
A UML-Based Domain Specific Modeling Language

for the Availability Management Framework

P. Salehi, A. Hamou-Lhadj, P. Colombo,

F. Khendek

Electrical and Computer Engineering Department

Concordia University

Montréal, Canada

{pe_saleh,abdelw,colombo,khendek}@ece.concordia.ca

M. Toeroe

Ericsson Inc.

Montréal, Canada

Maria.Toeroe@ericsson.com

Abstract— The Service Availability Forum (SA Forum) is a

consortium of several telecommunications and computing

companies that defines standard solutions for high availability

platforms. One of the most important SA Forum services is the

Availability Management Framework (AMF) which is

responsible for managing the availability of an application

running under its control. To achieve this, AMF requires a

complete configuration, which consists of several entities

organized according to AMF rules and constraints. In this

paper, we argue that AMF concepts form a domain for which a

domain-specific modeling language can greatly facilitate the

generation, analysis and the management of AMF

configurations. We define such a language by extending UML

through its profiling mechanism and we implement it. More

important, we discuss the challenges and the lessons learned in

the course of this project.

Keywords- High availability; Availability Management

Framework, Configurations; Domain-specific modeling

languages; UML profiles.

I. INTRODUCTION

The growing reliance on computing platforms has led to
an increase in the customer’s demand for robust and safe
systems. For such systems, the requirement of providing
services with minimal to no interruptions has become
essential. The development of highly available systems and
applications has been investigated for several years and
several solutions have been proposed (e.g. [1]). However
these are proprietary solutions, and thus hinder the
portability of the applications.

The Service Availability Forum (SA Forum) [2] is a
consortium of telecommunications and computing
companies working together to define and standardize high
availability solutions. SA Forum has developed the
Application Interface Specification (AIS) [3] to support the
development of Highly Available (HA) applications. The
Availability Management Framework (AMF) [4] is among
the services defined in AIS. AMF is responsible of managing
the availability of the services provided by an application. It
manages the redundant components of an application and
can dynamically shift the workload from the faulty
components to the healthy ones. AMF requires a complete
configuration of the application. This configuration consists
of a set of logical entities organized according to rules and

constraints defined in the AMF specification [4]. AMF
concepts form a domain for which a domain-specific
modeling language (DSML) [5] can greatly facilitate the
generation, analysis, and the management of the
configurations.

With a new UML-based DSML for AMF, one can
benefit from the advantages of a domain specific modeling
language (e.g. usability, reuse & conservation of domain
knowledge and ease of communication) as well as from the
advantages associated with UML (e.g., standard design
notation, tools support). However, UML is a general purpose
language; it is far too general to capture the concepts in the
AMF specification directly. Therefore, we decided to extend
UML by defining UACL (UML-based AMF Configuration
Language), a UML profile for the modeling of AMF
configurations. This profile captures the complete and
comprehensive definitions of all the domain concepts, their
attributes, their relationships and the domain specific
constraints. UACL has been implemented using IBM RSA
[6] and represents an important contribution to the service
high availability community since it aims at enabling
different activities, such as the automatic generation of valid
AMF configurations, the validation of third party AMF
configurations and the analysis of nonfunctional
characteristics such as availability.

Throughout the development of the profile, we faced
several challenges due to a lack of a systematic approach for
creating profiles, especially for the mapping of the domain
concepts to UML meta-classes. In many situations, we have
found that there were many alternatives from which it was
not always obvious which one to choose. In addition, the use
of Object Constraint Language (OCL) [7] turned out to be
problematic, since most of the domain constraints needed
extensive OCL expressions that cross-cut several domain
contexts. Moreover, tools did not help either, and several
tools that we have tried did not provide sufficient guidance.
They also lacked ways to effectively validate the constraints.
These challenges are discussed along with the lessons
learned from the overall project, with the aim of contributing
to the modeling community with the results of this
experience.

The remaining part of this paper is structured as follows.
In Section 2, we briefly introduce the main concepts in the

Figure 1. An example of AMF configuration

AMF specification. We describe the methodology we have
used for the design of our profile, the domain model of the
profile as well as the description of the language and its
mapping to UML meta-model in Section 3. In Section 4 we
present the lessons learned and the applications of UACL,
followed by a review of related work in Section 5. We
conclude the paper in Section 6.

