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Abstract-Host-based intrusion detection techniques are needed to 

ensure the safety and security of software systems, especially, if 

these systems handle sensitive data. Most host-based intrusion 

detection systems involve building some sort of reference models 

offline, usually from execution traces (in the absence of the source 

code), to characterize the system healthy behavior. The models 

can later be used as a baseline for online detection of abnormal 

behavior.  Perhaps the most popular techniques are the ones 

based on the use of Hidden Markov Models (HMM). These 

techniques, however, require long training time of the models, 

which makes them computationally infeasible, the main reason 

being the large size of typical traces, often millions of lines long. 

In this paper, we propose an improved HMM using the concept 

of frequent common patterns. In other words, we build models 

based on extracting the largest n-grams (patterns) in the traces 

instead of taking each trace event on its own. We show through a 

case study that our approach can reduce the training time by 

31.96%-48.44% compared to the original HMM algorithms while 

keeping almost the same accuracy rate.  

Keywords- Host-based Intrusion Detection Systems; HMM; N-

gram extraction algorithm; Behavioral modeling. 

I. INTRODUCTION 

Intrusion detection refers to the ability to detect abnormal 
behavior in a system, often caused by security attacks, viruses, 
and the presence of design faults. The consequences of not 
detecting these anomalies can be devastating in terms of system 
security and performance. A large body of research has been 
devoted to the analysis of network traffic, but these Network-
based Intrusion Detection Systems (NIDS) are not always 
sufficient and can be easily evaded by “subtle” attacks that do 
not generate important network traffic, and hence go 
undetected by even the most advanced NIDS. To overcome this 
limitation, recently, there has been an important shift in this 
area to the techniques that permit the detection of intrusions at 
the host level, i.e., Host-based Intrusion Detection Systems 
(HIDS) [1]. 

In HIDS, the intrusions are detected by monitoring and 
analyzing the system or application data that is collected from 
the host computer. Since an HIDS depends on the information 
about the host computer, it should, in principle, be able to 
detect an important range of anomalies that can cause the 
system to deviate from its normal behavior. Host-based 
intrusion detection techniques can be grouped into two 
categories:  misuse or outlier detection [19] and anomaly 
detection [4]. The misuse detection techniques require prior 

knowledge of the potential intrusions (for example, virus, 
attacks, threats, etc.) of the system. They look for known 
intrusion patterns in the system from the prior knowledge of the 
intrusions (through signatures) and identify them as intrusions. 
One major drawback of misuse detection techniques is that the 
intrusion must be known beforehand to be identified. 
Therefore, any new intrusion, such as a new type of viruses 
will be unidentified by the misuse detection techniques.  

The anomaly detection techniques, the second category and 
also the focus of this paper, operate by modeling the “normal” 
behavior of the host computer. The prior knowledge of normal 
or acceptable behavior of a system is modeled ensuring that the 
system is running in a safe environment without the presence of 
any intrusion. The system is then put in operation. The 
anomaly detection technique correlates the behavior of the 
system in operation with the one already built; it identifies any 
significant deviating behavior as an intrusion. The main 
advantage of the anomaly detection algorithms is that they do 
not require any prior knowledge of possible intrusions, hence, 
are able to identify any new virus attack, zero-day attacks, 
unknown system faults, and potential threats to the system.  

There exist several techniques for building reference 
models such as machine learning [6, 9, 16, 17, 18], statistical 
profiling [4, 7, 8, 10], and data mining [1, 3, 11, 15, 24, 27], 
and Hidden Markov Models [17]. Among these approaches, 
Hidden Markov Models (HMM) [23] have been shown to be 
very promising for anomaly detection over several other 
techniques because of their high accuracy in identifying 
intrusions [25]. However, the HMM-based algorithms suffer 
from long training time during the construction of the models, 
which hinders their efficiency [25]. 

