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Abstract 
Understanding the behavior of a software system by 

studying its execution traces can be extremely difficult 
due to the sheer size and complexity of typical traces. In 
this paper, we propose that if various aspects that 
contribute to a trace’s complexity could be measured and 
if this information could be used by tools, then trace 
analysis could be facilitated. For this purpose, we present 
a set of simple and practical metrics that aim at 
measuring various properties of execution traces. We 
also show the results of applying these metrics to traces 
of three software systems and suggest how the results 
could be used to improve existing trace analysis tools. 

1. Introduction 
Understanding the behavioral aspects of a software 

system can be made easier if dynamic analysis techniques 
are used.  

Research in this area has led to the creation of many 
tools for rapid exploration and analysis of large execution 
traces [2, 8, 9, 13, 14, 15]. Using these tools, the analyst 
can perform various tasks including searching for specific 
events that occur in the trace, grouping selected events in 
the form of clusters, and detecting patterns of execution. 
These tools differ mainly with respect to the visualization 
techniques used as well as the way similarity is measured 
to implement the pattern detection capabilities.   

However, after analyzing several execution traces, we 
observed that the behavior embedded in the traces can 
sometimes be considerably more complex than expected 
and that the techniques supported in most existing tools 
did not always help. This is partially due to the fact that 
none of these tools provides efficient guidance with 
respect to how to combine the supported features in order 
to effectively reduce the size of traces. For example, we 
would have liked to be able to know, in advance of 
studying a trace, or part of a trace, how much work might 
be involved in understanding it. This typically includes 
measuring several aspects of the trace such as the number 

of distinct components of the system that are invoked in 
the trace, the structure of the trace events, etc, something 
that is not supported by most existing tools. 

We attribute this limitation to a lack of a set of 
practical metrics for measuring different aspects of an 
execution trace. In this paper, we present a set of metrics 
that can be implemented in trace analysis tools to 
facilitate the analysis of large traces. These metrics are 
designed based on the GQM [1] paradigm. In addition to 
this, we report the result of measuring various properties 
of several execution traces of three software systems. The 
outcome of this study can be used in different ways:  

 The designers of trace analysis tools can design 
facilities to reduce the amount of information being 
displayed to some threshold (by hiding sufficient 
detail). For example, if the user selects the ‘detection 
of patterns’ feature then the tool might suggest to 
display patterns that occur more frequently than a 
certain threshold. The display of all possible patterns 
might be overwhelming and sometimes meaningless. 
Tool designers could also ‘color’ each subtree of a 
trace to give software engineers a better sense of the 
complexity to be found in that subtree before the 
software engineer ‘opens’ it for exploration. 

 Researchers in the field of dynamic analysis (with a 
focus on program comprehension) can use these 
results to investigate further techniques for reducing 
the complexity of traces that will not rely heavily on 
the intervention of users.  

 Software engineers exploring execution traces will be 
given the possibility to measure properties of traces in 
order to choose which traces to analyze, to generate 
traces that are neither too complex nor too simple, and 
to select parts of traces to analyze that have a suitable 
complexity level.  

The execution traces targeted in this paper are those 
based on routine invocations. We use the term ‘routine’ 
to represent functions, procedures or methods of classes. 
Although the systems analyzed in this paper are object-



 

oriented, the metrics proposed here can also be applied to 
non OO systems.  

This paper is organized as follows: In the next section, 
we introduce the concept of comprehension units that will 
help us determine some of the metrics used in this paper. 
In Section 3, we describe the metrics and motivate why 
they are important for characterizing the effort required to 
understand an execution trace. In Section 4, we show the 
results of analyzing traces of three software systems. We 
will use the outcome of this analysis to discuss the 
obstacles of current trace analysis techniques. In Section 
5, we discuss how these metrics can be supported by 
tools. 

2. The Concept of Comprehension Units 
A trace of routine invocations can be represented 

using a tree structure as illustrated in Figure 1a. Traces 
usually contain several repetitions, which are either 
contiguous or non-contiguous. This is reflected in the tree 
as a repetition of the same subtrees.  