II. THE AMF CONFIGURATION DOMAIN

AMF [4] is part of the AIS middleware, responsible for
managing the availability of the services provided by an
application. AMF fulfills this responsibility by managing the
redundant components of an application by dynamically
shifting workloads of faulty components to the healthy
components. An AMF configuration for a given application
is a logical organization of resources that enables AMF to
perform workload assignments to provide service availability
[3]. An AMF configuration consists of two different set of
elements: AMF entities and AMF entity types.

The basic entity of an AMF configuration is the AMF
component, which represents a set of software/hardware
resources that can provide basic services. The workload
assigned to components is represented as component service
instances (CSIs). In order to combine the functionality of
several components into higher level services, the
components are logically grouped into service units (SU).
Similarly, components service instances are also aggregated
into higher level services that are referred to as service
instances (SIs). SUs are aggregated into logical entities
called service groups (SGs) in order to protect their services.
Using redundancy models, an SG protects a set of SIs that is
assigned (active or standby) to its SUs. When a particular SI
is assigned to an SU, its composing CSIs are assigned to the
components of this SU. An AMF application is the
combination of service groups. From a deployment
perspective, each SU is deployed on an AMF node and the
set of all AMF nodes forms the AMF cluster. However,

nodes can be grouped into smaller sets called node groups
which can act as host for SGs.

Fig. 1 shows an example of an AMF configuration. In
this example, a cluster is composed of two nodes (Node1 and
Node2). It hosts an application consisting of one service
group protecting two service instances in a 2N redundancy
model. The service group consists of two service units, SU1
and SU2, each composed of two components. The
distribution of the active and standby assignments is shown
in this figure. This assignment happens at run-time and not at
configuration time.

AMF entity types represent limitations and constraints
imposed on AMF entities. There is type object for each AMF
entity object except AMF clusters and nodes. The types are
derived from a vendor’s description of the application, which
is provided in the form of an Entity Type File[8].

III. BUILDING THE PROFILE

The definition of UACL is composed of two phases. The
first phase is concerned with specifying the domain model of
the profile, which formally describes the concepts of the
AMF domain, the relationships among them, as well as the
domain specific constraints. The second step consists of
mapping the AMF domain model to the UML meta-model
by defining a set of stereotypes, tagged values and
constraints. This phase requires identifying the most
appropriate UML concepts, represented as UML meta-
classes, which needs to be extended to support the AMF
domain concepts. The defined extension must : 1) be
complete by containing all the elements needed by the
domain; 2) not contradict or violate the UML meta-model; 3)
reuse meta-classes based on their semantics; 4) reuse as
many UML relationships between the stereotyped elements
as possible; 5) constrain the stereotyped elements to behave
according to the rules of the domain.

A. Defining the AMF domain model

The AMF domain model has been developed by studying
the AMF specifications and through constant interactions
with a domain expert. The AMF domain elements are
modeled as UML Classes. In addition, the relationships
among them are modeled through different types of UML
relationships. The constraints on the AMF domain model
elements have been specified using the OCL [7].

As discussed in the previous sections, AMF concepts are
classified into AMF entities and AMF entity types.
Accordingly, we group such concepts into two packages
named AMF Entity and AMF Entity Type. A further

classification distinguishes the entities that provide the
services (included in the Service Provider packages) from the
services themselves (in the Service package). Similarly, two
packages called Service Provider Type and Service Type
have been defined to capture the AMF entity types. In
addition, the AMF Entity package includes the Deployment
package, which contains elements corresponding to the
cluster and the nodes. There is no corresponding type
package for the deployment package since the deployment
entities are not typed. The following sections present the key
AMF model elements which have guided the design of the
UML extension for AMF.

Figure 2. AMF Component Categories

Figure 3. Service Unit and Service Group Categories

a) AMF Components and Component Types

Although AMF implicitly defined several categories of
components, they are represented in the AMF specification
as one aggregate element. We decided to classify AMF
components according to four key orthogonal criteria:
locality, service availability awareness (SA-awareness for
short), containment, mediation, and (see Fig. 2). The SA-
awareness criterion distinguishes the components that
implement the AMF APIs and directly interact with an AMF
implementation to manage service availability. SA-aware

components are further specialized using other criteria. The
containment criterion identifies the contained components
that do not run directly on an operating system but use an
intermediate environment, referred to as container
component, like a virtual machine (for example, to support
Java-like programs). Moreover, by using the mediation
criterion, the SA-aware components are also classified into
proxy and container components. Proxies are used to give
AMF control over hardware or legacy software, called
proxied components. Container components allow AMF
controlling the life-cycle of contained components. Finally,

the locality criterion distinguishes components that reside
within an AMF cluster from the external ones. External
components are also proxied to be controlled by AMF. The
majority of components managed by AMF are expected to
reside within the AMF cluster. The SA-aware components,
regardless of the other criteria (containment and proxy-based
mediation), are necessarily local. The local components
category also includes the non SA-aware components which
are either proxied or not proxied.

