

Measuring Various Properties of Execution Traces to
Help Build Better Trace Analysis Tools

Abdelwahab Hamou-Lhadj
University of Ottawa

SITE, 800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

ahamou@site.uottawa.ca

Timothy C. Lethbridge
University of Ottawa

SITE, 800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

tcl@site.uottawa.ca

Abstract
Understanding the behavior of a software system by

studying its execution traces can be extremely difficult
due to the sheer size and complexity of typical traces. In
this paper, we propose that if various aspects that
contribute to a trace’s complexity could be measured and
if this information could be used by tools, then trace
analysis could be facilitated. For this purpose, we present
a set of simple and practical metrics that aim at
measuring various properties of execution traces. We
also show the results of applying these metrics to traces
of three software systems and suggest how the results
could be used to improve existing trace analysis tools.

1. Introduction
Understanding the behavioral aspects of a software

system can be made easier if dynamic analysis techniques
are used.

Research in this area has led to the creation of many
tools for rapid exploration and analysis of large execution
traces [2, 8, 9, 13, 14, 15]. Using these tools, the analyst
can perform various tasks including searching for specific
events that occur in the trace, grouping selected events in
the form of clusters, and detecting patterns of execution.
These tools differ mainly with respect to the visualization
techniques used as well as the way similarity is measured
to implement the pattern detection capabilities.

However, after analyzing several execution traces, we
observed that the behavior embedded in the traces can
sometimes be considerably more complex than expected
and that the techniques supported in most existing tools
did not always help. This is partially due to the fact that
none of these tools provides efficient guidance with
respect to how to combine the supported features in order
to effectively reduce the size of traces. For example, we
would have liked to be able to know, in advance of
studying a trace, or part of a trace, how much work might
be involved in understanding it. This typically includes
measuring several aspects of the trace such as the number

of distinct components of the system that are invoked in
the trace, the structure of the trace events, etc, something
that is not supported by most existing tools.

We attribute this limitation to a lack of a set of
practical metrics for measuring different aspects of an
execution trace. In this paper, we present a set of metrics
that can be implemented in trace analysis tools to
facilitate the analysis of large traces. These metrics are
designed based on the GQM [1] paradigm. In addition to
this, we report the result of measuring various properties
of several execution traces of three software systems. The
outcome of this study can be used in different ways:

 The designers of trace analysis tools can design
facilities to reduce the amount of information being
displayed to some threshold (by hiding sufficient
detail). For example, if the user selects the ‘detection
of patterns’ feature then the tool might suggest to
display patterns that occur more frequently than a
certain threshold. The display of all possible patterns
might be overwhelming and sometimes meaningless.
Tool designers could also ‘color’ each subtree of a
trace to give software engineers a better sense of the
complexity to be found in that subtree before the
software engineer ‘opens’ it for exploration.

 Researchers in the field of dynamic analysis (with a
focus on program comprehension) can use these
results to investigate further techniques for reducing
the complexity of traces that will not rely heavily on
the intervention of users.

 Software engineers exploring execution traces will be
given the possibility to measure properties of traces in
order to choose which traces to analyze, to generate
traces that are neither too complex nor too simple, and
to select parts of traces to analyze that have a suitable
complexity level.

The execution traces targeted in this paper are those
based on routine invocations. We use the term ‘routine’
to represent functions, procedures or methods of classes.
Although the systems analyzed in this paper are object-

oriented, the metrics proposed here can also be applied to
non OO systems.

This paper is organized as follows: In the next section,
we introduce the concept of comprehension units that will
help us determine some of the metrics used in this paper.
In Section 3, we describe the metrics and motivate why
they are important for characterizing the effort required to
understand an execution trace. In Section 4, we show the
results of analyzing traces of three software systems. We
will use the outcome of this analysis to discuss the
obstacles of current trace analysis techniques. In Section
5, we discuss how these metrics can be supported by
tools.

2. The Concept of Comprehension Units
A trace of routine invocations can be represented

using a tree structure as illustrated in Figure 1a. Traces
usually contain several repetitions, which are either
contiguous or non-contiguous. This is reflected in the tree
as a repetition of the same subtrees.

We define a comprehension unit as a distinct subtree
of the trace. We hypothesize that in order to fully
understand the trace, without any prior knowledge of the
system, the analyst would need to investigate all the
comprehension units that constitute it. It is important to
notice that in practice, full comprehension would rarely
be needed because the analyst will achieve his or her
comprehension goals prior to achieving a full
comprehension. Also, the analyst will likely not need to
try to understand the differences among the many
comprehension units that only have slight differences.