We define a comprehension unit as a distinct subtree 
of the trace. We hypothesize that in order to fully 
understand the trace, without any prior knowledge of the 
system, the analyst would need to investigate all the 
comprehension units that constitute it. It is important to 
notice that in practice, full comprehension would rarely 
be needed because the analyst will achieve his or her 
comprehension goals prior to achieving a full 
comprehension. Also, the analyst will likely not need to 
try to understand the differences among the many 
comprehension units that only have slight differences.  

A

B

C

D

E

F

B

C

D

A

B

C D

E

F

a)

b)

 
Figure 1. The graph representation of a trace is a 

better way to spot the number of its distinct subtrees. 

An efficient technique for extracting comprehension 
units is based on transforming the trace into its compact 
form by representing similar subtrees only once. This 
transformation results in a directed ordered acyclic graph. 
This technique has been widely used for trace 
compression and encoding [10, 12] and was first 

introduced by Downey et al. [3] to enable efficient 
analysis of tree structures. 

Figure 1 shows a trace T in the form of a tree structure 
and its corresponding directed ordered acyclic graph. The 
graph shows clearly that T contains 6 comprehension 
units and that the comprehension unit rooted at B is 
repeated twice in a non-contiguous way. We refer to 
comprehension units that are repeated non-contiguously 
as trace patterns. 

3. Metrics 
 In this subsection, we present the metrics that are used 

in this paper to measure relevant properties of execution 
traces. We motivate the choice of these metrics using the 
Goal/Question/Metric model [1] as a framework. The 
goal can be stated as follows: 

Enable software engineers to more quickly understand 
the behavior of a running system.  

Software engineers will benefit from these metrics 
only if they are incorporated into tools, in ways such as 
those suggested earlier.  

We have designed questions that aim at characterizing 
the content of an execution trace. We present these 
questions along with the metrics that address them. 

3.1. Call Volume Metrics 
This category of metrics aim at answering the 

following question:  

Q1. How many calls (or invocations) does a trace 
contain? 

Knowing the number of calls in a trace is one factor 
that will help determining the work required to 
understand the trace. The following metrics make this 
more precise: 

Initial size [S]: The initial size is the raw number of calls 
made during the execution of the system. This forms a 
baseline for subsequent computations. 

Size after removing contiguous repetitions [Scr]: This 
is the number of lines in the trace after removing 
contiguous repetitions due to loops. In other words, many 
identical calls are mapped into a single line by processing 
the trace. We refer to this process as the repetition 
removal stage. 

According to our experience working with many 
execution traces, the number of lines after repetition 
removal is a much better indicator of the amount of work 
that will be required to fully understand the trace. This is 
due to the fact that the initial size of a trace, S, is highly 
sensitive to the volume of input data used during the 
execution of the system. To understand the behavior of an 
algorithm by analyzing its traces, it is often just as 



 

effective to study the trace after most of the repetitions 
are collapsed. And, in that case, studying a trace of 
execution over a very large data set would end up being 
similar to studying a trace of execution over a moderately 
sized data set.   

Collapse ratio after removing contiguous repetitions 
[Rcr]: This is the ratio of the number of nodes after 
removing the contiguous repetitions to the initial size of 
the trace. That is: Rcr = Scr/S.  

Knowing that a program does a very high proportion 
of repetitive work (that Rcr is low) might lead program 
understanders to study possible optimizations, or to 
reduce input size. Knowing that Rcr is high would 
suggest that understanding the trace fully will be time 
consuming.  

The Collapse Ratio is similar to the notion of 
‘compression ratio’ that one might talk about in the 
context of data compression. However we have carefully 
avoided using the term ‘compression’ since it causes 
confusion: The purpose of compression algorithms is to 
make data as small as possible; a decompression process 
is required to reconstitute the data.  On the other hand, 
the purpose of collapsing is to make the data somewhat 
smaller by eliminating unneeded data, with the intent 
being that the result will be intelligible and useful without 
the need for ‘uncollapsing’. 

