
An Improved Hidden Markov Model for Anomaly

Detection Using Frequent Common Patterns

Afroza Sultana and Abelwahab Hamou-Lhadj

Department of Electrical and Computer Engineering

Concordia University

Montreal, Canada

{af_sulta, abdelw}@ece.concordia.ca

Mario Couture

System of Systems Section, Software Analysis and

Robustness Group, Defence Research and Development

Canada, Valcartier, Québec, QC, Canada

mario.couture@drdc-rddc.gc.ca

Abstract-Host-based intrusion detection techniques are needed to

ensure the safety and security of software systems, especially, if

these systems handle sensitive data. Most host-based intrusion

detection systems involve building some sort of reference models

offline, usually from execution traces (in the absence of the source

code), to characterize the system healthy behavior. The models

can later be used as a baseline for online detection of abnormal

behavior. Perhaps the most popular techniques are the ones

based on the use of Hidden Markov Models (HMM). These

techniques, however, require long training time of the models,

which makes them computationally infeasible, the main reason

being the large size of typical traces, often millions of lines long.

In this paper, we propose an improved HMM using the concept

of frequent common patterns. In other words, we build models

based on extracting the largest n-grams (patterns) in the traces

instead of taking each trace event on its own. We show through a

case study that our approach can reduce the training time by

31.96%-48.44% compared to the original HMM algorithms while

keeping almost the same accuracy rate.

Keywords- Host-based Intrusion Detection Systems; HMM; N-

gram extraction algorithm; Behavioral modeling.

I. INTRODUCTION

Intrusion detection refers to the ability to detect abnormal
behavior in a system, often caused by security attacks, viruses,
and the presence of design faults. The consequences of not
detecting these anomalies can be devastating in terms of system
security and performance. A large body of research has been
devoted to the analysis of network traffic, but these Network-
based Intrusion Detection Systems (NIDS) are not always
sufficient and can be easily evaded by “subtle” attacks that do
not generate important network traffic, and hence go
undetected by even the most advanced NIDS. To overcome this
limitation, recently, there has been an important shift in this
area to the techniques that permit the detection of intrusions at
the host level, i.e., Host-based Intrusion Detection Systems
(HIDS) [1].

In HIDS, the intrusions are detected by monitoring and
analyzing the system or application data that is collected from
the host computer. Since an HIDS depends on the information
about the host computer, it should, in principle, be able to
detect an important range of anomalies that can cause the
system to deviate from its normal behavior. Host-based
intrusion detection techniques can be grouped into two
categories: misuse or outlier detection [19] and anomaly
detection [4]. The misuse detection techniques require prior

knowledge of the potential intrusions (for example, virus,
attacks, threats, etc.) of the system. They look for known
intrusion patterns in the system from the prior knowledge of the
intrusions (through signatures) and identify them as intrusions.
One major drawback of misuse detection techniques is that the
intrusion must be known beforehand to be identified.
Therefore, any new intrusion, such as a new type of viruses
will be unidentified by the misuse detection techniques.

The anomaly detection techniques, the second category and
also the focus of this paper, operate by modeling the “normal”
behavior of the host computer. The prior knowledge of normal
or acceptable behavior of a system is modeled ensuring that the
system is running in a safe environment without the presence of
any intrusion. The system is then put in operation. The
anomaly detection technique correlates the behavior of the
system in operation with the one already built; it identifies any
significant deviating behavior as an intrusion. The main
advantage of the anomaly detection algorithms is that they do
not require any prior knowledge of possible intrusions, hence,
are able to identify any new virus attack, zero-day attacks,
unknown system faults, and potential threats to the system.

There exist several techniques for building reference
models such as machine learning [6, 9, 16, 17, 18], statistical
profiling [4, 7, 8, 10], and data mining [1, 3, 11, 15, 24, 27],
and Hidden Markov Models [17]. Among these approaches,
Hidden Markov Models (HMM) [23] have been shown to be
very promising for anomaly detection over several other
techniques because of their high accuracy in identifying
intrusions [25]. However, the HMM-based algorithms suffer
from long training time during the construction of the models,
which hinders their efficiency [25].

