
Identifying Computational Phases from Inter-Process

Communication Traces of HPC Applications

Luay Alawneh and Abdelwahab Hamou-Lhadj
Software Behaviour Analysis (SBA) Research Lab

Department of Electrical and Computer Engineering

Concordia University

1455 de Maisonneuve Blvd. West

Montreal, QC, Canada H3G 1M8

{l_alawne, abdelw}@ece.concordia.ca

Abstract— Understanding the behaviour of High Performance

Computing (HPC) systems is a challenging task due to the large

number of processes they involve as well as the complex

interactions among these processes. In this paper, we present a

novel approach that aims to simplify the analysis of large

execution traces generated from HPC applications. We achieve

this through a technique that allows semi-automatic extraction of

execution phases from large traces. These phases, which

characterize the main computations of the traced scenario, can be

used by software engineers to browse the content of a trace at

different levels of abstraction. Our approach is based on the

application of information theory principles to the analysis of

sequences of communication patterns found in HPC traces. The

results of the proposed approach when applied to traces of a

large HPC industrial system demonstrate its effectiveness in

identifying the main program phases and their corresponding

sub-phases.

Keywords - Program comprehension, Dynamic analysis, High

Performance Computing Systems, Inter-process communication

traces, Execution phases

I. INTRODUCTION

High Performance Computing (HPC) systems are designed

to solve advanced computational problems that are highly

challenging, complex, and time consuming. HPC is quickly

becoming the paradigm of choice for building super powerful

applications, especially since the emergence of multi-core and

cloud computing platforms.

HPC applications, however, are also known to be very

challenging to understand and debug due to the large number of

processes they may involve and the complex parallel

interactions among these processes [1]. In recent years, a

number of studies have emerged to facilitate the understanding

of the behaviour of HPC applications through tracing and

monitoring techniques (e.g. [27-29]). The objective is to extract

views from raw traces that can help software engineers

understand the traced scenario. Traces, however, can be

extraordinary large. The size of typical traces can easily reach

millions of events long. Despite the advances in the area of

trace abstraction and simplification techniques, there is a

general consensus that the area is still in its infancy and that

much more needs to be done.

In this paper, we propose a novel approach to facilitate the

understanding and the analysis of large traces generated from

HPC applications. Our approach aims to localize computational

phases from large HPC traces. We define a computational

phase as part of a trace where a particular program computation

is invoked. For example, a trace that is generated from a

compiler should contain events that represent the various

compiler‟s computational phases including initialization of

variables, parsing, preprocessing, lexical analysis, semantic

analysis, and so on. Knowing where each of these phases

occurs in the trace is usually a challenging task since there is no

support at the programming language level of how to explicitly

indicate the beginning and end of each phase. This is further

complicated in the context of HPC applications where a phase

can be performed by multiple processes running in parallel.

But, if done properly, the recovery of computational phases

(and their sub-phases) can reduce considerably the time and

effort spent by software engineers on understanding what goes

on in a trace.

The phase detection approach presented in this paper

encompasses two main steps. First, we detect communication

patterns that characterize the way processes communicate with

each other throughout the execution of the program. We

achieve this by applying the communication pattern detection

algorithm presented in [12]. The second step, which is also the

main contribution of this paper, consists of an approach for

automatically grouping the extracted patterns into dense

homogenous clusters that indicate the presence of

computational phases. We achieve the second step using

information theory concepts such as Shannon entropy [27] and

the Jensen-Shannon Divergence measure [17].

The focus of this paper is on HPC applications that use the

Message Passing Interface (MPI) [9] as their main inter-process

communication standard. We sometimes use the term MPI

traces throughout the paper to refer to HPC traces. We believe

that this work is readily applicable to other communication

mechanisms.

The rest of the paper is organized as follows. In Section 2,

we present the related work followed by a description of inter-

process communication traces in Section 3. In Section 4, we

present our overall approach and briefly describe the

algorithms used in the detection process. In Section 5, we

present the effectiveness of our approach by applying it to a

trace generated from a target system. We conclude our work in

Section 6.

II. RELATED WORK

The area of trace analysis for HPC applications with a focus

on program comprehension tasks is relatively new. Most of the

HPC-related studies fall within the realm of performance

analysis. In what follows, we present the recent studies that are

most relevant to our work.

In their study [8], Casas et al. applied the wavelet transform

technique in the signal processing field to automatically detect

the main execution phases in MPI applications. The algorithm

identifies phases by separating execution regions based on their

iterative frequency. The different MPI phases (initialization,

computation, and output) are categorized based on their

frequency of iterative behaviour where in the computational

phase most of the parallel iterations exist. In [3], the authors

extended this work that uses wavelet transform from signal

processing in order to detect the different sub-phases in the

computational phase. They based their approach on the

iterative behaviour found in MPI traces where CPU bursts were

followed by process communication. They derived the signals

from different metrics that were based on inter-process

communication and computing bursts. They assumed that the

highest frequencies of communications (signals) appeared

when there was a computational phase change. Our work can

be seen as complimentary. Instead of looking at frequency and

other usage metrics, we focus mainly on the trace content itself,

i.e., its events and communication patterns.

Gonzalez et al. [2] presented an approach to facilitate the

analysis of message passing parallel applications using the

density-based clustering techniques to detect computational

phases that occur between the parallel communications in the

program. They applied the density-based approach on data

obtained from performance counters provided by modern

processors. The main objective of their work was to detect the

most important regions of execution in the program. They used

CPU bursts to outline the different regions in the program. A

CPU burst was considered as a CPU computation region

between two consecutive communications. Therefore, a burst

was identified by the duration and the set of performance

counters. In our experience, performance data requires a lot of

fine-tuning in order to obtain accurate computational phases.