3.2. Component Volume Metrics 
This category of metrics is concerned with measuring 

the number of distinct components that are invoked 
during the execution of a particular scenario. The 
motivation behind using these metrics is that traces that 
cross-cut many different components of the system are 
likely to be harder to understand than traces involving 
fewer components. More specifically, these metrics aim 
at investigating the following question:  

Q2. How many system components are invoked in a given 
trace? 

The term ‘component’ is very general. Separate 
metrics can be used to measure invocations of different 
types of components. In this paper, since the target 
systems that are analyzed are all programmed in Java then 
it may be useful to measure the following:  

Number of packages [Np]: This is the number of 
distinct packages invoked in the trace. By ‘invoking’ a 
package we mean that some method in the package is 
called.  

Number of classes [Nc]: This is the number of distinct 
classes invoked in the trace 

Number of methods [Nm]: This is the number of 
distinct methods that are invoked in the trace 

It may be useful to create similar metrics, e.g. based 
on the number of threads involved. It may also be useful 
to know the proportion of a system that is covered by the 
trace. The more of a system covered, the more time that 
may be required to understand the trace, but the more 
complete an understanding of the entire system may be 
gained. Thus we measure the following: 

Ratio of number of trace packages to the number of 
system packages [Rpsp]: This is the ratio of the number 
of packages invoked in a trace to the number of packages 
of the instrumented system. More formally, let us 
consider: 

 NSp = The number of packages of the 
instrumented system 

 Np = The number of distinct packages invoked in 
the trace 

Then: Rpsp = Np/NSp  

Ratio of number of trace classes to the number of 
system classes [Rcsc]: This is the ratio of the number of 
classes invoked in a trace to the number of classes of the 
instrumented system. This is computed analogously to 
Rpsp. 

Ratio of number of trace methods to the number of 
system methods [Rmsm]: This is the ratio of the number 
of methods invoked in a trace to the number of methods 
of the instrumented system.  

3.3. Comprehension Unit Volume Metrics 
We showed earlier that a better representation of a 

trace consists of using its compact form (i.e. ordered 
directed acyclic graph). This category of metrics explores 
the ordered directed acyclic graph to compute several 
metrics. The question that we are interested in 
investigating is: 

Q3. How many comprehension units exist in a trace? 

We suggest that metrics based on comprehension units 
will give a more realistic indication than call volume of 
the effort required to understand a trace. 

Number of comprehension units [Scusim]: This is 
simply the number of comprehension units (i.e. distinct 
subtrees) of a trace. However, this number may vary 
depending on the way similarity between the tree subtrees 
is computed. The subscript ‘sim’ is used to refer to the 
similarity function that is used.  

Considering exact matches only may result in a very 
high number of comprehension units. For example, 
consider the tree of Figure 2; the two subtrees rooted at B 
differ only because the number of contiguous repetitions 
of their subtrees differs as well.  



 

If the exact number of repetitions is ignored then we 
can compute Scucr to refer to the number of 
comprehension units that result after ignoring the number 
of contiguous repetitions. Similarly, other metrics can be 
computed using different matching criteria.   
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Figure 2. The two subtrees rooted at B can be 

considered similar if the number of repetitions of C is 
ignored.  

Tree to graph ratio [Rtgsim]: This metric measures the 
ratio of the number of nodes of the ordered directed 
acyclic graph to the number of nodes of the trace. We 
expect to find very low ratio since the acyclic graph 
represents repetitions only once. In previous work, we 
showed that this transformation results in a very high 
degree of collapsing of the trace [5]. More formally, let 
us consider: 

 Scr = The size of a trace T after removing 
contiguous repetitions 

 Scucr = The size of the resulting graph after 
transforming T with contiguous 
repetitions ignored. 

Then: Rtgcr = Scucr/Scr 

If Rtgsim is low then this suggests that even a huge 
original trace might be relatively easy to understand. 

3.4. Pattern Related Metrics 
This category of metrics is concerned with measuring 

the number of patterns that exist in a trace. The 
motivation behind computing these metrics is that 
patterns may play an important role in uncovering domain 
concepts or interesting pieces of computation that the 
understander would benefit from understanding [8, 9]. In 
this category, we aim at investigating the following 
question: 

Q4. How many patterns exist in a trace? 