In this paper, we present an Improved Hidden Markov 
Model (I-HMM) algorithm using the concept of frequent 
common patterns found in the trace sequences [18]. In other 
words, we use the frequent common patterns to build the HMM 
models instead of the trace events. By doing this, we reduce 
significantly the length of the training sequences, which in turn 
result in more compact HMM models. To extract these 
patterns, we use n-grams extraction algorithms, a concept used 
in text mining [28]. We show the effectiveness of our approach 
by applying it to building a behavioral model for a system 
called Gzip [12], which is a file compression and 
decompression software for Linux. Using the Linux Tracing 
Toolkit Next Generation (LTTng) [5, 20] trace instrumentation 
tool, we collect traces of routine calls by exercising the 



system’s features. We also use Weka 3.7.4 [26] for behavioral 
modeling and model verification for both HMM and I-HMM 
algorithms. Our study shows that our I-HMM algorithm 
reduces the model generation time by approximately 31.96% - 
48.44% compared to the original HMM. Furthermore, the 
training time reduction gets even better in I-HMM when the 
trace coverage increases, hence, further improving the overall 
accuracy of the I-HMM. 

The organization of this paper is as follows. Section II gives 
an overview of hidden Markov models. Our methodology for 
reducing the learning time of HMM is explained in Section III. 
Our case study is described in Section IV. The comparative 
results and analysis are presented in Section V. In Section VI, 
we discuss the conclusion and future work. 

II. HIDDEN MARKOV MODELS 

A Hidden Markov Model (HMM) is a double stochastic 
model [23]. The model is denoted by λ (A, B, π), where A is the 
set of observables, B is the set of hidden states, and π is the set 
of transition probabilities, i.e., the probabilities from going to 
one hidden state to another. This model is known as double 
stochastic since there is a hidden layer that contains some 
hidden states. This hidden layer follows the principles of 
Markov process. The other layer contains the states of the 
observables in a particular time t of the model construction. 
This is also a Markov process where the observable outputs can 
be seen, unlike the hidden layer. 

The HMM algorithm works in two steps. The HMM is 
trained in the first step using the training sequences. At the 
initial state (at time t0), the state transition probabilities and the 
observable output probabilities are randomly assigned. 
However, assigning these probabilities according to prior 
knowledge of the system, instead of the random assignment, 
can improve the performance of HMM. At this point, the 
model is denoted with λ0. Then, applying the Baum-Welch 
algorithm, the HMM λ0 is adjusted according to the input 
training sequences and construct the new model λ1 [29]. After 
every adjustment of λ, the probability difference of the 
previous model and the adjusted model is calculated. If the 
difference is below the preset probability difference threshold, 
the model is known to be the final HMM. Otherwise, further 
adjustment is required. In the next step, the unknown sequences 
are applied to the model and the likelihood of the sequences (i. 
e., the probability of how much a sequence conforms the 
HMM) are determined. If the probability is above the 
predefined acceptable probability, the sequence is concluded as 
a non-anomalous sequence. Otherwise, it is concluded as an 
anomalous one. The HMM algorithm has very accurate 
prediction of anomaly and has been used for complex sequence 
analysis. However, the model training time is very high in 
HMM algorithm. 

III. METHODOLOGY 

As previously mentioned, in our research, we aim to 
minimize the training time while keeping the accuracy of the 
original HMM algorithm. Previous studies identified that the 
training time for the HMM algorithm depends on the number 
of the hidden states, the number of the observables and the 

length of the training sequences [17]. For these reasons, we 
intended to minimize these parameters in our I-HMM to make 
it relatively faster than the original HMM.  

Figure 1 Our research methodology consists of three major 
steps: data collection, data processing and model construction. 
Our major contributions of this paper are in the data processing 
and behavioral model construction steps. 
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Figure 1.  Methodology of our research. 

A. Data Collection 

The data collection step consists of generating traces from a 
target system that will be used to build the model of the system. 
In this paper, we chose to focus on traces of routine calls, since 
the routine calls can reflect the presence of faults, unauthorized 
usage of resources or unusual function calls due to attacks. 
Same approach can be readily applicable to other types of 
traces. 

There are different ways to generate traces including 
instrumenting the source code, using a debugging, or 
instrumenting the running environment. In this paper, we opted 
for source code instrumentation, due to the availability of tools. 
Probes are inserted at the entry of each entry and exit of each 
routine.  

For an anomaly detection algorithm to be effective, it is 
important to have a good coverage of the input data that is used 
to build the model. We achieve this by exercising the system by 
executing the test cases, which provide good coverage of the 
system. 

