
 1

A Novel Approach Based on Gestalt Psychology for Abstracting the Content of

Large Execution Traces for Program Comprehension

Heidar Pirzadeh and Abdelwahab Hamou-Lhadj

Software Behaviour Analysis Lab

Department of Electrical and Computer Engineering

Concordia University

1455 de Maisonneuve Blvd. West

Montreal, QC, Canada H3G 1M8

{s_pirzad, abdelw}@ece.concordia.ca

Abstract—The analysis of execution traces can reveal

important information about the behavioral aspects of

complex software systems, hence reducing the time and

effort it takes to understand and maintain them. Traces,

however, tend to be considerably large which hinders their

effective analysis. Existing traces analysis tools rely on some

sort of visualization techniques to help software engineers

make sense of trace content. Many of these techniques have

been studied and found to be limited in many ways. In this

paper, we present a novel trace analysis technique that

automatically divides the content of a large trace into

meaningful segments that correspond to the program’s main

execution phases such as initializing variables, performing a

specific computation, etc. These phases can

simplify significantly the exploration of large traces by

allowing software engineers to first understand the content

of a trace at a high-level before they decide to dig into the

details. Our phase detection method is inspired by Gestalt

laws that characterize the proximity, similarity, and

continuity of the elements of a data space. We model these

concepts in the context of execution traces and show how

they can be used as gravitational forces that yield the

formation of dense groups of trace elements, which indicate

candidate phases. We applied our approach to two software

systems. The results are very promising.

Keywords: Trace Analysis, Program Comprehension, Software

Maintenance, Software Engineering

I. INTRODUCTION

A common and difficult problem experienced by
software engineers when maintaining large complex
system is to understand how the system is built and why it
is built that way [4]. This is especially important when the
system suffers from poor documentation (if it exists at all)
and that the original designers have moved to new projects
or company.

In this paper, we focus on techniques that assist the
understanding of the behavioral aspects of a software
system. These techniques often rely on tracing and run-
time monitoring mechanisms. Traces, however, are

difficult to work with since they tend to be considerably
large. To address this issue, many trace abstraction and
simplification techniques have been proposed with a
common objective being to extract high-level views from
raw traces (e.g. [1, 2, 3]). Although these techniques have
been shown to be useful in the context of software
maintenance, they suffer from several limitations such as
their extensive reliance on user intervention, their
dependence on particular visualization schemes that hinder
their reuse, and so on [25]. The general consensus in the
trace analysis community is that more work towards
effective trace abstraction techniques is much needed.

The objective of this paper is to present a novel trace
analysis technique that automatically divides the content of
a trace into smaller and meaningful trace segments that
correspond to the program’s main execution phases such
as initializing variables, performing a specific
computation, etc. These phases can significantly simplify
the exploration of large traces by allowing software
engineers to browse the trace by focusing on its major
parts (i.e. its execution phases) instead of a flow of mere
low-level events.

Our phase detection approach is inspired by Gestalt
laws of similarity and good continuation [9, 24, 27], a
concept used in psychology to describe the operational
principle of the human brain, particularly, the ability for
humans to visually recognize objects and shapes as a
whole and not just as points and lines. These laws explain
how our perceptual system segments local elements
against their context and integrates them as objects. We
apply these laws to traces of method (routine) calls
(common traces used in program comprehension) to form
dense groups of trace elements that indicate the presence
of potential execution phases.

Organization of the paper: In the next section, we
define what we mean by an execution phase. In Section
III, we describe our phase detection approach. Two case
studies are presented in Section IV, followed by related
work. Finally, we conclude the paper and point out to
future directions in Section V.

 2

II. WHAT IS AN EXECUTION PHASE?

Execution phases can appear at various levels of a
program execution [5, 8, 12]. At the highest level of
abstraction, a program execution can be considered as an
algorithm or a general procedure for solving a specific
problem. The phases in this case are the key steps of the
algorithm. At a lower level of abstraction the execution
phases of a program written in a specific programming
language are portions of the program execution that
collaborate with each other to implement a specific task
([5, 6]). The lowest level of abstraction of a program is
presented as machine code. The execution phases in this
level can show how the program accesses and uses system
resources and other low-level tasks. For example, the
phases can show distinctive patterns of hardware usage
(e.g., CPU usage, memory access, communication ports
access) or stable states of machine resources during the
execution as noted by Sherwood et al. [8].

 In this paper, we focus on identifying the key
execution phases that compose a program at the source
code level. Similar to other works (e.g., [5, 6, 12]) in the
domain of trace analysis for program comprehension we
use the following definition of execution phases: ―a
program [execution] phase is a portion of the program that
exhibits common behavior at a level the programmer
would recognize‖ [5]. In such context, we want to be able
to take an execution trace (generated from exercising one
or more particular features) and identify a set of high-level
tasks (i.e. execution phases) where each task performs a
portion of the overall work. Each phase denotes an
essential step of the general procedure and phase
transitions can denote the logic of the procedure or the
flow of data from one step of the procedure to another.
This way, the understanding of how a feature is
implemented will no longer require, at least in the
beginning, that its corresponding trace be explored as a
flow of mere low-level program elements. Instead, a trace
can be seen as a sequence of execution phases, in which a
phase denotes an essential step of the general execution
and the transitions among phases depict the logic (or the
flow) that connects the phases. For instance, a program’s
execution trace could be composed of three major phases
(Error! Reference source not found.): The initialization
phase, the computation phase, and the finalization phase.
Each phase can be further decomposed into smaller sub-
phases that implement specific sub-tasks of the program.

