SEAT: A Usable Trace Analysis Tool

Abdelwahab Hamou-Lhadj
University of Ottawa
800 King Edward Avenue
Ofttawa, Ontario, Canada
ahamou(@site.uottawa.ca

Abstract

Understanding the dynamics of a program can be
made easier if dynamic analysis techniques are used.
However, the extraordinary size of typical execution
traces makes exploring the content of traces a tedious
task. In this paper, we present a tool called SEAT
(Software Exploration and Analysis Tool) that
implements several operations that can help software
engineers understand the content of a large execution
trace. Perhaps, the most powerful aspect of SEAT is the
various filtering techniques it incorporates. In our
precious work, we showed that these techniques can
reduce significantly the size of traces in order to reveal
the main content they convey.

1. Introduction

Dynamic analysis focuses on the understanding of the
dynamics of a program. Dynamic information is typically
represented using execution traces. Although, there are
different kinds of traces, this paper focuses on traces of
routine calls. We use the term routine to refer to a
function, a procedure, or a method in a class.

In this paper, we introduce a trace analysis tool called
SEAT (Software Analysis and Exploration Tool) that can
be used by software engineers to understand the content
of traces and hence the system behaviour.

There are several aspects that distinguish SEAT from
the existing trace analysis tools such as the ones presented
in [4]. First, SEAT is based on the Compact Trace Format
(CTF) [3], which is a scalable exchange format for
representing traces. Also, SEAT incorporates several
filtering techniques that we showed in our previous work
to be effective in reducing the size of traces and yet keep
their main content. Many other features of SEAT do not
simply exist in other systems.

The rest of this paper is organized as follows: The next
section is a description of the overall architecture of
SEAT. In Section 3, we show the main features of SEAT.
In Section 4, we show how we will present the tool during
the demo session.

Timothy C. Lethbridge
University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada
tel@site.uottawa.ca

Lianjiang Fu
University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada
lfu@site.uottawa.ca

2. Introduction to SEAT

SEAT is a trace analysis tool developed at the School
of Information Technology and Engineering (SITE) of the
University of Ottawa for exploring large execution traces
of routine (or methods) calls. Figure 1 shows the overall
flow of information using SEAT. The tool takes traces of
routine calls as input and displays them using
visualization techniques based on a tree-like control
window. To help the user extract useful information,
SEAT implements several trace compression techniques.
Some of these require the presence of the source code.

Traces of
Routine Calls
{CTF)

Instrumenizd
Source Code

s ——

Compression

; Source Code
Techniques i

\fisualization
Techniquas

Figure 1. SEAT data flow

The dashed lines refer to one possible way for
generating traces of routine calls, which is based on
source code instrumentation. In practice, there are other
techniques that can achieve the same goal. For example,
one can instrument the execution environment in which
the system runs (e.g. the Java Virtual Machine). This
technique has the advantage of not modifying the source
code. It is also possible to run the system under the
control of a debugger, in which case breakpoints are set at
strategic locations to generate events of interest. This last
technique has shown to considerably slow down the
execution of the system.

SEAT user interface is based on the Eclipse platform
and consists mainly of a multiple-page trace editor and a
set of auxiliary views. The trace is displayed in the trace
editor in the form of a tree structure. The auxiliary views
are used to display different kinds of information such as

! This research is sponsored by NSERC, NCIT and QNX Software Systems

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

patterns of execution, statistical data and so on. A
snapshot of SEAT is shown in Figure 3.

3. SEAT Features

In this section, we present the main operations that are
supported by SEAT:

3.1 Trace Exploration

With SEAT, a software maintainer can explore several
traces at the same time. The traces can be put in the same
Eclipse Perspective as the one containing the system that
was used to generate the traces. This allows the
maintainer to manipulate traces the same way as he or she
would manipulate any other artifacts of the system.

3.2 Filtering the traces

SEAT supports numerous features for reducing the size
of traces. The first set of techniques consists of allowing
the users to hide specific components or group of
components. The tool adds these components to a specific
list called the ‘utility list’ that can be later used to shrink
other traces generated from the same system. At any time,
the user can have access to this list and restore any
desired components.

In addition to this, SEAT supports several filtering
algorithms that aim at reducing the size of the traces by
removing unnecessary data. For example, imagine that the
user wants to explore the content of the subtree of Figure
2a. One possible way to reduce the size of this subtree
without loosing the main content it conveys is to apply
three transformations. The first transformation consists of
ignoring the number of contiguous repetitions of the
routines. This will cause the two first subtrees of the
subtree rooted at ‘A’ to collapse since they differ only due
to the fact that ‘D’ is repeated contiguously. The second
transformation is to ignore the order of calls so as to
group the third subtree of ‘A’ with the two previous ones.
Finally, a maintainer might decide to limit the depth of the
subtree to two assuming that all routines that are executed
after this level are utilities. SEAT will then ignore the
routine ‘E’ and collapse the last subtree of ‘A’ with the
others. The resulting subtree after these transformations is
shown in Figure 2b. This powerful capability can also be
combined with the “user-defined utilities” feature
discussed previously to reach even better compaction.