A

B

C

D

E

F

B

C

D

A

B

C D

E

F

a)

b)

Figure 1. The graph representation of a trace is a

better way to spot the number of its distinct subtrees.

An efficient technique for extracting comprehension
units is based on transforming the trace into its compact
form by representing similar subtrees only once. This
transformation results in a directed ordered acyclic graph.
This technique has been widely used for trace
compression and encoding [10, 12] and was first

introduced by Downey et al. [3] to enable efficient
analysis of tree structures.

Figure 1 shows a trace T in the form of a tree structure
and its corresponding directed ordered acyclic graph. The
graph shows clearly that T contains 6 comprehension
units and that the comprehension unit rooted at B is
repeated twice in a non-contiguous way. We refer to
comprehension units that are repeated non-contiguously
as trace patterns.

3. Metrics
 In this subsection, we present the metrics that are used

in this paper to measure relevant properties of execution
traces. We motivate the choice of these metrics using the
Goal/Question/Metric model [1] as a framework. The
goal can be stated as follows:

Enable software engineers to more quickly understand
the behavior of a running system.

Software engineers will benefit from these metrics
only if they are incorporated into tools, in ways such as
those suggested earlier.

We have designed questions that aim at characterizing
the content of an execution trace. We present these
questions along with the metrics that address them.

3.1. Call Volume Metrics
This category of metrics aim at answering the

following question:

Q1. How many calls (or invocations) does a trace
contain?

Knowing the number of calls in a trace is one factor
that will help determining the work required to
understand the trace. The following metrics make this
more precise:

Initial size [S]: The initial size is the raw number of calls
made during the execution of the system. This forms a
baseline for subsequent computations.

Size after removing contiguous repetitions [Scr]: This
is the number of lines in the trace after removing
contiguous repetitions due to loops. In other words, many
identical calls are mapped into a single line by processing
the trace. We refer to this process as the repetition
removal stage.

According to our experience working with many
execution traces, the number of lines after repetition
removal is a much better indicator of the amount of work
that will be required to fully understand the trace. This is
due to the fact that the initial size of a trace, S, is highly
sensitive to the volume of input data used during the
execution of the system. To understand the behavior of an
algorithm by analyzing its traces, it is often just as

effective to study the trace after most of the repetitions
are collapsed. And, in that case, studying a trace of
execution over a very large data set would end up being
similar to studying a trace of execution over a moderately
sized data set.

Collapse ratio after removing contiguous repetitions
[Rcr]: This is the ratio of the number of nodes after
removing the contiguous repetitions to the initial size of
the trace. That is: Rcr = Scr/S.

Knowing that a program does a very high proportion
of repetitive work (that Rcr is low) might lead program
understanders to study possible optimizations, or to
reduce input size. Knowing that Rcr is high would
suggest that understanding the trace fully will be time
consuming.

The Collapse Ratio is similar to the notion of
‘compression ratio’ that one might talk about in the
context of data compression. However we have carefully
avoided using the term ‘compression’ since it causes
confusion: The purpose of compression algorithms is to
make data as small as possible; a decompression process
is required to reconstitute the data. On the other hand,
the purpose of collapsing is to make the data somewhat
smaller by eliminating unneeded data, with the intent
being that the result will be intelligible and useful without
the need for ‘uncollapsing’.

3.2. Component Volume Metrics
This category of metrics is concerned with measuring

the number of distinct components that are invoked
during the execution of a particular scenario. The
motivation behind using these metrics is that traces that
cross-cut many different components of the system are
likely to be harder to understand than traces involving
fewer components. More specifically, these metrics aim
at investigating the following question:

Q2. How many system components are invoked in a given
trace?

The term ‘component’ is very general. Separate
metrics can be used to measure invocations of different
types of components. In this paper, since the target
systems that are analyzed are all programmed in Java then
it may be useful to measure the following:

Number of packages [Np]: This is the number of
distinct packages invoked in the trace. By ‘invoking’ a
package we mean that some method in the package is
called.