Figure 1. High-level phases of a program

The benefits of extracting the execution phases of a

program in the area of program comprehension are
numerous:

 Phases can provide important information on how
a particular feature is implemented, which in turn

can help software maintainers enhance these
features.

 Phases can be further refined to recover a high-
level behavioral view from raw traces, enabling
the understanding of the traced scenario.

 Phases might be helpful in fault localization as
they can show in what phase of the program
execution the error has occurred.

 A program shown as phases can be an excellent
means of communication between maintainers,
developers, programmers to obtain a quick and
clear idea and description of the program.

III. PHASE DETECTION APPROACH

We have developed a phase detection technique that is
inspired by the law of gravity (namely similarity and
continuity), also known as Gestalt laws of perception,
which describe how people group similar items visually
based on their perception [21, 22, 27]. Gestalt psychology
is an application of physics to essential parts of brain
physiology by telling the physiologist what kind of
process occurs in the brain when we see visual
objects, and how our perceptual systems follow certain
grouping principles (e.g., good continuation, proximity,
and similarity properties of the elements) [27].

For example, Figure 2 shows a very simple trace

composed of two routines a and b invoked several times.
The figure also shows a ruler that is used to indicate the

position of the calls in the trace (e.g. the first call to a
appears in position 1, the second call in position 2, etc.). If
asked to identify the major phases that appear in this trace,
a programmer would most likely perceive two major

phases: The first one is composed of the calls to a, while

the second phase could consist of the calls to b. Gestalt
psychology explains that the more similar two elements
are to each other the more likely they are to be perceived
as belonging to the same group [9].

Figure 2. A sample trace

As the trace grows in size and complexity, the

programmer’s visual perception of similarity becomes
more difficult. The complexity here can be defined as the
number of new elements that are invoked in a trace. Figure
3 shows an overview of our approach for automatic
detection of execution phases from traces. We start first by
applying gravitational schemes, defined based on Gestalt
laws, on the input trace. Two schemes (more precisely the
similarity and continuity schemes) are used as
gravitational forces that yield the formation of dense
groups of trace elements, which indicate the candidate
phases. When the dense groups are formed, we
automatically identify the beginning and end of each phase
using K-means clustering with BIC (Bayesian Information

Initialization Computation Finalization

a a a a b b b b

1 2 3 4 5 6 7 8

 3

Criterion) support [13] (discussed in more details later in
the paper).

Figure 3. Detailed view of the execution phase detection unit

The two gravitational schemes that we have developed

in this paper are based on the fact that a phase change in an
execution trace corresponds to a significant change in the
pattern of some attributes of the method calls in the trace
over time. Therefore, our strategy is to reduce the
distances between the method calls for which the
characteristics can form a pattern specifying a phase. The
effect of applying each of the two schemes (i.e. similarity
and continuity schemes) is as follows:

Similarity scheme: By applying this scheme the
method calls in the trace are repositioned in a way that the
distance between the same method calls is reduced.

Continuity scheme: The application of this scheme
results in the repositioning of the method calls in a way
that the methods that are continuously called (and not
returned as much) are made closer one to another to
emphasize a trend in the execution of the program.

To help with the description of these techniques, we
introduce the following definitions:

We define a trace T of method calls of size n (the
number of calls invoked in the trace) as a sequence of one
or more method calls, where each method call is denoted

as dic , where i represents the invocation order of the

method call c and d shows the nesting level of the call.

Each method call dic , can result in calls of zero or more

methods, with 1,1  dic as its first callee, if any.

 dndidid cccccT  ,,1,,20,1 ,,,,,, 

To be able to apply our gravitational schemes we need
to define distance between the method calls in a trace. For
this, the difference in invocation orders between the
method calls in the trace is considered as distance between
the method calls and it is assumed that there is equal
distance of 1 between consecutive invocations in the

original trace. For instance, the distance between dic , and

djc , would be equal to || ij  . This maps the ordinal

scale of method calls to an interval scale. Furthermore, we

define the function)(,dicPos to return the position of the

method call c in the interval scale (i.e., on a ruler). The
position of a method call is also the order in which it was
invoked right after the trace is generated. However, as the
method calls are rearranged as a result of applying the two
schemes, the new position of a method call might differ
from its original order of invocation (rearrangement of the
trace does not preserve the order of calls).

A. The Similarity Gravity Scheme

The objective of the similarity gravity scheme is to
reposition the elements of a trace in such a way that
similar elements gravitate to each other forming a group of
dense elements, which could indicate the presence of a
phase. In other words, the elements of a trace are re-
positioned in a way that the distance between two same
elements is less than the distance between two different
elements given that the difference in terms of the
invocation order is the same for the elements of both pairs.

A simple repositioning scheme based on the similarity
gravity technique, which we refer to as Possim, and which
divides by half the distance of similar methods changes the
position of method calls as follows:

method same the to call previous a is there:1

Otherwise

C1 if
2

)(
)(

)(

,

,
,

,

dj

djsim
djsim

disim

cC

i

cPosi
cPos

cPos















 




As stated above, in the similarity gravity technique we

visit each method call dic , in the original trace; if there is

a previous method call djc , to the same method, we

reposition dic , to half way from djc , (i.e., by reducing

the distance to half). Otherwise we do not change its

position (dic , remains in i-th position). We chose to

reduce the distance between calls to the same method by
half, although one could use a different measure. The
focus here is on the fact that the same methods are placed
close enough to each other to form a dense group.