We present the following metrics: 

Number of trace patterns [Nptt]: This metric simply 
computes the number of trace patterns that are contained 
in a trace. As defined previously, a pattern is a 
comprehension unit that is repeated in a non-contiguous 
way.  If Nptt is small this suggests that the complexity of 
the trace will be high. 

Ratio of the number of patterns to the number of 
comprehension units [Rpcu]: This metric computes the 
ratio of the number of patterns to the number of 
comprehension units. In other words, we want to asses 
the percentage of comprehension units that are also 
patterns.  

4. Analysis of Sample Traces 
We analysed the execution traces of three Java 

software systems: Checkstyle [4], Toad [7] and Weka 
[16]. This analysis has the following objectives: 

 Compute the metrics presented in the previous 
section 

 Perform further analysis to interpret the 
measurements using the metrics 

 Draw inferences about the applicability of the 
metrics by comparing the results from the three 
systems 

4.1. Target Systems 
To begin with, we describe the three target systems 

used in this study. Checkstyle is a development tool to 
help programmers write Java code that adheres to a 
coding standard [4]. This is very useful to projects that 
want to enforce a coding standard. The tool allows 
programmers to create XML-based files to represent 
almost any coding standard. Toad is an IBM tool that 
includes a large variety of static analysis tools for 
monitoring, analyzing and understanding Java programs 
[7]. Although these tools can be run as standalone tools, 
they can provide a much greater understanding of a Java 
application if they are used together. Weka is a collection 
of machine learning algorithms for data mining tasks 
[16]. Weka contains tools for data pre-processing, 
classification, regression, clustering and generating 
association rules.  

Table 1. Characteristics of the target systems 

 Packages Classes Methods 
Checkstyle 43 671 5827 
Toad 68 885 5082 
Weka 10 147 1642 

Table 1 summarizes the characteristics of the target 
systems. There are different ways of computing the size 
of an object-oriented system. In our case, we are only 
interested in the components that we will use to compute 
the metrics related to the trace content. We deliberately 
ignored the number of private methods (including private 
constructors) due to the fact that they are only used to 
implement a portion a large behaviour, and are restricted 
to the class that defines them. Our instrumentation does 



 

not capture them either as we will show in the next 
subsection. Abstract methods are also excluded since they 
have no presence at run time. Finally, the number of 
classes does not include interfaces for the same reason. 

4.2. Generating Traces 
We used our own instrumentation tool based on BIT 

[11] to insert probes at the entry and exit points of each 
system’s non-private methods. Constructors are treated in 
the same way as regular methods. Traces are generated as 
the system runs, and are saved in text files. Although all 
the target systems come with a GUI version, we can 
invoke their features using the command line. We 
favoured the command line approach over the GUI to 
avoid encumbering the traces with GUI components. A 
trace file contains the following information:  

 Thread name 

 Full class name (e.g. weka.core.Instance) 

 Method name and  

 A nesting level that maintains the order of calls 

We noticed that all the tools use only one thread, so 
we ignored the thread information.  

Table 2. Checkstyle Traces 

Trace Description 
C-T1 Checks that each java file has a package.html 

C-T2 Checks that there are no import statements 
that use the .* notation.  

C-T3 Restricts the number of executable 
statements to a specified limit. 

C-T4 Checks for the use of whitespace  

C-T5 Checks that the order of modifiers conforms 
to the Java Language specification 

C-T6 Checks for empty blocks 

C-T7 Checks that array initialization contains a 
trailing comma 

C-T8 Checks visibility of class members 

C-T9 Checks if the code contains duplicate 
portions of code  

C-T10 Restrict the number of &&, || and ^ in an 
expression  

We generated several traces from the execution of the 
target systems. The idea was to run the systems invoking 
different features to be able to cover a large portion of the 
code. This will also allow us to better interpret the results. 
Table 2, 3 and 4 describe the features that have been 
traced for each of system. 

4.3. Collecting Metrics: 
The collection of metrics resulted in a large set of data 

that we present in Tables 5, 6 and 7. To help interpret the 

results, we added descriptive statistics such as the 
average, the maximum, and minimum.  