Pirzadeh and Hamou-Lhadj presented a novel phase

detection approach that they called trace segmentation and

which was inspired by the way the human perception system

groups lines and dots into shapes and objects [23, 30]. They

have developed several methods that could automatically group

trace events into dense elements that formed computational

phases. Their work, however, focuses on traces of routines calls

and not inter-process communication traces. We plan in the

future to study how their approach can be applied in the context

of this study.

III. MESSAGE PASSING INTERFACE TRACES

The Message Passing Interface (MPI) [9] is the de facto

standard for inter-process communication in HPC programs.

The main advantages that distinguish MPI from other message

passing paradigms are its support for asynchronous

communication, process group context, and process

synchronization. Another important advantage is its portability

since all existing implementations on different platforms are

based on the same open accepted standard.

MPI provides point-to-point and collective types of

communications. Point-to-point communication involves only

two processes in an MPI program. MPI allows the same

process to act as the sender and the receiver for the same

message. The sending process posts a send operation that

contains the destination process, the message data, the data

type, the tag, and the communicator. The tag is an integer value

that helps in identifying the incoming message at the receiving

process. The receiver, on its side, should post a receive

operation that matches the incoming message based on its data

type, the tag value, and the source process. However, the

receiving process may post a receive operation that can accept

a message coming from any source in the group and that has

any tag value.

MPI collective communication defines different types of

operations for exchanging information among a group of

processes defined as an MPI communicator. MPI assumes that

all processes, in a communicator, must execute the same

collective operations in the same order. In order to guarantee

the synchronization among all processes in the communicator,

MPI recommends the usage of the „barrier‟ operation. It is

worth mentioning that MPI collective operations are based on

point-to-point operations. However, the communication mode

in a collective communication must be blocking in order to

enforce the execution of the same collective operation by all

processes synchronously. Moreover, collective operations do

not use tags as message identifier in order to strictly force the

exchange of messages according to their order of execution. All

processes must post collective operations that exactly match the

size and data type of the exchanged data.

An MPI trace consists of events generated from each

running process in the program. Each process events can be

collected in a separate file. The trace from each process

consists of routine call events as well as the MPI events. Inter-

process communication traces are those events generated from

MPI point-to-point and collective communication routine calls.

IV. PROPOSED APPROACH

Figure 1 shows our execution phase detection approach.

The trace is first divided into multiple process traces in which

the events of each process are grouped together. The next step

is to detect communication patterns from the process traces.

For this, we use an algorithm that we presented in [12] and that

we will review in the upcoming subsections. These patterns are

then input to the phase detection component. The phase

detection method looks for changes in communication patterns

throughout the program execution. Note that a phase may be

composed of multiple patterns. The challenge is to

automatically identify groups of homogenous patterns and

distinguish them from each other. We achieve this by

measuring the degree for which multiple patterns can be

considered homogenous using the Jensen-Shannon divergence

metric. The phase detection approach is discussed in more

detail in Section IV.C. Finally, we analyze the execution

phases. The result might necessitate further fine-tuning of the

pattern detection technique or the phase detection algorithm

until satisfactory phases are obtained. This last step is done

manually.

Figure 1. Phase Detection Approach

A. Trace Generation

There exist several tools that automatically instrument MPI

applications by allowing users to specify places in the code

where probes should be inserted. An Example of such tools are

VampirTrace [25] and TAU [5]. We generate a trace based on a

specified scenario determined by the input parameters. The

resulting trace contains events of the entire system execution

from initialization to outputting the results. HPC systems have

different input parameters based on the problem to solve. In

addition to the input data, we also need to specify the number

of processes. We can vary the number of processes to increase

or decrease the processing speed depending also on the

capabilities of the host node. Once a trace is generated, we

create a process trace for each process.

B. Communication Pattern Detection

A communication pattern in HPC applications represents a

way the program processes communicate with each other to

accomplish a specific task. Figure 2 depicts a sample trace

generated from running four processes in parallel. Each

horizontal line represents the events from each process. When

matching the MPI events with the partner processes, a

communication pattern is discovered. The example in the

figure shows a nearest-neighbor communication pattern (with a

4 x 1 process topology) that is repeated three times at different

locations in the trace. Non-MPI events are represented using

the dark bars. The graph that is used to depict the

communication events is known as the event graph [11] where

the x-axis represents time and the y-axis represents the

processes. The trace events flow from left to right.

Figure 2. Repeating Communication Pattern

There are several communication patterns that are

documented such as the wevefront pattern [10]. Typical MPI

applications may be composed of a large number of

communication patterns depending on the complexity and the

computational task as well the requirements in terms of

program performance and efficiency.

A process topology is the way the processes are represented

on a grid (Cartesian) or a graph structure. For example, in

Figure 2 (right), the process topology is a 4x1 grid. The same

system can have different process topologies. For example, a

4x4 grid topology will have 16 processes that are arranged on a

square grid. Similarly a 4x4x2 grid topology would involve

processes are arranged on two superposed 2D, forming a 3D

grid.

 As an MPI application undergoes several ad-hoc

maintenance activities, it becomes challenging to know which

patterns are supported. This has led several researchers to

design methods for automatic recovery of communication

patterns (e.g., [13]).

In [12], we studied this problem and proposed an efficient

algorithm that detects communication patterns from large MPI

traces. Our algorithm encompassed two main steps: First, we

detected the repeating message passing events patterns for each

process trace separately. To achieve this, we used the concept

of n-grams extraction technique, found in statistical natural

language processing. In the classical n-gram pattern detection

approach [14], the algorithm looks for all n-size patterns in a

sequence. This approach tends be exhaustive (and hence

resource-consuming) especially when applied to long

sequences with unknown pattern sizes. To overcome this issue,

we developed a new algorithm that detected patterns as it

passed through the trace. We used bi-grams (length = 2) as the

minimum length of a pattern. In the algorithm, the pattern

length increased whenever a new occurrence was detected.