Figure 4 shows the result of applying the similarity
gravity method to the sample trace of Figure 2. As we can
see, the new positioning of the elements leads to two
blocks that could indicate the presence of two phases. The
first phase begins at the first method invocation (and

contains calls to a) and the second phase starts at the fifth

method invocation (calls to b). That is, after using the
similarity gravity method, even if the similarity of the
items in each of each group becomes imperceptible, the
group still can be recognized by their structure and the
distance between them. This is shown in Figure 6 where
we replaced all methods with ―●‖.

1 2 3 4 5 6 7 8

a a a a b b b b

Figure 4. The result of applying the similarity gravity to a

trace of Figure 3

1 2 3 4 5 6 7 8

● ●

 ●

●

●

●

 ●

●

Figure 5. The result of applying the similarity gravity technique to a

trace of Figure 3 where the routines are shown as dots

Application

of

Gravitational

Schemes

Trace

with dense

groups of

methods

Phased

Trace

BIC-supported

K-means

Clustering

Original

Trace

 4

In Figure 6, we show the effect of applying the
similarity gravity method to a sample trace. By applying
similarity gravity scheme in Figure 6 (step 2) we find that
the trace contains two phases. The first one starts at the

first invocation and is composed of calls to routines a and

b, while the other one which starts at the seventh

invocation contains calls to c and d. Figure 6 (step 3)
shows the same result when discarding the effect of
similarity in perception (replacing all methods with ―●‖.).

Although the size and complexity have increased
compared to the sample example of Figure 2, one can still
quickly recognize two phases based on the formed groups.

Structurally recognizable groups can also be explained
by Gestalt laws. Proximity, the most fundamental law of
Gestalt laws, states that ―being all other factors equal, the
closer [in terms of distance] two elements are to each other
the more likely they are to be perceived as belonging to the
same group‖ [24]. This way, one may conclude that the
similarity gravity technically converts similarity to
proximity.

Although in this work, we only consider the similarity
between method names, one can defines other similarities
(e.g., cohesiveness either from a structural or from a
conceptual point of view) and apply the scheme introduced
here.

Figure 6. The result of applying the similarity gravity technique to a

sample trace

B. The Continuity Gravity Scheme

The previous method should work well for traces
where phases can be perceived by an analyst by looking at
the linear representation of a trace, although some
automatic assistance is needed. But what happens if there
is no perceivable similarity between the linear
representation of the elements of an execution trace? For
example, Figure 7 (step 1) shows an execution trace with
no visual similarity between its method calls (no unique
method is invoked more than once).

To overcome this issue, we turn again to another one
of Gestalt laws, the Law of Good Continuation [10], which
states the tendency of things to group if they are visually
not co-linear or nearly co-linear. In execution traces, the
increments in nesting levels of the method calls are
continuous. For example, in Figure 7 (step 1), one can
notice that there is a good continuation between the calls

from a to o, which can intuitively suggests the existence
of a phase. Using the nesting level of calls to detect
execution phases has also been the topic of other studies
[17, 12]. Watanabe et al. [12] used the nesting levels of a

call tree to detect phases and locate phase shifts. The
authors suggested that the depth of the call stack (i.e. the
nesting level) becomes local-minimum at the beginning of
a phase indicating a phase transition. They also showed
that the elements that have a high nesting level (i.e. which
are deep in the tree hierarchy) were unlikely to initiate new
phases.

We define a scheme called the continuity gravity that
groups trace elements based on the nesting level of the
method calls. The continuity gravity scheme groups trace
elements by keeping the method calls with higher nesting
level closer to the previous method calls. The higher is the
nesting level of a method call, the stronger it is attracted by
the previous method call.

A continuity gravity scheme that repositions the
elements of a trace based on their nesting level, and that
we call here Poscont, is as follows:







 




Otherwise

2
 if

1
)(

)(,1
,

i

dd
d

cPos
cPos dicont

dicont

When applied to a trace, this scheme reduces the
distance between method calls based on the nesting level
(d) of the callee by changing the distance of two
consequent method calls from 1 to 1/d. The condition

2
dd  disables gravity for the cases in which the

nesting level of the current method call is drastically lower
than the nesting level of the previous method call (i.e., the
case of local minimums). For example, a call with a
nesting level 6 that immediately occurs after a call with a
nesting level 12 will not be repositioned because it

indicates a drastic change in nesting levels (
2

126 ) and

thus it could indicate a phase shift. Again, we chose here
not to reposition subsequent subtrees where the nesting
levels vary by more than half. A different criterion could
be used as long as a drastic change among subtrees can be
identified.

Figure 7 (step 2) shows the result of applying the
continuity gravity scheme to the sample trace. As we can
see, the new positioning of the elements leads to two
distinguishable phases (the phases are more
distinguishable when we omit to visualize the nesting
levels). The first phase begins at the first method
invocation and the second phase starts at the tenth method
invocation. This way, we used the effect of continuity in
perceptual grouping to build groups that are structurally
recognizable. That is, after using the continuity gravity,
even if the continuity of the items in each group becomes
imperceptible due to the size and complexity of a trace, the
trace clusters still can be recognized through their structure
and the distance between them. If we omit to visualize the
nesting level (see Figure 7 (step 3)) and replace the
methods with a ―●‖ (Figure 8), we can clearly see that two

phase have been formed. We may say that the continuity
gravity technically converts continuation to proximity.

 b
a

 c

1 2 3 4 5 6 7 8 9 10 11 12

a b a b c d
c

d d

 b

1 2 3 4 5 6 7 8 9 10 11 12

a a b a b c d c d c d

 ●

1 2 3 4 5 6 7 8 9 10 11 12

●

 ●

●

 ●

 ●

 ●

 ●

●

●

1

2

3

 5

Figure 7. The result of applying the continuity gravity technique to a

sample trace.