Number of classes [Nc]: This is the number of distinct
classes invoked in the trace

Number of methods [Nm]: This is the number of
distinct methods that are invoked in the trace

It may be useful to create similar metrics, e.g. based
on the number of threads involved. It may also be useful
to know the proportion of a system that is covered by the
trace. The more of a system covered, the more time that
may be required to understand the trace, but the more
complete an understanding of the entire system may be
gained. Thus we measure the following:

Ratio of number of trace packages to the number of
system packages [Rpsp]: This is the ratio of the number
of packages invoked in a trace to the number of packages
of the instrumented system. More formally, let us
consider:

 NSp = The number of packages of the
instrumented system

 Np = The number of distinct packages invoked in
the trace

Then: Rpsp = Np/NSp

Ratio of number of trace classes to the number of
system classes [Rcsc]: This is the ratio of the number of
classes invoked in a trace to the number of classes of the
instrumented system. This is computed analogously to
Rpsp.

Ratio of number of trace methods to the number of
system methods [Rmsm]: This is the ratio of the number
of methods invoked in a trace to the number of methods
of the instrumented system.

3.3. Comprehension Unit Volume Metrics
We showed earlier that a better representation of a

trace consists of using its compact form (i.e. ordered
directed acyclic graph). This category of metrics explores
the ordered directed acyclic graph to compute several
metrics. The question that we are interested in
investigating is:

Q3. How many comprehension units exist in a trace?

We suggest that metrics based on comprehension units
will give a more realistic indication than call volume of
the effort required to understand a trace.

Number of comprehension units [Scusim]: This is
simply the number of comprehension units (i.e. distinct
subtrees) of a trace. However, this number may vary
depending on the way similarity between the tree subtrees
is computed. The subscript ‘sim’ is used to refer to the
similarity function that is used.

Considering exact matches only may result in a very
high number of comprehension units. For example,
consider the tree of Figure 2; the two subtrees rooted at B
differ only because the number of contiguous repetitions
of their subtrees differs as well.

If the exact number of repetitions is ignored then we
can compute Scucr to refer to the number of
comprehension units that result after ignoring the number
of contiguous repetitions. Similarly, other metrics can be
computed using different matching criteria.

A

B

C
C

B

C
Figure 2. The two subtrees rooted at B can be

considered similar if the number of repetitions of C is
ignored.

Tree to graph ratio [Rtgsim]: This metric measures the
ratio of the number of nodes of the ordered directed
acyclic graph to the number of nodes of the trace. We
expect to find very low ratio since the acyclic graph
represents repetitions only once. In previous work, we
showed that this transformation results in a very high
degree of collapsing of the trace [5]. More formally, let
us consider:

 Scr = The size of a trace T after removing
contiguous repetitions

 Scucr = The size of the resulting graph after
transforming T with contiguous
repetitions ignored.

Then: Rtgcr = Scucr/Scr

If Rtgsim is low then this suggests that even a huge
original trace might be relatively easy to understand.

3.4. Pattern Related Metrics
This category of metrics is concerned with measuring

the number of patterns that exist in a trace. The
motivation behind computing these metrics is that
patterns may play an important role in uncovering domain
concepts or interesting pieces of computation that the
understander would benefit from understanding [8, 9]. In
this category, we aim at investigating the following
question:

Q4. How many patterns exist in a trace?

We present the following metrics:

Number of trace patterns [Nptt]: This metric simply
computes the number of trace patterns that are contained
in a trace. As defined previously, a pattern is a
comprehension unit that is repeated in a non-contiguous
way. If Nptt is small this suggests that the complexity of
the trace will be high.

Ratio of the number of patterns to the number of
comprehension units [Rpcu]: This metric computes the
ratio of the number of patterns to the number of
comprehension units. In other words, we want to asses
the percentage of comprehension units that are also
patterns.

4. Analysis of Sample Traces
We analysed the execution traces of three Java

software systems: Checkstyle [4], Toad [7] and Weka
[16]. This analysis has the following objectives:

 Compute the metrics presented in the previous
section

 Perform further analysis to interpret the
measurements using the metrics

 Draw inferences about the applicability of the
metrics by comparing the results from the three
systems

4.1. Target Systems
To begin with, we describe the three target systems

used in this study. Checkstyle is a development tool to
help programmers write Java code that adheres to a
coding standard [4]. This is very useful to projects that
want to enforce a coding standard. The tool allows
programmers to create XML-based files to represent
almost any coding standard. Toad is an IBM tool that
includes a large variety of static analysis tools for
monitoring, analyzing and understanding Java programs
[7]. Although these tools can be run as standalone tools,
they can provide a much greater understanding of a Java
application if they are used together. Weka is a collection
of machine learning algorithms for data mining tasks
[16]. Weka contains tools for data pre-processing,
classification, regression, clustering and generating
association rules.