This concept was also used in the LZW data compression

algorithm [15], where whenever a pattern already exists in the

pattern database, it is revisited in the sequence. The algorithm

appends the next symbol in the sequence to the end of the

pattern. Our algorithm differs from the LZW algorithm in that

it checks whether a pattern exists at the previous positions of its

prefix pattern („ab‟ is the prefix of „abc‟).

The second step of the algorithm was to assemble the

patterns detected in the previous step into communication

P1

P2

P3

P4

Process Topology

P2 P3 P4 P1

MPI Trace T

Communication Pattern Detection

Phase Detection

Phase Analysis

{CP}

{PH}

 T1 T2 … Tn

patterns that combine multiple partner processes. We input the

process patterns into this algorithm and started iterating on all

corresponding patterns - the corresponding patterns of a pattern

PT1 are those patterns that have partner events with PT1 - until

a communication pattern was constructed. We applied the

algorithm to traces generated from two MPI systems and

obtained superior results compared to existing approaches both

in terms of accuracy and efficiency. The detailed description of

the algorithm along with an example is presented in [12].

C. Phase Detection

Our phase detection approach is inspired by studies in the

field of bioinformatics, more particularly, the analysis of DNA

sequences. In [7], the authors proposed a recursive algorithm

for segmenting a DNA sequence into more homogeneous sub-

domains. The algorithm follows the divide-and-conquer

approach proposed in [16], which relies on information theory

concepts. More precisely, the algorithm uses Shannon entropy

[6, 27] and the Jensen-Shannon divergence measures [17] to

guide the segmentation process.

We adapted this algorithm to the segmentation of a MPI

trace, in which the symbols represent the communication

patterns identified in the previous step. The length of the

sequence is the number of instances of the patterns. It should be

noted that another alternative would have been to apply the

sequence segmentation to the original trace. This would

however been impractical given the high number of events

involved, hence the use of communication patterns.

The segmentation process starts by measuring the degree of

heterogeneity of the sequence. For this, Shannon entropy is

used [27]. Shannon entropy measures the amount of

information in a sequence by assessing how much randomness

exists in the sequence. A sequence for which all the symbols

appear with the same probability will result in low entropy

(meaning that the uncertainty about the data is at its minimum).

On the other hand, the higher the entropy, the more variations

exists in the data (i.e., the more heterogeneous the data is). The

Shannon entropy H of a sequence S of length N with k distinct

symbols is defined using the following equation [27].




k

j

jj

N

N

N

N
H

1

log (1)

Where Nj is the number of times symbol j appears in

sequence S.

Once the Shannon entropy of a sequence is measured, the

next step is to identify places in the sequence where

heterogeneous behaviour occurs. This process is done

recursively based on the following steps:

 For each position i in the sequence, we measure the

entropy of the left subsequence and the right subsequence

from position i. Note that the left and right subsequences

must not be empty. Hl and Hr which represent the entropy

of the left and right subsequences are computed as follow:

 log
1




k

j

l
j

l
j

l
i

N

i

N
H (2)







k

j

r
j

r
j

r
iN

N

iN

N
H

1

log (3)

Where Nj
l
 is the number of times symbol j appears in the

left subsequence Sl and Nj
r
 is the number of times symbol j

occurs in the right subsequence Sr.

 For each two subsequences, we measure their similarity by

comparing the entropy values using the Jensen-Shannon

Divergence (DJS) measure [17] and which is presented

below. The higher DJS, the more heterogeneous the

subsequences are:

rlJS H
N

iN
H

N

i
HD


 (4)

 We select the subsequences for which DJS has the highest

value and apply the segmentation process recursively to

these subsequences until a stopping criterion is met, which

is explained in what follows.

In order to determine the criterion for stopping the recursive

segmentation process, Li et al. proposed to use the model

selection framework presented in [7] where a model can be

evaluated by a combination of the degree to which the model

fits the data and the complexity of the model itself. In sequence

segmentation, we have two models. The first model M1 is

represented by the whole sequence S whereas the second model

M2 is represented by the left and right subsequences (Sl and Sr)

respectively. The objective is to find a model at the boundary

between the under-fitting models (models that do not fit the

data well) and over-fitting models (models that fit the data too

well using many parameters). Li et al. [7] proposed to use the

Bayesian Information Criterion (BIC) [18] in order to balance

the goodness-of-fit of the model to the data with respect to the

number of parameters in the model. The BIC is defined by:

KNLBIC)log()log(2  (5)

Where L is the maximum likelihood of the model, K is the

number of free parameters in the two models, and N is the

sample (sequence) size. The value of K is calculated using (kl +

kr + 1 – k) where kl is the number of distinct parameters in Sl, kr

is the number of distinct parameters in Sr and k is the number of

distinct parameters in S. In the following, we will explain how

BIC can be used to derive the stopping criterion for recursive

sequence segmentation based on Shannon entropy. The

likelihood for S (before segmentation) is determined by:





k

1j

j
N

jp)S(1L (6)

Where pj is equal to Nj/N (the probability of symbol j in

sequence S). Therefore, the log-likelihood is determined by:




k

1j

j
j

N

N
logN)S(1Llog (7)

It can be easily shown that the log-likelihood (log L1)

before segmentation is equal to (- NH) where H is the Shannon

Entropy for the whole sequence S.