Figure 8. The resulting trace with the routines replaced with dots

C. Integration of Gravities

An efficient phase detection technique should integrate
both the continuity and similarity gravity. First, the
distance between the current method call and the previous
method call is updated based on the changes in the nesting
level (application of continuity scheme). Next, the position
is updated according to the similarity of the current
method call to previous method calls (application of
similarity scheme). We call this the integrated gravity
scheme. When applied to a trace, the integrated scheme
first reduces the distance between method calls based on
their nesting level, then, reduces the distance between
method calls to a same method.

The integrated gravity repositioning scheme can be
iteratively applied to a trace to detect major phases, their
sub-phases, etc, until we reach the individual elements of
the trace. For this, we need to have a means to harness the
gravity so that phases could be detected with different
levels of granularity. A threshold t is defined in such a way

that a call to a method m is attracted to a previous call to
the same method only and if only the distance between
these two calls is less than the threshold. This way, major
phases can be detected by setting a threshold t that is close
to the size of the trace. The smaller the threshold, the more
fine-grained phases we can detect. We anticipate that the
threshold is application-specific and that a tool that

supports our approach should allow enough flexibility to
vary the threshold.

An integrated scheme with threshold t changes the
position of method calls as follows:







 










 













Otherwise

2
 if

1
)(

)(

and

)()(:C2

method same the to call previous a is there:1

where

Otherwise)(

 C2&C1 if
2

)()(
)(

)(

,1
,

,,

,

,

,,
,

,

i

dd
d

cPos
cPos

tcPoscPos

cC

cPos

cPoscPos
cPos

cPos

dicont
dicont

djsimdicont

dj

dicont

djsimcontdi
djsim

disim

D. Identifying the Beginning and End of Phases

Once the method calls of a trace are repositioned
according to the integrated gravity scheme, we need a way
to automatically identify the beginning and end of each
phase since it would be impractical to expect from
programmers to distinguish the various phases visually for
considerably large traces. For this, we propose to use a
clustering algorithm that can group the method calls of the
repositioned trace into clusters of method calls that are
close to each other. We chose K-means clustering as our
clustering algorithm [22]. K-means is an unsupervised
clustering technique that partitions the data points
(instances) into a predetermined number (K) of non-
hierarchical clusters.

The number of clusters is pre-specified by randomly

drawing K points as initial centroids (K 1) (showing

the center of each cluster). The rest of the algorithm is
iteratively performed according to the below two steps,
trying to minimize the overall sum of distances of the
points from their cluster centroids:

Step 1: Each instance x is assigned to the cluster with
the closest centroid (the distances in our case are
Euclidian):

ijxxDx jii  if

where iD is the set of points that have i as their nearest

centroid.

Step 2: Update the centroid of each cluster by moving

it to the center of assigned points to that cluster:






iDxi
i x

R

1


where ii DR  .

The iteration continues until we have the same cluster
assignment in two successive iterations.

In K-means clustering the number of clusters (i.e., the
number of phases) should be given as an input to the

1 2 3 4 5 6 7 8 9 10 11 12 13

a

j

f g

o

r

p

h k

i

n

x

s

1 2 3 4 5 6 7 8 9 10 11 12 13

a

j

k

i

f g

n

x

o

r p

h

s

 g s

1 2 3 4 5 6 7 8 9 10 11 12 13

a j f o r p k i n x h

1

2

3

 ●

1 2 3 4 5 6 7 8 9 10 11 12 13

●

 ●

●

 ●

 ●

 ●

 ●

●

 ●

 ●

●

 6

algorithm. In other words, the user must know the number
of phases before running the K-means algorithm (perhaps
by counting the number of distinct phases that he can
visually perceive on the plot). This, however, can be error
prone. Therefore, it would be advantageous if the number
of clusters could be selected automatically according to the
complexity of the data. Pelleg and Moore [11] proposed an
approach to find the best partitioning of the data where the
average variance of the clusters is minimum. It is obvious
that as the number of clusters increases the average
variance of the clusters decreases (as k approaches the
number of points the variance becomes zero; this is known
as overfitting). Therefore, the problem is reduced to
finding a tradeoff between the number of clusters and the
average variance of the clusters that can keep the number
of clusters and the variance both minimized. This is done
via the Bayesian Information Criterion (BIC) which is a
model selection criterion [23]. In order to avoid the
problem of overfitting the data, BIC is penalized based on
the number of parameters in the model.

Figure 9. Detailed view of BIC-supported K-means clustering

As shown in Figure 9, we assume that the user has run
the k-means algorithm on the repositioned trace (i.e., a
trace with dense groups of methods formed using the
similarity and continuity schemes) for a set of different
values of K which results in a set of alternative

partitionings (xPP 1). To evaluate these partitionings,

we compute the BIC score of each partitioning, the highest
BIC means best available partitioning of the execution
trace and consequently the best estimation of the number
of clusters K, and which also corresponds to the number of
identified phases Since the dimension of the data in our
case is 1, we use a special formulation of the BIC (for a
more general case of BIC formulation see [11]):

)log(.)()(
^

RKDlPBIC jjj 

where D is the set of data points in the input space,

DR  , jK is the number of clusters in the j-th

partitioning,)log(. RK j is the penalty, and)(
^

Dl j is the

log-likelihood of the data according to the j-th partitioning
which can be computed as follows (see [11] for more
details on using BIC formulation in k-means clustering):








jK

i

i
i

jii
j

R

R
R

KRR
Dl

1

2
^

)log(
2

)2log(
2

)(

where DDi  is the set of points that have i as their

nearest centroid, and ii DR 

The BIC score provides us with the best partitioning of
the execution trace elements according to its complexity.
This way, we can specify the number of phases in our
repositioned execution trace and locate the phases
automatically.