Unlike the component classification, our classification of
the component types does not take into consideration the
locality criterion. This is because the component type cannot
specify whether its components have to be outside or inside
of the AMF cluster. The component type class models the
types of the SA-aware, the proxied components, and the non-
proxied-non-SA-aware components. The SA-aware
component type is further specialized to model the type of
standalone components whose life cycle is managed directly
by the AMF. Moreover, a standalone component type is
further specialized into a proxy component type and a
container component type which are the types of the proxy
and container component, respectively.

b) SU, SG, SI, CSI and their Types

To provide a higher level service, components are
grouped into service units (SUs). We distinguish between
local and external SUs (see Fig. 3) based on whether or not
they contain local or external components. SUs are organized
into service groups (SGs) to protect services using different
redundancy models: 2N, N+M, N-Way, N-Way-Active and
No-redundancy. SGs are specialized based on the
redundancy models used to protect their SIs (see Fig. 3). The
original SG configuration attributes depicted in the AMF
specification have been re-organized according to their
relevance to the newly introduced SG classes. At the type
level, the AMF specification defines an attribute to
distinguish between the local and the external SU types. In
our domain model, we specialize the SUTypes into two
classes: MagicAmfLocalSUType and
MagicAmfExternalSUType. The SGType and
ApplicationType are the same as in the AMF specification as
there is no specific reason to specialize them. The component
service instance (CSI) and service instance (SI) entities are
captured in our domain model as shown in Fig. 4.

Figure 4. Component Service Instance and Service Instance

Figure 5. AMF Nodes, Node Groups, and Cluster

c) Deployment Entities

The cluster, the node and the node group represent part of
our model for the deployment entities (see Fig. 5). An AMF
cluster is a complete set of AMF nodes in the AMF
configuration. A node represents a complete inventory of the
SUs and, consequently, the corresponding components that it
hosts. A node group represents a set of nodes and is used for
the deployment of local SUs and SGs.

d) Domain Specific Constraints

We used OCL to describe the constraints on the AMF
domain model elements. These constraints govern both the
structure and the behavior of these entities. As an example of
a constraint definition, let us consider the definition of the
following property specified by the AMF specification: “the
only valid redundancy model for the SGs whose SUs contain
a container component is the N-Way-Active redundancy
model”. This is expressed in OCL in the context of the

container component category represented by the class
MagicAmfContainerComponent, and by using our specific
class for the SG associated with the N-Way-Active
redundancy model, MagicAmfN-WayActiveSG. We can
therefore easily capture this restriction in OCL as follows:

context MagicAmfContainerComponent

inv:

self.magicAmfLocalComponentMemberOf.

magicAmfLocalServiceUnitMemberOf.

 oclIsKindOf(MagicAmfN-WayActiveSG)

B. Mapping the AMF Domain Model to the UML Meta-

model

Once the domain model is completed, the second step in
designing a UML profile concerns the mapping of the
domain concepts to the UML meta-model. For this purpose,
one needs to proceed step-by-step through the full set of
domain concepts, identifying the most appropriate UML
meta-classes for each of them. Since UML 2.0 (the version
used in this work) supports inheritance relationship between
stereotypes, not all domain concepts need to be directly
derived from the corresponding meta-classes. Instead, some
of them can directly inherit from the newly created
stereotypes.

1) Mapping AMF Domain Model Concepts to UML

Meta-classes
This section presents the stereotypes for the previously

defined AMF domain entities and entity types. For each
stereotype a suitable meta-class is also presented.

a) Component

The component in AMF represents the encapsulation of
the functionality of software that provides the services. This
is similar to the concept of the component in UML, which is
defined as “a modular part of a system that encapsulates its
contents and whose manifestation is replaceable within its
environment” [9]. Therefore, we mapped the AMF
component to a UML component defining a new stereotype
called <<MagicSaAmfComponent>>. Similarly, a
stereotype is defined for each component category and is
indirectly mapped (through inheritance relationships between
stereotypes) to the Component meta-class.

