

A Study on the Use of Runtime Files in Handling
Crash Reports in a Large Telecom Company

Komal Panchal

ECE, Concordia University

Montreal, Canada
komal.panchal@concordia.ca

Fatima Ait-Mahammed

ECE, Concordia University

Montreal, Canada
fatima.aitmahammed@mail.concordia.ca

Abdelwahab Hamou-Lhadj

ECE, Concordia University

Montreal, Canada
wahab.hamou-lhadj@concordia.ca

Zhongwen Zhu

Ericsson
Montreal, Canada

zhongwen.zhu@ericsson.com

Salman Memon

Ericsson
Montreal, Canada

salman.memon@ericsson.com

Alka Isac
Ericsson

Montreal, Canada
alka.isac@ericsson.com

Pragash Krishnamoorthy
Ericsson

Ottawa, Canada
pragash.krishnamoorthy@ericsson.com

Abstract—To minimize service downtime and ensure high
system availability, Telecom companies must react quickly to
failures and crashes of network services and applications. In this
study, the focus is on the crash reporting process that normally
goes through different levels of service support in a telecom
company. To speed up this this repairing or recovering process,
service support engineers and product developers rely on the
analysis of runtime files (logs, traces, performance metrics, etc.)
that are attached to crash reports submitted when an incident
occurs. However, there is no clear understanding how these files
are used and what their impact on the crash fixing time is. In this
paper, we conduct an empirical study at Ericsson to study the use
of runtime files in the crash resolution process. We tackle various
research questions that revolve around the proportion of runtime
files in a selected set of crash reports, the relationship between the
severity of crashes and the type of files they contain, and the
impact of different file types on the time to fix the crashes. We also
study the prediction of the attachment of runtime files to crash
reports during the creation of the reports. Our ultimate goal is to
figure out how to collect enough information in the crash report
system for support engineers and product developers to resolve
the failures occurring in telecom network quickly and efficiently.

Keywords—Network services and applications, Telecom systems,
crash reports, empirical study in industry, quality of service.

I. INTRODUCTION

The handling of system crashes efficiently is a critical

activity for ensuring high quality of service and system

availability. This is particularly important for large Telecom

companies such as Ericsson where system operations tasks are

inherently complex because of the large client base the company

serves. The company needs to react quickly when crashes are

reported. Failing to do so may lead to increased operational

costs.

In a typical larger telecom company, the support service is

provided through a multi-level support organization with a

three-level support as the common practice. The handling of

system crashes is triggered when a crash occurs, at which point

a Level 1 support operator creates a crash report (CR) that

contains information about the incident such as a description, the

affected system components, the severity of the crash, and

runtime data that are generated during the crash. The CR is saved

in a CR database. The Level 1 support operator sends a

notification to a Level 2 support engineer who retrieves and

reviews the CR and performs root cause analysis to identify the

reasons behind the incident and potentially provide a solution. A

Level 2 support engineer may realize that the CR does not

contain sufficient information and sends a request back to Level

1 support to generate the missing data. This cycle is repeated

several times until the support engineer is satisfied with the

detailed description of the incident. If the solution requires

modifications to the source code, the CR is forwarded to a Level

3 support line to be reviewed by a product designer. Similar to

the previous situation, the software designer may engage in a

cycle of interactions with the service support teams to get more

detailed information about the incident that would help uncover

the root cause of the problem and provide a fix.

These repeated cycles of interactions between the various

support lines often delay the provision of fixes, which may cause

inefficiencies and high costs. With the help of Telecom domain

experts from Ericsson, it shows that key information that

product designer and service support engineer often request

consists of files that contain runtime data about the system.

These files are attached to CRs and used to perform root cause

analysis. There are different type of runtime files including logs,

traces, and profiling metrics [1]. However, it is not always clear

what types of files are needed and what the impact of including

these files on the CR fixing time is.

There exist studies that aim to improve the CR handling

process by examining CR attributes including runtime data.

Bettenburg et al. [3] conducted a user study and found that

developers consider execution traces to be one of the most useful

information that developers request when fixing a crash. Sabor

et al. [11] introduced an approach to predict the severity of CRs

using a combination of execution traces and other CR features.

Koopaei et al. [7] proposed a method based on Hidden Markov

Models (HMMs) and execution traces to predict duplicate CRs.

Existing studies, however, do not specifically examine the role

of runtime files in the CR resolution process. In addition, most

studies are evaluated using open source systems. In this paper,

we conduct an empirical study at Ericsson to understand the role

of runtime files in the CR handling process. More particularly,

we aim to answer the following four research questions:

• RQ1: What is the distribution of various types of runtime
files that are attached to CRs?