Once the traces are generated, they are preprocessed to be 
used as input for an HMM system. For example, since HMM 
takes sequences of observables as input, we need to convert 
each raw trace into sequence of comma-separated routine calls. 
These sequences represent the exact sequence of routines that 
are called during the trace execution. Also some data cleansing 
is necessary such as removing contiguous repetitions to reduce 
the size of typical traces while keeping as much of the 
information they contain as possible. 

B. N-gram extraction 

Our goal of this study was to reduce the training time of I-
HMM over HMM by reducing the number of observables and 
the lengths of the trace sequences. As an observable and 
sequence reduction mechanism, we applied the n-gram 
extraction technique in our I-HMM. The n-gram extraction 



technique identifies the frequent common sub-sequences or 
patterns in a string; where, the length of the patterns can vary 
from one to n (the number of events in a trace).  

There exist several n-gram extraction algorithms. In this 
paper, we adopt the one presented in [18]. This algorithm 
analyzes the training sequences, and extracts from them the 
frequent patterns, i.e., as n-grams according to a certain 
threshold α. At the beginning, the algorithm extracts all unique 
observables from the training sequences and labels them as 1-
gram. For example, if ABCDE, CDEA and CDEBA are the 
input sequences, then A, B, C, D, E are the valid 1-grams [18]. 

In the consecutive steps, two n-grams of length k are 
combined to make an n-gram of length k+1. A sub-sequence or 
pattern pk+1 qualifies as an n-gram, if the frequency of pk+1 is 
greater than α multiplied by the minimum frequency of qk and 
rk. Here, α is a predefined threshold to control the 
generalization ability of the model, and pk+1 is constructed from 
qk and rk. From the previous example, take α = 0.6. If we 
combine the two valid 1-grams A and B, we get AB. However, 
the frequency of AB is 1 in our input data which is less than α 
(= 0.6) * minimum frequency of A and B (= 1).  Therefore, AB 
does not qualify as a valid 2-gram in the model. Whereas, CD 
is a composition of 2 valid 1-grams C and D, and the frequency 
of CD is 3 which is greater than α (= 0.6) * minimum 
frequency of C and D (= 3). Thus, CD is a valid 2-gram in the 
model. Similarly, DE is also another valid 2-gram in the model. 
Though, the 2-grams AB, BA, BC, EA, EB are present in the 
input, they do not qualify as valid 2-grams because of there low 
frequency. In the next step, CD and DE are combined to make 
CDE. The 3-gram CDE is valid since the frequency 3 is higher 
than α (= 0.6) * minimum frequency of CD and DE (= 3). 
Since we do not have more than one 3-gram to compose a 4-
gram, we stop at this point. That makes our highest n-grams to 
be 3-grams [18].  

In the n-gram extraction technique described in [18], the 
value of α varies from 0 to 1. A smaller α constructs a more 
generalized model, whereas when α is closer to 1, the model 
becomes more rigid. If α = 0, the n-grams represent the 
complete sequence and where α = 1, the n-grams are all 1-
grams that is the individual literals in the sequence. 

In our data processing step, we extracted all valid n-grams 
from our pre-processed trace sequences by setting α = 0.6. We 
marked each n-gram with a unique identification number for 
future use. Then, we replaced the n-grams in the trace 
sequences with their corresponding unique identification 
numbers. Before replacing the n-grams, as described in [18], 
we sorted the n-grams according to their lengths, where longer 
n-grams were replaced before the shorter ones. If there was a 
tie in their lengths, the one with higher frequency got the 
priority. 

C. Model Construction 

In this step, we constructed the I-HMM. The I-HMM model 
construction is similar to the HMM model construction. The set 
of observables in I-HMM are the identification numbers of the 
valid n-grams, whereas, the observable for of the HMM are the 
set of routine calls. Furthermore, the input sequence for I-
HMM was the sequence of n-gram ids, instead of the sequence 

of routine calls as in the HMM. Since common patterns (n-
grams) are frequently found in the trace sequences, at most n 
number of routine calls can be replaced by one n-gram in I-
HMM input sequences. Hence, it reduces the number of 
observables in I-HMM over the number of routine calls in 
HMM. Moreover, the replacements of n-grams by their 
identification numbers noticeably reduces the lengths of the 
training sequences in the I-HMM, compared to the HMM. 
These two factors helped to minimize the overall training time 
in I-HMM over HMM. We kept the number of hidden states in 
I-HMM same as the number of hidden states in HMM. We 
randomly assigned the state transition probability and 
iteratively adjust the training model till it reaches the 
acceptable threshold [23]. 