Table 3. Toad Traces 

Trace Description 
T-T1 Generates several statistics about the analyzed 

components 
T-T2 Detects and provides reports on uses of Java 

features, like native code interaction and 
dynamic reflection invocations, etc. 

T-T3 Generates statistics in html format about 
unreachable classes and methods, etc 

T-T4 Specifies bytecode transformations that can be 
used to generate compressed version of the 
bytecode files 

T-T5 Generates the inheritance hierarchy graph of 
the analyzed components 

T-T6 Generates the call graph using rapid type 
analysis of the analyzed component 

T-T7 Generates an html file that contains 
dependency relationships between class files 

The Call Volume Metrics 

Table 5 shows the results of computing the call 
volume metrics for the Checkstyle system. The initial size 
metric shows that traces are quite large even when they 
are triggered using a simple example as input data, which 
is the case here. As we can see in Table 5, the average 
size is around 74615 calls. The trace C-T9 is the only 
trace that does not follow this rule as it generates only 
1013 calls. After an analysis of the content of this trace, 
we found that it is the only one that does not invoke 
methods of the “antlr” package, which is a package that 
seems to generate many calls in other traces. Future work 
should focus on analyzing how the metrics we have 
defined vary, depending on the system components 
invoked in traces. The average size of the resulting traces 
after the repetition removal stage is 33293 calls, which is 
still too high for someone to completely understand.  

Table 4. Weka Traces 

Trace Description 
W-T1 Cobweb Clustering algorithm 
W-T2 EM Clustering algorithm 
W-T3 IBk Classification algorithm 
W-T4 OneRClassification algorithm 
W-T5 Decision Table Classification algorithm 
W-T6 J48 (C4.5) Classification algorithm 
W-T7 SMO Classification algorithm 
W-T8 Naïve Bayes Classification algorithm 
W-T9 ZeroR Classification algorithm 
W-T10 Decision Stump Classification algorithm 
W-T11 Linear Regression Classification algorithm 
W-T12 M5Prime Classification algorithm 
W-T13 Apriori Association algorithm 



 

The average size of Toad traces is 220409 calls as 
shown in Table 6, which is almost three times higher than 
the average size of Checkstyle traces. The collapse ratio 
after removing contiguous repetitions, Rcr, is around 5% 
which is much lower than Rcr for Checkstyle (46%). The 
average size of the resulting traces is around 10763 calls. 

The average size of Weka traces is around 145985 
calls. Some Weka algorithms generate much smaller 
traces such as ZeroR (Trace W-T9). The differences in 
the size of traces as shown in Table 7 may be due to the 
complexity of the different data mining algorithms 
supported by Weka. The average size of the resulting 
traces after repetition removal is around 16147 calls. 
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Figure 3. The initial size of traces and their size after 

the repetition removal stage for the three systems 

Figure 3 illustrates the average initial size and the 
average size after removing contiguous repetitions for 
traces of the three systems. Although, removal of 
contiguous repetitions can result in a considerable 
reduction of the number of calls, the resulting traces of all 
three systems continue to contain thousands of calls, 
which is still high for the users of the tools. So repetition 
removal is necessary but far from sufficient. 

The Component Volume Metrics 

Table 5 shows that Checkstyle traces involve on 
average 31% of the system’s packages; 16% of the 
system’s classes and 9% of the system’s methods.  

Tables 6 and 7 show that the other two systems have 
similar characteristics: The Toad traces involve on 
average 29% of the system’s packages, 19% of the 
classes, and 12% of the methods; while Weka traces 
involve 28% of the packages, 10% of the classes and 7% 
of the methods. Figure illustrates this graphically. 

The number of distinct methods (Nm) invoked in 
traces of all three systems is significantly smaller than the 
number of calls generated (even after removal of 
contiguous repetitions). For example, the Checkstyle 
trace C-T1 invokes 590 methods but generates 37957 
calls (after removing contiguous repetitions). This means 

either that traces contain several sequences of calls that 
are repeated in a non-contiguous way and/or that several 
subtrees contain the same methods but are structured in 
different ways. 