Table 1. Characteristics of the target systems

 Packages Classes Methods
Checkstyle 43 671 5827
Toad 68 885 5082
Weka 10 147 1642

Table 1 summarizes the characteristics of the target
systems. There are different ways of computing the size
of an object-oriented system. In our case, we are only
interested in the components that we will use to compute
the metrics related to the trace content. We deliberately
ignored the number of private methods (including private
constructors) due to the fact that they are only used to
implement a portion a large behaviour, and are restricted
to the class that defines them. Our instrumentation does

not capture them either as we will show in the next
subsection. Abstract methods are also excluded since they
have no presence at run time. Finally, the number of
classes does not include interfaces for the same reason.

4.2. Generating Traces
We used our own instrumentation tool based on BIT

[11] to insert probes at the entry and exit points of each
system’s non-private methods. Constructors are treated in
the same way as regular methods. Traces are generated as
the system runs, and are saved in text files. Although all
the target systems come with a GUI version, we can
invoke their features using the command line. We
favoured the command line approach over the GUI to
avoid encumbering the traces with GUI components. A
trace file contains the following information:

 Thread name

 Full class name (e.g. weka.core.Instance)

 Method name and

 A nesting level that maintains the order of calls

We noticed that all the tools use only one thread, so
we ignored the thread information.

Table 2. Checkstyle Traces

Trace Description
C-T1 Checks that each java file has a package.html

C-T2 Checks that there are no import statements
that use the .* notation.

C-T3 Restricts the number of executable
statements to a specified limit.

C-T4 Checks for the use of whitespace

C-T5 Checks that the order of modifiers conforms
to the Java Language specification

C-T6 Checks for empty blocks

C-T7 Checks that array initialization contains a
trailing comma

C-T8 Checks visibility of class members

C-T9 Checks if the code contains duplicate
portions of code

C-T10 Restrict the number of &&, || and ^ in an
expression

We generated several traces from the execution of the
target systems. The idea was to run the systems invoking
different features to be able to cover a large portion of the
code. This will also allow us to better interpret the results.
Table 2, 3 and 4 describe the features that have been
traced for each of system.

4.3. Collecting Metrics:
The collection of metrics resulted in a large set of data

that we present in Tables 5, 6 and 7. To help interpret the

results, we added descriptive statistics such as the
average, the maximum, and minimum.

Table 3. Toad Traces

Trace Description
T-T1 Generates several statistics about the analyzed

components
T-T2 Detects and provides reports on uses of Java

features, like native code interaction and
dynamic reflection invocations, etc.

T-T3 Generates statistics in html format about
unreachable classes and methods, etc

T-T4 Specifies bytecode transformations that can be
used to generate compressed version of the
bytecode files

T-T5 Generates the inheritance hierarchy graph of
the analyzed components

T-T6 Generates the call graph using rapid type
analysis of the analyzed component

T-T7 Generates an html file that contains
dependency relationships between class files

The Call Volume Metrics

Table 5 shows the results of computing the call
volume metrics for the Checkstyle system. The initial size
metric shows that traces are quite large even when they
are triggered using a simple example as input data, which
is the case here. As we can see in Table 5, the average
size is around 74615 calls. The trace C-T9 is the only
trace that does not follow this rule as it generates only
1013 calls. After an analysis of the content of this trace,
we found that it is the only one that does not invoke
methods of the “antlr” package, which is a package that
seems to generate many calls in other traces. Future work
should focus on analyzing how the metrics we have
defined vary, depending on the system components
invoked in traces. The average size of the resulting traces
after the repetition removal stage is 33293 calls, which is
still too high for someone to completely understand.

Table 4. Weka Traces

Trace Description
W-T1 Cobweb Clustering algorithm
W-T2 EM Clustering algorithm
W-T3 IBk Classification algorithm
W-T4 OneRClassification algorithm
W-T5 Decision Table Classification algorithm
W-T6 J48 (C4.5) Classification algorithm
W-T7 SMO Classification algorithm
W-T8 Naïve Bayes Classification algorithm
W-T9 ZeroR Classification algorithm
W-T10 Decision Stump Classification algorithm
W-T11 Linear Regression Classification algorithm
W-T12 M5Prime Classification algorithm
W-T13 Apriori Association algorithm

The average size of Toad traces is 220409 calls as
shown in Table 6, which is almost three times higher than
the average size of Checkstyle traces. The collapse ratio
after removing contiguous repetitions, Rcr, is around 5%
which is much lower than Rcr for Checkstyle (46%). The
average size of the resulting traces is around 10763 calls.