In this paper, we present an Improved Hidden Markov
Model (I-HMM) algorithm using the concept of frequent
common patterns found in the trace sequences [18]. In other
words, we use the frequent common patterns to build the HMM
models instead of the trace events. By doing this, we reduce
significantly the length of the training sequences, which in turn
result in more compact HMM models. To extract these
patterns, we use n-grams extraction algorithms, a concept used
in text mining [28]. We show the effectiveness of our approach
by applying it to building a behavioral model for a system
called Gzip [12], which is a file compression and
decompression software for Linux. Using the Linux Tracing
Toolkit Next Generation (LTTng) [5, 20] trace instrumentation
tool, we collect traces of routine calls by exercising the

system’s features. We also use Weka 3.7.4 [26] for behavioral
modeling and model verification for both HMM and I-HMM
algorithms. Our study shows that our I-HMM algorithm
reduces the model generation time by approximately 31.96% -
48.44% compared to the original HMM. Furthermore, the
training time reduction gets even better in I-HMM when the
trace coverage increases, hence, further improving the overall
accuracy of the I-HMM.

The organization of this paper is as follows. Section II gives
an overview of hidden Markov models. Our methodology for
reducing the learning time of HMM is explained in Section III.
Our case study is described in Section IV. The comparative
results and analysis are presented in Section V. In Section VI,
we discuss the conclusion and future work.

II. HIDDEN MARKOV MODELS

A Hidden Markov Model (HMM) is a double stochastic
model [23]. The model is denoted by λ (A, B, π), where A is the
set of observables, B is the set of hidden states, and π is the set
of transition probabilities, i.e., the probabilities from going to
one hidden state to another. This model is known as double
stochastic since there is a hidden layer that contains some
hidden states. This hidden layer follows the principles of
Markov process. The other layer contains the states of the
observables in a particular time t of the model construction.
This is also a Markov process where the observable outputs can
be seen, unlike the hidden layer.

The HMM algorithm works in two steps. The HMM is
trained in the first step using the training sequences. At the
initial state (at time t0), the state transition probabilities and the
observable output probabilities are randomly assigned.
However, assigning these probabilities according to prior
knowledge of the system, instead of the random assignment,
can improve the performance of HMM. At this point, the
model is denoted with λ0. Then, applying the Baum-Welch
algorithm, the HMM λ0 is adjusted according to the input
training sequences and construct the new model λ1 [29]. After
every adjustment of λ, the probability difference of the
previous model and the adjusted model is calculated. If the
difference is below the preset probability difference threshold,
the model is known to be the final HMM. Otherwise, further
adjustment is required. In the next step, the unknown sequences
are applied to the model and the likelihood of the sequences (i.
e., the probability of how much a sequence conforms the
HMM) are determined. If the probability is above the
predefined acceptable probability, the sequence is concluded as
a non-anomalous sequence. Otherwise, it is concluded as an
anomalous one. The HMM algorithm has very accurate
prediction of anomaly and has been used for complex sequence
analysis. However, the model training time is very high in
HMM algorithm.

III. METHODOLOGY

As previously mentioned, in our research, we aim to
minimize the training time while keeping the accuracy of the
original HMM algorithm. Previous studies identified that the
training time for the HMM algorithm depends on the number
of the hidden states, the number of the observables and the

length of the training sequences [17]. For these reasons, we
intended to minimize these parameters in our I-HMM to make
it relatively faster than the original HMM.

Figure 1 Our research methodology consists of three major
steps: data collection, data processing and model construction.
Our major contributions of this paper are in the data processing
and behavioral model construction steps.