Additionally, the likelihood for the left and right

subsequences (after segmentation) is determined by:

)p()p(
r

k

1j

r
j

Nr
j

l
k

1j

l
j

Nl
jlrl)N,S,S(2L 



 (8)

Where p
l
j is equal to N

l
j/N and p

r
j is equal to N

r
j/N. Nl is the

cutting point (also length of left subsequence). The log-

likelihood is determined by:




r
k

1j

r
jr

j

l
k

1j

l
jl

jlrl
N

log
N

log)N,S,S(2Llog
N

N
N

N (9)

Similarly, it can be easily shown that log L2 = -Nl Hl –

NrHr. The likelihood L is measured by the increase of

likelihood from the two models as L2/L1. Therefore, the

increase of log-likelihood is log(L2/L1) = NH – (NlHl + NrHr)

which is equal to NDJS (see equation 4).

The maximized value of L (maximum likelihood) occurs at

the point with the maximum DJS value. In order for

segmentation to continue, the BIC value should be reduced to

the minimum (close to zero or ΔBIC < 0). By replacing L by

JSDN ˆ in equation 5, it will lead to the following:

KNDN JS)log(ˆ2  (10)

Where JSD̂ is the maximum Jensen-Shannon divergence

value. This means that the segmentation will continue if the

maximum DJS value is above log(N)K/2N. The advantage of

this approach is that the user‟s intervention is not required to

determine the threshold value in order to stop segmentation.

Therefore, the threshold value is calculated as:

NKN 2/)log( (11)

Li et al [7] proposed to use a measure of the segmentation

strength s which is measured by the relative increase of 2NDJS

from the BIC threshold using the following:

KN

KNDN
s JS

)log(

)log(ˆ2 
 (12)

Segmenting the sequence based on Equation 12 when s > 0

will have the same effect as segmenting the sequence when DJS

is greater than the dynamic threshold calculated based on

Equation 10. In other words, the segmentation strength must

always be positive value in order to continue the segmentation

process. Moreover, the value of s can be adjusted to be greater

than a user-specified value. Varying s will vary the numbers of

detected subsequences. A larger s threshold value will result in

a smaller and more fine-grained number of subsequences.

The output of the segmentation algorithm can be depicted

in a binary tree where every subsequence is divided into two

subsequences based on the position of the maximum DJS value.

The accuracy of the recursive segmentation algorithm is at the

price of its relatively slower computational time since many

passes through the data are needed to measure the DJs for left

and right subsequences.

(1) Execution Trace

P1 [B ,B] 2 , [R2 R3] 3 6 0 , [R2 S3] 3 6 0 , [R3 S2] 3 6 0 , [S1 S3] 3 6 0 , [R ,R] 5

P2 [B ,B] 2 , [R4 S1] 3 6 0 , [S1 S4] 3 6 0 , [R1 R4] 3 6 0 , [R2 S4] 3 6 0 , [R ,R] 5

P3 [B ,B] 2 , [R4 S1] 3 6 0 , [R1 R4] 3 6 0 , [S1 S4] 3 6 0 , [R1 S4] 3 6 0 , [R ,R] 5

P4 [B ,B] 2 , [S3 S2] 3 6 0 , [R2 S3] 3 6 0 , [R3 S2] 3 6 0 , [R2R3] 3 6 0 , [R ,R] 5

(2) Process Repeating Patterns

Point-to-Point Patterns:
P1:PT1 = [R2 R3], PT2 = [R2 S3], PT3 = [R3 S2], PT4 = [S1 S3]
P2:PT5 = [R4 S1], PT6 = [S1 S4] , PT7 = [R1 R4], PT8 = [R2 S4]
P3:PT9 = [R4 S1],PT10 = [R1 R4], PT11 = [S1 S4], PT12 = [R1 S4]
P4:PT13 = [S3 S2], PT14 = [R2 S3], PT15 = [R3 S2], PT16 =[R2 R3]

Collective Patterns on each process: [B,B] and [R,R]

(3) Communication Patterns (CP)

CP1: PT1, PT5, PT9, PT13, CP2: PT2, PT6, PT10, PT14
CP3: PT3, PT7, PT11,PT15, CP4: PT4, PT8, PT12,PT16
CP5: [B,B] ,CP6: [R,R]

(4) Point-to-point Communication Patterns (Wavefront)

(5) Communication Pattern Sequence (length = 1447)

[CP5]2, [CP1]360, [CP2]360, [CP3]360, [CP4]360, [CP6]5

(6) Phase Detection:

 From To s

S0 1 1443 273.0

S1 1 720 150.0

S2 721 1443 150.0

S3 1 361 2.9

S4 362 720 -1.0

S5 1 2 -1.5

S6 3 361 -1.1

S7 721 1079 -1.1

S8 1080 1443 7.7

S9 1080 1438 -1.1

S10 1439 1443 -1.2

Segmentation Tree

Figure 3. Phase Detection Example

We show the application of the phase detection algorithm

through the example of Figure 3. This example is similar to a

trace generated from running the Sweep3D [20] system on a

2x2 process topology. Figure 3(1) shows the sample trace

S0

S2 S1

S3 S4

S6 S5

S7 S8

S10 S9

P1

P2

P3

P4

P1 P2

P3 P4

 CP1 CP2 CP3 CP4 2D Topology

which consists of four communicating processes. The events

are represented in square brackets indicate the number of times

the events are repeated. For example, [R2R3] 3 6 0 means that

R2S3 is repeated 360 times in the trace (R2 means Receive

from P2 and S3 means Send to P2). In this example, we do not

show steps for detecting the repeating patterns and the

construction of the communication patterns as they were given

in [12]. Figure 3(2) shows the repeating patterns on each

process and Figure 3(3) shows the communication patterns that

were constructed from the process repeating patterns. For

example, CP1 is constructed from the partner process patterns

(PT1, PT5, PT9, and PT13).