The second possibility may pose real challenges for 
tools that rely on using pattern detection capabilities to 
help understand traces [2, 8, 9, 13, 14, 15]. The problem 
is that there might be a need to combine several matching 
criteria to be able to render useful patterns. This can be 
hard for the tool users to achieve manually. Tools should 
be enhanced with the capability to combine several 
matching criteria in an automatic way. This suggests that 
the dynamic analysis research community ought to 
address several issues. First, which matching criteria can 
be combined and which can not? Secondly, what is the 
relationship between specific matching criteria and the 
maintenance tasks at hand? For example, De Pauw [2] 
suggests a matching criterion that ignores the order of 
calls when looking for similar sequences of calls. 
However, this might turn out to be ineffective if the 
maintenance task at hand consists of fixing a system 
defect.  
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Figure 4. The number of components (packages, 

classes and methods, respectively) invoked in the 
traces of the three systems 

Comprehension Units and Patterns Related Metrics 

Table 5 shows the number of comprehension units and 
the ratio achieved by transforming Checkstyle traces into 
acyclic graphs. All Checkstyle traces score a ratio of less 
than 8% except Trace C-T9 that scores 50%. This is due 
to the fact that initially this trace is significantly smaller 
than the other traces in terms of the number of calls but 
still contains a large number of methods, and that a lower 
bound on the number of comprehension units is the 
number of distinct methods in the trace.  

Toad traces exhibit a very low ratio as well, which is 
around 8%. Weka traces exhibit an even lower ratio of 
3%. These results confirm the effectiveness of 
transforming the traces into ordered directed acyclic 
graphs for trace compression and encoding purposes as 



 

already shown by Reiss et al. [12] and Larus [10]. This 
can help built scalable tools. 

In addition to this, we notice that many of these 
comprehension units are repeated non-contiguously more 
than twice in the traces, which qualify them as trace 
patterns. The average number of patterns that exist in 
Checkstyle traces is 416, which represents 36% of the 
number of comprehension units. Toad traces contain in 
average of 297 (36% of the number of comprehension 
units), and Weka traces contain on average 77 patterns 
(33% of the number of comprehension units).  

This shows that the number of patterns for large 
systems can be very high. What is needed is to investigate 
ways to automatically filter the ones that are important 
from the ones that are not. This is not supported by most 
of the existing tools.  
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Figure 5. Relationship between the number of 

methods and the number of comprehension units for 
Checkstyle – Correlation coefficient = 0.99 

0

200

400

600

800

1000

1200

T-
T1

T-
T2

T-
T3

T-
T4

T-
T5

T-
T6

T-
T7

Nm

Scu

 
Figure 6. Relationship between the number of 

methods and the number of comprehension units for 
Toad – Correlation coefficient = 0.99 

Figure 5 illustrates the correlation between the number 
of methods (Nm) in the trace and the number of 
comprehension units (Scu) for the Checkstyle system. 
The graph shows, as expected, that the number of 
comprehension units (i.e distinct subtrees) of traces 

depends on the number of methods that are invoked. This 
also applies to Toad and Weka as illustrated in Figure 6 
and Figure 7. Interestingly, the dependency is Weka is 
somewhat more variable than the other two systems, 
suggesting that some traces of Weka, and hence the 
corresponding pieces of functionality are particularly 
complex (Scu almost equals Nm). 
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Figure 7. Relationship between the number of 

methods and the number of comprehension units for 
Weka – Correlation coefficient = 0.87 

5. Applying the Metrics in Tools 
As discussed earlier, the goal of the metrics presented 

in this paper has been to help software engineers 
understand traces. The metrics will, however, only be 
useful if actively supported by tool developers. 

We suggested that tool developers could, in a rather 
straightforward way, simply use icons, coloring, or other 
graphic techniques to show the values of certain of the 
metrics in order to highlight information about parts of 
traces.  

