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Abstract—The analysis of execution traces can reveal 

important information about the behavioral aspects of 

complex software systems, hence reducing the time and 

effort it takes to understand and maintain them. Traces, 

however, tend to be considerably large which hinders their 

effective analysis. Existing traces analysis tools rely on some 

sort of visualization techniques to help software engineers 

make sense of trace content. Many of these techniques have 

been studied and found to be limited in many ways. In this 

paper, we present a novel trace analysis technique that 

automatically divides the content of a large trace into 

meaningful segments that correspond to the program’s main 

execution phases such as initializing variables, performing a 

specific computation, etc. These phases can 

simplify significantly the exploration of large traces by 

allowing software engineers to first understand the content 

of a trace at a high-level before they decide to dig into the 

details. Our phase detection method is inspired by Gestalt 

laws that characterize the proximity, similarity, and 

continuity of the elements of a data space. We model these 

concepts in the context of execution traces and show how 

they can be used as gravitational forces that yield the 

formation of dense groups of trace elements, which indicate 

candidate phases. We applied our approach to two software 

systems. The results are very promising.  
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I.  INTRODUCTION 

A common and difficult problem experienced by 
software engineers when maintaining large complex 
system is to understand how the system is built and why it 
is built that way [4]. This is especially important when the 
system suffers from poor documentation (if it exists at all) 
and that the original designers have moved to new projects 
or company. 

In this paper, we focus on techniques that assist the 
understanding of the behavioral aspects of a software 
system. These techniques often rely on tracing and run-
time monitoring mechanisms. Traces, however, are 

difficult to work with since they tend to be considerably 
large. To address this issue, many trace abstraction and 
simplification techniques have been proposed with a 
common objective being to extract high-level views from 
raw traces (e.g. [1, 2, 3]). Although these techniques have 
been shown to be useful in the context of software 
maintenance, they suffer from several limitations such as 
their extensive reliance on user intervention, their 
dependence on particular visualization schemes that hinder 
their reuse, and so on [25]. The general consensus in the 
trace analysis community is that more work towards 
effective trace abstraction techniques is much needed.  

The objective of this paper is to present a novel trace 
analysis technique that automatically divides the content of 
a trace into smaller and meaningful trace segments that 
correspond to the program’s main execution phases such 
as initializing variables, performing a specific 
computation, etc. These phases can significantly simplify 
the exploration of large traces by allowing software 
engineers to browse the trace by focusing on its major 
parts (i.e. its execution phases) instead of a flow of mere 
low-level events.  

Our phase detection approach is inspired by Gestalt 
laws of similarity and good continuation [9, 24, 27], a 
concept used in psychology to describe the operational 
principle of the human brain, particularly, the ability for 
humans to visually recognize objects and shapes as a 
whole and not just as points and lines. These laws explain 
how our perceptual system segments local elements 
against their context and integrates them as objects. We 
apply these laws to traces of method (routine) calls 
(common traces used in program comprehension) to form 
dense groups of trace elements that indicate the presence 
of potential execution phases. 

Organization of the paper: In the next section, we 
define what we mean by an execution phase. In Section 
III, we describe our phase detection approach. Two case 
studies are presented in Section IV, followed by related 
work. Finally, we conclude the paper and point out to 
future directions in Section V. 
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II. WHAT IS AN EXECUTION PHASE? 

Execution phases can appear at various levels of a 
program execution [5, 8, 12]. At the highest level of 
abstraction, a program execution can be considered as an 
algorithm or a general procedure for solving a specific 
problem. The phases in this case are the key steps of the 
algorithm. At a lower level of abstraction the execution 
phases of a program written in a specific programming 
language are portions of the program execution that 
collaborate with each other to implement a specific task 
([5, 6]). The lowest level of abstraction of a program is 
presented as machine code. The execution phases in this 
level can show how the program accesses and uses system 
resources and other low-level tasks. For example, the 
phases can show distinctive patterns of hardware usage 
(e.g., CPU usage, memory access, communication ports 
access) or stable states of machine resources during the 
execution as noted by Sherwood et al. [8].  