The detected point-to-point communication patterns (in

Figure 3(4)) correspond to the wavefront pattern where every

process in the 2D topology sweeps data to the process in the

opposite corner. Finally, the sequence of communication

patterns is extracted ([CP1]360 means that communication

pattern 1 is repeated 360 times in the sequence).

Figure 3(6) shows the segmentation tree resulting from

applying the phase detection algorithm. The double rounded

nodes represent the detected computational phases. Table 3(6)

shows the segmentation strength value for each segment. As

can be seen, no further segmentation was performed for

segments with negative segmentation strength values.

Sweep3D has three distinct phases which are Initialize, Solve

and Finalize. Our approach is also able to detect the sub-phases

in the Solve phase. The following phases are detected using our

approach:

 S5: Initialize phase

 S6: Solve phase (sweep from P4 to P1)

 S7: Solve phase (sweep from P2 to P3)

 S8: Solve phase (sweep from P3 to P2)

 S9: Solve phase (sweep from P1 to P4)

 S10: Finalize phase

D. Phase Analysis

In this step, we verify the accuracy of the detected phases.

This step is done semi-automatically. We start by mapping the

phases to the original execution trace. Since each process has

its own trace file, we need to map the segments to their

locations in each process trace. For each process trace, the

beginning of the phase will be based on the first pattern in the

sequence and the end of the phase will be based on the end of

the last pattern in the sequence. We use the routine-call tree in

order to determine the routine that is performing this pattern.

For example, if the pattern occurs at nesting level 5, then we go

up in the call hierarchy until we find the highest routine call

(without crossing any preceding communication patterns) that

is responsible for performing the communication. We check

that the routine is indeed responsible for the phase. We do this

by referring to the source code or any available documentation.

If not that, then the phase detection failed. In this case, we need

to re-execute the pattern detection and the phase detection steps

by changing the parameters.

V. CASE STUDY

In this section, we show the effectiveness of our approach

by applying it to a large trace generated from the SMG2000

industrial HPC system [21]. This system is used by many other

studies that target HPC applications [13].

SMG2000 is a parallel semi-coarsening multi-grid solver

for the linear systems arising from finite difference, finite

volume, or finite element discretization of the diffusion

equation on logically rectangular grids. It is a SPMD (Single

Program Multiple Data) program that uses data decomposition

to solve the problem. SMG2000 performs a large number of

non-nearest-neighbor point-to-point communication operations

[22].

At a high-level, SMG2000 performs three distinct phases to

solve the problem as reported in [24]. These phases are

Initialization, Setup and Solve. The setup phase starts by a call

to the HYPRE_StructSMGSetup routine and the Solve phase

starts by a call to the HYPRE_StructSMGSolve routine. The

initialization phase occurs before the setup phase and

encompasses the trace events that occur before the

HYPRE_StructSMGSetup routine. This information will be

used in the validation of the detected phases. Our approach, as

we will show in the subsequent section, also detects sub-phases

in each phase.

A. Trace Generation

We used the VampirTrace [25] tracing tool to generate the

traces from running SMG2000. The execution scenario is based

on a 4x4x2 process topology (Figure 4) and a 2x2x2 input

problem size.

Figure 4. Process Topology for SMG2000 4x4x2

Table 1 presents some statistics about the generated trace.

The total number of message passing events based on point-to-

point communications is 248768. Moreover, each process

exchanges data by performing 14 collective operations (a total

of 448 collective communication events for all processes).

Table 1 shows that this is relatively a large trace with more

than 15 Million events.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

x

y

z

west

south

TABLE 1. SMG2000 STATISTICS FOR SMG2000 TRACE (4X4X2 PROCESS

TOPOLOGY AND 2X2X2 INPUT PROBLEM SIZE)

Trace Attribute Value

Size of Trace 1 GB

Number of Processes 32

Total Number of Events 15392281

Point-to-point Communication Events 248768

Collective Communication Events 448

B. Pattern Detection

We used our pattern detection algorithm described in [12]

to detect the communication patterns in the SMG2000 trace.

The algorithm resulted in 47 distinct patterns (3 collective and

44 point-to-point communication patterns). The total number of

patterns instances is 2065.

The validation of the communication patterns is performed

using a combination of static and dynamic analysis. The static

analysis part is to locate the routines that are responsible for the

communication. In all communication routines, each process

sends data to a group of processes and then receives data from

the same group. The group of processes is determined in the

calling routine and is passed to the routine responsible for

handling the communication events. The dynamic analysis part

is to trace these groups of processes for each process and then

compare them to the partner processes in each pattern. Some

of the patterns that were detected are described herein:

 Pattern 1: Each process communicates with its direct

neighbours on each grid. For example, Process 7 will send

to and receive from processes 2, 3, 4, 6, 8, 10, 11, 12, 18,

19, 20, 21, 22, 23, 24, 26, 27, and 28.

 Pattern 2: Each process communicates with its direct

neighbours on each grid and the adjacent grid. Also, each

process will communicate with its second West, South and

South-West neighbours on the x-axis and y-axis on each

grid. For example, Process 7 will send to and receive from

processes 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22,

23, 24, 26, 27, 28, 30, 31, 31 whereas Process 1

communicates with 2, 3, 5, 6, 7, 9, 10, 11, 17, 18, 19, 21,

22, 23, 25, 26, and 27.