The average size of Weka traces is around 145985
calls. Some Weka algorithms generate much smaller
traces such as ZeroR (Trace W-T9). The differences in
the size of traces as shown in Table 7 may be due to the
complexity of the different data mining algorithms
supported by Weka. The average size of the resulting
traces after repetition removal is around 16147 calls.

0

50000

100000

150000

200000

250000

Checkstyle Toad Weka

S

Scr

Figure 3. The initial size of traces and their size after

the repetition removal stage for the three systems

Figure 3 illustrates the average initial size and the
average size after removing contiguous repetitions for
traces of the three systems. Although, removal of
contiguous repetitions can result in a considerable
reduction of the number of calls, the resulting traces of all
three systems continue to contain thousands of calls,
which is still high for the users of the tools. So repetition
removal is necessary but far from sufficient.

The Component Volume Metrics

Table 5 shows that Checkstyle traces involve on
average 31% of the system’s packages; 16% of the
system’s classes and 9% of the system’s methods.

Tables 6 and 7 show that the other two systems have
similar characteristics: The Toad traces involve on
average 29% of the system’s packages, 19% of the
classes, and 12% of the methods; while Weka traces
involve 28% of the packages, 10% of the classes and 7%
of the methods. Figure illustrates this graphically.

The number of distinct methods (Nm) invoked in
traces of all three systems is significantly smaller than the
number of calls generated (even after removal of
contiguous repetitions). For example, the Checkstyle
trace C-T1 invokes 590 methods but generates 37957
calls (after removing contiguous repetitions). This means

either that traces contain several sequences of calls that
are repeated in a non-contiguous way and/or that several
subtrees contain the same methods but are structured in
different ways.

The second possibility may pose real challenges for
tools that rely on using pattern detection capabilities to
help understand traces [2, 8, 9, 13, 14, 15]. The problem
is that there might be a need to combine several matching
criteria to be able to render useful patterns. This can be
hard for the tool users to achieve manually. Tools should
be enhanced with the capability to combine several
matching criteria in an automatic way. This suggests that
the dynamic analysis research community ought to
address several issues. First, which matching criteria can
be combined and which can not? Secondly, what is the
relationship between specific matching criteria and the
maintenance tasks at hand? For example, De Pauw [2]
suggests a matching criterion that ignores the order of
calls when looking for similar sequences of calls.
However, this might turn out to be ineffective if the
maintenance task at hand consists of fixing a system
defect.

0%

5%

10%

15%

20%

25%

30%

35%

Rpsp Rcsc Rmsm

Checkstyle
Toad
Weka

Figure 4. The number of components (packages,

classes and methods, respectively) invoked in the
traces of the three systems

Comprehension Units and Patterns Related Metrics

Table 5 shows the number of comprehension units and
the ratio achieved by transforming Checkstyle traces into
acyclic graphs. All Checkstyle traces score a ratio of less
than 8% except Trace C-T9 that scores 50%. This is due
to the fact that initially this trace is significantly smaller
than the other traces in terms of the number of calls but
still contains a large number of methods, and that a lower
bound on the number of comprehension units is the
number of distinct methods in the trace.

Toad traces exhibit a very low ratio as well, which is
around 8%. Weka traces exhibit an even lower ratio of
3%. These results confirm the effectiveness of
transforming the traces into ordered directed acyclic
graphs for trace compression and encoding purposes as

already shown by Reiss et al. [12] and Larus [10]. This
can help built scalable tools.

In addition to this, we notice that many of these
comprehension units are repeated non-contiguously more
than twice in the traces, which qualify them as trace
patterns. The average number of patterns that exist in
Checkstyle traces is 416, which represents 36% of the
number of comprehension units. Toad traces contain in
average of 297 (36% of the number of comprehension
units), and Weka traces contain on average 77 patterns
(33% of the number of comprehension units).

This shows that the number of patterns for large
systems can be very high. What is needed is to investigate
ways to automatically filter the ones that are important
from the ones that are not. This is not supported by most
of the existing tools.