 In this paper, we focus on identifying the key 
execution phases that compose a program at the source 
code level. Similar to other works (e.g., [5, 6, 12]) in the 
domain of trace analysis for program comprehension we 
use the following definition of execution phases: ―a 
program [execution] phase is a portion of the program that 
exhibits common behavior at a level the programmer 
would recognize‖ [5]. In such context, we want to be able 
to take an execution trace (generated from exercising one 
or more particular features) and identify a set of high-level 
tasks (i.e. execution phases) where each task performs a 
portion of the overall work. Each phase denotes an 
essential step of the general procedure and phase 
transitions can denote the logic of the procedure or the 
flow of data from one step of the procedure to another. 
This way, the understanding of how a feature is 
implemented will no longer require, at least in the 
beginning, that its corresponding trace be explored as a 
flow of mere low-level program elements.  Instead, a trace 
can be seen as a sequence of execution phases, in which a 
phase denotes an essential step of the general execution 
and the transitions among phases depict the logic (or the 
flow) that connects the phases. For instance, a program’s 
execution trace could be composed of three major phases 
(Error! Reference source not found.): The initialization 
phase, the computation phase, and the finalization phase. 
Each phase can be further decomposed into smaller sub-
phases that implement specific sub-tasks of the program. 

 
Figure 1. High-level phases of a program 

 
The benefits of extracting the execution phases of a 

program in the area of program comprehension are 
numerous:  

 Phases can provide important information on how 
a particular feature is implemented, which in turn 

can help software maintainers enhance these 
features.  

 Phases can be further refined to recover a high-
level behavioral view from raw traces, enabling 
the understanding of the traced scenario. 

 Phases might be helpful in fault localization as 
they can show in what phase of the program 
execution the error has occurred. 

 A program shown as phases can be an excellent 
means of communication between maintainers, 
developers, programmers to obtain a quick and 
clear idea and description of the program. 

III. PHASE DETECTION APPROACH 

We have developed a phase detection technique that is 
inspired by the law of gravity (namely similarity and 
continuity), also known as Gestalt laws of perception, 
which describe how people group similar items visually 
based on their perception [21, 22, 27].  Gestalt  psychology 
is an  application of  physics  to  essential  parts  of  brain  
physiology by  telling  the  physiologist  what  kind  of 
process  occurs  in  the  brain  when  we  see  visual  
objects, and how our perceptual systems follow certain 
grouping principles (e.g., good continuation, proximity, 
and similarity properties of the elements) [27]. 

For example, Figure 2 shows a very simple trace 

composed of two routines a and b invoked several times. 
The figure also shows a ruler that is used to indicate the 

position of the calls in the trace (e.g. the first call to a 
appears in position 1, the second call in position 2, etc.). If 
asked to identify the major phases that appear in this trace, 
a programmer would most likely perceive two major 

phases: The first one is composed of the calls to a, while 

the second phase could consist of the calls to b. Gestalt 
psychology explains that the more similar two elements 
are to each other the more likely they are to be perceived 
as belonging to the same group [9].  

 

 

Figure 2.  A sample trace  

 
As the trace grows in size and complexity, the 

programmer’s visual perception of similarity becomes 
more difficult. The complexity here can be defined as the 
number of new elements that are invoked in a trace. Figure 
3 shows an overview of our approach for automatic 
detection of execution phases from traces. We start first by 
applying gravitational schemes, defined based on Gestalt 
laws, on the input trace. Two schemes (more precisely the 
similarity and continuity schemes) are used as 
gravitational forces that yield the formation of dense 
groups of trace elements, which indicate the candidate 
phases. When the dense groups are formed, we 
automatically identify the beginning and end of each phase 
using K-means clustering with BIC (Bayesian Information 

Initialization Computation Finalization 
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Criterion) support [13] (discussed in more details later in 
the paper). 

 

Figure 3. Detailed view of the execution phase detection unit 

 
The two gravitational schemes that we have developed 

in this paper are based on the fact that a phase change in an 
execution trace corresponds to a significant change in the 
pattern of some attributes of the method calls in the trace 
over time. Therefore, our strategy is to reduce the 
distances between the method calls for which the 
characteristics can form a pattern specifying a phase. The 
effect of applying each of the two schemes (i.e. similarity 
and continuity schemes) is as follows: 

Similarity scheme: By applying this scheme the 
method calls in the trace are repositioned in a way that the 
distance between the same method calls is reduced.  

Continuity scheme: The application of this scheme 
results in the repositioning of the method calls in a way 
that the methods that are continuously called (and not 
returned as much) are made closer one to another to 
emphasize a trend in the execution of the program.   

To help with the description of these techniques, we 
introduce the following definitions: 

We define a trace T of method calls of size n (the 
number of calls invoked in the trace) as a sequence of one 
or more method calls, where each method call is denoted 

as dic , where i represents the invocation order of the 

method call c and d shows the nesting level of the call. 

Each method call dic , can result in calls of zero or more 

methods, with 1,1  dic  as its first callee, if any.  

 dndidid cccccT  ,,1,,20,1 ,,,,,,   

To be able to apply our gravitational schemes we need 
to define distance between the method calls in a trace. For 
this, the difference in invocation orders between the 
method calls in the trace is considered as distance between 
the method calls and it is assumed that there is equal 
distance of 1 between consecutive invocations in the 

original trace. For instance, the distance between dic ,  and 

djc ,  would be equal to || ij  . This maps the ordinal 

scale of method calls to an interval scale. Furthermore, we 

define the function )( ,dicPos  to return the position of the 

method call c in the interval scale (i.e., on a ruler). The 
position of a method call is also the order in which it was 
invoked right after the trace is generated. However, as the 
method calls are rearranged as a result of applying the two 
schemes, the new position of a method call might differ 
from its original order of invocation (rearrangement of the 
trace does not preserve the order of calls). 

A. The Similarity Gravity Scheme 

The objective of the similarity gravity scheme is to 
reposition the elements of a trace in such a way that 
similar elements gravitate to each other forming a group of 
dense elements, which could indicate the presence of a 
phase. In other words, the elements of a trace are re-
positioned in a way that the distance between two same 
elements is less than the distance between two different 
elements given that the difference in terms of the 
invocation order is the same for the elements of both pairs.  

A simple repositioning scheme based on the similarity 
gravity technique, which we refer to as Possim, and which 
divides by half the distance of similar methods changes the 
position of method calls as follows: 
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As stated above, in the similarity gravity technique we 

visit each method call dic ,   in the original trace; if there is 

a previous method call djc ,  to the same method, we 

reposition dic ,  to half way from djc ,  (i.e., by reducing 

the distance to half). Otherwise we do not change its 

position ( dic ,  remains in i-th position). We chose to 

reduce the distance between calls to the same method by 
half, although one could use a different measure. The 
focus here is on the fact that the same methods are placed 
close enough to each other to form a dense group. 

Figure 4 shows the result of applying the similarity 
gravity method to the sample trace of Figure 2. As we can 
see, the new positioning of the elements leads to two 
blocks that could indicate the presence of two phases. The 
first phase begins at the first method invocation (and 

contains calls to a) and the second phase starts at the fifth 

method invocation (calls to b). That is, after using the 
similarity gravity method, even if the similarity of the 
items in each of each group becomes imperceptible, the 
group still can be recognized by their structure and the 
distance between them. This is shown in Figure 6 where 
we replaced all methods with ―●‖.  

 

      

 

1  2  3  4  5  6  7  8 

a a  a a b b  b b 

Figure 4. The result of applying the similarity gravity to a 

trace of Figure 3 
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Figure 5. The result of applying the similarity gravity technique to a 

trace of Figure 3 where the routines are shown as dots 
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In Figure 6, we show the effect of applying the 
similarity gravity method to a sample trace. By applying 
similarity gravity scheme in Figure 6 (step 2) we find that 
the trace contains two phases. The first one starts at the 

first invocation and is composed of calls to routines a and 

b, while the other one which starts at the seventh 

invocation contains calls to c and d. Figure 6 (step 3) 
shows the same result when discarding the effect of 
similarity in perception (replacing all methods with ―●‖.). 

Although the size and complexity have increased 
compared to the sample example of Figure 2, one can still 
quickly recognize two phases based on the formed groups.  

Structurally recognizable groups can also be explained 
by Gestalt laws. Proximity, the most fundamental law of 
Gestalt laws, states that ―being all other factors equal, the 
closer [in terms of distance] two elements are to each other 
the more likely they are to be perceived as belonging to the 
same group‖ [24]. This way, one may conclude that the 
similarity gravity technically converts similarity to 
proximity.  

Although in this work, we only consider the similarity 
between method names, one can defines other similarities 
(e.g., cohesiveness either from a structural or from a 
conceptual point of view) and apply the scheme introduced 
here. 

 
Figure 6. The result of applying the similarity gravity technique to a 

sample trace 

B. The Continuity Gravity Scheme 

The previous method should work well for traces 
where phases can be perceived by an analyst by looking at 
the linear representation of a trace, although some 
automatic assistance is needed. But what happens if there 
is no perceivable similarity between the linear 
representation of the elements of an execution trace? For 
example, Figure 7  (step 1) shows an execution trace with 
no visual similarity between its method calls (no unique 
method is invoked more than once). 

To overcome this issue, we turn again to another one 
of Gestalt laws, the Law of Good Continuation [10], which 
states the tendency of things to group if they are visually 
not co-linear or nearly co-linear. In execution traces, the 
increments in nesting levels of the method calls are 
continuous. For example, in Figure 7 (step 1), one can 
notice that there is a good continuation between the calls 

from a to o, which can intuitively suggests the existence 
of a phase. Using the nesting level of calls to detect 
execution phases has also been the topic of other studies 
[17, 12]. Watanabe et al. [12] used the nesting levels of a 

call tree to detect phases and locate phase shifts. The 
authors suggested that the depth of the call stack (i.e. the 
nesting level) becomes local-minimum at the beginning of 
a phase indicating a phase transition.  They also showed 
that the elements that have a high nesting level (i.e. which 
are deep in the tree hierarchy) were unlikely to initiate new 
phases.  

We define a scheme called the continuity gravity that 
groups trace elements based on the nesting level of the 
method calls. The continuity gravity scheme groups trace 
elements by keeping the method calls with higher nesting 
level closer to the previous method calls. The higher is the 
nesting level of a method call, the stronger it is attracted by 
the previous method call. 

A continuity gravity scheme that repositions the 
elements of a trace based on their nesting level, and that 
we call here Poscont, is as follows: 







 




Otherwise                                     

2
 if           

1
)(

)( ,1
,

i

dd
d

cPos
cPos dicont

dicont  

When applied to a trace, this scheme reduces the 
distance between method calls based on the nesting level 
(d) of the callee by changing the distance of two 
consequent method calls from 1 to 1/d. The condition 

2
dd   disables gravity for the cases in which the 

nesting level of the current method call is drastically lower 
than the nesting level of the previous method call (i.e., the 
case of local minimums). For example, a call with a 
nesting level 6 that immediately occurs after a call with a 
nesting level 12 will not be repositioned because it 

indicates a drastic change in nesting levels (
2

126  ) and 

thus it could indicate a phase shift. Again, we chose here 
not to reposition subsequent subtrees where the nesting 
levels vary by more than half. A different criterion could 
be used as long as a drastic change among subtrees can be 
identified.  

Figure 7  (step 2) shows the result of applying the 
continuity gravity scheme to the sample trace. As we can 
see, the new positioning of the elements leads to two 
distinguishable phases (the phases are more 
distinguishable when we omit to visualize the nesting 
levels). The first phase begins at the first method 
invocation and the second phase starts at the tenth method 
invocation. This way, we used the effect of continuity in 
perceptual grouping to build groups that are structurally 
recognizable. That is, after using the continuity gravity, 
even if the continuity of the items in each group becomes 
imperceptible due to the size and complexity of a trace, the 
trace clusters still can be recognized through their structure 
and the distance between them. If we omit to visualize the 
nesting level (see Figure 7  (step 3)) and replace the 
methods with a ―●‖ (Figure 8), we can clearly see that two 

phase have been formed. We may say that the continuity 
gravity technically converts continuation to proximity. 
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Figure 7. The result of applying the continuity gravity technique to a 

sample trace. 

 

Figure 8. The resulting trace with the routines replaced with dots 

C. Integration of Gravities 

An efficient phase detection technique should integrate 
both the continuity and similarity gravity. First, the 
distance between the current method call and the previous 
method call is updated based on the changes in the nesting 
level (application of continuity scheme). Next, the position 
is updated according to the similarity of the current 
method call to previous method calls (application of 
similarity scheme). We call this the integrated gravity 
scheme. When applied to a trace, the integrated scheme 
first reduces the distance between method calls based on 
their nesting level, then, reduces the distance between 
method calls to a same method. 

The integrated gravity repositioning scheme can be 
iteratively applied to a trace to detect major phases, their 
sub-phases, etc, until we reach the individual elements of 
the trace. For this, we need to have a means to harness the 
gravity so that phases could be detected with different 
levels of granularity. A threshold t is defined in such a way 

that a call to a method m is attracted to a previous call to 
the same method only and if only the distance between 
these two calls is less than the threshold. This way, major 
phases can be detected by setting a threshold t that is close 
to the size of the trace. The smaller the threshold, the more 
fine-grained phases we can detect. We anticipate that the 
threshold is application-specific and that a tool that 

supports our approach should allow enough flexibility to 
vary the threshold.  

An integrated scheme with threshold t changes the 
position of method calls as follows: 
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D. Identifying the Beginning and End of Phases  

Once the method calls of a trace are repositioned 
according to the integrated gravity scheme, we need a way 
to automatically identify the beginning and end of each 
phase since it would be impractical to expect from 
programmers to distinguish the various phases visually for 
considerably large traces. For this, we propose to use a 
clustering algorithm that can group the method calls of the 
repositioned trace into clusters of method calls that are 
close to each other. We chose K-means clustering as our 
clustering algorithm [22]. K-means is an unsupervised 
clustering technique that partitions the data points 
(instances) into a predetermined number (K) of non-
hierarchical clusters.  