System
System

Instrumentation

Trace

Execution

Trace Pre-

processing

N-gram

Extraction

Replacement

of N-grams

HMM

Construction

Our Contribution

Figure 1. Methodology of our research.

A. Data Collection

The data collection step consists of generating traces from a
target system that will be used to build the model of the system.
In this paper, we chose to focus on traces of routine calls, since
the routine calls can reflect the presence of faults, unauthorized
usage of resources or unusual function calls due to attacks.
Same approach can be readily applicable to other types of
traces.

There are different ways to generate traces including
instrumenting the source code, using a debugging, or
instrumenting the running environment. In this paper, we opted
for source code instrumentation, due to the availability of tools.
Probes are inserted at the entry of each entry and exit of each
routine.

For an anomaly detection algorithm to be effective, it is
important to have a good coverage of the input data that is used
to build the model. We achieve this by exercising the system by
executing the test cases, which provide good coverage of the
system.

Once the traces are generated, they are preprocessed to be
used as input for an HMM system. For example, since HMM
takes sequences of observables as input, we need to convert
each raw trace into sequence of comma-separated routine calls.
These sequences represent the exact sequence of routines that
are called during the trace execution. Also some data cleansing
is necessary such as removing contiguous repetitions to reduce
the size of typical traces while keeping as much of the
information they contain as possible.

B. N-gram extraction

Our goal of this study was to reduce the training time of I-
HMM over HMM by reducing the number of observables and
the lengths of the trace sequences. As an observable and
sequence reduction mechanism, we applied the n-gram
extraction technique in our I-HMM. The n-gram extraction

technique identifies the frequent common sub-sequences or
patterns in a string; where, the length of the patterns can vary
from one to n (the number of events in a trace).

There exist several n-gram extraction algorithms. In this
paper, we adopt the one presented in [18]. This algorithm
analyzes the training sequences, and extracts from them the
frequent patterns, i.e., as n-grams according to a certain
threshold α. At the beginning, the algorithm extracts all unique
observables from the training sequences and labels them as 1-
gram. For example, if ABCDE, CDEA and CDEBA are the
input sequences, then A, B, C, D, E are the valid 1-grams [18].

In the consecutive steps, two n-grams of length k are
combined to make an n-gram of length k+1. A sub-sequence or
pattern pk+1 qualifies as an n-gram, if the frequency of pk+1 is
greater than α multiplied by the minimum frequency of qk and
rk. Here, α is a predefined threshold to control the
generalization ability of the model, and pk+1 is constructed from
qk and rk. From the previous example, take α = 0.6. If we
combine the two valid 1-grams A and B, we get AB. However,
the frequency of AB is 1 in our input data which is less than α
(= 0.6) * minimum frequency of A and B (= 1). Therefore, AB
does not qualify as a valid 2-gram in the model. Whereas, CD
is a composition of 2 valid 1-grams C and D, and the frequency
of CD is 3 which is greater than α (= 0.6) * minimum
frequency of C and D (= 3). Thus, CD is a valid 2-gram in the
model. Similarly, DE is also another valid 2-gram in the model.
Though, the 2-grams AB, BA, BC, EA, EB are present in the
input, they do not qualify as valid 2-grams because of there low
frequency. In the next step, CD and DE are combined to make
CDE. The 3-gram CDE is valid since the frequency 3 is higher
than α (= 0.6) * minimum frequency of CD and DE (= 3).
Since we do not have more than one 3-gram to compose a 4-
gram, we stop at this point. That makes our highest n-grams to
be 3-grams [18].

In the n-gram extraction technique described in [18], the
value of α varies from 0 to 1. A smaller α constructs a more
generalized model, whereas when α is closer to 1, the model
becomes more rigid. If α = 0, the n-grams represent the
complete sequence and where α = 1, the n-grams are all 1-
grams that is the individual literals in the sequence.