0

200

400

600

800

1000

1200

1400

1600

C
-T

1

C
-T

2

C
-T

3

C
-T

4

C
-T

5

C
-T

6

C
-T

7

C
-T

8

C
-T

9

C
-T

10

Nm

Scu

Figure 5. Relationship between the number of

methods and the number of comprehension units for
Checkstyle – Correlation coefficient = 0.99

0

200

400

600

800

1000

1200

T-
T1

T-
T2

T-
T3

T-
T4

T-
T5

T-
T6

T-
T7

Nm

Scu

Figure 6. Relationship between the number of

methods and the number of comprehension units for
Toad – Correlation coefficient = 0.99

Figure 5 illustrates the correlation between the number
of methods (Nm) in the trace and the number of
comprehension units (Scu) for the Checkstyle system.
The graph shows, as expected, that the number of
comprehension units (i.e distinct subtrees) of traces

depends on the number of methods that are invoked. This
also applies to Toad and Weka as illustrated in Figure 6
and Figure 7. Interestingly, the dependency is Weka is
somewhat more variable than the other two systems,
suggesting that some traces of Weka, and hence the
corresponding pieces of functionality are particularly
complex (Scu almost equals Nm).

0

100

200

300

400

500

600

700

W
-T

1

W
-T

2

W
-T

3

W
-T

4

W
-T

5

W
-T

6

W
-T

7

W
-T

8

W
-T

9

W
-T

10

W
-T

11

W
-T

12

W
-T

13

Nm
Scu

Figure 7. Relationship between the number of

methods and the number of comprehension units for
Weka – Correlation coefficient = 0.87

5. Applying the Metrics in Tools
As discussed earlier, the goal of the metrics presented

in this paper has been to help software engineers
understand traces. The metrics will, however, only be
useful if actively supported by tool developers.

We suggested that tool developers could, in a rather
straightforward way, simply use icons, coloring, or other
graphic techniques to show the values of certain of the
metrics in order to highlight information about parts of
traces.

A key objective would be to display the ‘essence’ of a
trace – just enough to show the software engineer what
happened during execution. If, in a visible portion of a
trace, Scu (number of comprehension units) is much
greater then Nm (number of methods), this suggests that a
lot of redundant information is being displayed: Perhaps
there are many somewhat similar comprehension units. In
this case, we can apply techniques that change the
similarity function discussed earlier so that similar
comprehension units come to be treated the same, and
may then also turn into patterns. Rather than seeing a lot
of diversity, the software engineer might then see simply
a small set of patterns. The metrics can also be used by
tools to help prune the leaves and successively higher
branches of traces to make what remains displayed
somewhat simpler. We have been investigating ways of
removing utilities [6] as one step in this process.
However that will often not be enough. A tool could look
at the values of ratios such as Rcr and Rtgsim, for each
subhierarchy, and based on the values of the ratios,
contract the subtree to a certain level.

Table 5. CheckStyle Statistics

Checkstyle Call Volume Metrics Component Volume Metrics Comprehension Units and
Patterns Metrics

Traces S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rtgcr Nptt Rpcu
C-T1 84040 37957 45% 14 33% 114 17% 590 10% 1261 3% 515 41%
C-T2 81052 35969 44% 13 30% 109 16% 540 9% 1106 3% 423 38%
C-T3 81639 36123 44% 13 30% 110 16% 561 10% 1153 3% 439 38%
C-T4 84299 37062 44% 14 33% 117 17% 590 10% 1191 3% 464 39%
C-T5 80393 35455 44% 13 30% 106 16% 547 9% 1098 3% 424 39%
C-T6 81550 36087 44% 14 33% 113 17% 562 10% 1125 3% 437 39%
C-T7 89085 41414 46% 14 33% 148 22% 700 12% 1455 4% 532 37%
C-T8 83106 37163 45% 14 33% 114 17% 586 10% 1234 3% 490 40%
C-T9 1013 618 61% 9 21% 70 10% 276 5% 306 50% 27 9%
C-T10 79969 35083 44% 13 30% 105 16% 521 9% 1071 3% 406 38%
Max 89085 41414 61% 14 33% 148 22% 700 12% 1455 50% 532 41%
Min 1013 618 44% 9 21% 70 10% 276 5% 306 3% 27 9%
Average 74615 33293 46% 13 31% 111 16% 547 9% 1100 8% 416 36%

