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Abstract— Understanding the behaviour of High Performance 

Computing (HPC) systems is a challenging task due to the large 

number of processes they involve as well as the complex 

interactions among these processes. In this paper, we present a 

novel approach that aims to simplify the analysis of large 

execution traces generated from HPC applications. We achieve 

this through a technique that allows semi-automatic extraction of 

execution phases from large traces. These phases, which 

characterize the main computations of the traced scenario, can be 

used by software engineers to browse the content of a trace at 

different levels of abstraction. Our approach is based on the 

application of information theory principles to the analysis of 

sequences of communication patterns found in HPC traces. The 

results of the proposed approach when applied to traces of a 

large HPC industrial system demonstrate its effectiveness in 

identifying the main program phases and their corresponding 

sub-phases. 

Keywords - Program comprehension, Dynamic analysis, High 

Performance Computing Systems, Inter-process communication 

traces, Execution  phases 

I.  INTRODUCTION 

High Performance Computing (HPC) systems are designed 

to solve advanced computational problems that are highly 

challenging, complex, and time consuming. HPC is quickly 

becoming the paradigm of choice for building super powerful 

applications, especially since the emergence of multi-core and 

cloud computing platforms. 

HPC applications, however, are also known to be very 

challenging to understand and debug due to the large number of 

processes they may involve and the complex parallel 

interactions among these processes [1]. In recent years, a 

number of studies have emerged to facilitate the understanding 

of the behaviour of HPC applications through tracing and 

monitoring techniques (e.g. [27-29]). The objective is to extract 

views from raw traces that can help software engineers 

understand the traced scenario. Traces, however, can be 

extraordinary large. The size of typical traces can easily reach 

millions of events long. Despite the advances in the area of 

trace abstraction and simplification techniques, there is a 

general consensus that the area is still in its infancy and that 

much more needs to be done.  

In this paper, we propose a novel approach to facilitate the 

understanding and the analysis of large traces generated from 

HPC applications. Our approach aims to localize computational 

phases from large HPC traces. We define a computational 

phase as part of a trace where a particular program computation 

is invoked. For example, a trace that is generated from a 

compiler should contain events that represent the various 

compiler‟s computational phases including initialization of 

variables, parsing, preprocessing, lexical analysis, semantic 

analysis, and so on. Knowing where each of these phases 

occurs in the trace is usually a challenging task since there is no 

support at the programming language level of how to explicitly 

indicate the beginning and end of each phase. This is further 

complicated in the context of HPC applications where a phase 

can be performed by multiple processes running in parallel. 

But, if done properly, the recovery of computational phases 

(and their sub-phases) can reduce considerably the time and 

effort spent by software engineers on understanding what goes 

on in a trace.  

The phase detection approach presented in this paper 

encompasses two main steps. First, we detect communication 

patterns that characterize the way processes communicate with 

each other throughout the execution of the program. We 

achieve this by applying the communication pattern detection 

algorithm presented in [12]. The second step, which is also the 

main contribution of this paper, consists of an approach for 

automatically grouping the extracted patterns into dense 

homogenous clusters that indicate the presence of 

computational phases. We achieve the second step using 

information theory concepts such as Shannon entropy [27] and 

the Jensen-Shannon Divergence measure [17]. 

The focus of this paper is on HPC applications that use the 

Message Passing Interface (MPI) [9] as their main inter-process 

communication standard. We sometimes use the term MPI 

traces throughout the paper to refer to HPC traces. We believe 

that this work is readily applicable to other communication 

mechanisms. 



The rest of the paper is organized as follows. In Section 2, 

we present the related work followed by a description of inter-

process communication traces in Section 3. In Section 4, we 

present our overall approach and briefly describe the 

algorithms used in the detection process. In Section 5, we 

present the effectiveness of our approach by applying it to a 

trace generated from a target system. We conclude our work in 

Section 6. 

II. RELATED WORK 

The area of trace analysis for HPC applications with a focus 

on program comprehension tasks is relatively new. Most of the 

HPC-related studies fall within the realm of performance 

analysis. In what follows, we present the recent studies that are 

most relevant to our work. 

In their study [8], Casas et al. applied the wavelet transform 

technique in the signal processing field to automatically detect 

the main execution phases in MPI applications. The algorithm 

identifies phases by separating execution regions based on their 

iterative frequency. The different MPI phases (initialization, 

computation, and output) are categorized based on their 

frequency of iterative behaviour where in the computational 

phase most of the parallel iterations exist. In [3], the authors 

extended this work that uses wavelet transform from signal 

processing in order to detect the different sub-phases in the 

computational phase. They based their approach on the 

iterative behaviour found in MPI traces where CPU bursts were 

followed by process communication. They derived the signals 

from different metrics that were based on inter-process 

communication and computing bursts. They assumed that the 

highest frequencies of communications (signals) appeared 

when there was a computational phase change. Our work can 

be seen as complimentary. Instead of looking at frequency and 

other usage metrics, we focus mainly on the trace content itself, 

i.e., its events and communication patterns.   