• RQ2: What is the relationship between the severity of CRs
and the type of files they contain?

• RQ3: What is the impact of different file types on the CR
fixing time?

• RQ4: Can we predict if a CR should have a file attached to
it before the CR is relayed to other lines of support?

Answering RQ1, RQ2, and RQ3 help us understand the files
that are attached and set up the priority to the type of files that
are required for the crash report. The answer to RQ4 may lead
to the development of a recommendation system that would
suggest to the first support line the files they should include
when submitting a CR. The goal would be to reduce the number
of interactions between the distinct lines of support, which
should result in a more optimized CR resolution process. To our
knowledge, this is the first study that focuses solely on the
importance on various runtime files in the processing of CRs of
an industrial Telecom system. The outcome of this study should
shed light on the role of runtime files in resolving crashes from
an industrial perspective, contributing further to the
advancement of the field of software maintenance, evolution,
and operations.

II. STUDY SETUP

A. Procedure and Dataset

Figure 1 shows the process of collecting the data and
addressing the research questions RQ1, RQ2, and RQ3. RQ4,
the prediction of runtime file attachments, is discussed in
Section III. First, we extract data from the Ericsson CR database.
We then mine the reports to extract the files attached to the CRs.
The input of domain experts is needed throughout the process to
help understand the data and interpret the results.

The dataset we used in this study consists of CRs that cover
almost two years of development of an Ericsson product (The
exact number of CRs is not provided for confidentiality
reasons). These CRs went through different lines of support until
they were fixed. With the help of Ericsson experts, we wrote
queries to extract CR information such as the CR heading,
description, severity, the submitter, as well as the attached files.
For each file, we retrieved the file name, the date at which the
file was attached to the CR, the user who submitted the file, and
the file size. Note that one CR may contain more than one file
attached to it. In our dataset, the total number of files is five
times larger than the number of CRs. We identified five types of
files:

• Node Dumps (NDs): A ND file is required whenever a
system crash is reported in a CR. It contains the output of a
set of commands that are executed on the node, providing
with a snapshot of the state of the node during the crash. This
file is important for understanding what went wrong. The
content of a ND may, for example, help spot configurations
issues by the first line of support, eliminating the need to
relay the CR to other lines of support.

• Key Performance Indicators (KPIs): A KPI file provides
information on the performance of the system through
performance counters. For example, a KPI file may show the
degradation of the network, which can help network
operators identify the cause of the problem.

• Execution traces: They are used to find a causal relationship
between the system artifacts. Examples includes traces of
function calls, inter-process communication traces,
distributed traces, etc. Tracing requires instrumentation of
the system, which consists of insertion of probes in places of
interest. Using a trace, an analyst can replay the execution of
the system to understand and diagnose the problem.

• User-defined Logs: Complex telecom systems such as the
ones developed at Ericsson are composed of many hardware
and software platforms. It is common for developers to insert
logging statements that would help them later diagnose
challenging problems. A logging statement typically
contains a timestamp, a process id, a verbosity level, a
logging function, a log message, and variables. Developers
go through log messages to debug the system and perform
root cause analysis.

• Post-mortem Dumps (PMDs): They contain whatever data is
available in memory during the crash, including the
processes that were executing at the moment of the incident,
the data exchanged between processes, etc. PMDs are rarely
structured and may contain data related to multiple processes
or even components.

Fig. 1. Data collection and analysis process

B. RQ1: What is the distribution of various types of runtime
files that are attached to CRs?

Objective: The answer to this question can help product design
and support team understand the type of files that are used the
most and should therefore be prioritized. This is because logs
and traces are known to be large files [9] and generating and
processing these files infer overhead and cost. Collecting all
attached file types for each incident may turn out to be
unproductive. One needs to develop parsers and analysis tools
that are tailored towards a particular type of file.

Variables: For each file type Ti ∈{ND, KPI, Log, Trace,
PMD}, we use as variables the number of files of type Ti, the
number of CRs that contain files of type Ti. We also need the
total number of files and CRs to compute the ratios.

Method: To answer this research question, we use descriptive
statistics [14]. More precisely, we measure the ratio of the
number of files of type Ti to the total number of files and the
ratio of the number of CRs that contain logs of file type Ti to
the total number of CRs.