Table 6. Toad Statistics

Toad Call Volume Metrics Component Volume Metrics Comprehension Units and
Patterns Metrics

Traces S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rtgcr Nptt Rpcu
T-T1 219507 10409 5% 20 29% 172 19% 615 12% 827 8% 293 35%
T-T2 218867 10141 5% 20 29% 169 19% 592 12% 794 8% 282 36%
T-T3 226026 13132 6% 20 29% 191 22% 704 14% 971 7% 347 36%
T-T4 220438 10811 5% 20 29% 177 20% 626 12% 835 8% 299 36%
T-T5 218681 10002 5% 20 29% 164 19% 558 11% 754 8% 271 36%
T-T6 219171 10394 5% 20 29% 170 19% 605 12% 816 8% 296 36%
T-T7 220170 10450 5% 20 29% 165 19% 568 11% 782 7% 288 37%
Max 226026 13132 6% 20 29% 191 22% 704 14% 971 8% 347 37%
Min 218681 10002 5% 20 29% 164 19% 558 11% 754 7% 271 35%
Average 220409 10763 5% 20 29% 173 20% 610 12% 826 8% 297 36%

6. Conclusions and Future Work
In this paper, we developed metrics for the analysis of

large execution traces of routine calls. These metrics can
be used by tool builders and software engineers who want
to better understand traces. Tool builders can use these
metrics to tune their techniques to better orient the analyst
in his or her quest to understand the trace content. One
possible help would be to distinguish parts of the trace
that perform complex behavior from parts that are
relatively easy to grasp. Researchers can use these
metrics to investigate further techniques for reducing the
complexity of traces.

Using these metrics, we analyzed traces of three
different Java systems to get a better understanding of
their complexity. One of our metrics Rcr shows that when
we remove contiguous repetitions, the size of the trace is
reduced to between 5% and 46% of the original size.
However, the resulting traces continue to have thousands
of calls, which makes this basic type of collapsing
necessary but not sufficient.

We found that traces might cross-cut up to 30% of the
system’s packages, 22% of the system’s classes and 14%
of the system’s methods. Knowing that traces involve a
small number of the system’s methods but that these
methods generate thousands of calls leads us to the

following observation: Tools which rely primarily on
pattern detection will not allow the user to achieve an
adequate level of abstraction. The problem is that there
might be many subtrees in the trace that contain almost
the same methods but structured in different ways. The
hard part consists of selecting the appropriate matching
criteria that will identify these subtrees as similar. Most
tools leave this up to the users, but due to the size and
complexity of traces, automated assistance is clearly
needed. Tools need to suggest matching criteria that will
collapse the trace to a manageable size by pre-computing
the effect of each criterion. This computation can be
based on the metrics described in this paper.

Another finding regarding patterns is that traces might
contain a very large numbers of them: over 500 in the
case of the Checkstyle system. These patterns, in turn
might have hundreds of occurrences, which can make the
understanding of the whole trace using pattern detection a
challenging task.

An important area of future work would be to evaluate
the usefulness to software engineers of tools that
implement these metrics.

There are also many ways to refine the work presented
here. Firstly, there is a need to study the different

matching criteria for the Scusim metric. The end goal is to
have tools that suggest combining different criteria
automatically.

Another idea is to investigate how to distinguish trace
components that implement low-level implementation
details from the ones that correspond to high-level
concepts. The removal of sufficient low-level
implementation details should reduce the number of
comprehension units to a manageable number. We have
started working towards this by studying what
characterizes the concept of implementation details that
we refer to as utilities [6].

We also need to work towards formalizing the
concepts presented in this paper. This can be done by
defining a formal model to represent traces and metrics
leading to the definition of a formal language where
various trace metrics can be expressed and related.

Finally, the concept of entropy from information
theory can be used to suggest areas of a trace that are
more complex. Therefore, a useful avenue of
investigation would be to develop trace metrics based on
entropy.