In our data processing step, we extracted all valid n-grams
from our pre-processed trace sequences by setting α = 0.6. We
marked each n-gram with a unique identification number for
future use. Then, we replaced the n-grams in the trace
sequences with their corresponding unique identification
numbers. Before replacing the n-grams, as described in [18],
we sorted the n-grams according to their lengths, where longer
n-grams were replaced before the shorter ones. If there was a
tie in their lengths, the one with higher frequency got the
priority.

C. Model Construction

In this step, we constructed the I-HMM. The I-HMM model
construction is similar to the HMM model construction. The set
of observables in I-HMM are the identification numbers of the
valid n-grams, whereas, the observable for of the HMM are the
set of routine calls. Furthermore, the input sequence for I-
HMM was the sequence of n-gram ids, instead of the sequence

of routine calls as in the HMM. Since common patterns (n-
grams) are frequently found in the trace sequences, at most n
number of routine calls can be replaced by one n-gram in I-
HMM input sequences. Hence, it reduces the number of
observables in I-HMM over the number of routine calls in
HMM. Moreover, the replacements of n-grams by their
identification numbers noticeably reduces the lengths of the
training sequences in the I-HMM, compared to the HMM.
These two factors helped to minimize the overall training time
in I-HMM over HMM. We kept the number of hidden states in
I-HMM same as the number of hidden states in HMM. We
randomly assigned the state transition probability and
iteratively adjust the training model till it reaches the
acceptable threshold [23].

IV. CASE STUDY

In our case study, we constructed both HMM and I-HMM

following the methodology that was described in Section III.

We collected 200 normal (with no intrusions) routine call

traces from our target system. These traces were used as our

core trace data for behavior modeling, model verification, and

performance assessment. Then, we compared the

performances in terms of training time and accuracy of both

original HMM and I-HMM algorithms. We conducted our

experiments in several steps, which are described in the

subsequent sections.

A. Target System

As our target system to be modeled, we chose Gzip (GNU
Zip) for the case study. The Gzip software is the file
compression and decompression tool for Linux that has similar
functionalities as Winzip. We have chosen Gzip because it is
written in C language, hence compatible with the LTTng
(Linux Trace Toolkit Next Generation) instrumentation tool.

B. Trace Generation and Pre-processing

We applied LTTng trace instrumentation for our trace
generation as LTTng does not add significant overhead to the
system. In order to achieve a good coverage on Gzip data, we
explored 200 individual test cases (e.g., open, decompress,
uncompress, help, stdout, exit, etc.) from Gzip. All traces were
collected in an intrusion-free environment (i.e. lab) to model
the normal behavior of Gzip. Our LTTng trace instrumentation
was able to record all entry and exit points of Gzip routines that
were executed during trace collection. These records were
saved as individual trace files for further study.

The generated raw trace needed pre-processing to act as
input data for both HMM and I-HMM. We wrote a parser in
JAVA that extracted all routine calls from each raw trace file
and converted them into a sequence or comma separated
routine calls, maintaining the calling order. Furthermore, we
wrote another JAVA program to remove the contiguous repeats
of routine calls in each trace sequence.

C. HMM Construction

In our case study, we used the Weka 3.7.4 implementation
of HMM (classifiers.bayes.HMM class) for model

construction. This Weka implementation of HMM asks to
specify the set of observables and the set of traces as inputs.
We specified all routine calls as the set of observables and all
pre-processed trace sequences as our input traces. We
constructed seven individual HMM models with 50, 75, 100,
125, 150, 175 and 200 healthy traces. During each model
construction, we recorded the training time for each of the
models.

D. I-HMM Construction

The I-HMM model construction required more data
processing than the HMM model construction. We extracted all
n-grams (see Section III for details) from the sequences of
routine calls using a JAVA program implemented by us. We
kept the value of α as 0.6 in our n-gram extractor. Then, we
replace the n-grams with their corresponding identification
numbers in the trace sequences as described in Section III.
Here, we also used the classifiers.bayes.HMM class of

Weka 3.7.4 to implement the I-HMM model. We specified the
n-gram ids as the set of observables and n-gram replaced traces
as the input trace sequences. We used 50, 75, 100, 125, 150,
175 and 200 healthy traces to constructed seven individual I-
HMM models, like we did for HMM. We also documented the
training time of each I-HMM model.