b) Service Unit

Based on the definition of SUs in the AMF domain, an
SU is a logical entity that aggregates a set of components by
combining their individual functionalities to provide a higher
level service. From this perspective, one could see an SU as
a service provider, similar to a component, but at higher level
of abstraction. We therefore decided to map the SU to a
UML Component meta-class as well. The stereotype
<<MagicSaAmfSU>> is used to represent an SU. Local and
external SUs are represented using the stereotypes
<<MagicAmfLocalServiceUnit>> and
<<MagicAmfExternalServiceUnit>>.

c) Service Group

One of the key characteristics of an SG is the grouping of
SUs. At first glance UML package might seem to be a good
meta-class candidate for SG. However, since an SG not only
has the ability to contain other elements but also can offer a
service, we decided to map it to the Component UML meta-
class. The service offered by an SG can be seen as the ability
to protect SIs that can be provided by its SUs. The stereotype
<<MagicSaAmfSG>>, was created to represent an SG. A
stereotype has also been created for each SG category, which
derives from <<MagicSaAmfSG>>.

d) Application

An application is a logical entity that contains one or
more service groups. An application combines the
functionalities of the constituent service groups in order to
provide a higher level service. Similar to a service unit, a
UML Component has been found to be the most suitable
base class for the stereotype designed to represent an AMF
application (<<MagicSaAmfApplication>>).

e) Component Service Instance (CSI)

CSIs are representing attributes for services which are
going to be provided by components. These attributes
describe the characteristics of the workload which is going to
be assigned to the component at run-time. In UML, “a class
describes a set of objects that share the same specifications
of features, constraints, and semantics”[9], and thus, the
meta-class Class is semantically the closest meta-class to a
CSI. As a result, it is used as the base class for the stereotype
that has been defined for CSI (<<MagicSaAmfCSI>>).

f) Service Instance (SI)

An SI is an aggregation of all the CSIs to be assigned to
the individual components of a service unit in order to
provide a particular service. In fact, an SI shares most of the
characteristics of the CSI but at a higher level of abstraction.
Consequently, similar to CSI, the meta-class Class can be
used as a base class for the stereotype defined for an SI
(<<MagicSaAmfSI>>).

g) Node

A node in the AMF domain is a logical entity that
represents a complete inventory of SUs and their
components. We mapped the AMF node to the UML meta-
class Node since, similar to AMF, a node in UML “is a
computational resource upon which artifacts may be
deployed for execution” [9]. We created the stereotype
<<MagicSaAmfNode>> to refer to an AMF node.

h) Cluster and NodeGroup.

Based on the UML specification, “a package is used to
group elements, and provides a namespace for the grouped
elements” [9]. Moreover, the complete set of AMF nodes in
the AMF configuration defines the AMF cluster. The role of
an AMF cluster and node group is the grouping of different

AMF nodes. Therefore, the meta-class Package seems to be
the most appropriate base class for the AMF cluster and node
groups. The stereotypes <<MagicSaAmfCluster>> and
<<MagicSaAmfNodeGroup>> are used to refer to these two
entities.

i) AMF Entity Type elements

In general, the type of an entity describes the restrictions
that should be respected by this entity. All entities of the
same type share the attribute values defined in the entity
type. Some of the attribute values may be overridden, and
some other ones may be extended by the entity at

configuration time. In other words, the type is the
generalization of similar entities. For example, the service
group type is a generalization of similar service groups that
follow the same redundancy model, provide similar
availability, and are composed of units of the same service
unit types.

Considering the fact that, in UML, the meta-class Class
describes a set of objects that share the same specifications
of features, constraints, and semantics [9], it can be used as a
base class for all AMF entity types.

Figure 6. Relationship between SI and CSI

2) Mapping the AMF relationships to the UML Meta-

model
In this section, we present the stereotypes that have been

defined to capture the relationships among AMF entities,
represented as UML stereotypes. We distinguish between six
categories of relationships between domain concepts:

 Provide: This relationship is used between service
providers and service elements and represents the
capability to provide services.

 Type: It represents the relationship which is used
between AMF entities and their type (e.g. the
relationship between component and component
type).

 Group: It represents the relationship which is used
between grouping and grouped elements (e.g. the
relationship between an SU and its enclosing
components).

 Protect: It represents the relationship which is used
between a service group and service instances in
order to protect the services they represent. In other
words, this represents the actual service provision.

 Deploy: It represents the relationship which is used
for deployment purposes (e.g. between a service unit
and a node or between service group and a node
group).

 Member node: represents the relationship which is
used between a node and a cluster or a node group

A careful selection of meta-classes for our domain
concept related stereotypes allowed us to reuse many
associations in the UML meta-model for the aforementioned
relationships. Each association has been stereotyped
accordingly and mapped to either Association,
AssociationClass, or Dependency.