Table 7. Weka Statistics

Weka Call Volume Metrics Component Volume Metrics Comprehension Units and
Patterns Metrics

Trace S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rtgcr Nptt Rpcu
W-T1 193165 4081 2% 2 20% 10 7% 75 5% 89 2% 28 31%
W-T2 66645 6747 10% 3 30% 10 7% 64 4% 66 1% 15 23%
W-T3 39049 7760 20% 2 20% 12 8% 114 7% 177 2% 39 22%
W-T4 28139 4914 17% 2 20% 10 7% 116 7% 209 4% 49 23%
W-T5 157382 26714 17% 3 30% 19 13% 188 11% 309 1% 120 39%
W-T6 97413 25722 26% 3 30% 23 16% 181 11% 375 1% 137 37%
W-T7 283980 21524 8% 3 30% 15 10% 131 8% 168 1% 76 45%
W-T8 37095 6700 18% 3 30% 13 9% 114 7% 167 2% 41 25%
W-T9 12395 637 5% 2 20% 10 7% 93 6% 96 15% 29 30%
W-T10 43681 6427 15% 2 20% 10 7% 97 6% 131 2% 35 27%
W-T11 403704 34447 9% 4 40% 16 11% 147 9% 220 1% 78 35%
W-T12 378344 54871 15% 5 50% 26 18% 194 12% 637 1% 301 47%
W-T13 156814 9368 6% 2 20% 9 6% 72 4% 134 1% 51 38%
Max 403704 54871 26% 5 50% 26 18% 194 12% 637 15% 301 47%
Min 12395 637 2% 2 20% 9 6% 64 4% 66 1% 15 22%
Average 145985 16147 13% 3 28% 14 10% 122 7% 214 3% 79 32%

References

[1] V. R. Basili, G. Caldiera and H. D. Rombach, "Goal
Question Metric Paradigm," In J. J. Marciniak (ed.),
Encyclopedia of Software Engineering 1, New
York: John Wiley & Sons, 1994, pp. 528-532

[2] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented
Visualization”, In Proc. of the 4th USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS), Santa Fe, NM, 1998, pp. 219-
234

[3] J.P. Downey, R. Sethi and R.E. Tarjan, “Variations
on the Common Subexpression Problem”, Journal
of the ACM. 27(4), October 1980, pp. 758-771

[4] Checkstyle System.
http://checkstyle.sourceforge.net/

[5] A. Hamou-Lhadj, T. C. Lethbridge, “Compression
Techniques to Simplify the Analysis of Large
Execution Traces”, In Proc. of the International
Workshop on Program Comprehension (IWPC),
Paris, 2002, pp. 159-168

[6] A. Hamou-Lhadj and T. Lethbridge, “Reasoning
about the Concept of Utilities”, In Proc. of the
ECOOP Workshop on Practical Problems of
Programming in the Large, Oslo, Norway, June
2004

[7] IBM TOAD. http://alphaworks.ibm.com/tech/toad

[8] D. Jerding, and S. Rugaber, "Using Visualization
for Architecture Localization and Extraction", In
Proc. of the 4th Working Conference on Reverse
Engineering, Amsterdam, Netherlands, October
1997, pp. 219-234

[9] D. Jerding, J. Stasko, and T. Ball, “Visualizing
Interactions in Program Executions”, In Proc. of the
19th ICSE, Boston, Massachusetts, 1997, pp. 360-
370

[10] J. R. Larus, “Whole program paths”, In Proc. of the
ACM SIGPLAN '99 conference on Programming
language design and implementation, Atlanta,
United States, ACM Press, 1999, pp. 259-269

[11] H. B. Lee, B. G. Zorn, “BIT: A tool for
Instrumenting Java Bytecodes”, USENIX
Symposium on Internet Technologies and Systems,
Monterey, California, 1997, pp. 73-82

[12] S. P. Reiss, M. Renieris, “Encoding program
executions”, In Proc. of the 23rd international
conference on Software engineering, Toronto,
Canada, pp. 221-230

[13] T. Richner, and S. Ducasse, “Using Dynamic
Information for the Iterative Recovery of
Collaborations and Roles”, In Proc. of the 18th
ICSM, Montréal, Canada, 2002, pp. 34-43

[14] T. Systä, K. Koskimies, and H. Müller, “Shimba –
An Environment for Reverse Engineering Java
Software Systems.”, Software Practice &
Experience, Volume 31 Issue 4, 2001, pp. 371-394

[15] T. Systä, “Dynamic Reverse Engineering of Java
Software”, In Proc. of the ECOOP Workshop on
Experiences in Object-Oriented Reengineering,
Lisbon, 1999, pp. 174-175

[16] Witten I. H., E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, 1999

http://checkstyle.sourceforge.net/
http://alphaworks.ibm.com/tech/toad