 Pattern 3: Each process sends to the West process and

receives from the East process on the same grid. No

communication with processes on the other grid in this

pattern. For example, Process 10 communicates with

processes 9 and 11. However, Process 1 communicates with

process 2 only since it does not have a direct process to its

left on the grid.

 Pattern 4: Each process sends to the North process and

receives from the South process on the same grid. No

communication with other grids in this pattern. For

example, Process 10 communicates with 6 and 14 while

Process 1 communicates with process 5 only since it does

not have a direct upper neighbor process on the same grid.

C. Phase Detection

We applied the recursive segmentation steps to the

communication pattern sequence detected in the previous step.

The results are presented in what follows. Figure 5 shows the

Jensen-Shannon divergence distribution for each pattern

position in the whole sequence. As we can see, the sequence

can be split into two subsequences at peak point 443. Two

sequences have emerged that we call S1 (patterns positions 1 to

443) and S2 (starting from position 444). The curve that

represents sequence S1 (position 1 to 443) in Figure 5 shows

that the data is still highly heterogeneous, whereas the smooth

curve for S2 (positions 444 to 2065) shows high homogeneity.

It is worth mentioning that when we mapped the first postion in

S2 (position 444) to the original trace, we found that it

represents a call to the the routine HYPRE_StructSMGSolve,

which seems to indicate that the Solve phase has started to take

place at this position.

Figure 5. DJS values for the whole sequence (max DJS at 443, τ = 0.06)

The recursive segmentation continues as long as the

segmentation strength s is positive. As previously described,

the segmentation strength s can be also specified by the user in

order to control the number of detected sub-phases. A higher s

value means a smaller number of phases. In this study, we

segmented based on two values s > 0 and s > 0.5.

When using s > 0 (general case), the total number of

segments (including S0) was 68 and the number of leaf nodes

(phases) was 34. However, when considering further

segmentation with s > 0.5, the total number of segments was

reduced to 27 and the number of leaf nodes was reduced to 14.

We examined both computational phase sets obtained with s >

0 and s > 0.5 and found the difference is in the level of

granularity of the phases. With s > 0, we obtained fine-grained

phases than with s > 0.5. In this case study, we only show in

Table 2 the resulting sequences from the recursive

segmentation algorithm when allowing segmentation for s

greater than 0.5. It is difficult to know in advance how to set s

and even if we succeed to determine a proper limit for s for one

system, there is no guarantee that it would work for another

S1 S2

system. We anticipate that a tool that supports our technique to

allow flexibility to the user to change s on the fly.

TABLE 2. RECURSIVE SEGMENTATION (PS: START POSITION, PE: END POSITION,

L: LENGTH, DJS: JENSEN-SHANNON DIVERGENCE, PC: CUTTING POSITION OF

MAX DIVERGENCE, Τ: THRESHOLD, S: SEGMENTATION STRENGTH, AND P:
PARENT NODE, HYPHEN(-) MEANS NO S FOR LENGTH = 1)

S ps pe l DJS pc τ s P

S0 1 2065 2065 0.28 443 0.06 3.94 NA

S1 1 443 443 0.33 145 0.19 0.73 S0

S2 444 2065 1622 0.02 2061 0.01 0.85 S0

S3 1 145 145 0.38 23 0.07 4.05 S1

S4 146 443 298 0.44 264 0.19 1.26 S1

S5 1 23 23 0.5 5 0.2 1.53 S3

S6 24 145 122 0.25 42 0.2 0.28 S3

S7 1 5 5 0.92 2 0.23 2.97 S5

S8 6 23 18 0.44 17 0.23 0.89 S5

S9 1 2 2 -0.25 1 0.5 -1.5 S7

S10 3 5 3 0.66 3 0.26 1.49 S7

S11 3 3 1 0 2 0 - S10

S12 4 5 2 -0.25 4 0.5 -1.5 S10

S13 6 17 12 -0.04 16 0.3 -1.14 S8

S14 18 23 6 0.79 21 0.22 2.66 S8

S15 18 21 4 -0.12 20 0.5 -1.25 S14

S16 22 23 2 -0.25 22 0.5 -1.5 S14

S17 146 264 119 0.19 162 0.2 -0.06 S4

S18 265 443 179 0.28 294 0.15 0.95 S4

S19 265 294 30 0.76 276 0.16 3.63 S18

S20 295 443 149 0.33 365 0.48 -0.32 S18

S21 265 276 12 0.43 270 0.3 0.44 S19

S22 277 294 18 0.36 280 0.35 0.05 S19

S23 444 2061 1618 0.01 1821 0.06 -0.76 S2

S24 2062 2065 4 0.58 2062 0.25 1.31 S2

S25 2062 2062 1 0 2061 0 - S24

S26 2063 2065 3 -0.17 2064 0.53 -1.32 S24

Table 2 shows all the parameters used in the calculation of

the segmentation process. The DJS is the maximum divergence

value of the point that the segmentation is performed at. It

should be noted that the max DJS must be always greater than τ

in order to allow segmentation which is met by Equation 10.

Figure 6 shows the hierarchy of the segments represented as a

binary tree. The leaf nodes in the tree represent the detected

sub-phases in the trace. By going up the hierarchy, we can get a

coarse-grained view of the phases. The leaf nodes when the

allowed segmentation strength is above 0.5 are (14 phases):

S9.S11.S12.S13.S15.S16.S6.S17.S21.S22.S20.S23.S25.S26

Figure 6. Binary Tree Representing the Segmentation Hierarchy

D. Phase Analysis

We mapped the phases to the original trace and analyzed

the routines that were called at the beginning of each phase.

The detailed descriptions of the routines of the SMG2000 are

found on the SMG2000 website [21]. We used these

descriptions to validate whether the phases we detected were

valid or not. The following was concluded from our analysis.