A key objective would be to display the ‘essence’ of a 
trace – just enough to show the software engineer what 
happened during execution.  If, in a visible portion of a 
trace, Scu (number of comprehension units) is much 
greater then Nm (number of methods), this suggests that a 
lot of redundant information is being displayed: Perhaps 
there are many somewhat similar comprehension units. In 
this case, we can apply techniques that change the 
similarity function discussed earlier so that similar 
comprehension units come to be treated the same, and 
may then also turn into patterns. Rather than seeing a lot 
of diversity, the software engineer might then see simply 
a small set of patterns. The metrics can also be used by 
tools to help prune the leaves and successively higher 
branches of traces to make what remains displayed 
somewhat simpler. We have been investigating ways of 
removing utilities [6] as one step in this process. 
However that will often not be enough. A tool could look 
at the values of ratios such as Rcr and Rtgsim, for each 
subhierarchy, and based on the values of the ratios, 
contract the subtree to a certain level. 



 

Table 5. CheckStyle Statistics 

Checkstyle Call Volume Metrics Component Volume Metrics Comprehension Units and 
Patterns Metrics 

Traces S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rtgcr Nptt Rpcu 
C-T1 84040 37957 45% 14 33% 114 17% 590 10% 1261 3% 515 41% 
C-T2 81052 35969 44% 13 30% 109 16% 540 9% 1106 3% 423 38% 
C-T3 81639 36123 44% 13 30% 110 16% 561 10% 1153 3% 439 38% 
C-T4 84299 37062 44% 14 33% 117 17% 590 10% 1191 3% 464 39% 
C-T5 80393 35455 44% 13 30% 106 16% 547 9% 1098 3% 424 39% 
C-T6 81550 36087 44% 14 33% 113 17% 562 10% 1125 3% 437 39% 
C-T7 89085 41414 46% 14 33% 148 22% 700 12% 1455 4% 532 37% 
C-T8 83106 37163 45% 14 33% 114 17% 586 10% 1234 3% 490 40% 
C-T9 1013 618 61% 9 21% 70 10% 276 5% 306 50% 27 9% 
C-T10 79969 35083 44% 13 30% 105 16% 521 9% 1071 3% 406 38% 
Max 89085 41414 61% 14 33% 148 22% 700 12% 1455 50% 532 41% 
Min 1013 618 44% 9 21% 70 10% 276 5% 306 3% 27 9% 
Average 74615 33293 46% 13 31% 111 16% 547 9% 1100 8% 416 36% 

Table 6. Toad Statistics 

Toad Call Volume Metrics Component Volume Metrics Comprehension Units and 
Patterns Metrics 

Traces S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rtgcr Nptt Rpcu 
T-T1 219507 10409 5% 20 29% 172 19% 615 12% 827 8% 293 35% 
T-T2 218867 10141 5% 20 29% 169 19% 592 12% 794 8% 282 36% 
T-T3 226026 13132 6% 20 29% 191 22% 704 14% 971 7% 347 36% 
T-T4 220438 10811 5% 20 29% 177 20% 626 12% 835 8% 299 36% 
T-T5 218681 10002 5% 20 29% 164 19% 558 11% 754 8% 271 36% 
T-T6 219171 10394 5% 20 29% 170 19% 605 12% 816 8% 296 36% 
T-T7 220170 10450 5% 20 29% 165 19% 568 11% 782 7% 288 37% 
Max 226026 13132 6% 20 29% 191 22% 704 14% 971 8% 347 37% 
Min 218681 10002 5% 20 29% 164 19% 558 11% 754 7% 271 35% 
Average 220409 10763 5% 20 29% 173 20% 610 12% 826 8% 297 36% 

6. Conclusions and Future Work 
In this paper, we developed metrics for the analysis of 

large execution traces of routine calls. These metrics can 
be used by tool builders and software engineers who want 
to better understand traces. Tool builders can use these 
metrics to tune their techniques to better orient the analyst 
in his or her quest to understand the trace content. One 
possible help would be to distinguish parts of the trace 
that perform complex behavior from parts that are 
relatively easy to grasp. Researchers can use these 
metrics to investigate further techniques for reducing the 
complexity of traces. 