Moreover, SEAT supports predefined filtering
techniques that can be applied to object-oriented systems
to hide some types of implementation details. These
techniques include the automatic filtering of accessing
methods, constructors, details of polymorphic operations,
etc. The motivation behind considered these elements as
implementation details is explained in [5].

In addition to this, SEAT is designed in a way that
separates the filtering algorithms from the other artifacts
of the tool. That is, adding a new filtering algorithm can
be done very easily.

A

L—>D A

|—) B (Sequence)
—> C
—>D

a. b.

Figure 2. The tree in a) can be transformed into the
one in b) using SEAT filtering algorithms

3.3 Pattern Detection

SEAT supports the automatic detection of patterns of
execution —These are the similar subtrees that are repeated
non-contiguously in the trace. The user is given the
possibility to browse the list of detected patterns (that
appears in the ‘pattern view’) and select the ones that
need to be analyzed. Color-coded techniques are used to
distinguish among the occurrences of a particular pattern
in the tree structure. SEAT facilitates the navigation from
one occurrence to another using special navigation
buttons.

In addition to that, the filtering algorithms discussed in
Section 3.2 can be used as matching criteria to detect
patterns composed of similar occurrences that are not
necessarily identical. In fact, SEAT supports many other
matching criteria that have shown to be useful for
understanding traces. Some of these criteria are described
in [1]. This capability offers endless possibilities to the
maintainers that will help them uncover the most useful
patterns of execution.

3.4 Scalability

SEAT uses the Compact Trace Format (CTF) [3] to
represent traces. CTF has been designed with the idea of
scalability in mind. In our previous work [2], we showed
that CTF uses around 5% of the total number of nodes of
the initial trace to represent the whole trace, which makes
SEAT scalable to extremely large traces.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Also, SEAT implements a sophisticated tree loading
algorithm that loads into memory only the nodes that are
being used, which facilitate greatly the exploration
process.

3.5 Other Features

The tool supports various other features that are
important for exploring traces such as searching for
specific components using wildcards, mapping the content
of the trace to the source code, etc.

In addition, SEAT provides a view that can be used by
the maintainer to display various statistics about the
content of the trace during the exploration process.
Statistics can be obtained for the entire trace, specific
subtrees, a specific routine, etc. The metrics used include
the number of calls, number of distinct routines, the
number of distinct subtrees, number of patterns, and many
others. The complete list of metrics supported by SEAT is
presented in [6].

The usability of the tool has been evaluated and
various usability issues have been addressed. The tool is
under Eclipse so it takes advantage of the same look and
feel as any other application developed for the Eclipse
platform.

4. Demo Session

During the demo session we will show how SEAT can
be used to analyze sample execution traces. The focus
will be on applying the various filtering techniques to vary
the amount of information displayed in order to abstract
out the most important content.

We will also discuss the other features of SEAT and
its overall effectiveness to understand the dynamics of a
system and therefore enhance program comprehension. A
special attention will be paid to the usability of the tool as
well.

5. Conclusions and Future Directions

In this paper, we presented a new trace analysis tool
called SEAT (Software Exploration and analysis Tool)

and the various features it supports. Using SEAT,
maintainers are provided with features that can help them:

1. Explore the trace and search for specific components
2. Browse the trace content using a tree-like widget

3. Map the trace content to the other system artifacts
using Eclipse facilities

4. Filter the trace content by using several filtering
techniques (e.g. pattern matching)

5. Detect patterns of execution using various matching
criteria

6. Remove specific trace components and add them to a
list of utilities that can be used during the processing
of other traces generated from the same system

7. Exchange traces using the Compact Trace format
(CTF)

8. Manipulate very large traces due to the design for
scalability on which SEAT is based (e.g. representing
traces in CTF, efficient tree loading algorithms, etc.)

The maintainer has also a considerable control over
how the above techniques are applied. This is because the
needs for trace abstraction and compression will vary
from task to task and person to person. For example, for
feature 4, there will be individual parameters to adjust to
help the maintainer control what she or he wants to hide.

One direction for future work would be to investigate
how the system could automatically or semi-automatically
suggest appropriate settings for the parameters of features
4 and 5. Settings could be determined based on the nature
of the trace, and the current goals and experience of the
maintainer. Finally, there is also a need to investigate how
utilities can be detected automatically (or semi-
automatically) to prevent the maintainers from detecting
them manually.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

= Trace Exploration - trace3.ctf - Eclipse Platform

File Edit Mavigate Search Project Run Algorithms

window Help

—l8(x]

- a|%-[dvc-a-|lsonpr®i|n|R

g" 5. Navigator - | =y x| Rltracescf X|

By =-Ta toad = ERY - Fiers. 1Bk, main [1] -
i B project — b Wrpweka. dassifiers. 16k, <init [1]