Initialization Phase: This phase starts as phase S9 and

includes the phases that are in the sub-tree rooted at S7. Table

3 describes the detected sub-phase of the initialization phase.

TABLE 3. INITIALIZATION SUB-PHASES

S Description

S9 This sub-phase uses the „gather’ collective

communication operation in the

HYPRE_StructGridAssemble routine. Also, the

hypre_InitializeTiming and hypre_BeginTiming

routines are being called at the beginning of this sub-

phase for tracking the timing of the initialization

phase. Additionally, it contains the MPI_Init which is

responsible for the initialization of MPI in each

process.

S11 The point-to-point communication pattern that was

used in this phase is Pattern 1 described at the

beginning of the case study. The main executed

routine is HYPRE_StructMatrixAssemble which only

found in this phase in the whole trace.

S12 S12 uses the „reduce’ collective operation and is

responsible for tracking timing information at the end

of the initialization phase (hypre_EndTiming and

hypre_PrintTiming ,hypre_FinalizeTiming).

0

2 1

24 23

26

3 4

5 25 6

7 8

13

14

15 16

19 20

10

11 12

22 21

17

9

18

Setup Phase: The HYPRE_StructSMGSetup is responsible for

starting the setup phase. It starts executing at point 6 in the

sequence which corresponds to S8 in Figure 6. The Setup

phase spans the sub-trees rooted at S8, S6 and S4. Table 4

provides a description of the sub-phases in the Setup phase.

TABLE 4. SETUP SUB-PHASES

S Description

S13 The call to HYPRE_StructSMGSetup is in this sub-

phase. There are several routines that are distinct to

this sub-phase. Also, The hypre_InitializeTiming and

hypre_BeginTiming routines are being called in this

phase to track the timing of the Setup phase.

S15

S16

S6

S17

S21

S22

These sub-phases are similar in terms of the routines

they execute but they differ in terms of the

communication patterns that are performed. S6, S17

are the longest phases and contain the highest number

of communication patterns. The routines in the other

phases (S15, S16, S21, and S22) are all a subset of the

routines executed in these two sub-phases.

S20 This sub-phase executes the same routines in S6 and

S17 but it also contains the hypre_EndTiming,

hypre_PrintTiming and hypre_FinalizeTiming to track

the timing at the end of the Setup phase.

Solve Phase: The execution of HYPRE_StructSMGSolve

starts at point 444 (belongs to S2) and ends at point 2065 (in

S2). Therefore, the sub-tree rooted at S2 corresponds to the

Solve phase of the program. Table 5 presents the description

of the sub-phases.

TABLE 5. SOLVE SUB-PHASES

S Description

S23 HYPRE_StructSMGSolve is executed at the

beginning of S23 and indicates the start of the Solve

phase. Also, in S23, the hypre_InitializeTiming and

hypre_BeginTiming routines are being called at the

beginning of the Solve phase for tracking the timing

of the phase. This phase represents the major

execution in the Solve phase. It includes 1618

executed patterns. This indicates that the

communication patterns used in this phase are highly

homogeneous.

S25 This phase is very short and performs only one

communication pattern and the main routine that is

executed is hypre_SMGResidual.

S26 Reduce collective communication is used to track the

timing (hypre_PrintTiming and hypre_EndTiming)

information to mark the end of the initialization phase.

Figure 7 shows the main execution phases in the program

where the length of each phase is based on the total execution

time spent during that phase. The Finalize phase did not

involve any inter-process communication. It started after the

completion of the HYPRE_StructSMGSolve routine. It was

identified based on the routine call tree where we considered

the first sub-tree after all the communications as the Finalize

phase. The Finalize phase contains the MPI_Finalize routine

that is responsible for the termination of the MPI

communication and also other routines that are responsible for

the destruction of the grid that was constructed in the

initialization phase.

Figure 7. Detected Phases

I. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new approach for detecting

execution phases in MPI programs based on the sequence of

communication patterns extracted from MPI execution traces.

 We presented all the steps that are needed in order to detect

the execution phases along with an illustrative example. We

validated the results of our phase detection approach on a trace

of SMG2000 with respect the documented phases in [24]. Our

phase detection approach did not only detect the main program

phases but also the sub-phases.

In the future, we intend to improve the phase detection

approach by applying a different segmentation technique for

segmenting long homogeneous sequences such as the one

found in S23. This will provide a more detailed view of these

types of long phases.

Moreover, we intend to further reduce the number of

communication patterns by measuring the similarity among

them. This will reduce the number of distinct patterns in the

sequence which will result in a more homogeneous sequence

which will affect the number of detected sub-phases

accordingly.

We also intend to experiment with various segmentation

strengths and study the effect of changing s on the resulting

phases. Finally, we need to experiment with more systems and

also compare our results with other studies.

Acknowledgment: This work is supported partially by the

Natural Science and Engineering Council (NSERC) of Canada.

REFERENCES

[1] K. El Maghraoui, B. K. Szymanski, and C. A. Varela, “An Architecture
for Reconfigurable Iterative MPI Applications in Dynamic
Environments,” In Proc. of the 6th International Conference on Parallel
Processing and Applied Mathematics (ICPP AM), pp. 258-271, 2005.

[2] J. González, J. Giménez, J. Labarta, “Automatic Detection of Parallel
Applications Computation Phases,” In Proc. of International Parallel &
Distributed Processing Symposium (IPDPS), pp. 1-11 2009.