IV. CASE STUDY 

In our case study, we constructed both HMM and I-HMM 

following the methodology that was described in Section III. 

We collected 200 normal (with no intrusions) routine call 

traces from our target system. These traces were used as our 

core trace data for behavior modeling, model verification, and 

performance assessment. Then, we compared the 

performances in terms of training time and accuracy of both 

original HMM and I-HMM algorithms. We conducted our 

experiments in several steps, which are described in the 

subsequent sections. 

A. Target System 

As our target system to be modeled, we chose Gzip (GNU 
Zip) for the case study. The Gzip software is the file 
compression and decompression tool for Linux that has similar 
functionalities as Winzip. We have chosen Gzip because it is 
written in C language, hence compatible with the LTTng 
(Linux Trace Toolkit Next Generation) instrumentation tool. 

B. Trace Generation and Pre-processing 

We applied LTTng trace instrumentation for our trace 
generation as LTTng does not add significant overhead to the 
system. In order to achieve a good coverage on Gzip data, we 
explored 200 individual test cases (e.g., open, decompress, 
uncompress, help, stdout, exit, etc.) from Gzip. All traces were 
collected in an intrusion-free environment (i.e. lab) to model 
the normal behavior of Gzip. Our LTTng trace instrumentation 
was able to record all entry and exit points of Gzip routines that 
were executed during trace collection. These records were 
saved as individual trace files for further study. 

The generated raw trace needed pre-processing to act as 
input data for both HMM and I-HMM. We wrote a parser in 
JAVA that extracted all routine calls from each raw trace file 
and converted them into a sequence or comma separated 
routine calls, maintaining the calling order. Furthermore, we 
wrote another JAVA program to remove the contiguous repeats 
of routine calls in each trace sequence. 

C. HMM Construction 

In our case study, we used the Weka 3.7.4 implementation 
of HMM (classifiers.bayes.HMM class) for model 



construction. This Weka implementation of HMM asks to 
specify the set of observables and the set of traces as inputs. 
We specified all routine calls as the set of observables and all 
pre-processed trace sequences as our input traces. We 
constructed seven individual HMM models with 50, 75, 100, 
125, 150, 175 and 200 healthy traces. During each model 
construction, we recorded the training time for each of the 
models. 

D. I-HMM Construction 

The I-HMM model construction required more data 
processing than the HMM model construction. We extracted all 
n-grams (see Section III for details) from the sequences of 
routine calls using a JAVA program implemented by us. We 
kept the value of α as 0.6 in our n-gram extractor. Then, we 
replace the n-grams with their corresponding identification 
numbers in the trace sequences as described in Section III. 
Here, we also used the classifiers.bayes.HMM class of 

Weka 3.7.4 to implement the I-HMM model. We specified the 
n-gram ids as the set of observables and n-gram replaced traces 
as the input trace sequences. We used 50, 75, 100, 125, 150, 
175 and 200 healthy traces to constructed seven individual I-
HMM models, like we did for HMM. We also documented the 
training time of each I-HMM model. 

E. HMM and I-HMM Model Verification 

After construction of each I-HMM and HMM models, we 
verified them by applying the cross validation technique of 5-
folds [13]. We measured the accuracy of all 14 behavioral 
models (seven models of I-HMM and seven models of HMM) 
by taking the average accuracy calculated in all five folds. The 
result analysis of experiments is described in the next section. 

V. COMPARISON ANALYSIS 

In this section, we present a comparative analysis of the 
performance of the HMM and I-HMM algorithms. We present 
the results of our experiments in terms of training time and 
accuracy of both algorithms. 