Gonzalez et al. [2] presented an approach to facilitate the 

analysis of message passing parallel applications using the 

density-based clustering techniques to detect computational 

phases that occur between the parallel communications in the 

program. They applied the density-based approach on data 

obtained from performance counters provided by modern 

processors. The main objective of their work was to detect the 

most important regions of execution in the program. They used 

CPU bursts to outline the different regions in the program. A 

CPU burst was considered as a CPU computation region 

between two consecutive communications. Therefore, a burst 

was identified by the duration and the set of performance 

counters. In our experience, performance data requires a lot of 

fine-tuning in order to obtain accurate computational phases.  

Pirzadeh and Hamou-Lhadj presented a novel phase 

detection approach that they called trace segmentation and 

which was inspired by the way the human perception system 

groups lines and dots into shapes and objects [23, 30]. They 

have developed several methods that could automatically group 

trace events into dense elements that formed computational 

phases. Their work, however, focuses on traces of routines calls 

and not inter-process communication traces. We plan in the 

future to study how their approach can be applied in the context 

of this study. 

III. MESSAGE PASSING INTERFACE TRACES 

The Message Passing Interface (MPI) [9] is the de facto 

standard for inter-process communication in HPC programs. 

The main advantages that distinguish MPI from other message 

passing paradigms are its support for asynchronous 

communication, process group context, and process 

synchronization. Another important advantage is its portability 

since all existing implementations on different platforms are 

based on the same open accepted standard.  

MPI provides point-to-point and collective types of 

communications.  Point-to-point communication involves only 

two processes in an MPI program. MPI allows the same 

process to act as the sender and the receiver for the same 

message. The sending process posts a send operation that 

contains the destination process, the message data, the data 

type, the tag, and the communicator. The tag is an integer value 

that helps in identifying the incoming message at the receiving 

process. The receiver, on its side, should post a receive 

operation that matches the incoming message based on its data 

type, the tag value, and the source process. However, the 

receiving process may post a receive operation that can accept 

a message coming from any source in the group and that has 

any tag value. 

MPI collective communication defines different types of 

operations for exchanging information among a group of 

processes defined as an MPI communicator. MPI assumes that 

all processes, in a communicator, must execute the same 

collective operations in the same order. In order to guarantee 

the synchronization among all processes in the communicator, 

MPI recommends the usage of the „barrier‟ operation. It is 

worth mentioning that MPI collective operations are based on 

point-to-point operations. However, the communication mode 

in a collective communication must be blocking in order to 

enforce the execution of the same collective operation by all 

processes synchronously. Moreover, collective operations do 

not use tags as message identifier in order to strictly force the 

exchange of messages according to their order of execution. All 

processes must post collective operations that exactly match the 

size and data type of the exchanged data. 

An MPI trace consists of events generated from each 

running process in the program. Each process events can be 

collected in a separate file. The trace from each process 

consists of routine call events as well as the MPI events. Inter-

process communication traces are those events generated from 

MPI point-to-point and collective communication routine calls. 

IV. PROPOSED APPROACH 

Figure 1 shows our execution phase detection approach. 

The trace is first divided into multiple process traces in which 

the events of each process are grouped together. The next step 

is to detect communication patterns from the process traces. 

For this, we use an algorithm that we presented in [12] and that 



we will review in the upcoming subsections. These patterns are 

then input to the phase detection component. The phase 

detection method looks for changes in communication patterns 

throughout the program execution.  Note that a phase may be 

composed of multiple patterns. The challenge is to 

automatically identify groups of homogenous patterns and 

distinguish them from each other. We achieve this by 

measuring the degree for which multiple patterns can be 

considered homogenous using the Jensen-Shannon divergence 

metric. The phase detection approach is discussed in more 

detail in Section IV.C. Finally, we analyze the execution 

phases. The result might necessitate further fine-tuning of the 

pattern detection technique or the phase detection algorithm 

until satisfactory phases are obtained. This last step is done 

manually.  

              

Figure 1. Phase Detection Approach 

A. Trace Generation  

There exist several tools that automatically instrument MPI 

applications by allowing users to specify places in the code 

where probes should be inserted. An Example of such tools are 

VampirTrace [25] and TAU [5]. We generate a trace based on a 

specified scenario determined by the input parameters. The 

resulting trace contains events of the entire system execution 

from initialization to outputting the results. HPC systems have 

different input parameters based on the problem to solve. In 

addition to the input data, we also need to specify the number 

of processes. We can vary the number of processes to increase 

or decrease the processing speed depending also on the 

capabilities of the host node. Once a trace is generated, we 

create a process trace for each process.  

B. Communication Pattern Detection 

A communication pattern in HPC applications represents a 

way the program processes communicate with each other to 

accomplish a specific task. Figure 2 depicts a sample trace 

generated from running four processes in parallel. Each 

horizontal line represents the events from each process. When 

matching the MPI events with the partner processes, a 

communication pattern is discovered. The example in the 

figure shows a nearest-neighbor communication pattern (with a 

4 x 1 process topology) that is repeated three times at different 

locations in the trace. Non-MPI events are represented using 

the dark bars. The graph that is used to depict the 

communication events is known as the event graph [11] where 

the x-axis represents time and the y-axis represents the 

processes. The trace events flow from left to right.  

 

Figure 2. Repeating Communication Pattern 

There are several communication patterns that are 

documented such as the wevefront pattern [10]. Typical MPI 

applications may be composed of a large number of 

communication patterns depending on the complexity and the 

computational task as well the requirements in terms of 

program performance and efficiency. 

A process topology is the way the processes are represented 

on a grid (Cartesian) or a graph structure. For example, in 

Figure 2 (right), the process topology is a 4x1 grid. The same 

system can have different process topologies. For example, a 

4x4 grid topology will have 16 processes that are arranged on a 

square grid. Similarly a 4x4x2 grid topology would involve 

processes are arranged on two superposed 2D, forming a 3D 

grid. 

 As an MPI application undergoes several ad-hoc 

maintenance activities, it becomes challenging to know which 

patterns are supported. This has led several researchers to 

design methods for automatic recovery of communication 

patterns (e.g., [13]).  

In [12], we studied this problem and proposed an efficient 

algorithm that detects communication patterns from large MPI 

traces. Our algorithm encompassed two main steps: First, we 

detected the repeating message passing events patterns for each 

process trace separately. To achieve this, we used the concept 

of n-grams extraction technique, found in statistical natural 

language processing. In the classical n-gram pattern detection 

approach [14], the algorithm looks for all n-size patterns in a 

sequence. This approach tends be exhaustive (and hence 

resource-consuming) especially when applied to long 

sequences with unknown pattern sizes. To overcome this issue, 

we developed a new algorithm that detected patterns as it 

passed through the trace. We used bi-grams (length = 2) as the 

minimum length of a pattern. In the algorithm, the pattern 

length increased whenever a new occurrence was detected. 

This concept was also used in the LZW data compression 

algorithm [15], where whenever a pattern already exists in the 

pattern database, it is revisited in the sequence.  The algorithm 

appends the next symbol in the sequence to the end of the 

pattern. Our algorithm differs from the LZW algorithm in that 

it checks whether a pattern exists at the previous positions of its 

prefix pattern („ab‟ is the prefix of „abc‟).  

The second step of the algorithm was to assemble the 

patterns detected in the previous step into communication 
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patterns that combine multiple partner processes. We input the 

process patterns into this algorithm and started iterating on all 

corresponding patterns - the corresponding patterns of a pattern 

PT1 are those patterns that have partner events with PT1 - until 

a communication pattern was constructed. We applied the 

algorithm to traces generated from two MPI systems and 

obtained superior results compared to existing approaches both 

in terms of accuracy and efficiency. The detailed description of 

the algorithm along with an example is presented in [12].  

C. Phase Detection 

Our phase detection approach is inspired by studies in the 

field of bioinformatics, more particularly, the analysis of DNA 

sequences. In [7], the authors proposed a recursive algorithm 

for segmenting a DNA sequence into more homogeneous sub-

domains. The algorithm follows the divide-and-conquer 

approach proposed in [16], which relies on information theory 

concepts. More precisely, the algorithm uses Shannon entropy 

[6, 27] and the Jensen-Shannon divergence measures [17] to 

guide the segmentation process.  

We adapted this algorithm to the segmentation of a MPI 

trace, in which the symbols represent the communication 

patterns identified in the previous step. The length of the 

sequence is the number of instances of the patterns. It should be 

noted that another alternative would have been to apply the 

sequence segmentation to the original trace. This would 

however been impractical given the high number of events 

involved, hence the use of communication patterns.  

The segmentation process starts by measuring the degree of 

heterogeneity of the sequence. For this, Shannon entropy is 

used [27]. Shannon entropy measures the amount of 

information in a sequence by assessing how much randomness 

exists in the sequence. A sequence for which all the symbols 

appear with the same probability will result in low entropy 

(meaning that the uncertainty about the data is at its minimum). 

On the other hand, the higher the entropy, the more variations 

exists in the data (i.e., the more heterogeneous the data is).  The 

Shannon entropy H of a sequence S of length N with k distinct 

symbols is defined using the following equation [27]. 
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Where Nj is the number of times symbol j appears in 

sequence S.  

Once the Shannon entropy of a sequence is measured, the 

next step is to identify places in the sequence where 

heterogeneous behaviour occurs. This process is done 

recursively based on the following steps: 

 For each position i in the sequence, we measure the 

entropy of the left subsequence and the right subsequence 

from position i. Note that the left and right subsequences 

must not be empty. Hl and Hr which represent the entropy 

of the left and right subsequences are computed as follow: 
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Where Nj
l
 is the number of times symbol j appears in the 

left subsequence Sl and Nj
r
 is the number of times symbol j 

occurs in the right subsequence Sr. 

 For each two subsequences, we measure their similarity by 

comparing the entropy values using the Jensen-Shannon 

Divergence (DJS) measure [17] and which is presented 

below. The higher DJS, the more heterogeneous the 

subsequences are: 

rlJS H
N

iN
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N

i
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
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 We select the subsequences for which DJS has the highest 

value and apply the segmentation process recursively to 

these subsequences until a stopping criterion is met, which 

is explained in what follows. 

In order to determine the criterion for stopping the recursive 

segmentation process, Li et al. proposed to use the model 

selection framework presented in [7] where a model can be 

evaluated by a combination of the degree to which the model 

fits the data and the complexity of the model itself. In sequence 

segmentation, we have two models. The first model M1 is 

represented by the whole sequence S whereas the second model 

M2 is represented by the left and right subsequences (Sl and Sr) 

respectively. The objective is to find a model at the boundary 

between the under-fitting models (models that do not fit the 

data well) and over-fitting models (models that fit the data too 

well using many parameters). Li et al. [7] proposed to use the 

Bayesian Information Criterion (BIC) [18] in order to balance 

the goodness-of-fit of the model to the data with respect to the 

number of parameters in the model. The BIC is defined by: 

KNLBIC )log()log(2      (5) 

Where L is the maximum likelihood of the model, K is the 

number of free parameters in the two models, and N is the 

sample (sequence) size. The value of K is calculated using (kl + 

kr + 1 – k) where kl is the number of distinct parameters in Sl, kr 

is the number of distinct parameters in Sr and k is the number of 

distinct parameters in S. In the following, we will explain how 

BIC can be used to derive the stopping criterion for recursive 

sequence segmentation based on Shannon entropy. The 

likelihood for S (before segmentation) is determined by: 
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Where pj is equal to Nj/N (the probability of symbol j in 

sequence S). Therefore, the log-likelihood is determined by: 
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It can be easily shown that the log-likelihood (log L1) 

before segmentation is equal to (- NH) where H is the Shannon 

Entropy for the whole sequence S. 

Additionally, the likelihood for the left and right 

subsequences (after segmentation) is determined by: 
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Where p
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j/N. Nl is the 

cutting point (also length of left subsequence). The log-

likelihood is determined by: 
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Similarly, it can be easily shown that log L2 = -Nl Hl – 

NrHr. The likelihood L is measured by the increase of 

likelihood from the two models as L2/L1. Therefore, the 

increase of log-likelihood is log(L2/L1) = NH – (NlHl + NrHr) 

which is equal to NDJS (see equation 4). 

The maximized value of L (maximum likelihood) occurs at 

the point with the maximum DJS value. In order for 

segmentation to continue, the BIC value should be reduced to 

the minimum (close to zero or ΔBIC < 0). By replacing L by 

JSDN ˆ  in equation 5, it will lead to the following: 

KNDN JS )log(ˆ2      (10) 

Where JSD̂ is the maximum Jensen-Shannon divergence 

value. This means that the segmentation will continue if the 

maximum DJS value is above log(N)K/2N. The advantage of 

this approach is that the user‟s intervention is not required to 

determine the threshold value in order to stop segmentation. 

Therefore, the threshold value is calculated as: 

NKN 2/)log(    (11) 

Li et al [7] proposed to use a measure of the segmentation 

strength s which is measured by the relative increase of 2NDJS 

from the BIC threshold using the following: 

KN

KNDN
s JS

)log(

)log(ˆ2 
       (12) 

Segmenting the sequence based on Equation 12 when s > 0 

will have the same effect as segmenting the sequence when DJS 

is greater than the dynamic threshold calculated based on 

Equation 10. In other words, the segmentation strength must 

always be positive value in order to continue the segmentation 

process. Moreover, the value of s can be adjusted to be greater 

than a user-specified value. Varying s will vary the numbers of 

detected subsequences. A larger s threshold value will result in 

a smaller and more fine-grained number of subsequences. 

The output of the segmentation algorithm can be depicted 

in a binary tree where every subsequence is divided into two 

subsequences based on the position of the maximum DJS value. 

The accuracy of the recursive segmentation algorithm is at the 

price of its relatively slower computational time since many 

passes through the data are needed to measure the DJs for left 

and right subsequences.  

(1) Execution Trace 

P1 [ B ,B] 2 , [ R2 R3 ] 3 6 0 , [ R2 S3 ] 3 6 0 , [R3 S2 ] 3 6 0 , [ S1 S3 ] 3 6 0 , [ R ,R] 5  

P2 [ B ,B] 2 , [ R4 S1] 3 6 0 , [ S1 S4 ] 3 6 0 , [R1 R4] 3 6 0 , [ R2 S4 ] 3 6 0 , [R ,R] 5  
 

 

 

 

P3 [ B ,B] 2 , [ R4 S1] 3 6 0 , [ R1 R4 ] 3 6 0 , [S1 S4 ] 3 6 0 , [ R1 S4 ] 3 6 0 , [ R ,R] 5  

P4 [ B ,B] 2 , [ S3 S2 ] 3 6 0 , [ R2 S3] 3 6 0 , [R3 S2 ] 3 6 0 , [ R2R3 ] 3 6 0 , [R ,R] 5  

(2) Process Repeating Patterns 

Point-to-Point Patterns: 
P1:PT1 = [R2 R3 ], PT2 = [R2 S3 ], PT3 = [R3 S2 ], PT4 = [S1 S3 ] 
P2:PT5 = [R4 S1 ], PT6 = [S1 S4 ] , PT7 = [R1 R4 ], PT8 = [R2 S4 ] 
P3:PT9 = [R4 S1 ],PT10 = [R1 R4 ], PT11 = [S1 S4 ], PT12 = [R1 S4 ] 
P4:PT13 = [S3 S2 ], PT14 = [R2 S3 ], PT15 = [R3 S2 ], PT16 =[R2 R3 ] 

Collective Patterns on each process: [B,B] and [R,R] 

(3) Communication Patterns (CP) 

CP1: PT1, PT5, PT9, PT13, CP2: PT2, PT6, PT10, PT14 
CP3: PT3, PT7, PT11,PT15, CP4: PT4, PT8, PT12,PT16 
CP5: [B,B] ,CP6: [R,R] 

(4) Point-to-point Communication Patterns (Wavefront) 

 

(5) Communication Pattern Sequence (length = 1447) 

[CP5]2, [CP1]360, [CP2]360, [CP3]360, [CP4]360, [CP6]5   

(6) Phase Detection: 

 From To s 

S0 1 1443 273.0 

S1 1 720 150.0 

S2 721 1443 150.0 

S3 1 361 2.9 

S4 362 720 -1.0 

S5 1 2 -1.5 

S6 3 361 -1.1 

S7 721 1079 -1.1 

S8 1080 1443 7.7 

S9 1080 1438 -1.1 

S10 1439 1443 -1.2 
 

 
Segmentation Tree 

 

Figure 3. Phase Detection Example 

We show the application of the phase detection algorithm 

through the example of Figure 3. This example is similar to a 

trace generated from running the Sweep3D [20] system on a 

2x2 process topology. Figure 3(1) shows the sample trace 

S0 
 

S2 S1 

S3 S4 

S6 S5 

S7 S8 

S10 S9 

P1 

P2 
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P4 

P1 P2 

P3 P4 

       CP1             CP2              CP3              CP4         2D Topology 



which consists of four communicating processes. The events 

are represented in square brackets indicate the number of times 

the events are repeated. For example, [R2R3] 3 6 0  means that 

R2S3 is repeated 360 times in the trace (R2 means Receive 

from P2 and S3 means Send to P2). In this example, we do not 

show steps for detecting the repeating patterns and the 

construction of the communication patterns as they were given 

in [12]. Figure 3(2) shows the repeating patterns on each 

process and Figure 3(3) shows the communication patterns that 

were constructed from the process repeating patterns. For 

example, CP1 is constructed from the partner process patterns 

(PT1, PT5, PT9, and PT13). 

The detected point-to-point communication patterns (in 

Figure 3(4)) correspond to the wavefront pattern where every 

process in the 2D topology sweeps data to the process in the 

opposite corner. Finally, the sequence of communication 

patterns is extracted ([CP1]360 means that communication 

pattern 1 is repeated 360 times in the sequence). 

Figure 3(6) shows the segmentation tree resulting from 

applying the phase detection algorithm. The double rounded 

nodes represent the detected computational phases. Table 3(6) 

shows the segmentation strength value for each segment. As 

can be seen, no further segmentation was performed for 

segments with negative segmentation strength values. 

Sweep3D has three distinct phases which are Initialize, Solve 

and Finalize. Our approach is also able to detect the sub-phases 

in the Solve phase. The following phases are detected using our 

approach: 

 S5: Initialize phase 

 S6: Solve phase (sweep from P4 to P1) 

 S7: Solve phase (sweep from P2 to P3) 

 S8: Solve phase (sweep from P3 to P2) 

 S9: Solve phase (sweep from P1 to P4) 

 S10: Finalize phase 

D. Phase Analysis 

In this step, we verify the accuracy of the detected phases. 

This step is done semi-automatically. We start by mapping the 

phases to the original execution trace. Since each process has 

its own trace file, we need to map the segments to their 

locations in each process trace. For each process trace, the 

beginning of the phase will be based on the first pattern in the 

sequence and the end of the phase will be based on the end of 

the last pattern in the sequence. We use the routine-call tree in 

order to determine the routine that is performing this pattern. 

For example, if the pattern occurs at nesting level 5, then we go 

up in the call hierarchy until we find the highest routine call 

(without crossing any preceding communication patterns) that 

is responsible for performing the communication. We check 

that the routine is indeed responsible for the phase. We do this 

by referring to the source code or any available documentation. 

If not that, then the phase detection failed. In this case, we need 

to re-execute the pattern detection and the phase detection steps 

by changing the parameters.  

V. CASE STUDY 

In this section, we show the effectiveness of our approach 

by applying it to a large trace generated from the SMG2000 

industrial HPC system [21].  This system is used by many other 

studies that target HPC applications [13].  

SMG2000 is a parallel semi-coarsening multi-grid solver 

for the linear systems arising from finite difference, finite 

volume, or finite element discretization of the diffusion 

equation on logically rectangular grids. It is a SPMD (Single 

Program Multiple Data) program that uses data decomposition 

to solve the problem. SMG2000 performs a large number of 

non-nearest-neighbor point-to-point communication operations 

[22].  

At a high-level, SMG2000 performs three distinct phases to 

solve the problem as reported in [24]. These phases are 

Initialization, Setup and Solve. The setup phase starts by a call 

to the HYPRE_StructSMGSetup routine and the Solve phase 

starts by a call to the HYPRE_StructSMGSolve routine. The 

initialization phase occurs before the setup phase and 

encompasses the trace events that occur before the 

HYPRE_StructSMGSetup routine. This information will be 

used in the validation of the detected phases. Our approach, as 

we will show in the subsequent section, also detects sub-phases 

in each phase.  

A. Trace Generation 

We used the VampirTrace [25] tracing tool to generate the 

traces from running SMG2000. The execution scenario is based 

on a 4x4x2 process topology (Figure 4) and a 2x2x2 input 

problem size.  

 

Figure 4. Process Topology for SMG2000 4x4x2 

Table 1 presents some statistics about the generated trace. 

The total number of message passing events based on point-to-

point communications is 248768. Moreover, each process 

exchanges data by performing 14 collective operations (a total 

of 448 collective communication events for all processes). 

Table 1 shows that this is relatively a large trace with more 

than 15 Million events. 
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TABLE 1. SMG2000 STATISTICS FOR SMG2000 TRACE (4X4X2 PROCESS 

TOPOLOGY AND 2X2X2 INPUT PROBLEM SIZE) 

Trace Attribute Value 

Size of Trace 1 GB 

Number of Processes 32 

Total Number of Events 15392281 

Point-to-point Communication Events 248768 

Collective Communication Events 448 

B. Pattern Detection 

We used our pattern detection algorithm described in [12] 

to detect the communication patterns in the SMG2000 trace. 

The algorithm resulted in 47 distinct patterns (3 collective and 

44 point-to-point communication patterns). The total number of 

patterns instances is 2065.  

The validation of the communication patterns is performed 

using a combination of static and dynamic analysis. The static 

analysis part is to locate the routines that are responsible for the 

communication.  In all communication routines, each process 

sends data to a group of processes and then receives data from 

the same group. The group of processes is determined in the 

calling routine and is passed to the routine responsible for 

handling the communication events. The dynamic analysis part 

is to trace these groups of processes for each process and then 

compare them to the partner processes in each pattern.  Some 

of the patterns that were detected are described herein: 

 Pattern 1: Each process communicates with its direct 

neighbours on each grid. For example, Process 7 will send 

to and receive from processes 2, 3, 4, 6, 8, 10, 11, 12, 18, 

19, 20, 21, 22, 23, 24, 26, 27, and 28.  

 Pattern 2: Each process communicates with its direct 

neighbours on each grid and the adjacent grid. Also, each 

process will communicate with its second West, South and 

South-West neighbours on the x-axis and y-axis on each 

grid. For example, Process 7 will send to and receive from 

processes 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 

23, 24, 26, 27, 28, 30, 31, 31 whereas Process 1 

communicates with 2, 3, 5, 6, 7, 9, 10, 11, 17, 18, 19, 21, 

22, 23, 25, 26, and 27. 

 Pattern 3: Each process sends to the West process and 

receives from the East process on the same grid. No 

communication with processes on the other grid in this 

pattern. For example, Process 10 communicates with 

processes 9 and 11. However, Process 1 communicates with 

process 2 only since it does not have a direct process to its 

left on the grid. 

 Pattern 4: Each process sends to the North process and 

receives from the South process on the same grid. No 

communication with other grids in this pattern. For 

example, Process 10 communicates with 6 and 14 while 

Process 1 communicates with process 5 only since it does 

not have a direct upper neighbor process on the same grid. 

C. Phase Detection 

We applied the recursive segmentation steps to the 

communication pattern sequence detected in the previous step. 

The results are presented in what follows. Figure 5 shows the 

Jensen-Shannon divergence distribution for each pattern 

position in the whole sequence.  As we can see, the sequence 

can be split into two subsequences at peak point 443. Two 

sequences have emerged that we call S1 (patterns positions 1 to 

443) and S2 (starting from position 444). The curve that 

represents sequence S1 (position 1 to 443) in Figure 5 shows 

that the data is still highly heterogeneous, whereas the smooth 

curve for S2 (positions 444 to 2065) shows high homogeneity. 