E. HMM and I-HMM Model Verification

After construction of each I-HMM and HMM models, we
verified them by applying the cross validation technique of 5-
folds [13]. We measured the accuracy of all 14 behavioral
models (seven models of I-HMM and seven models of HMM)
by taking the average accuracy calculated in all five folds. The
result analysis of experiments is described in the next section.

V. COMPARISON ANALYSIS

In this section, we present a comparative analysis of the
performance of the HMM and I-HMM algorithms. We present
the results of our experiments in terms of training time and
accuracy of both algorithms.

In our experiments, we have seen that our I-HMM
algorithm has resulted in a significantly lower training time for
building the behavioral model compared to the original HMM
algorithm (see Figure 2). More precisely, the I-HMM was able
to reduce the training time from 31.96% to 48.44% of the
original HMM algorithm. Another important observation from
our experiments (shown in Figure 3) is that the training time
differences between the HMM and I-HMM algorithms
increased as we increased the number of traces for training the
model. For example, our study shows that with 50 traces, the
training time for HMM is 15.83 seconds and for I-HMM it is
10.77 seconds. Therefore, the training time reduces by 31.96%
if the model is built with 50 traces. After a gradual increase of
training time reduction, there is a sharp rise (a rise from
37.79% to 44.38%), when the number of traces hits 175.
Finally, the training time reduces by 48.44% (from 79.75
seconds to 41.12 seconds) when we construct a model from
200 traces.

As previously mentioned, the main advantage of the HMM
algorithm is its accuracy, compared to other anomaly detection

algorithms. In our experiment we also determined the accuracy
of both HMM and I-HMM algorithms using the 5-fold cross
validation feature available in Weka. Our experiments show
that even though there are significant improvements in training
time in the I-HMM algorithm, the original HMM algorithm
achieves better accuracy. The compaction of HMM input
sequences caused by n-gram replacement reduces the
granularity of the input sequences in I-HMM. Therefore, I-
HMM loses the ability to accurately identify anomalous
behavior of the system as the original HMM. In Figure 4, we
can see that the accuracy of the original HMM is 88%, whereas
it is 72% for the I-HMM algorithm with 50 traces. As we added
more traces for behavioral model generation, accuracy
increased in both algorithms. Finally, with 200 traces, the
accuracy achieved in the HMM is 98% and in the I-HMM it is
93%. The accuracy graph shown in Figure 4 also reflects that
using a good coverage of behavioral data for model generation
ensures better accuracy in anomaly detection algorithms.
Furthermore, the graph shows that as the coverage on training
data increases, the I-HMM algorithm achieves comparable
accuracy with the HMM algorithm.

Training Time for HMM and I-HMM Algorithms

33.48

69.99

79.75

15.83
23.14

41.74

50.09

10.77

15.65
22.33

26.36
31.16

36.16
41.12

0

10

20

30

40

50

60

70

80

90

50 75 100 125 150 175 200

Numer of Traces

Tr
ai

n
in

g
Ti

m
e

(S
ec

o
n

d
s)

HMM I-HMM

Figure 2. Comparative running time of original HMM and N-gram HMM.

Training Time Reduction in I-HMM Algorithm

0

10

20

30

40

50

60

50 75 100 125 150 175 200

Numer of Traces

Tr
ai

n
in

g
Ti

m
e

R
ed

u
ct

io
n

 (
%

)

Figure 3. Comparative running time of original HMM and N-gram HMM.