C. RQ2. What is the relationship between the severity of CRs
and the file types they contain?

Objective: In this research question, we examine if there is a
relationship between the severity of the CRs and the type of
files they contain. The severity of a CR reflects the impact of
the fault on the system functionality. The severity can be “A”,
“B”, or “C” with “A” being the most severe CRs. We want to
establish whether the severity of a CR impacts the type of files
that are attached to this CR. We state the following null
hypothesis:

• H01: The type of files that is attached to a CR is not
dependant on the CR severity?

Variables: We use as variables the number of CRs with file
type Ti and the severity level of the CRs (A, B, C). Note that we
exclude node dumps from this analysis because node dumps
appear in all CRs.

Method: To answer the research question, we build the
contingency table with two qualitative variables, the CR
severity (A, B, C) and the CR file type. In each cell, we include
the number of CRs that contain only files of that type. The last
column contains the number of CRs that contain more than one
file type. We use the Pearson’s Chi-squared independence test
[14] to accept or reject the null hypothesis H01. The test is
commonly used to examine the relationship between two
qualitative variables, which are in our study, the CR severity
and the CR attached file type. The result is considered
statistically significant at alpha = 0.05. If p-value < 0.05 then
we reject the null hypothesis H01 and conclude that the severity
of the CRs and the types of files attached to the CRs are
dependent.

D. RQ3: What is the impact of file types on the time to fix the

CRs?

Objective: For this question, we analyze the impact of file
types on the time it takes to solve the CR. The fixing time of a
CR is measured in days. The answer to this question is useful
to understand whether including a certain file type would
improve the resolution process of CRs. For example, knowing
that a CR that contains a PMD takes less time than a CR that
does not have a PMD would encourage Ericsson designers to
collect PMDs if they are available when a crash occurs. To
answer this question, we run a statistical test for each file type

Ti ∈{ND, KPI, Log, Trace, PMD}. We state the following null
hypothesis:

• H02: There is no statistically significant difference
between the fixing time of CRs with file type Ti and that
of CRs that do not have files of type Ti.

Variables: We use as variables the fixing time of a CR, which

is in days and the file type Ti ∈{ND, KPI, Log, Trace, PMD}.
Unlike the previous question, we do include node dumps in this

question. In other words, we want also to know if the presence
of a node dump file impacts the fixing time.

Method: We compute the non-parametric Mann-Whitney test
[14] to compare the CR fixing time with respect to the file type
Ti attached to the CR and analyze. We use the Mann-Whitney
test because we cannot assume that the data follows a normal
distribution. The result of the test is considered as statistically
significant at alpha = 0.05. Therefore, if p-value < 0.05, we
reject the null hypothesis H02 and conclude that the fixing time
of CRs with file type Ti is significantly different from the fixing
time of CRs without file type Ti.

III. RESULTS

A. RQ1: What is the proportion of each type of runtime files

(i.e., traces, logs, profiling metrics, etc.) in our dataset?

Figure 2 shows the percentage of each file type in our dataset.
As we can see, NDs are the most files that are collected. This is
expected since NDs contain information about nodes after a
crash occurs. It is also common to have multiple ND files for
one CR.

Fig. 2. Percentage of file types in our dataset

Fig. 3. Percentage of CRs regarding the enclosed file type.

PMDs and Logs occupy the second and third position with
19.67% and 15.88% of all the file types. Traces and KPI files
are used the least. This could be due to the fact that these two
types of files incur an additional overhead to generate then. For
example, tracing requires an external instrumentation tool and
settings, which may deter users from generating this type of file.

Trace,

8.08%

PMD,

19.67%

Log,

15.88%

KPI, 5.70%

ND, 50.67%

KPI,

13.75%

Log,

30.95%

PMD,

41.74%

Trace,

13.56%

The same applies to KPI files that contain profiling metrics, and
necessitate the use of profiling tools.

Figure 3 shows the percentage of CRs regarding the type of
files they contain. Note that we excluded Node Dumps from
this analysis since Node Dumps are collected for every crash.
The figure shows that PMDs and Logs are the most used files,
which clearly supports the idea that traces and KPIs receive less
attention in problem diagnosis tasks.

B. RQ2. What is the relationship between the severity of CRs

and the file types they contain?

Table 1 shows the percentage of each file type with respect to
severity. Note that we show the percentages instead of the real
values for confidentiality reasons. To compute the Chi-square
test, we used the real value and not the percentages. We found
that the p-value is < 0.00001. The result is significant at p-value
< 0.05. Therefore, we reject the null hypothesis H01 and
conclude that there is a relationship between the CR severity
and the file types.