For example, both <<MagicSaAmfSI>> and
<<MagicSaAmfCSI>> stereotypes are mapped to the UML
meta-class Class and, since the meta-class Class inherits
indirectly from the meta-class Classifier in the UML meta-
model, there is an association between the classes Class and
Classifier called “nestedClassifier” which allows classifiers
to group other classifiers. We reused this association to
express the fact that an SI (represented as
<<MagicSaAmfSI>>) groups CSIs (represented as

<<MagicSaAmfCSI>>). Consequently, as shown in Fig. 6,
we defined the stereotype <<groups>> to capture the
relationship and map it to meta-class Association.

3) Specifying Constraints
This phase aims at ensuring that the UML stereotyped

base meta-classes do not have attributes, associations, or
constraints that conflict with the semantics of the domain
model. If this is the case, UML itself needs to be restricted in
order to match the domain related semantics and to guarantee
the consistency of the profile with the semantics of the
domain model. To this end, a set of constraints were defined.
For example, the previously defined stereotype <<groups>>
can be used only between specific AMF entities. However,
UML has the capability of using association between all
sorts of UML elements, including the meta-classes Class,
Component, and Node. Therefore, without any constraints it
would be possible to use the <<groups>> relationship to
group component service instances into an AMF application,
which is semantically invalid with respect to the AMF
domain. Consequently, different constraints have been
defined and expressed in OCL to restrict the UML meta-
model in the context of AMF. For instance, the following
constraint restricts the UML meta-model to use the
<<groups>> stereotype between component and service
unit:

context <<groups>>

 inv : (self.endType()->

at(1).oclIsKindOf(MagicSaAmfComp)

or

self.endType()->

at(1).oclIsKindOf(MagicSaAmfSU))

and

(self.endType()->

at(2).oclIsKindOf(MagicSaAmfComp)

or

self.endType()->

at(2).oclIsKindOf(MagicSaAmfSU))

and

(self.endType()->

at(1).oclIsKindOf(MagicSaAmfComp)

implies

 self.endType()->

 at(2).oclIsKindOf(MagicSaAmfSU))

and

 (self.endType()->

at(2).oclIsKindOf(MagicSaAmfComp)

implies

 self.endType()->

 at(1).oclIsKindOf(MagicSaAmfSU))

Another type of constraint is based on the AMF domain
model: AMF components cannot inherit from other
components, but the UML meta-model allows inheritance
between elements that are mapped to the UML meta-class
Component. Therefore, other constraints are required to
restrict the standard UML elements to what is allowed by

AMF. The following constraint restricts the inheritance on
components.

context <<MagicSaAmfComponent>>

inv : self.general()->isEmpty()

IV. LESSONS LEARNED AND APPLICATIONS OF UACL

A. Lessons learned

After the analysis of the AMF domain and the design of
the domain model, the first issue we faced was how to define
the UACL language.

Although a UML profile may result in a less precise
language than a MOFbased one, we avoided a MOF based
solution as this suffers from a lack of tool support. The
advantages of UML profile far outweigh its drawbacks [10].
The second issue was whether to extend existing profiles or
to create a new one. We investigated existing profiles related
to dependability and availability. We targeted both OMG
standardized profiles, such as MARTE [11], SPT [12], and
QoS&FT [13], as well as the non-standardized profiles
reported in the literature, such as the DAM [14] profile and
the profile presented by Szatmári et al. in [15]. The
evaluation and analysis of these profiles were based on
different criteria:

1. The capability of the profiles’ constructs in capturing
the concepts and semantics of the AMF domain and
the complexity of extending these constructs when
needed. The main goal of this extension is to take
advantage of the profile features and reuse their
constructs as much as possible. If the concepts of the
AMF domain cannot be defined as a combination or
extension of the basic constructs of the profile, the
extension will be handled in the underlying UML
meta-model. This outweighs the benefits of the
extension. Most of the analyzed profiles turned out
to be unsuitable. For example, the concept of service
in the DAM profile addresses the description of the
service itself, while in the AMF domain, the service
is the description of attributes for the workload that
will be assigned to service providers at run-time. In
fact, there is a substantial distinction between the
concept of service in DAM and in the AMF domain.
Therefore, to capture this concept, we need to
directly refer to the UML meta-model and not go
through the DAM profile.