IV. CASE STUDY

In order to evaluate the effectiveness of our phase
detection approach, we conducted two case studies where
we applied our technique to two execution traces
generated from two different systems. The first execution
trace is generated from JHotDraw 5.2 [16], which is a
framework implemented in Java for technical and
structured graphics. It consists of 11 packages, 171 classes,
and 1414 methods. JHotDraw 5.2 has 9419 lines of code.
The second case study was conducted on an execution
trace generated from ArgoUML 0.27, an open source
UML modeling tool implemented in Java. It consists of
1853 classes, 10214 methods, and 130995 lines of code.

A. Case Study I

1) Scenario Description
For our first case study, we used an execution trace

generated from JHotDraw by exercising a scenario that
involves several major activities: Drawing three different
figures (a rectangle, a round-rectangle, and an ellipse)
followed by drawing the same three figures for the second
time on the same sheet and closing the application.

Since JHotDraw registers all mouse movements, and
mouse movements are required while drawing figures, the
resulting trace was bound to contain a lot of noise. We
have therefore filtered these mouse movements to obtain a
trace that is cleaner. We are aware that the detection of
noise in a trace might not always be straightforward and
that noise detection techniques such as the ones presented
by Hamou-Lhadj et al. in [17] might be needed. The
resulting trace contained 4400 method invocations (8800
events), which is considered a small trace. It is used here
as a proof of concept. We show how our approach works
on a larger trace in the second case study.

2) Results of Applying the Phase Detection Approach

We first applied our approach to detect the major
phases in the trace. This is achieved by setting the
threshold to the size of the trace (as explained in Section
III.C). Figure 11 (a) shows the result of applying the
integrated gravity scheme on the trace. The result is shown
in the form of a histogram, where the x-axis shows the
distance between the positions of the calls and the y-axis
represents the number of methods whose position falls into
one interval of x axis. As we can see in, there are two
dense groups of methods (DG1 and DG2) that have been
formed and which indicate the possibility of the existence
of two major execution phases. We explored the contents
of the two phases and found that DG1 represents the
initialization of variables (about 1500 invocations),

K-means

Clustering

Phased

Trace

Application of

BIC to find the

best partitioning

(Fittest K)

Trace

with dense

groups of

methods

K=2 partitions

K=3 partitions

K=4 partitions

K=n partitions

 7

whereas DG2 contains the methods invoked in the trace to
perform the core computations (i.e. drawing the figures).

We applied our technique to DG2 with a lower
threshold so as to detect the sub-phases that it composes.
Figure 11 (b) shows the results of applying the integrated
gravity, using t=20, to the DG2 segment of the JHotDraw
trace. As part of our technique, in order to automatically
determine the number of phases and their location, the
trace resulting from applying the integrated gravity scheme
is partitioned by K-means clustering for K from 1 to 10.
The BIC score for different partitionings of DG2 are
shown in Figure 10. The highest BIC score was for the
partitioning with K = 7 as the best fit. Figure 11 shows the
location of the seven clusters (P1 to P7) that have been
formed with K = 7.

We validated the results by referring to JHotDraw
documentation and by manually analysing the methods
invoked in each phase. Except for the last of these seven
phases (P7), the six phases (P1 to P6) are similar in terms
of length and density. After exploring the content of the
trace, we found that P7 contains methods that end the
application (finalization methods) including the following
methods:
contrib.MDI_DrawApplication.internalFrameClosing

contrib.MDI_DrawApplication.internalFrameDeactiv

ated

contrib.MDI_DrawApplication.internalFrameClosed

application.DrawApplication.actionPerformed

application.DrawApplication.exit

samples.javadraw.JavaDrawApp.destroy

application.DrawApplication.destroy

samples.javadraw.JavaDrawApp.endAnimation

As for the phases P1 to P6, we found that each of these
phases corresponded to the drawing of one figure. For

example, the phase P1 contained methods involved in
drawing a rectangle. P2 contained the methods responsible
of drawing a circle, etc.

To further determine the sub-phases that compose
phase P1, we re-applied the integrated gravity method on
this phase with a lower threshold. This resulted in three
sub-phases which contained methods for ―selecting the
rectangle button in the buttons menu‖, ―preparation for
creating and adding a rectangle to the sheet‖, and ―drawing
of a rectangle on the sheet‖. An example of methods
involved in the third sub-phase of P1 is:
standard.DecoratorFigure.draw

figures.AttributeFigure.draw

figures.AttributeFigure.getFillColor

figures.AttributeFigure.getAttribute

figures.AttributeFigure.getDefaultAttribute

figures.FigureAttributes.get

util.ColorMap.isTransparent

util.ColorMap.color

figures.RectangleFigure.drawBackground

figures.RectangleFigure.displayBox

(a)

(b)

Figure 11. The result of applying the integrated gravity technique to detect major phases

Figure 10. The BIC score for different partitionings of DG2, the

partitioning with 7 clusters is the fittest

BIC Score Versus K

20600

20620

20640

20660

20680

20700

20720

20740

20760

20780

1 2 3 4 5 6 7 8 9 10
K

B
IC

 S
c

o
re

 8

We applied the same process to P2 to P6 and were able
to confirm that each phase corresponded to the drawing to
one of the figures and that all of them consisted of three
other sub-phases. One interesting observation was that the
length and the density of part of the phase which contains
the methods that actually draw the figure on the sheet
(indicated by blue arrows) grows from P1 to P6 while the
first parts of all phases (P1-P6) exhibit similar distribution.
This is due to the massive use of design patterns in
JHotDraw where some features just differ for the
invocation of a few methods. That is, drawing a circle is
performed very similarly to drawing a rectangle. This
explains the phase parts that are similar. It also justifies the
fact that these phases formed a single major phase (phase
2) at a higher level of granularity. The reason for the
growing part (indicated by blue arrows) is that every time
we draw a figure, JHotDraw redraws the existing figures
on the sheet.

B. Case Study II

1) Scenario Description

For the second case study we apply our technique to a
trace generated from ArgoUML by exercising the
following scenario: Starting up ArgoUML, drawing a class
on the class diagram, and quitting ArgoUML). The
resulting trace contained 35754 method calls (to 2331
different methods). Note that a method invocation requires
at least two events to be collected, the entry and exit of a
method. The trace size in terms of events is therefore about
71508 events, which is considered a relatively large trace.

2) Results of Applying the Phase Detection

Figure 12 (upper diagram) shows the result of applying
the integrated gravity scheme on the ArgoUML trace. A
clear division of the execution trace into five major phases

was also supported by the BIC score with K = 5 as the best
fit. When check against the documentation, as expected,
the methods of the first phase indicate the initialization of
ArgoUML where the main application frame (menus,
toolbar, status bar, and main panes: navigation pane,
multieditor pane, to do pane, and details pane) and project
are set up. The project corresponds to a model that
contains an empty class diagram, and an empty use case
diagram.

The second detected phase is concerned with loading
auxiliary modules from the input stream and adding them
to the Post Load Actions list, which contains actions that
are run after ArgoUML has started.

The third phase is the phase where the actual class
element is drawn. This phase is followed with two other
small phases. The first of these phases (i.e., Phase 4)
refreshes and updates the models and the last phase (Phase
5) terminates the application. An example of the methods
involved in the last phase is:

org.argouml.ui.cmd.ActionNotation.menuSelected

org.argouml.kernel.ProjectSettings.getNotationNam

e

org.argouml.notation.NotationNameImpl.getIcon

org.argouml.notation.NotationNameImpl.sameNotatio

As

org.argouml.ui.cmd.ActionNotation.menuDeselected

org.argouml.ui.cmd.ActionExit.actionPerformed

org.argouml.ui.ProjectBrowser.tryExit

org.argouml.ui.ProjectBrowser.saveScreenConfigura

tion

org.argouml.configuration.Configuration.save

We further applied our technique, with a lower

threshold to Phase 3 (drawing a class) to understand how
this is accomplished. Figure 12 (bottom diagram) shows
the result of applying the integrated gravity, using t=20, to

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 3.1 Phase 3.2 Phase 3.3 Phase 3.4

Phase 3: add a class diagram

Initialization of the system
behind the splash screen

≈ 15000 calls

Loading modules
From input stream

≈ 10000 calls

Adding
a class

≈ 5000 calls

Refresh
≈ 2500

calls

Terminate
≈ 2500

calls

Create a node
To the UML model

subsystem A
d
d
 a

re
p
re

se
n
ta

ti
o
n
 t

o

th
e
 s

cr
e
e
n

Check the well-formedness
and show the property

panel

Select the
added

element

Figure 12. Up: major phases that comprise the execution trace, Bottom: the sub-phases that comprise Phase 3.

 9

Phase 3. The highest BIC score was for the partitioning
with K = 4 as the best fit. Figure 12 shows the location of
the four sub-phases and the high-level task that each of
these sub-phases performs. The important tasks that are
performed when drawing a class organized based on the
sub-phases that were identified are summarized as high-
level descriptions in Table 1. To describe these tasks as
shown in Table 1, we referred to ArgoUML source code.
We validated these tasks using ArgoUML documentation
and the Cookbook for Developers of ArgoUML [26].

As we showed, in both cases studies, our approach was
very successful in detecting phases in both traces and at
different levels of granularity.

V. RELATED WORK

Research into phase detection has resulted in two
groups of techniques over the years. While most related
articles [8, 19, 18] are concerned with detecting execution
phases at the hardware level for optimization purposes,
there is only a very small group of techniques that are
concerned with the phase detection for program
comprehension. Trace abstraction techniques such as
sampling [28], depth-limiting [29], and trace
summarization [30] help maintainers in program
comprehension. This work can also be regarded as a new
approach for performing trace abstraction.

In their tool called ExtraVis, Cornilsson et al. [13]
proposed an approach to phase detection. ExtraVis [15]
offers an overview of the execution trace through its
massive sequence (mural) view [14]. In this view the call

relations are visualized based on the static system’s
structure of elements. This helps the user to visually detect
the different phases of the system’s execution. Similar to
our approach, being aware of the execution scenario, the
user can also hypothetically relate the repetitive (or
ordered) patterns of elements to the repetitive (or ordered)
features in the execution scenario. Then, zooming on a
pattern, the user can verify his hypothesis.