E L3.ctf - i3 weka.classifiers Evaluation evaluateModsl [1]

tquide. jar
toad.jar
Z| traced.ctf
: (5] TT1-skat.ctf
E-E;J trace_src_project
-2 weka
~-[E] .classpath
Jproject
- [B] 123.ctf
- [F] partial.ctf
- [E] qroc.ctf
] s2.ctf
2 —j samplegraph. ctf
[tEetf
- [F] tuctf
= tracel-z.f
- [Z] wacea.ctf
[traced-5.ctf
- [Z] traceS.ctf

S

- @ weka.core. Ukils. getOption [5]
Bl Q$weka.mre‘lnstances‘ <inik>[1]
=} @ weka,core. Instances. numattributes [1]

@ wieka,core.FastVector,size [1]

- 9 weka.core. Instances. setClassIndex [1]
- @@ weka,core, Instances. numdttribukes [1]
B Qt&weka.core‘lnstances‘ <init=[1]

- @ weka.core. Ukils. getOption [5]

- @ weka.core.Utils.getFlag [7]
- @@ weka,classifiers 1Bk setOptions [1]

[pbweka. core Instances, <init> [1]

) Q$wekﬂ.[IassiFiErs.Eva\uatinn. <init= [1]
= ﬁ$weka.core‘lnstances‘ <init>[1]

! Qi&weka.cIaslelers.Eva\uation. Zinit= 1]
[pweka.core, Instances, <init [1]

-y weka.classifiers, Evaluation setPriors [2]
- - @ weka,classifiers. 1Bk, buildClassifier [1]

@ weka,core.Ukils,checkForRemainingOptions [1]

| | Exploration 0 ‘

2 |—T:'g w5 ¥ || @ Model (239 occurrences of packages(classes/methods: 225 are shown, 14 are hidden) T80 e (J§‘Y X
Propett: [Va__u_(_a [=] ["tidden I Name | accurrence | Source Code Comments A
=icurrent Node H m| @ weka,coreInstance Class =)
;' :Ie"thod :‘iaTN WEE'C:ESS‘:!B'S‘EE”” m] ® weka core. Attribute Class
R Ouired Hame: | peloaflonsiors TR O] weka classifiers, [Bk$NeighborList Class
3. Called By 0 distinct methodis)
4. calls 2 distinct method(s): m| @ weka,classifiers DistributionClassifier Class
5. Parent Methad wika, classifiers. 1Bk, O © weka,classifiers.ek Class
6. Level 1 O @ weka classifiers, Classifier, <init > 1
7. Trace Line NO 1 |0 [+] weka‘c\asswf\ars‘Dlstrlbutmnclas_slfler.<|!1|t> 1
3. Source Code Com,.. starting & weka classifiers. Evaluation, <init> 2
= ¥
=l Trace Statistics O @ weka classifiers, Evaluation, correct 2z
Lo Tacal Nodes 283 O @ weka classifiers, Evaluation, crossvalidateMa,,, 1 =
2. Distinct Nodss 225 Il | v
Hidclap blad i <
Control Panel | Properties Model ‘Pattarns | Session Litiliies | Bookmarks
.
Figure 3. A snapshot of SEAT GUI
b . (13
References [4]. A. Hamou-Lhadj, T. C. Lethbridge, “A Survey of

[1]. W. De Pauw , D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented
Visualization”, In Proc. Of the 4th USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS), Santa Fe, NM, Berkeley, CA, [5]
1998, pp. 219-234

[2]. A. Hamou-Lhadj, T. C. Lethbridge, “Compression
Techniques to Simplify the Analysis of Large
Execution Traces”, In Proc. of the 10th IEEE
International Workshop on Program
Comprehension (IWPC), Paris, France, June 2002,
pp. 159-168 [6]

[3]. A. Hamou-Lhadj, T. C. Lethbridge, “A Metamodel
for Dynamic Information Generated from Object-
Oriented Systems”, In Proc of the Ist International
Workshop on Meta-models and Schemas for
Reverse Engineering (ATEM), Victoria, Canada,
Electronic Notes in Theoretical Computer Science
(ENTCS), 94: 2004, pp. 59-69

Trace Exploration Tools and Techniques”, In the
Proc. of the 14th Annual IBM Centers for
Advanced Studies Conferences (CASCON),
Toronto, Canada, October 2004

. A. Hamou-Lhadj and T. Lethbridge, “Techniques

for Reducing the Complexity of Object-Oriented
Execution Traces”, In Proc. of VISSOFT 2003, 2nd
IEEE International Workshop on Visualizing
Software for Understanding and Analysis
Amsterdam, The Netherlands, October 2003, pp.
35-40

. A. Hamou-Lhadj, T. C. Lethbridge, “Measuring the

Content of Traces to Better Characterize the Work
Required for Program Comprehension”, In the
Proc. of the 10™ IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS), Shanghai, China, June 2005

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)

1092-8138/05 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY

