug.  

An et al. [2] proposed an approach for mining information 

from bug and crash reports while highlighting the challenges of 

existing techniques. They looked at the problem of user 

identification. The authors also discussed the challenges of 

mapping crash reports to their corresponding bugs to 

understand the distribution of crash-related bugs in the user 

base. Rastkar et al. [10] examined if current conversation-based 

automatic summarizers can be used to summarize bug and crash 

reports. Karim [5] performed a research study to identify CR 

features that submitters often overlook. Then, the authors went 

on creating an automated key feature prediction model to 

recommend features to CR submitters based on historical 

reports.  

Sabor et al. [11] introduced an approach to predict the 

severity of CRs using a combination of execution traces and CR 

categorical features (description, product, component, etc.). 

Koopaei et al. [6] introduced CrashAutomata to detect duplicate 

CRs using finite-state machines. The authors created a 

representative model using historical CRs and a combination of 

n-grams of varying lengths and automata to depict stack traces. 

In a follow-up study, Koopaei et al. [7] improved 

CrashAutomata by introducing the use of HMMs. The new 

approach resulted in an increase of the true positive rate by 10% 

over CrashAutomata. Sabor et al.  [12] presented Durfex, a 



feature reduction technique for automatic prediction of 

duplicate reports using execution traces. The authors used a 

trace abstraction mechanism that replaces stack traces of 

function calls with traces of packages. 

The analysis of crash/bug reports has been an active 

research topic for the last decade. Techniques that can reduce 

or predict the time it takes to fix crashes are needed to reduce 

the maintenance and operations overhead. Existing techniques 

focus on various aspects of bug and CRs. This paper 

complements these techniques by examining how runtime files 

including execution traces, logs, and profiling metrics, are used 

in an industrial setting to reduce the time and effort of solving 

crashes.  

VI. CONCLUSION AND FUTURE WORK 

We conducted an empirical study on the runtime files 

attached to Ericsson CRs. We used a dataset of CRs covering 

two years of product development. We showed that there are 

five type of files that are used to diagnose system failures. We 

found that logs and PMDs are the two runtime file types that 

are collected the most when excluding Node Dumps. We also 

found that all file types have an impact on the CR fixing time 

except PMDs. This raises questions on the usefulness of PMDs 

in diagnosing crashes. Perhaps, the time and effort spent on 

collecting and processing PMDs should be invested in activities 

that have a direct impact on crash fixing time.  Additionally, we 

found that traces and KPIs are used the least despite the 

extensive literature (e.g., [7][11]) that demonstrates their 

usefulness in crash diagnosis and repair tasks. We attributed 

this to the fact that these types of runtime data require external 

tools to generate and process their content. Further, we 

investigated whether we can predict if a CR should contain a 

file during the creation of the CR. This is important for reducing 

the time it takes to fix the CR. We used three machine learning 

algorithms – SVM, KNN and RF – and found that RF performs 

best with an F1-score of 84%. For future work, we intend to 

experiment with more CRs of different products. We will also 

work towards developing precise guidelines for the collection 

of runtime files that add value to the CR handling process. We 

will also set the ground for building a recommendation system 

for file attachment to optimize the diagnosis of crashes and 

failures. 
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