2. The implementation of the existing profiles. One of
the goals of this work is to develop a CASE tool to
support different activities, such as the design and
validation of AMF configurations. In the case of
extending existing profiles, we need to have access
to their implementation such as the XMI format that
serializes the profile model. We found that the non-
standard profiles do not provide open access to their
implementation. The implementation is available for
some of the standard OMG profiles (for instance, for
MARTE). However, due to the characteristics of the

AMF domain concepts, we could use only small
fractions of these implementations. At the same
time, building an extension requires importing and
handling the whole implementation package. This
may result in complexity at the tool development
phase as well as performance issues at run-time. For
instance, the run-time evaluation of newly defined
constraints of the new language may require the
evaluation of several constraints of the referred
profile.

Because of the characteristics of the AMF domain and
the fact that the required additional complexity does not
justify the very few benefits of a possible extension, we
decided to extend the UML meta-model instead of reusing
another profile and adapting it to AMF. As a result, the most
critical aspect of the design became the identification of
UML meta-classes for mapping purposes. More precisely,
we had to identify the most appropriate UML meta-classes to
extend in order to support the AMF domain concepts. To the
best of our knowledge, there is no systematic approach to
guide this process. Selic [16] proposes the separation of the
domain modeling phase and the mapping, but does not
provide any guidelines for this mapping. Other studies [17,
18] propose patterns which are based on few types of
relationships that may exist between domain elements and
the corresponding meta-classes. However these guidelines
focus on specific scenarios and do not provide a general
solution to the mapping problem. In other words, no “ready
to use” solution addresses the general issue of selecting the
most appropriate UML meta-class for a specific domain
element. Through the exercise of mapping AMF to UML, we
have identified and used the following criteria that can guide
an effective mapping process:

 Semantic alignment: given a domain concept, the
selected meta-class has to capture the semantics of
the domain concept. For our purpose, we have
compared each AMF domain concept (specified in
the domain model) with the UML elements in the
UML superstructure specification. For each
stereotype we found a set of possible options. For
instance, consider the selection of the proper meta-
class for a CSI. In the UML specification, a
Classifier is an abstract meta-class which is a
namespace whose members can include features. A
BehavioralClassifier is a specific type of Classifier
that may have an interface realization [9]. A
behavioral classifier seems to be a good candidate
for a CSI, since we can consider CSIs in terms of the
workload which AMF dynamically assigns to
components. However, it describes the
characteristics of the workload which will be
assigned to the component at run-time and not the
service itself. Therefore, the meta-class
BehavioralClassifier has been discarded. On the
other hand, in UML, “a class describes a set of
objects that share the same specifications of features,
constraints, and semantics”[9], and thus, the meta-
class Class is semantically closer to CSI.

 Compliance: This criterion aims at refining the
choice of UML meta-classes that are semantically
aligned with a particular domain concept. In fact, the
newly defined stereotypes must not contradict nor
violate the UML meta-model. For instance, based on
the UML specification [9] “An AssociationClass
cannot be defined between itself and something
else”. The <<MagicAmfCSIAttributeName>> in the
AMF domain model, for instance, has an association
to <<MagicAmfCSIAttribute>>. Therefore, we
cannot map both stereotypes to the meta-class
AssociationClass.

 Reuse: This criterion targets the refinement of the
choice of possible meta-classes for each stereotype.
The goal is to reuse as many UML relationships
between the stereotyped elements as possible in the
process of mapping to the UML meta-model.
Reusing the associations among the meta-classes
decreases the complexity of the design. Hence, if it
is required to have a relationship between two
stereotypes, it is better to reuse (if possible) the
existing relationships between the corresponding
meta-classes. For instance, in our profile
<<MagicSaAmfComp>> and
<<MagicSaAmfSU>> are mapped to the meta-class
Component. According to the AMF domain, an SU
aggregates a set of (AMF) Components. At the level
of UML meta-model the reflexive association
packagedElement is defined for the meta-class
Component. Therefore, we have reused this
association for the purpose of packaging between
<<MagicSaAmfSU>> and
<<MagicSaAmfComp>>

 Constraints: Constraints are defined to restrict the
UML meta-model in order to capture the semantics
of specific domain concepts. The selection must be
performed with the goal of minimizing the number
of constraints required at the level of the UML meta-
model. This criterion is strictly related to the
previous ones. For instance, mapping the
<<MagicSaAmfSU>> to the meta-class Package
(instead of Component) would require an additional
constraint to restrict the merging feature provided by
Package, since in AMF SUs cannot be merged.