It is worth mentioning that when we mapped the first postion in 

S2 (position 444) to the original trace, we found that it 

represents a call to the the routine HYPRE_StructSMGSolve, 

which seems to indicate that the Solve phase has started to take 

place at this position.  

 

Figure 5. DJS values for the whole sequence (max DJS at 443, τ = 0.06) 

The recursive segmentation continues as long as the 

segmentation strength s is positive. As previously described, 

the segmentation strength s can be also specified by the user in 

order to control the number of detected sub-phases. A higher s 

value means a smaller number of phases. In this study, we 

segmented based on two values s > 0 and s > 0.5.  

When using s > 0 (general case), the total number of 

segments (including S0) was 68 and the number of leaf nodes 

(phases) was 34. However, when considering further 

segmentation with s > 0.5, the total number of segments was 

reduced to 27 and the number of leaf nodes was reduced to 14. 

We examined both computational phase sets obtained with s > 

0 and s > 0.5 and found the difference is in the level of 

granularity of the phases. With s > 0, we obtained fine-grained 

phases than with s > 0.5. In this case study, we only show in 

Table 2 the resulting sequences from the recursive 

segmentation algorithm when allowing segmentation for s 

greater than 0.5.  It is difficult to know in advance how to set s 

and even if we succeed to determine a proper limit for s for one 

system, there is no guarantee that it would work for another 

S1 S2 



system. We anticipate that a tool that supports our technique to 

allow flexibility to the user to change s on the fly. 

TABLE 2. RECURSIVE SEGMENTATION (PS: START POSITION, PE: END POSITION, 

L: LENGTH, DJS: JENSEN-SHANNON DIVERGENCE, PC: CUTTING POSITION OF 

MAX DIVERGENCE, Τ: THRESHOLD, S: SEGMENTATION STRENGTH, AND P: 
PARENT NODE, HYPHEN(-) MEANS NO S FOR LENGTH = 1) 

S ps pe l DJS pc τ s P 

S0 1 2065 2065 0.28   443 0.06 3.94 NA 

S1 1 443 443 0.33   145 0.19 0.73 S0 

S2 444 2065 1622 0.02   2061 0.01 0.85 S0 

S3 1 145 145 0.38   23 0.07 4.05 S1 

S4 146 443 298 0.44   264 0.19 1.26 S1 

S5 1 23 23 0.5   5 0.2 1.53 S3 

S6 24 145 122 0.25   42 0.2 0.28 S3 

S7 1 5 5 0.92   2 0.23 2.97 S5 

S8 6 23 18 0.44   17 0.23 0.89 S5 

S9 1 2 2 -0.25   1 0.5 -1.5 S7 

S10 3 5 3 0.66   3 0.26 1.49 S7 

S11 3 3 1 0   2 0  - S10 

S12 4 5 2 -0.25   4 0.5 -1.5 S10 

S13 6 17 12 -0.04   16 0.3 -1.14 S8 

S14 18 23 6 0.79   21 0.22 2.66 S8 

S15 18 21 4 -0.12   20 0.5 -1.25 S14 

S16 22 23 2 -0.25   22 0.5 -1.5 S14 

S17 146 264 119 0.19   162 0.2 -0.06 S4 

S18 265 443 179 0.28   294 0.15 0.95 S4 

S19 265 294 30 0.76   276 0.16 3.63 S18 

S20 295 443 149 0.33   365 0.48 -0.32 S18 

S21 265 276 12 0.43   270 0.3 0.44 S19 

S22 277 294 18 0.36   280 0.35 0.05 S19 

S23 444 2061 1618 0.01   1821 0.06 -0.76 S2 

S24 2062 2065 4 0.58   2062 0.25 1.31 S2 

S25 2062 2062 1 0   2061 0  - S24 

S26 2063 2065 3 -0.17   2064 0.53 -1.32 S24 

 

Table 2 shows all the parameters used in the calculation of 

the segmentation process. The DJS is the maximum divergence 

value of the point that the segmentation is performed at. It 

should be noted that the max DJS must be always greater than τ 

in order to allow segmentation which is met by Equation 10. 

Figure 6 shows the hierarchy of the segments represented as a 

binary tree. The leaf nodes in the tree represent the detected 

sub-phases in the trace. By going up the hierarchy, we can get a 

coarse-grained view of the phases.  The leaf nodes when the 

allowed segmentation strength is above 0.5 are (14 phases):  

S9.S11.S12.S13.S15.S16.S6.S17.S21.S22.S20.S23.S25.S26 

 

 

Figure 6. Binary Tree Representing the Segmentation Hierarchy 

 

D. Phase Analysis 

We mapped the phases to the original trace and analyzed 

the routines that were called at the beginning of each phase. 

The detailed descriptions of the routines of the SMG2000 are 

found on the SMG2000 website [21]. We used these 

descriptions to validate whether the phases we detected were 

valid or not. The following was concluded from our analysis.  