TABLE 1. CONTINGENCY TABLE FOR RQ2

Severity KPI Log Trace PMD
More than
one type

A 3.57% 37.50% 7.14% 32.14% 19.64%

B 7.78% 14.39% 7.34% 41.56% 28.93%

C 19.64% 21.43% 5.36% 19.64% 33.93%

Fig. 4. Percentage of file types attached to CRs with respect to CR severity.

Figure 4 shows the distribution of the file types based on the

CR severity. The data varies depending on the severity. The

figure shows that the most severe CRs (CR with severity “A”)

have logs as the most important files. This may be explained by

the fact that logs contain information introduced by developers

and therefore can be very useful in debugging these systems. It

should be noted that CRs with severity “A” are almost always

sent to developers to provide fixes. CRs of severity “B” rely on

PMDs and more than one type to help diagnose the problems.

The least severe CRs contain a combination of all file types. We

found that in all CRs, traces seem to receive the least attention.

C. RQ3: What is the impact of file types on the time to fix the

CRs?

Table 2 shows the results of the statistical tests. As we can
see from the table, there is a statistically significant difference
between CRs that contain Node Dumps and those that do not in
terms of the fixing time. The same applies to KPI, Log, and
Trace file types. The corresponding p-values are less than 0.05.
However, we did not find a statistical difference between CRs
with PMDs and those that do not.

TABLE 2. RESULTS OF STATISTICAL ANALYSIS ON THE IMPACT OF FILE TYPES

ON CR FIXING TIME

Log Type p-value H0

Node Dumps 0.006273 < 0.05 Reject

KPI 0.000293 < 0.05 Reject

Log 8.761203e-05 < 0. 05 Reject

Trace 0.0102392 < 0.05 Reject

PMD 0.6895507 > 0.05 Do not reject

In other words, the fact that a CR contains a PMD does not
necessarily result in a faster resolution. This may be due to the
fact that PMDs may contain a large amount of unstructured data
related to different parts of the system. Interpreting this data is
usually a challenging task. Ironically, in RQ1, we found that
PMDs are the second most collected runtime data after node
dumps. Based on this finding, we suggest to review the
relevance of PMDs for fixing CRs for improved efficiency and
cost saving. The current practice of collecting PMDs whenever
a crash occurs may not be productive.

IV. PREDICTION OF ATTACHMENT OF RUNTIME FILES

In this section, we answer RQ4: Can we predict if a CR

should have a file attached to it before the CR is relayed to other

lines of support? Predicting if a file needs to be attached during

the creation of a CR is an important step towards reducing the

time and effort it takes to solve the CR. We can implement a

recommendation system that suggests to the CR reporter

whether a file should be attached or not. This will reduce the

number of interactions between the various lines of supports.

To answer this question, we use machine learning
techniques. We build a training model that learns from past CRs
that can later be used in the second phase to predict the
inclusion of attached files (the inference phase). We discuss the
feature extraction, training and testing phase, as well as the
evaluation metrics in the next subsection.

A. Feature Extraction

With the help of Ericsson domain experts, we selected the
following features of crash reports to use for classification.

• Submitter Priority: It is the severity of the defect and the
CR’s priority (i.e., A, B, or C).

• Priority Rate: This is an internal priority assigned to the
CR.

• Observation Fault: This field represents the fault type.

• Faulty Product Design Responsible Office: This field
represents the team within Ericsson that is responsible for

the defective product. This field changes as the CR is
reassigned over the course of its life.

• Node Level Name: The node level product name.

• Node Level Product Number: The product number at the
node level that is affected by the failure.

• Faulty product: This fields refers to the faulty product.

• Product affected system area: This field represents the
functionality that is affected by the failure.

B. Training and Testing

We use three machine learning algorithms to predict
whether a CR should have a file attached to it. These are
Support Vector Machine (SVM), Random Forest (RF), and K-
Nearest Neighbor (KNN). SVM is a classification algorithm
that uses a hyperplane to differentiate different classes of
examples in high-dimension space. KNN is a lazy learning
algorithm based on instances. KNN returns the K most similar
instances to a feature vector when given one. As a result, the
method provides the K closest relevant instances based on the
value of (K), which is a fixed variable that defines the number
of returned neighbours. RF is a machine learning technique
based on the decision tree algorithm. The model was created
using a logic-based approach.