Using these metrics, we analyzed traces of three 
different Java systems to get a better understanding of 
their complexity. One of our metrics Rcr shows that when 
we remove contiguous repetitions, the size of the trace is 
reduced to between 5% and 46% of the original size. 
However, the resulting traces continue to have thousands 
of calls, which makes this basic type of collapsing 
necessary but not sufficient.  

We found that traces might cross-cut up to 30% of the 
system’s packages, 22% of the system’s classes and 14% 
of the system’s methods. Knowing that traces involve a 
small number of the system’s methods but that these 
methods generate thousands of calls leads us to the 



 

following observation: Tools which rely primarily on 
pattern detection will not allow the user to achieve an 
adequate level of abstraction. The problem is that there 
might be many subtrees in the trace that contain almost 
the same methods but structured in different ways. The 
hard part consists of selecting the appropriate matching 
criteria that will identify these subtrees as similar. Most 
tools leave this up to the users, but due to the size and 
complexity of traces, automated assistance is clearly 
needed. Tools need to suggest matching criteria that will 
collapse the trace to a manageable size by pre-computing 
the effect of each criterion. This computation can be 
based on the metrics described in this paper.  

Another finding regarding patterns is that traces might 
contain a very large numbers of them: over 500 in the 
case of the Checkstyle system. These patterns, in turn 
might have hundreds of occurrences, which can make the 
understanding of the whole trace using pattern detection a 
challenging task. 

An important area of future work would be to evaluate 
the usefulness to software engineers of tools that 
implement these metrics. 

There are also many ways to refine the work presented 
here. Firstly, there is a need to study the different 

matching criteria for the Scusim metric. The end goal is to 
have tools that suggest combining different criteria 
automatically.  

Another idea is to investigate how to distinguish trace 
components that implement low-level implementation 
details from the ones that correspond to high-level 
concepts. The removal of sufficient low-level 
implementation details should reduce the number of 
comprehension units to a manageable number. We have 
started working towards this by studying what 
characterizes the concept of implementation details that 
we refer to as utilities [6]. 

We also need to work towards formalizing the 
concepts presented in this paper. This can be done by 
defining a formal model to represent traces and metrics 
leading to the definition of a formal language where 
various trace metrics can be expressed and related. 

Finally, the concept of entropy from information 
theory can be used to suggest areas of a trace that are 
more complex. Therefore, a useful avenue of 
investigation would be to develop trace metrics based on 
entropy. 

Table 7.  Weka Statistics 

Weka Call Volume Metrics Component Volume Metrics Comprehension Units and 
Patterns Metrics 

Trace S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rtgcr Nptt Rpcu 
W-T1 193165 4081 2% 2 20% 10 7% 75 5% 89 2% 28 31% 
W-T2 66645 6747 10% 3 30% 10 7% 64 4% 66 1% 15 23% 
W-T3 39049 7760 20% 2 20% 12 8% 114 7% 177 2% 39 22% 
W-T4 28139 4914 17% 2 20% 10 7% 116 7% 209 4% 49 23% 
W-T5 157382 26714 17% 3 30% 19 13% 188 11% 309 1% 120 39% 
W-T6 97413 25722 26% 3 30% 23 16% 181 11% 375 1% 137 37% 
W-T7 283980 21524 8% 3 30% 15 10% 131 8% 168 1% 76 45% 
W-T8 37095 6700 18% 3 30% 13 9% 114 7% 167 2% 41 25% 
W-T9 12395 637 5% 2 20% 10 7% 93 6% 96 15% 29 30% 
W-T10 43681 6427 15% 2 20% 10 7% 97 6% 131 2% 35 27% 
W-T11 403704 34447 9% 4 40% 16 11% 147 9% 220 1% 78 35% 
W-T12 378344 54871 15% 5 50% 26 18% 194 12% 637 1% 301 47% 
W-T13 156814 9368 6% 2 20% 9 6% 72 4% 134 1% 51 38% 
Max 403704 54871 26% 5 50% 26 18% 194 12% 637 15% 301 47% 
Min 12395 637 2% 2 20% 9 6% 64 4% 66 1% 15 22% 
Average 145985 16147 13% 3 28% 14 10% 122 7% 214 3% 79 32% 
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