The above mentioned criteria are interdependent and
thus, cannot be handled separately. Moreover, the
complexity in addressing them has a direct relationship with
the size and the complexity of the domain. The development
of UACL was complicated due to the large number of
interrelated AMF domain concepts. The first two criteria
were essential in designing UACL since they guided us
through the selection of a semantically valid set of meta-
classes. In other words, after applying the criteria we
selected the meta-classes which were compliant with the
AMF domain and aligned with the UML meta-model.
Furthermore, the last two criteria helped us in mastering the
complexity of the design as well as improving the quality of
the profile by identifying the most appropriate mapping
solutions.

In addition to the aforementioned design issues, a
complementary and important aspect needs to be taken into
consideration: The tool support. In [19], the authors compare
different UML 2.0 integrated software development
environments which support the design of UML profiles.
This comparison is based on the capabilities of the tools such
as integration with other tools and the effort required for
defining a profile. We followed the conclusions of this paper
and we based the implementation of UACL on IBM Rational
Software Architect (RSA) [6]. The choice has not been based
exclusively on the design capabilities; we also considered the
facilities to support the different applications of UACL, such
as the validation of AMF configurations. RSA provides this
facility through the integration of an OCL interpretation
engine. Moreover, through visualization and meta-model
integration services, RSA can integrate different meta-
models, allowing them to reference one another. Therefore, it
enables the model-driven approach in which different meta-
models can be involved simultaneously [6]. Consequently, it
supports the usage of UACL as framework for the model
based configuration generation, which is one of the
applications we are currently targeting. However, our
experience with RSA also showed some weaknesses when
dealing with the implementation of OCL constraints. More
specifically, to support the OCL functions that require access
to stereotyped elements, RSA implements additional
functions like getAppliedSubstereotypes() and
isStereotypeApplied(). The main issue with these functions is
that they cannot be interpreted using the live evaluation
mode. Considering the fact that almost all of the constraints
in UML profiles deal with stereotypes, this drawback has a
great impact on the usability of the tool and on the
performance. Indeed, the evaluation is performed exclusively
in batch mode. Moreover, using tagged definitions in cross-
context constraints is rather challenging. An example would
be the specification of a typical OCL constraint in the
context of one of the stereotypes associated with
<<MagicSaAmfSU>> (e.g. <<MagicSaAmfComp>>) to
restrict one of the attributes of <<MagicSaAmfSU>> –such
as magicSaAmfSURank– not to have a value of zero. Despite
its common occurrence, this constraint needs to be
implemented using a complex expression such as:

self.ownedAttribute->

 select(ct:Property|ct.type.getAppliedSubstereotypes

 (MAGICAMFProfile::MagicSaAmfSU.oclAsType(

 uml::Stereotype))->notEmpty())->

 at(1).opposite.owner.oclAsType(uml::Class).

 getValue(MAGICAMFProfile::MagicSaAmfSU.

 oclAsType(uml::Stereotype),

 'magicSaAmfSURank').

 oclAsType(uml::Integer) <> 0

As presented above, accessing the attribute
magicSaAmfSURank is only possible through a function
called getValue()and through specifying the name of the
stereotype and the tagged definition. In addition, at the end
of the function we need to cast the type of the output of the
function to uml::Integer.

B. Application

The implementation of UACL enables applications that
will ease the development and analysis of AMF
configurations:

 Automatic AMF configuration generation: UACL is
being used for the development of a model based
AMF configuration generation approach. The
generated configurations are valid by construction.
Moreover, such AMF configurations will be
transformed into analysis models for the evaluation
of their availability, and other non-functional
characteristics. UACL will facilitate the
transformation of configurations to analysis models.

 Validation of AMF third-party configurations:
UACL can be used for the validation of AMF
configurations developed by a third party. UACL
can be seen as a formalization of the concepts, rules
and constraints defined in the AMF specification
against which a third party configuration has to be
validated. This validation is simply performed
through a successful or non-successful
transformation of the third party AMF configuration
to an instance of UACL.

V. RELATED WORKS

To our knowledge, the only study to extend UML to
support AMF concepts is the one proposed in [15]. The
authors’ solution, however, suffers from many limitations: 1)
in this work they deal only partially with the AMF domain,
and the constraints on AMF model elements have not been
included; 2) the presented UML extension process is only
limited to specifying stereotypes, which allow adding new
vocabulary to UML; they did not specify tagged values and
constraints, which are critical to the extension mechanism; 3)
their proposed profile is based on an older version of the
AMF specification.