Initialize (17%) Setup (44%) Solve (35%) Finalize (2%)

S13,S15,S16,S6,
S17,S21,S22,S20

S9,S11,

S12

S23,S25,S26

[3] M. Casas , R. M. Badia , J. Labarta, “Automatic Phase Detection and
Structure Extraction of MPI Applications,” International Journal of

High Performance Computing Applications, 24(3), pp.335-360, 2010.

[4] Q. Xu, J. Subhlok, R. Zheng, and S. Voss, “Logicalization of
communication traces from parallel execution,” In Proc. of the 2009

IEEE International Symposium on Workload Characterization, (IISWC),

pp. 34-43, 2009.

[5] TAU, Tracing and Analysis Utility. URL:

http://www.cs.uoregon.edu/Research/tau.

[6] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, 27, pp. 379-423, 1948.

[7] W. Li, P. Bernaola-Galvan, F. Haghighi, I. Grosse, “Applications of

recursive segmentation to the analysis of DNA sequences,” Journal of
Computers & Chemistery, 26, pp. 491-510, 2002.

[8] M. Casas, R. M. Badia, and J. Labarta “Automatic phase detection of

MPI applications,” In Proc. of the 14th Conference on Parallel
Computing Parallel Computing, 2007.

[9] Message Passing Interface Forum. MPI: A Message Passing Interface

Standard, June 1995. URL: http://www.mpi-forum.org.

[10] N. Palma, “Performance Evaluation of Interconnection Networks using

Simulation: Tools and Case Studies,” PhD Dissertation, Department of

Computer Architecture and Technology, University, Spain, 2009.

[11] D. Kranzlmüller, “Event Graph Analysis for Debugging Massively

Parallel Programs,” PhD Dissertation, GUP Linz, Johannes Kepler

University Linz, Austria, 2000.

[12] L. Alawneh and A. Hamou-Lhadj, “Pattern Recognition Techniques

Applied to the Abstraction of Traces of Inter-Process Communication”,

In the Proc. of the European Conference on Software Maintenance and
Reengineering (CSMR 2011), pp. 211-220, 2011.

[13] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. de

Supinski, and D. J. Quinlan, “Detecting patterns in MPI communication
traces,” In Proc. of the 37th International Conference on Parallel

Processing (ICPP), pp. 230–237, 2008.

[14] R. Karp, R. E. Miller, A. L. Rosenberg. “Rapid Identification of
Repeated Patterns in Strings, Trees and Arrays,” In Proc. of the 4th

Symposium of Theory of Computing, pp.125-136, 1972.

[15] T. A. Welch., “A technique for high-performance data compression,”
Journal of Computer, 17 (6), pp. 8-19, 1984.

[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, “Introduction to Algorithms,”
The MIT Press, Cambridge, MA, 1990.

[17] I. Grosse, P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J. Oliver,

H.E. Stanley, “Analysis of symbolic sequences using the Jensen-
Shannon divergence,” Physical Review. E, 65, 041905, 2002.

[18] H. Akaike, “A Bayesian analysis of the minimum AIC procedure.,”

Annals of the Institute of Statistical Mathematics, 30 (Part A), pp. 9-14,
1978.

[19] E. Terzi, P. Tsaparas, “Efficient Algorithms for Sequence

Segmentation,” In Proc. of the SIAM International Conference on Data
Mining, pp. 314-325, 2006.

[20] Sweep3D, Accelerated strategic computing initiative. The ASCI

Sweep3D Benchmark Code. URL:
http://public.lanl.gov/hjw/CODES/SWEEP3D/sweep3d.html, LANL

1995.

[21] Advanced Simulation and Computing Program: The ASC SMG2000
benchmark code. URL:

http//www.llnl.gov/asc/purple/benchmarks/limited/smg/, 2001.

[22] M. Geimer, F. Wolf, B. J. N. Wylie and B. Mohr, “Scalable parallel
trace-based performance analysis,” In Proc. of the 13th European

PVM/MPI Users’ Group Meeting, vol. 4192 of LNCS, pp. 303–312,

Bonn, Germany, 2006.

[23] H. Pirzadeh, A. Hamou-Lhadj, “A Novel Approach Based on Gestalt

Psychology for Abstracting the Content of Large Execution Traces for

Program Comprehension,” In Proc. of the 16th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS

'11), pp. 221-230, 2011.

[24] A. Tiwari, J. K. Hollingsworth, C. Chen, M. W. Hall, C. Liao, D.J.
Quinlan, J. Chame, “Auto-tuning full applications: A case study,” The

International Journal of High Perfornace Computing Applications,

25(3), pp. 286-294, 2011.

[25] VampirTrace, ZIH, Technische Universitat, Dresden, http://tu-

dresden.de/die_tu_dresden/zentrale_einrichtungen/zih.

[26] R. Gray, “Entropy and information theory,” 2nd Edition, New York,
Springer, 2011.

[27] J. Roberts and C. Zilles., “TraceVis: an execution trace visualization

tool,” In Proc. of Workshop on Modeling, Benchmarking and Simulation
(MoBS), Madison, USA, 2005.

[28] M. Noeth et al., “ScalaTrace: Scalable compression and replay of

communication traces for high-performance computing,” Journal of
Parallel and Distributed Computing, 69(8), pp. 696-710, 2009.

[29] M. Geimer, F. Wolf, B.J.N. Wylie, B. Mohr, “A scalable tool

architecture for diagnosing wait states in massively-parallel
applications,” Journal of Parallel Computing, 35(7), pp. 375–388, 2009.

[30] H. Pirzadeh, A. Hamou-Lhadj, “A Software Behaviour Analysis
Framework Based on the Human Perception System: NIER Track”, In
Proc. of the 33rd International Conference on Software Engineering
(ICSE NIER Track), pp, 948-951 , 2011.