The number of clusters is pre-specified by randomly 

drawing K points as initial centroids ( K 1 ) (showing 

the center of each cluster). The rest of the algorithm is 
iteratively performed according to the below two steps, 
trying to minimize the overall sum of distances of the 
points from their cluster centroids: 

Step 1: Each instance x is assigned to the cluster with 
the closest centroid (the distances in our case are 
Euclidian): 

ijxxDx jii  if  

where iD  is the set of points that have i  as their nearest 

centroid. 
 
Step 2: Update the centroid of each cluster by moving 

it to the center of assigned points to that cluster: 
 


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

iDxi
i x

R

1
  

where ii DR  . 

The iteration continues until we have the same cluster 
assignment in two successive iterations. 

In K-means clustering the number of clusters (i.e., the 
number of phases) should be given as an input to the 
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algorithm. In other words, the user must know the number 
of phases before running the K-means algorithm (perhaps 
by counting the number of distinct phases that he can 
visually perceive on the plot). This, however, can be error 
prone. Therefore, it would be advantageous if the number 
of clusters could be selected automatically according to the 
complexity of the data. Pelleg and Moore [11] proposed an 
approach to find the best partitioning of the data where the 
average variance of the clusters is minimum. It is obvious 
that as the number of clusters increases the average 
variance of the clusters decreases (as k approaches the 
number of points the variance becomes zero; this is known 
as overfitting). Therefore, the problem is reduced to 
finding a tradeoff between the number of clusters and the 
average variance of the clusters that can keep the number 
of clusters and the variance both minimized. This is done 
via the Bayesian Information Criterion (BIC) which is a 
model selection criterion [23]. In order to avoid the 
problem of overfitting the data, BIC is penalized based on 
the number of parameters in the model.   

 

 
Figure 9. Detailed view of BIC-supported K-means clustering 

As shown in Figure 9, we assume that the user has run 
the k-means algorithm on the repositioned trace (i.e., a 
trace with dense groups of methods formed using the 
similarity and continuity schemes) for a set of different 
values of K which results in a set of alternative 

partitionings ( xPP 1 ). To evaluate these partitionings, 

we compute the BIC score of each partitioning, the highest 
BIC means best available partitioning of the execution 
trace and consequently the best estimation of the number 
of clusters K, and which also corresponds to the number of 
identified phases Since the dimension of the data in our 
case is 1, we use a special formulation of the BIC (for a 
more general case of BIC formulation see [11]): 

)log(.)()(
^

RKDlPBIC jjj   

where D is the set of data points in the input space, 

DR  , jK  is the number of clusters in the j-th 

partitioning, )log(. RK j  is the penalty, and )(
^

Dl j  is the 

log-likelihood of the data according to the j-th partitioning 
which can be computed as follows (see [11] for more 
details on using BIC formulation in k-means clustering): 
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where DDi  is the set of points that have i  as their 

nearest centroid, and ii DR   

The BIC score provides us with the best partitioning of 
the execution trace elements according to its complexity. 
This way, we can specify the number of phases in our 
repositioned execution trace and locate the phases 
automatically. 

IV. CASE STUDY 

In order to evaluate the effectiveness of our phase 
detection approach, we conducted two case studies where 
we applied our technique to two execution traces 
generated from two different systems. The first execution 
trace is generated from JHotDraw 5.2 [16], which is a 
framework implemented in Java for technical and 
structured graphics. It consists of 11 packages, 171 classes, 
and 1414 methods. JHotDraw 5.2 has 9419 lines of code. 
The second case study was conducted on an execution 
trace generated from ArgoUML 0.27, an open source 
UML modeling tool implemented in Java. It consists of 
1853 classes, 10214 methods, and 130995 lines of code. 

A. Case Study I 

1) Scenario Description  
For our first case study, we used an execution trace 

generated from JHotDraw by exercising a scenario that 
involves several major activities:  Drawing three different 
figures (a rectangle, a round-rectangle, and an ellipse) 
followed by drawing the same three figures for the second 
time on the same sheet and closing the application. 

Since JHotDraw registers all mouse movements, and 
mouse movements are required while drawing figures, the 
resulting trace was bound to contain a lot of noise. We 
have therefore filtered these mouse movements to obtain a 
trace that is cleaner. We are aware that the detection of 
noise in a trace might not always be straightforward and 
that noise detection techniques such as the ones presented 
by Hamou-Lhadj et al. in [17] might be needed. The 
resulting trace contained 4400 method invocations (8800 
events), which is considered a small trace. It is used here 
as a proof of concept. We show how our approach works 
on a larger trace in the second case study.  

2) Results of Applying the Phase Detection Approach 

We first applied our approach to detect the major 
phases in the trace. This is achieved by setting the 
threshold to the size of the trace (as explained in Section 
III.C). Figure 11 (a) shows the result of applying the 
integrated gravity scheme on the trace. The result is shown 
in the form of a histogram, where the x-axis shows the 
distance between the positions of the calls and the y-axis 
represents the number of methods whose position falls into 
one interval of x axis. As we can see in, there are two 
dense groups of methods (DG1 and DG2) that have been 
formed and which indicate the possibility of the existence 
of two major execution phases. We explored the contents 
of the two phases and found that DG1 represents the 
initialization of variables (about 1500 invocations), 
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whereas DG2 contains the methods invoked in the trace to 
perform the core computations (i.e. drawing the figures). 

We applied our technique to DG2 with a lower 
threshold so as to detect the sub-phases that it composes. 
Figure 11 (b) shows the results of applying the integrated 
gravity, using t=20, to the DG2 segment of the JHotDraw 
trace. As part of our technique, in order to automatically 
determine the number of phases and their location, the 
trace resulting from applying the integrated gravity scheme 
is partitioned by K-means clustering for K from 1 to 10. 
The BIC score for different partitionings of DG2 are 
shown in Figure 10. The highest BIC score was for the 
partitioning with K = 7 as the best fit. Figure 11 shows the 
location of the seven clusters (P1 to P7) that have been 
formed with K = 7. 

We validated the results by referring to JHotDraw 
documentation and by manually analysing the methods 
invoked in each phase. Except for the last of these seven 
phases (P7), the six phases (P1 to P6) are similar in terms 
of length and density. After exploring the content of the 
trace, we found that P7 contains methods that end the 
application (finalization methods) including the following 
methods: 
contrib.MDI_DrawApplication.internalFrameClosing 

contrib.MDI_DrawApplication.internalFrameDeactiv

ated 

contrib.MDI_DrawApplication.internalFrameClosed 

application.DrawApplication.actionPerformed 

application.DrawApplication.exit 

samples.javadraw.JavaDrawApp.destroy 

application.DrawApplication.destroy 

samples.javadraw.JavaDrawApp.endAnimation 

As for the phases P1 to P6, we found that each of these 
phases corresponded to the drawing of one figure. For 

example, the phase P1 contained methods involved in 
drawing a rectangle. P2 contained the methods responsible 
of drawing a circle, etc.  

To further determine the sub-phases that compose 
phase P1, we re-applied the integrated gravity method on 
this phase with a lower threshold. This resulted in three 
sub-phases which contained methods for ―selecting the 
rectangle button in the buttons menu‖, ―preparation for 
creating and adding a rectangle to the sheet‖, and ―drawing 
of a rectangle on the sheet‖. An example of methods 
involved in the third sub-phase of P1 is: 
standard.DecoratorFigure.draw 

figures.AttributeFigure.draw 

figures.AttributeFigure.getFillColor 

figures.AttributeFigure.getAttribute 

figures.AttributeFigure.getDefaultAttribute 

figures.FigureAttributes.get 

util.ColorMap.isTransparent 

util.ColorMap.color 

figures.RectangleFigure.drawBackground 

figures.RectangleFigure.displayBox 

(a)  

(b)  

Figure 11. The result of applying the integrated gravity technique to detect major phases 

Figure 10. The BIC score for different partitionings of DG2, the 
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We applied the same process to P2 to P6 and were able 
to confirm that each phase corresponded to the drawing to 
one of the figures and that all of them consisted of three 
other sub-phases. One interesting observation was that the 
length and the density of part of the phase which contains 
the methods that actually draw the figure on the sheet 
(indicated by blue arrows) grows from P1 to P6 while the 
first parts of all phases (P1-P6) exhibit similar distribution. 
This is due to the massive use of design patterns in 
JHotDraw where some features just differ for the 
invocation of a few methods. That is, drawing a circle is 
performed very similarly to drawing a rectangle. This 
explains the phase parts that are similar. It also justifies the 
fact that these phases formed a single major phase (phase 
2) at a higher level of granularity. The reason for the 
growing part (indicated by blue arrows) is that every time 
we draw a figure, JHotDraw redraws the existing figures 
on the sheet. 

B. Case Study II 

1) Scenario Description  

For the second case study we apply our technique to a 
trace generated from ArgoUML by exercising the 
following scenario: Starting up ArgoUML, drawing a class 
on the class diagram, and quitting ArgoUML). The 
resulting trace contained 35754 method calls (to 2331 
different methods). Note that a method invocation requires 
at least two events to be collected, the entry and exit of a 
method. The trace size in terms of events is therefore about 
71508 events, which is considered a relatively large trace. 

2) Results of Applying the Phase Detection  

Figure 12 (upper diagram) shows the result of applying 
the integrated gravity scheme on the ArgoUML trace. A 
clear division of the execution trace into five major phases 

was also supported by the BIC score with K = 5 as the best 
fit. When check against the documentation, as expected, 
the methods of the first phase indicate the initialization of 
ArgoUML where the main application frame (menus, 
toolbar, status bar, and main panes: navigation pane, 
multieditor pane, to do pane, and details pane) and project 
are set up. The project corresponds to a model that 
contains an empty class diagram, and an empty use case 
diagram. 

The second detected phase is concerned with loading 
auxiliary modules from the input stream and adding them 
to the Post Load Actions list, which contains actions that 
are run after ArgoUML has started.  

The third phase is the phase where the actual class 
element is drawn. This phase is followed with two other 
small phases. The first of these phases (i.e., Phase 4) 
refreshes and updates the models and the last phase (Phase 
5) terminates the application. An example of the methods 
involved in the last phase is: 

 
org.argouml.ui.cmd.ActionNotation.menuSelected 

org.argouml.kernel.ProjectSettings.getNotationNam

e 

org.argouml.notation.NotationNameImpl.getIcon 

org.argouml.notation.NotationNameImpl.sameNotatio

As 

org.argouml.ui.cmd.ActionNotation.menuDeselected 

org.argouml.ui.cmd.ActionExit.actionPerformed 

org.argouml.ui.ProjectBrowser.tryExit 

org.argouml.ui.ProjectBrowser.saveScreenConfigura

tion 

org.argouml.configuration.Configuration.save 

 
 
We further applied our technique, with a lower 

threshold to Phase 3 (drawing a class) to understand how 
this is accomplished. Figure 12 (bottom diagram) shows 
the result of applying the integrated gravity, using t=20, to 

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

Phase 3.1 Phase 3.2 Phase 3.3 Phase 3.4 

Phase 3: add a class diagram 

Initialization of the system 
behind the splash screen 

≈ 15000 calls 

Loading modules 
From input stream 

≈ 10000 calls 

Adding  
a class 

≈ 5000 calls 

Refresh 
≈ 2500  

calls 

Terminate 
≈ 2500  

calls 

Create a node  
To the UML model 

subsystem A
d
d
 a

 

re
p
re

se
n
ta

ti
o
n
 t

o
 

th
e
 s

cr
e
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n
 

Check the well-formedness 
and show the property 

panel 

Select the 
added  

element 

Figure 12. Up: major phases that comprise the execution trace, Bottom: the sub-phases that comprise Phase 3. 
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Phase 3. The highest BIC score was for the partitioning 
with K = 4 as the best fit. Figure 12 shows the location of 
the four sub-phases and the high-level task that each of 
these sub-phases performs. The important tasks that are 
performed when drawing a class organized based on the 
sub-phases that were identified are summarized as high-
level descriptions in Table 1. To describe these tasks as 
shown in Table 1, we referred to ArgoUML source code. 
We validated these tasks using ArgoUML documentation 
and the Cookbook for Developers of ArgoUML [26].  

As we showed, in both cases studies, our approach was 
very successful in detecting phases in both traces and at 
different levels of granularity.  

V. RELATED WORK 

Research into phase detection has resulted in two 
groups of techniques over the years. While most related 
articles [8, 19, 18] are concerned with detecting execution 
phases at the hardware level for optimization purposes, 
there is only a very small group of techniques that are 
concerned with the phase detection for program 
comprehension. Trace abstraction techniques such as 
sampling [28], depth-limiting [29], and trace 
summarization [30] help maintainers in program 
comprehension. This work can also be regarded as a new 
approach for performing trace abstraction. 

In their tool called ExtraVis, Cornilsson et al. [13] 
proposed an approach to phase detection. ExtraVis [15] 
offers an overview of the execution trace through its 
massive sequence (mural) view [14]. In this view the call 

relations are visualized based on the static system’s 
structure of elements. This helps the user to visually detect 
the different phases of the system’s execution. Similar to 
our approach, being aware of the execution scenario, the 
user can also hypothetically relate the repetitive (or 
ordered) patterns of elements to the repetitive (or ordered) 
features in the execution scenario. Then, zooming on a 
pattern, the user can verify his hypothesis. 

The advantage of our approach over [13] is that it does 
not require efforts from the user to detect repeated call 
sequences and to determine the degree of similarity in 
certain execution phases since these are performed 
automatically as part of our technique while in ExtraVis 
the user is required to analyze large amounts of data 
visually. Our approach also differs in the fact that it takes 
the nesting level of methods into account when detecting 
phases while nesting levels are ignored in the mural view 
of ExtraVis. 