Accuracy for HMM and I-HMM Algorithms

88.00
93.33 95.00 96.80

97.33 97.71 98.00

72.00
78.67 85.00 88.00 88.00 89.71

93.00

0.00

20.00

40.00

60.00

80.00

100.00

50 75 100 125 150 175 200

Numer of Traces

A
cc

u
ra

cy
 (

%
)

HMM

I-HMM

Figure 4. Comparative accuracy of original HMM and N-gram HMM.

VI. CONCLUSION AND FUTURE WORK

Intrusion detection is important in applying security
measures on software systems and computer networks. Recent
studies showed that the conventional Network-based Intrusion
Detection Systems (NIDS) are not sufficient for identifying all
types of intrusions, especially those that do not generate
important network traffic. Therefore, along with the NIDS, the
Host-based Intrusion Detection Systems (HIDS) has become an
emerging area of research. Recent studies have also shown that
the anomaly detection algorithms serve a key ingredient for
intrusion detection systems. Hidden Markov Model (HMM)
algorithm, for example, has shown to be very accurate in
detecting attacks and faults.

However, the huge training time for behavioral model
construction plays as a major obstacle for using HMM for
anomaly detection. In order to ensure efficiency along with
accuracy of HMM, we have introduced and improved HMM (I-
HMM) where we replaced common sequence of routine call
observables with unique n-gram observables. These
replacements considerably reduce the size of the observable
sequences (i.e. trace) and the number of unique observables,
hence contribute to important reduction of training time.
However, as expected, the use of n-grams in I-HMM results in
less accuracy than the original HMM algorithm. Our
preliminary studies, however, show this can be improved by
improving the trace coverage during model construction; we
can reduce the gap between the accuracies of the HMM and I-
HMM algorithms. This ensures a fair tradeoff between the
training time and accuracy in our I-HMM algorithm.

We are aware that this is a preliminary study and that more
needs to be done. In the future, we will add more coverage
during model construction. Moreover, we will test our model
with both anomalous and non-anomalous data and measure the
accuracy. We will also conduct more experiments with
changing the threshold α using during n-grams extraction and
determine an optimum value for our target system.

Acknowledgment: This work was supported in part by
Defence Research and Development Canada (DRDC) and
NSERC.

REFERENCES

[1] N. Abouzakhar, A. Gani, G. Manson, M. Abutbel, and D. King,
“Bayesian learning network approach to cybercrime detection,” In
Proceedings of the 2003 Post Graduate Networking Conference,
Liverpool, United Kingdom, 2003.

[2] V. Chandola, A. Banerjee, V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41(3), article: 15, July 2009.

[3] R. C. Chen, K. F. Cheng, Y. H. Chen, C. F., Hsieh, “Using Rough Set
and Support Vector Machine for Network Intrusion Detection System,”
In proceedings of the First Asian Conference on Intelligent Information
and Database Systems, 2009, pp. 465 – 470.

[4] D. E. Denning, “An Intrusion Detection Model,” IEEE Transactions on
Software Engineering, SE, vol. 13(2), 1987, pp. 222-232.

[5] M. Desnoyers, and M. R. Degenais, “The LTTng tracer: A low impact
performance and behavior monitor for GNU/Linux,” In Proceedings of
Ottawa Linux Symposium, Ottawa, Canada, July 19 – 22, 2006.

[6] D. Endler, “Intrusion detection: applying machine learning to solaris
audit data,” In Proceedings of the IEEE Annual Computer Security
Application Conference, Society Press, 1998, pp. 268 – 279.

[7] E. Eskin, “Anomaly detection over noisy data using learned probability
distributions,” In Proceedings of the 17th International Conference on
Machine Learning. Morgan Kaufmann Publishers Inc., 2000, pp. 255–
262.

[8] E. Eskin, W. Lee, and S. Stolfo, “Modeling system call for intrusion
detection using dynamic window sizes,” In Proceedings of DARPA
Information Survivability Conference and Exposition (DISCEX), 2001.