In our experiments, we have seen that our I-HMM 
algorithm has resulted in a significantly lower training time for 
building the behavioral model compared to the original HMM 
algorithm (see Figure 2). More precisely, the I-HMM was able 
to reduce the training time from 31.96% to 48.44% of the 
original HMM algorithm. Another important observation from 
our experiments (shown in Figure 3) is that the training time 
differences between the HMM and I-HMM algorithms 
increased as we increased the number of traces for training the 
model. For example, our study shows that with 50 traces, the 
training time for HMM is 15.83 seconds and for I-HMM it is 
10.77 seconds. Therefore, the training time reduces by 31.96% 
if the model is built with 50 traces. After a gradual increase of 
training time reduction, there is a sharp rise (a rise from 
37.79% to 44.38%), when the number of traces hits 175. 
Finally, the training time reduces by 48.44% (from 79.75 
seconds to 41.12 seconds) when we construct a model from 
200 traces. 

As previously mentioned, the main advantage of the HMM 
algorithm is its accuracy, compared to other anomaly detection 

algorithms. In our experiment we also determined the accuracy 
of both HMM and I-HMM algorithms using the 5-fold cross 
validation feature available in Weka. Our experiments show 
that even though there are significant improvements in training 
time in the I-HMM algorithm, the original HMM algorithm 
achieves better accuracy. The compaction of HMM input 
sequences caused by n-gram replacement reduces the 
granularity of the input sequences in I-HMM. Therefore, I-
HMM loses the ability to accurately identify anomalous 
behavior of the system as the original HMM. In Figure 4, we 
can see that the accuracy of the original HMM is 88%, whereas 
it is 72% for the I-HMM algorithm with 50 traces. As we added 
more traces for behavioral model generation, accuracy 
increased in both algorithms. Finally, with 200 traces, the 
accuracy achieved in the HMM is 98% and in the I-HMM it is 
93%. The accuracy graph shown in Figure 4 also reflects that 
using a good coverage of behavioral data for model generation 
ensures better accuracy in anomaly detection algorithms. 
Furthermore, the graph shows that as the coverage on training 
data increases, the I-HMM algorithm achieves comparable 
accuracy with the HMM algorithm. 
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Figure 2.  Comparative running time of original HMM and N-gram HMM. 
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Figure 3.  Comparative running time of original HMM and N-gram HMM. 



Accuracy for HMM and I-HMM Algorithms

88.00
93.33 95.00 96.80

97.33 97.71 98.00

72.00
78.67 85.00 88.00 88.00 89.71

93.00

0.00

20.00

40.00

60.00

80.00

100.00

50 75 100 125 150 175 200

Numer of Traces

A
cc

u
ra

cy
 (

%
)

HMM

I-HMM

 

Figure 4.  Comparative accuracy of original HMM and N-gram HMM. 

VI. CONCLUSION AND FUTURE WORK 

Intrusion detection is important in applying security 
measures on software systems and computer networks. Recent 
studies showed that the conventional Network-based Intrusion 
Detection Systems (NIDS) are not sufficient for identifying all 
types of intrusions, especially those that do not generate 
important network traffic. Therefore, along with the NIDS, the 
Host-based Intrusion Detection Systems (HIDS) has become an 
emerging area of research. Recent studies have also shown that 
the anomaly detection algorithms serve a key ingredient for 
intrusion detection systems. Hidden Markov Model (HMM) 
algorithm, for example, has shown to be very accurate in 
detecting attacks and faults.  

However, the huge training time for behavioral model 
construction plays as a major obstacle for using HMM for 
anomaly detection. In order to ensure efficiency along with 
accuracy of HMM, we have introduced and improved HMM (I-
HMM) where we replaced common sequence of routine call 
observables with unique n-gram observables. These 
replacements considerably reduce the size of the observable 
sequences (i.e. trace) and the number of unique observables, 
hence contribute to important reduction of training time. 
However, as expected, the use of n-grams in I-HMM results in 
less accuracy than the original HMM algorithm. Our 
preliminary studies, however, show this can be improved by 
improving the trace coverage during model construction; we 
can reduce the gap between the accuracies of the HMM and I-
HMM algorithms. This ensures a fair tradeoff between the 
training time and accuracy in our I-HMM algorithm. 

We are aware that this is a preliminary study and that more 
needs to be done. In the future, we will add more coverage 
during model construction. Moreover, we will test our model 
with both anomalous and non-anomalous data and measure the 
accuracy. We will also conduct more experiments with 
changing the threshold α using during n-grams extraction and 
determine an optimum value for our target system. 
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