We use ten-fold cross-validation to test the model. This
method randomly shuffles the dataset and divides it into 10
folds. The training is done using 90% of the data, which results
in a model that is later tested with the remaining 10%. The
approach is repeated 10 times by choosing different folds each
time. The accuracy of the classification algorithm is the average
accuracy obtained using the 10-fold cross-validation.

C. Evaluation Metrics

We used precision, recall, and F1-score to assess the
performance of the algorithms. These metrics are used
extensively in the literature, which are calculated as follows:

• Precision = TP/(TP + FP).

• Recall = TP/(TP + FN).

• F1_score = 2*Precision*Recall / (Precision + Recall)

Where TP (True Positives) is the number of CRs that are
classified properly. FP (False Positives) represents the number
of CR for which the algorithm wrongly predicted that an
attachment is needed. FN (False Negatives) represents the
number of CRs that have file attached files, but the algorithm
missed.

D. Results

Table 3 shows the results of applying SVM, RF, and KNN.
All algorithms perform relatively well. However, Random
Forest yields best results with an F1-score of 84%. The
precision and recall are 81% and 87.5%, respectively. Our
comparative study of the different classifications techniques
reveals that RF outperforms the other techniques when
predicting the presence of files in CRs. These results are very
promising and suggest that we can develop a recommendation
system that predict if a file should be attached to a CR, which

may reduce the number of interactions between the various
lines of support.

TABLE 3. PREDICTION OF CR RUNTIME FILE ATTACHMENTS

Evaluation
Metric

SVM RF KNN

Precision 75% 81% 76.8%

Recall 88.5% 87.5% 88%

F1-Score 81% 84% 82%

V. RELATED WORK

Maiga et al. [8] conducted an empirical study using Ericsson

data to better understand how internal and external CRs are

handled. Internal CRs refer to CR that are reported internally

by testing teams, whereas external CRs refer to crashes that

occur in the released products. The study focused on the

percentage of internal vs. external CRs, time taken to fix each

type of CR, and time to assign the CRs to developers.

Zimmermann et al. [13] showed that the main issue that

developers face when addressing bug and crash reports is

incomplete information. By surveying developers and users, the

authors synthesized the information that makes a good report.

The authors went on creating the CUEZILLA recommendation

tool to assess the quality of submitted reports and make

recommendations on how to enhance them.

Bhattacharya et al. [4] conducted an empirical study to learn

more about the bug fixing procedure in Android apps and

platforms and found that most Android app bug reports are of

high quality, with lengthy textual descriptions, steps to

reproduce errors, and explanations of expected output. A

lengthy description usually indicates a high-quality bug report,

which aids in the fast resolution of the bug.

An et al. [2] proposed an approach for mining information

from bug and crash reports while highlighting the challenges of

existing techniques. They looked at the problem of user

identification. The authors also discussed the challenges of

mapping crash reports to their corresponding bugs to

understand the distribution of crash-related bugs in the user

base. Rastkar et al. [10] examined if current conversation-based

automatic summarizers can be used to summarize bug and crash

reports. Karim [5] performed a research study to identify CR

features that submitters often overlook. Then, the authors went

on creating an automated key feature prediction model to

recommend features to CR submitters based on historical

reports.

Sabor et al. [11] introduced an approach to predict the

severity of CRs using a combination of execution traces and CR

categorical features (description, product, component, etc.).

Koopaei et al. [6] introduced CrashAutomata to detect duplicate

CRs using finite-state machines. The authors created a

representative model using historical CRs and a combination of

n-grams of varying lengths and automata to depict stack traces.

In a follow-up study, Koopaei et al. [7] improved

CrashAutomata by introducing the use of HMMs. The new

approach resulted in an increase of the true positive rate by 10%

over CrashAutomata. Sabor et al. [12] presented Durfex, a

feature reduction technique for automatic prediction of

duplicate reports using execution traces. The authors used a

trace abstraction mechanism that replaces stack traces of

function calls with traces of packages.

The analysis of crash/bug reports has been an active

research topic for the last decade. Techniques that can reduce

or predict the time it takes to fix crashes are needed to reduce

the maintenance and operations overhead. Existing techniques

focus on various aspects of bug and CRs. This paper

complements these techniques by examining how runtime files

including execution traces, logs, and profiling metrics, are used

in an industrial setting to reduce the time and effort of solving

crashes.