Another approach that uses murals to visualize phases 
is proposed by Reiss et al. [5, 6]. In their tool called Jive 
they visualize the behaviour of a program as it is running. 
This can help the programmer to understand the system on 
the fly. As a result, unlike our approach, the phase 
detection process in Jive is done in an online fashion. This 
makes it hard to visualize entire executions. Sampling the 
events for the execution trace is another shortcoming of 
Jive since it is hard to find proper sampling parameters. 

Another online phase detection technique proposed by 
Watanabe [12] is based on the investigation of LRU cache 
for observing objects that are working for the current 
phase; a significant change in the cache shows the 
emergence of a new phase. 

Kuhn and Greevy [17] suggest a possible analogy 
between analysis of trace information and signal 
processing. For this, they first transform execution traces 
into time series by plotting the nesting level of the 
methods against points in time through the execution. 
Then, the volume of data can be reduced to up to 90% by 
the application of several filters such as a minimal nesting 
level threshold making it possible to visualize a large 
number of events in multiple traces on a single screen. 
This way, users can identify similar phases within a trace 
and between the traces. This technique cannot guaranty for 
similarities between methods in a phase. This is due to the 
fact that it does not take into consideration the method 
names when preparing the plot to match patterns between 
trace signals. Also, it removes a lot of information that is 
considered inessential data by applying multiple filtering 
logics (independent of method names), having as target 
mainly the representation size. This could potentially 
result in loss of important trace information during the 
abstraction process. 

In our previous work [7], we proposed a phase 
detection techniques based on the fact that a phase shift 
within a trace appears when a certain set of methods 
responsible for implementing a particular task and which 
are predominant in one phase starts disappearing as the 
program enters another phase. We proposed an algorithm 
that operates on the trace while it is being generated. The 
online algorithm keeps track of the methods encountered 

 Phase 3: Adding a class:  

o Sub-phase 3.1: 

 Command to create nodes with the appropriate modelelement: 

Delegate creation of the node to the uml model subsystem and 

return an object which represents a UML class diagram. 

 Define a renderer object for UML Class Diagrams: Return a Fig 

that can be used to represent the given node. 
o Sub-phase 3.2: 

 Prepare the box coordinates to display graphics for a UML Class 

in a diagram.  

 Determine whether the graphmodel will allow adding the node 

(Define a bridge between the UML meta-model representation of 

the design and the GraphModel interface used by GEF). 

 Determine if the given object is present as a node in the graph 

 Final call at creation time of the Fig, i.e. here the node icon is put 

on a Diagram: where the displayed diagram icons for UML 

ModelElements looks like nodes and has editable names and 

can be resized. 

 Add the given node to the graph, if of the correct type. 
o Sub-phase 3.3: 

 Give continuous feedback to aid in the making of good design 
decisions: Perform critiques about well-formedness of the model.  

 Change the mode of multieditorpane (particularly the 

TabDiagrams) to deselect all tools in the toolbar (Unselect all 

the toolbar class button). 
o Sub-phase 3.4: 

 Hit the class (prepare selection of the class diagram). Necessary 

since GEF contains some errors regarding the hit subject.  

 Compute handle selection, if any, from cursor location.  

 Prepare selection of the current element (through an extension 
package for swing classes. This package provides ArgoUML 

independent swing extensions.) 

 

TABLE I.  SUMMARY OF TASKS PERFORMED IN PHASE 3 
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and raises a flag when a significant number of these 
methods start disappearing and that new ones start 
emerging. This approach is significantly different from the 
one proposed in this paper since it is not based on 
measured similarity and continuity among trace elements. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we presented a dynamic analysis 
approach for detecting execution phases of a program. We 
argued that execution phases can greatly simplify the 
analysis of large execution traces generated from 
exercising the system features, and hence enable the 
understanding of the behavior of software. Our approach is 
inspired by Gestalt laws for measuring the similarity and 
the continuity of the elements of a data space. We applied 
these laws to the content of execution traces to form dense 
groups that are candidate phases. The case studies showed 
promising results.  

Although, we anticipate that the threshold t would be 
application-specific, further studies should be conducted 
to, at least, provide hints on acceptable ranges of 
thresholds. We also need to embed our approach in a trace 
analysis tool and work with software maintainers to 
evaluate its effectiveness in practice. 

In the future, a first practical step will be to 
automatically identify relevant information about phases 
and provide an efficient representation of the flow of 
phases by detecting redundant phases. We would also like 
to investigate the ways in which our phase detection 
approach can help maintainers in redocumentation, 
extraction of crosscutting concerns, and fault localization. 
Finally, we are also interested in investigating how trace 
segmentation based on phase detection can play an 
important role in recovering a program's conceptual plans. 
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