[9] S. Forrest, P. D’haeseleer, and P. Helam, “An immunological approach
to change detection: Algorithms, analysis and implications”. In
Proceedings of the IEEE Symposium on Security and Privacy, IEEE
Computer Society, vol. 110, 1996.

[10] S. Forrest, S. A. Hofmeyr, A. Somayaji. and T. A. Longstaff, “A sense
of self for unix processes,” In Proceedings of the IEEE ISRSP, 1996, pp.
120 – 128.

[11] A. K. Ghosh, and A. Schwartzbard, “A study in using neural networks
for anomaly and misuse detection,” In Proceedings of the 8th USENIX
Security Symposium, 1999.

[12] Gzip Official Website http://www.gzip.org/

[13] J. Han, and M. Kamber, “Data Mining: Concepts and Techniques,” 2nd
edition, San Francisco: Elsevier, 2006.

[14] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo, “One class
support vector machines for detecting anomalous windows registry
accesses,” In Proceedings of the Workshop on Data Mining for
Computer Security, 2003.

[15] W. Hu, Y. Liao, and V. R. Vemuri, “Robust anomaly detection using
support vector machines,” In Proceedings of the International
Conference on Machine Learning. Morgan Kaufmann Publishers Inc.,
2003, pp. 282–289.

[16] J. Hu, Q. Dong, X. Yu, and H. H. Chen, “A simple and efficient hidden
markov model scheme for host-based anomaly intrusion detection,”
IEEE Netw. vol. 23(1), 2009, pp. 42 – 47.

[17] Jiankun Hu, “Host-Based Anomaly Intrusion Detection”, Handbook of
Information and Communication Security, Springer, 2010.

[18] Guofei Jiang, Haifeng Chen, Cristian Ungureanu and Kenji Yoshihara,
“Trace analysis for fault detection for application server”, Handbook of
Automatic Computing: Concepts, Infrastructures, and Applications,
edited by S. Hariri, and P. Parashar, CRC Press, 2007.

[19] S. Kumar, and E. H. Spafford, “A pattern matching model for misuse
intrusion detection,” In Proceedings of the National Computer Security
Conference, Baltimore, MD, 1994, pp. 11–21.

[20] LTTng Official Website. http://lttng.org

[21] V. V. Phohaha, “The Springer Internet Security Dictionary,” Springer-
Verlag, 2002.

[22] P. E. Proctor, “The Practical Intrusion Detection Handbook,” Prentice
Hall PTR, NJ, USA, 2001.

[23] L. R. Rabiner and B. H. Juang, “An introduction to hidden markov
models,” IEEE ASSP Magazine, 1986.

http://www.gzip.org/
http://lttng.org/

[24] G. Stein, C. Bing, A. S. Wu, and K. A. Hua, “Decision tree classifies for
network intrusion detection with GA-based feature selection,” in
Proceedings of the 43rd Annual Southeast Regional Conference, Georgia,
2005, pp. 136 – 141.

[25] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: Alternate data models,” In Proceedings of the IEEE
ISRSP. IEEE Computer Society, 1999, pp. 133 – 145.

[26] Weka Official Website http://www.cs.waikato.ac.nz/ml/weka/

[27] Q. Xu, W. Pei, and Q. Zhao, “An intrusion detection approach based on
understandable neural network trees,” Journal of Electronics, 2007, pp.
574 – 579.

[28] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L.
Mercer, “Class-based n-gram models of natural language”,
Computational Linguistics, vol. 18, pp. 467–479, 1992.

[29] Leonard E. Baum, Ted Petrie, George Soules and Norman Weiss, “A
Maximization Technique Occurring in the Statistical Analysis of
Probabilistic Functions of Markov Chains”, The Annals of Mathematical
Statistics, vol. 41(1), February, 1970, pp. 164 – 171.

http://www.cs.waikato.ac.nz/ml/weka/