VI. CONCLUSION AND FUTURE WORK

We conducted an empirical study on the runtime files

attached to Ericsson CRs. We used a dataset of CRs covering

two years of product development. We showed that there are

five type of files that are used to diagnose system failures. We

found that logs and PMDs are the two runtime file types that

are collected the most when excluding Node Dumps. We also

found that all file types have an impact on the CR fixing time

except PMDs. This raises questions on the usefulness of PMDs

in diagnosing crashes. Perhaps, the time and effort spent on

collecting and processing PMDs should be invested in activities

that have a direct impact on crash fixing time. Additionally, we

found that traces and KPIs are used the least despite the

extensive literature (e.g., [7][11]) that demonstrates their

usefulness in crash diagnosis and repair tasks. We attributed

this to the fact that these types of runtime data require external

tools to generate and process their content. Further, we

investigated whether we can predict if a CR should contain a

file during the creation of the CR. This is important for reducing

the time it takes to fix the CR. We used three machine learning

algorithms – SVM, KNN and RF – and found that RF performs

best with an F1-score of 84%. For future work, we intend to

experiment with more CRs of different products. We will also

work towards developing precise guidelines for the collection

of runtime files that add value to the CR handling process. We

will also set the ground for building a recommendation system

for file attachment to optimize the diagnosis of crashes and

failures.

VII. ACKNOWLEDGMENT

We would like to thank the domain experts at Ericsson for

their assistance in collecting the data and examining the results.

We are also grateful to MITACS, and Ericsson Global AI

Accelerator (GAIA) for supporting this study.

REFERENCES

[1] L. Alawneh, A. Hamou-Lhadj, "Execution Traces: A New
Domain that Requires the Creation of a Standard Metamodel,"

Book Series on Communications in Computer and Information
Science, Book on Advances in Software Engineering, Springer
Berlin/ Heidelberg, pp. 253-263, 2009.

[2] L. An and F. Khomh, "Challenges and Issues of Mining Crash
Reports," in Proc. of the IEEE 1st International Workshop on
Software Analytics (SWAN), pp. 5-8, 2015.

[3] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T.
Zimmermann, “What makes a good bug report?,” in Proc. of the
16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE'16), pp. 308-318, 2008.

[4] P. Bhattacharya, L. Ulanova, I. Neamtiu and S. C. Koduru, "An
Empirical Analysis of Bug Reports and Bug Fixing in Open
Source Android Apps," in Proc. of the 17th European
Conference on Software Maintenance and Reengineering
(CSMR'13), pp. 133-143, 2013.

[5] M. R. Karim, "Key Features Recommendation to Improve Bug
Reporting," in Proc. of the International Conference on Software
and System Processes (ICSSP), pp. 1-4, 2019.

[6] N. E. Koopaei, A. Hamou-Lhadj, “CrashAutomata: An
Approach for the Detection of Duplicate Crash Reports Based
on Generalizable Automata,” in Proc. of the 25th Annual
International Conference on Computer Science and Software
Engineering (CASCON'15), pp. 201–210, 2015.

[7] N. E. Koopaei, S. Islam, A. Hamou-Lhadj, and M. Hamdaqua,
“An Effective Method for Detecting Duplicate Crash Reports
Using Crash Traces and Hidden Markov Models,” in Proc. of the
26th nnual International Conference on Computer Science and
Software Engineering (CASCON'16), pp. 75–84, 2016.

[8] A. Maiga, A. Hamou-Lhadj, M. Nayrolles, K. K. Sabor and A.
Larsson, "An empirical study on the handling of crash reports in
a large software company: An experience report," in Proc. of the
31st IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 342-351, 2015.

[9] A. V. Miranskyy, A. Hamou-Lhadj, E. Cialini, A. Larsson,
"Operational-Log Analysis for Big Data Systems: Challenges
and Solutions," IEEE Software, vol. 33, no. 2, pp. 52-59, 2016.

[10] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic
summarization of bug reports,” IEEE Transactions on Software
Engineering, vol. 40, no. 4, pp. 366–380, 2014.

[11] K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic
prediction of the severity of bugs using stack traces and
categorical features,” Information and Software Technology,
vol. 123, 2020.

[12] K. K. Sabor, A. Hamou-Lhadj, and A. Larsson, “DURFEX: A
feature extraction technique for efficient detection of duplicate
bug reports,” in Proc. of the 2017 IEEE International Conference
on Software Quality and Reliability (QRS'17), pp. 240–250,
2017.

[13] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter
and C. Weiss, "What Makes a Good Bug Report?" IEE
Transactions on Software Engineering, vol. 36, no. 5, pp. 618-
643, 2010.

[14] Peter C. Bruce. Introductory Statistics and Analytics: A
Resampling Perspective. Wiley; 1st edition, 2014.

.