The advantage of our approach over [13] is that it does
not require efforts from the user to detect repeated call
sequences and to determine the degree of similarity in
certain execution phases since these are performed
automatically as part of our technique while in ExtraVis
the user is required to analyze large amounts of data
visually. Our approach also differs in the fact that it takes
the nesting level of methods into account when detecting
phases while nesting levels are ignored in the mural view
of ExtraVis.

Another approach that uses murals to visualize phases
is proposed by Reiss et al. [5, 6]. In their tool called Jive
they visualize the behaviour of a program as it is running.
This can help the programmer to understand the system on
the fly. As a result, unlike our approach, the phase
detection process in Jive is done in an online fashion. This
makes it hard to visualize entire executions. Sampling the
events for the execution trace is another shortcoming of
Jive since it is hard to find proper sampling parameters.

Another online phase detection technique proposed by
Watanabe [12] is based on the investigation of LRU cache
for observing objects that are working for the current
phase; a significant change in the cache shows the
emergence of a new phase.

Kuhn and Greevy [17] suggest a possible analogy
between analysis of trace information and signal
processing. For this, they first transform execution traces
into time series by plotting the nesting level of the
methods against points in time through the execution.
Then, the volume of data can be reduced to up to 90% by
the application of several filters such as a minimal nesting
level threshold making it possible to visualize a large
number of events in multiple traces on a single screen.
This way, users can identify similar phases within a trace
and between the traces. This technique cannot guaranty for
similarities between methods in a phase. This is due to the
fact that it does not take into consideration the method
names when preparing the plot to match patterns between
trace signals. Also, it removes a lot of information that is
considered inessential data by applying multiple filtering
logics (independent of method names), having as target
mainly the representation size. This could potentially
result in loss of important trace information during the
abstraction process.

In our previous work [7], we proposed a phase
detection techniques based on the fact that a phase shift
within a trace appears when a certain set of methods
responsible for implementing a particular task and which
are predominant in one phase starts disappearing as the
program enters another phase. We proposed an algorithm
that operates on the trace while it is being generated. The
online algorithm keeps track of the methods encountered

 Phase 3: Adding a class:

o Sub-phase 3.1:

 Command to create nodes with the appropriate modelelement:

Delegate creation of the node to the uml model subsystem and

return an object which represents a UML class diagram.

 Define a renderer object for UML Class Diagrams: Return a Fig

that can be used to represent the given node.
o Sub-phase 3.2:

 Prepare the box coordinates to display graphics for a UML Class

in a diagram.

 Determine whether the graphmodel will allow adding the node

(Define a bridge between the UML meta-model representation of

the design and the GraphModel interface used by GEF).

 Determine if the given object is present as a node in the graph

 Final call at creation time of the Fig, i.e. here the node icon is put

on a Diagram: where the displayed diagram icons for UML

ModelElements looks like nodes and has editable names and

can be resized.

 Add the given node to the graph, if of the correct type.
o Sub-phase 3.3:

 Give continuous feedback to aid in the making of good design
decisions: Perform critiques about well-formedness of the model.

 Change the mode of multieditorpane (particularly the

TabDiagrams) to deselect all tools in the toolbar (Unselect all

the toolbar class button).
o Sub-phase 3.4:

 Hit the class (prepare selection of the class diagram). Necessary

since GEF contains some errors regarding the hit subject.

 Compute handle selection, if any, from cursor location.

 Prepare selection of the current element (through an extension
package for swing classes. This package provides ArgoUML

independent swing extensions.)

TABLE I. SUMMARY OF TASKS PERFORMED IN PHASE 3

 10

and raises a flag when a significant number of these
methods start disappearing and that new ones start
emerging. This approach is significantly different from the
one proposed in this paper since it is not based on
measured similarity and continuity among trace elements.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a dynamic analysis
approach for detecting execution phases of a program. We
argued that execution phases can greatly simplify the
analysis of large execution traces generated from
exercising the system features, and hence enable the
understanding of the behavior of software. Our approach is
inspired by Gestalt laws for measuring the similarity and
the continuity of the elements of a data space. We applied
these laws to the content of execution traces to form dense
groups that are candidate phases. The case studies showed
promising results.

Although, we anticipate that the threshold t would be
application-specific, further studies should be conducted
to, at least, provide hints on acceptable ranges of
thresholds. We also need to embed our approach in a trace
analysis tool and work with software maintainers to
evaluate its effectiveness in practice.

In the future, a first practical step will be to
automatically identify relevant information about phases
and provide an efficient representation of the flow of
phases by detecting redundant phases. We would also like
to investigate the ways in which our phase detection
approach can help maintainers in redocumentation,
extraction of crosscutting concerns, and fault localization.
Finally, we are also interested in investigating how trace
segmentation based on phase detection can play an
important role in recovering a program's conceptual plans.

REFERENCES

[1] O. Greevy, and S. Ducasse, ―Correlating features and code using a
compact two-sided trace analysis approach‖, In Proc. of the 9th
European Conference on Software Maintenance and
Reengineering, 2005, pp. 314–323.

[2] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge,
―Recovering behavioral design models from execution traces‖, In
Proc. of the 9th European Conference on Software Maintenance
and Reengineering, 2005, pp. 112 – 121.

[3] A. Zaidman and S. Demeyer, ―Managing trace data volume
through a heuristical clustering process based on event execution
frequency‖, In Proc. of the 8th European Conference on Software
Maintenance and Reengineering, 2004, pp. 329–338.