Initialization Phase: This phase starts as phase S9 and 

includes the phases that are in the sub-tree rooted at S7. Table 

3 describes the detected sub-phase of the initialization phase. 

TABLE 3. INITIALIZATION SUB-PHASES 

S Description 

S9 This sub-phase uses the „gather’ collective 

communication operation in the 

HYPRE_StructGridAssemble routine. Also, the 

hypre_InitializeTiming and hypre_BeginTiming 

routines are being called at the beginning of this sub-

phase for tracking the timing of the initialization 

phase. Additionally, it contains the MPI_Init which is 

responsible for the initialization of MPI in each 

process. 

S11 The point-to-point communication pattern that was 

used in this phase is Pattern 1 described at the 

beginning of the case study. The main executed 

routine is HYPRE_StructMatrixAssemble which only 

found in this phase in the whole trace. 

S12 S12 uses the „reduce’ collective operation and is 

responsible for tracking timing information at the end 

of the initialization phase (hypre_EndTiming and 

hypre_PrintTiming ,hypre_FinalizeTiming). 
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Setup Phase: The HYPRE_StructSMGSetup is responsible for 

starting the setup phase. It starts executing at point 6 in the 

sequence which corresponds to S8 in Figure 6. The Setup 

phase spans the sub-trees rooted at S8, S6 and S4. Table 4 

provides a description of the sub-phases in the Setup phase. 

TABLE 4. SETUP SUB-PHASES 

S Description 

S13 The call to HYPRE_StructSMGSetup is in this sub-

phase. There are several routines that are distinct to 

this sub-phase. Also, The hypre_InitializeTiming and 

hypre_BeginTiming routines are being called in this 

phase to track the timing of the Setup phase. 

S15 

S16 

S6 

S17 

S21 

S22 

These sub-phases are similar in terms of the routines 

they execute but they differ in terms of the 

communication patterns that are performed. S6, S17 

are the longest phases and contain the highest number 

of communication patterns. The routines in the other 

phases (S15, S16, S21, and S22) are all a subset of the 

routines executed in these two sub-phases. 

S20 This sub-phase executes the same routines in S6 and 

S17 but it also contains the hypre_EndTiming, 

hypre_PrintTiming and hypre_FinalizeTiming to track 

the timing at the end of the Setup phase. 

Solve Phase: The execution of HYPRE_StructSMGSolve 

starts at point 444 (belongs to S2) and ends at point 2065 (in 

S2). Therefore, the sub-tree rooted at S2 corresponds to the 

Solve phase of the program. Table 5 presents the description 

of the sub-phases. 

TABLE 5. SOLVE SUB-PHASES 

S Description 

S23 HYPRE_StructSMGSolve is executed at the 

beginning of S23 and indicates the start of the Solve 

phase. Also, in S23, the hypre_InitializeTiming and 

hypre_BeginTiming routines are being called at the 

beginning of the Solve phase for tracking the timing 

of the phase. This phase represents the major 

execution in the Solve phase. It includes 1618 

executed patterns. This indicates that the 

communication patterns used in this phase are highly 

homogeneous. 

S25 This phase is very short and performs only one 

communication pattern and the main routine that is 

executed is hypre_SMGResidual. 

S26 Reduce collective communication is used to track the 

timing (hypre_PrintTiming and hypre_EndTiming) 

information to mark the end of the initialization phase. 

 

Figure 7 shows the main execution phases in the program 

where the length of each phase is based on the total execution 

time spent during that phase. The Finalize phase did not 

involve any inter-process communication. It started after the 

completion of the HYPRE_StructSMGSolve routine. It was 

identified based on the routine call tree where we considered 

the first sub-tree after all the communications as the Finalize 

phase. The Finalize phase contains the MPI_Finalize routine 

that is responsible for the termination of the MPI 

communication and also other routines that are responsible for 

the destruction of the grid that was constructed in the 

initialization phase. 

 

Figure 7. Detected Phases 

 

I. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a new approach for detecting 

execution phases in MPI programs based on the sequence of 

communication patterns extracted from MPI execution traces.  

 We presented all the steps that are needed in order to detect 

the execution phases along with an illustrative example. We 

validated the results of our phase detection approach on a trace 

of SMG2000 with respect the documented phases in [24]. Our 

phase detection approach did not only detect the main program 

phases but also the sub-phases.  

In the future, we intend to improve the phase detection 

approach by applying a different segmentation technique for 

segmenting long homogeneous sequences such as the one 

found in S23. This will provide a more detailed view of these 

types of long phases.  

Moreover, we intend to further reduce the number of 

communication patterns by measuring the similarity among 

them. This will reduce the number of distinct patterns in the 

sequence which will result in a more homogeneous sequence 

which will affect the number of detected sub-phases 

accordingly. 

We also intend to experiment with various segmentation 

strengths and study the effect of changing s on the resulting 

phases. Finally, we need to experiment with more systems and 

also compare our results with other studies. 
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