The literature reports only one other profile partially
related to this domain, namely, the Dependability Analysis
Modeling (DAM) profile [14] as an extension of MARTE to
enhance its modeling facilities for analyzing dependability.
In the DAM profile, the building blocks of a system are
limited to components and services. Moreover, the concept
of the service in the DAM profile addresses the description
of the service itself while, in the AMF domain, the service is
the description of the attributes for the workload which will
be assigned to service providers at run-time.

VI. CONCLUSION

An AMF configuration is the artifact used by the AMF
middleware for managing the high availability of services
provided by applications under its control. In this paper we
reported on the design of UACL, a UML profile for AMF
Configurations and its implementation using the IBM RSA
toolkit. The profile has been defined as an extension to the
UML2 meta-model. The definition consisted of 1) the
analysis of the AMF configuration domain, capturing all the

AMF domain concepts, 2) the definition of the concrete
syntax of the language, and 3) the specification of the
semantics through the mapping to the UML2 meta-model
and the definition of constraints.

The experience, as discussed in Section 4, has shown that
the most critical aspect of the design was the identification of
meta-classes for mapping purposes. Due to the existing
relationships at the level of the UML meta-classes, the
selection of inappropriate base classes may result in the
definition of a language that is not compliant with the UML
semantics. UACL can support AMF configuration design,
analysis and validation. Currently, it is being used with other
models for the development of a model based configuration
generation approach.

ACKNOWLEDGMENT

This work has been partially supported by the Natural
Sciences and Engineering Research Council (NSERC) of
Canada and Ericsson Software Research.

REFERENCES

[1] Vogels, W. et al. The design and architecture of the Microsoft Cluster
Service-A practical approach to high-availability and scalability. In:
Int. Symp. on Fault-Tolerant Computing, IEEE (1998)

[2] Service Availability Forum, http://www.saforum.org

[3] Service Availability Forum, SA Forum Overview, SAI-Overview-
B.05.01, http://www.saforum.org/specification/download.

[4] Service Availability Forum, Application Interface Specification,
Availability Management Framework, SAI-AIS-AMF-B.05.01,
http://www.saforum.org/specification/download/

[5] Kelly, S. and J. Tolvanen. Domain-specific modeling: enabling full
code generation. Wiley-IEEE Computer Society Press (2008).

[6] IBM RSA,
http://www-01.ibm.com/software/awdtools/architect/swarchitect/

[7] OMG, Object Constraint Language, Version 2.2 –
http://www.omg.org/spec/OCL/2.2/PDF

[8] SA Forum, Application Interface Specification. Software
Management Framework SAI-AIS-SMF-A.01.01,
http://www.saforum.org/specification/download/.

[9] OMG, UML, Superstructure, v2.2., http://www.omg.org/cgi-
bin/doc?formal/09-02-02.pdf

[10] Fuentes-Fernández, L. and A. Vallecillo-Moreno, An introduction to
UML profiles. J. UML and Model Engineering, 2, (2004).

[11] OMG, UML Profile for MARTE, v1.0,
http://www.omg.org/spec/MARTE/1.0/PDF

[12] OMG, UML Profile for Schedulability, Performance, and Time
Specification, v1.1,
http://www.omg.org/cgi-bin/doc?formal/2005-01-02

[13] OMG, UML Profile for Modelling Quality of Service and Fault
Tolerance Characteristics and Mechanisms,v1.1,
http://www.omg.org/spec/QFTP/1.1/

[14] Bernardi, S., Merseguer, J. and Petriu, D. Adding dependability
analysis capabilities to MARTE Profile. In: MODELS 2008, LNCS v.
5301 (2008)

[15] Szatmári, Z., A. Kövi, and M. Reitenspiess. Applying MDA approach
for the SA forum platform. In: 2nd Work. on Middleware-Application
Interaction, ACM (2008).

[16] Selic, B. A systematic approach to domain-specific language design
using UML. In: ISORC 2007, IEEE (2007).

[17] Lagarde, F., et al. Improving UML profile design practices by
leveraging conceptual domain models. In: ASE 2007, ACM (2007).

[18] Lagarde, F., et al. Leveraging patterns on domain models to improve
UML profile definition. In: FASE (2008), LNCS v. 4961 (2008).

[19] Amyot, D. H. and Roy, J. Evaluation of Development Tools for
Domain-Specific Modeling Languages. In: 5th Int. Work. on System
Analysis and Modeling, LNCS v. 4320 (2006).