[4] A. Dunsmore, M. Roper, and M. Wood, ―The role of
comprehension in software inspection‖, Journal of Systems and
Software, Springer, 52(2-3), 2000, 121-129.

[5] S. P. Reiss, ―Dynamic detection and visualization of software
phases‖, In Proc. of the 3rd International Workshop on Dynamic
Analysis, 2005.

[6] S. P. Reiss, ―Visual representations of executing programs‖,
Journal of Visual Languages and Computing, 18(2), 2007.

[7] H. Pirzadeh, A. Agarwal, A. Hamou-Lhadj, ―An Approach for
Detecting Execution Phases of a System for the Purpose of
Program Comprehension‖, In Proc. of the 8th International
Conference on Software Engineering Research, Management, and
Applications, 2010, pp. 207 - 214.

[8] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
―Automatically characterizing large scale program behavior‖, In
Proc. of the 10th international Conference on Architectural
Support For Programming Languages and Operating Systems,
2002.

[9] M. Fisher, and K. Smith-Gratto ―Gestalt theory: a foundation for
instructional screen design‖, Journal of Educational Technology
Systems, 27(4), 1998, pp. 361-371.

[10] W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly ―Edge
Co-Occurrence in Natural Images Predicts Contour Grouping
Performance‖, Vision Research Journal, 41(6), 2001, pp. 711-724.

[11] D. Pelleg and A. Moore, ―X-means: Extending K-means with
efficient estimation of the number of clusters‖, In Proc. 17th Int.
Conf. Machine Learning, 2000, pp. 727–734.

[12] Y. Watanabe, T. Ishio, and K. Inoue, ―Feature-level phasedetection
for execution trace using object cache‖, In Proc. of the
International Workshop on Dynamic Analysis, 2008, pp. 8–14.

[13] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk,
and A. van Deursen, ―Understanding Execution Traces Using
Massive Sequence and Circular Bundle Views‖, In Proc. the 15th
IEEE International Conference on Program Comprehension, 2007,
pp.49-58.

[14] D. F. Jerding and J. T. Stasko, ―The Information Mural: A
Technique for Displaying and Navigating Large Information
Spaces‖, IEEE Transactions on Visualization and Computer
Graphics, 4(3), 1998, pp. 257-271.

[15] EXTRAVIS: http://www.swerl.tudelft.nl/extravis/

[16] JHOTDRAW, http://www.jhotdraw.org/

[17] A. Kuhn and O. Greevy, ―Exploiting the analogy between traces
and signal processing‖, In Proc. of the 22nd IEEE International
Conference on Software Maintenance, 2006, p. 320-329.

[18] A. S. Dhodapkar and J. E. Smith, ―Comparing program phase
detection techniques‖, In Proc. of the 36th IEEE/ACM
International Symposium on Microarchitecture, 2003, pp. 217-227.

[19] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, "Memory hierarchy reconfiguration for energy
and performance in general purpose architectures‖, In Proc. of
the 33rd Ann. Intl. Sym. on Microarchitecture, 2000, pp. 245-257.

[20] M. Wertheimer. Laws of Organization in Perceptual Forms.
Harcourt Brace Jovanovich, London, 1938.

[21] K. Koffka. Principles of Gestalt Psychology. Hartcourt, New
York, 1935.

[22] J. MacQueen, ―Some Methods for Classification and Analysis of
Multivariate Observations‖, In Proc. Of the 5th Berkeley Symp.
Math. Statistics and Probability, 1967, pp. 281-296.

[23] G. Schwarz, "Estimating the dimension of a model‖, The Annals
of Statistics, 6(2), 1978, pp. 461–464.

[24] K. Smith-Gratto and M. Fisher, "Gestalt theory: A foundation for
instructional screen design," Journal of Instructional Technology
Systems, 27(4), 1999, pp. 361–371.

[25] A. Hamou-Lhadj, and T. C. Lethbridge, ―A Survey of Trace
Exploration Tools and Techniques‖, In Proc. of the Conference of
the Centre for Advanced Studies on Collaborative research, 2004,
pp. 42-54.

[26] L. Tolke, M. Klink, M. Wulp. Cookbook for Developers of
ArgoUML: An Introduction to Developing the ArgoUML. The
Regents of the University of California. URL: http://argouml-
downloads.tigris.org/nonav/argouml-0.18.1/cookbook-0.18.1.pdf

[27] P. C. Quinn and R. S. Bhatt, ―Perceptual organization in infancy:
Bottom-up and top-down influences‖, Optometry and Vision
Science (Special Issue on Infant and Child Vision Research:
Present Status and Future Directions), 86(6), 2009, pp. 589–594.

[28] A. Chan, R. Holmes, GC. Murphy, ATT. Ying, "Scaling an object-
oriented system execution visualizer through sampling", In Proc.
11th Int. Workshop on Program Comprehension, 2003, pp. 237–
244.

http://www.swerl.tudelft.nl/extravis/
http://www.jhotdraw.org/

 11

[29] A. Rountev, B. H. Connell, "Object naming analysis for reverse-
engineered sequence diagrams", In Proc. of the 27th International
Conference on Software Engineering, 2005, pp. 254–263.

[30] A. Hamou-Lhadj and T. C. Lethbridge, ―Summarizing the content
of large traces to facilitate the understanding of the behaviour of a
software system‖, In Proc. 14th International Conference on
Program Comprehension, 2006, pp. 181–190.

