
Performance Anomaly Detection through Sequence Alignment of
System-Level Traces

Madeline Janecek

mj17th@brocku.ca

Brock University

St. Catharines, ON, Canada

Naser Ezzati-Jivan

nezzati@brocku.ca

Brock University

St. Catharines, ON, Canada

Abdelwahab Hamou-Lhadj

wahab.hamou-lhadj@concordia.ca

Concordia University

Montreal, QC, Canada

ABSTRACT
Identifying and diagnosing performance anomalies is essential for

maintaining software quality, yet it can be a complex and time-

consuming task. Low level kernel events have been used as an

excellent data source to monitor performance, but raw trace data is

often too large to easily conduct effective analyses. To address this

shortcoming, in this paper, we propose a framework for uncovering

performance problems using execution critical path data. A critical

path is the longest execution sequence without wait delays, and it

can provide valuable insight into a program’s internal and external

dependencies. Upon extracting this data, course grained anomaly

detection techniques are employed to determine if a finer grained

analysis is required. If this is the case, the critical paths of individual

executions are grouped together with machine learning clustering

to identify different execution types, and outlying anomalies are

identified using performance indicators. Finally, multiple sequence

alignment is used to pinpoint specific abnormalities in the iden-

tified anomalous executions, allowing for improved application

performance diagnosis and overall program comprehension.

KEYWORDS
Anomaly Detection, Execution Tracing, Machine Learning, Multiple

Sequence Alignment, Performance Analysis, Software Tracing

ACM Reference Format:
Madeline Janecek, Naser Ezzati-Jivan, and Abdelwahab Hamou-Lhadj. 2022.

Performance Anomaly Detection through Sequence Alignment of System-

Level Traces. In 30th International Conference on Program Comprehension
(ICPC ’22), May 16–17, 2022, Virtual Event, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3524610.3527898

1 INTRODUCTION
As a software system grows to be more complex, performance

anomaly detection and analysis becomes increasingly difficult and

time consuming. An application’s execution flow, and by extension

its performance, may be affected by a number of different factors,

including software bugs, updates, improper resource management,

and hardware failures. Furthermore, user expectations for perfor-

mance are also increasing, which means that failure to detect and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00

https://doi.org/10.1145/3524610.3527898

remedy the cause of performance anomalies can quickly lead to

user dissatisfaction and possible financial losses. As such, there is a

need for tools to assist developers in understanding their software’s

execution behaviour and locating specific locations of performance

anomalies.

The collection and interpretation of system calls through execu-

tion tracing is a well established practice within general anomaly

detection [18, 24]. As the fundamental interface between processes

and the kernel, system calls can give a detailed picture of system

execution. In general, kernel tracing is suitable for the analysis of

runtime behaviors of any systems that run on the kernel. However,

considering the number of events that need to be recorded, this

method tends to introduce high collection overhead, negatively

impacting performance and analysis accuracy. Furthermore, when

considering the sheer size of the collected trace data, it can be dif-

ficult to properly and efficiently analyze the program’s execution

behaviour.

This led us to explore critical path analysis for performance

anomaly detection. The critical path is defined as the longest execu-

tion sequence, and thus it is made up of the elements that contribute

to the process’s overall latency [32]. Metrics like CPU or disk usage,

which are also common data sources for software performance

evaluation [2], may characterize an execution’s resource utilization,

whereas critical path analysis can showwhen and why an execution

waits for such resources. The critical path extraction algorithm has

the added benefit of only requiring a few kernel events, making it a

cheaper alternative to collecting system calls. In Section 4 we will

show how collecting each of the approximately 600 kernel events

has a much greater impact on overall performance than when only

collecting the events that are necessary for critical path extraction.

Accordingly, analysing a critical path is a cheaper alternative that

still gives us an enhanced understanding of which elements would

contribute to user-visible performance issues.

For instance, we had several containersmadewithDocker 10.10.7,

each of which were made with Apache HTTP Server 2.4.51 images.

One of these web servers took, on average, 10.9% longer to han-

dle web requests. Examining the container’s initial configuration

showed that the anomalous performance could be attributed to the

fact that the container was connected to a bridge network. Unless

otherwise specified, Docker containers connect newly-started con-

tainers to an automatically generated bridge network. This meant

that the requests handled by this Apache HTTP Server had to go

through another level of virtualization through the docker daemon.

The other containers, which were set to use Docker’s host network
mode, were using the host’s native network stack directly, which

reduced their isolation but lead to better overall performance.When

examining the critical paths of requests from web servers with both

https://doi.org/10.1145/3524610.3527898
https://doi.org/10.1145/3524610.3527898

configurations, we saw that there were differences in the paths’

structure and duration. By automating the process of identifying

these differences, we could significantly reduce the time and effort

involved in troubleshooting.

In this paper, we therefore propose a critical path based perfor-

mance anomaly detection frameworkwhich is essential for program

comprehension and analysis. Firstly, trace data is collected using

an open-source tracing tool to make up a normal and sample data

set. As we use kernel tracing, this is a black box method that does

not require additional instrumentation. The data is divided into

individual executions using delineating trace events. The critical

path of each execution is extracted and then used to generate two

types of critical path vectors. The first type, critical path duration

vectors, represent the execution’s performance. The second type,

critical path count vectors, are used to infer the execution’s critical

path structure. Anomaly detection techniques are employed to see

if anomalous executions are present in the sample data. If this is

the case, clustering techniques are used to identify the different

execution types for fine grained anomaly localization. Multiple se-

quence alignment is then used to highlight specific anomalies in

the identified executions.

The purpose of the proposed approach is to detect performance

degradation through the analysis of kernel traces. One advantage

of analyzing kernel traces is that we can detect performance prob-

lems in various layers of the software stack that run on the kernel

including standalone applications, server systems, virtual machines,

and so forth. There is a great deal of literature that covers the im-

portance of kernel trace in runtime analysis of software systems.

Our approach runs offline (i.e., post-mortem analysis), and the in-

tent is to help software analysts to understand the root causes of

performance degradation. This is not intended to automatically pre-

dict potential performance problems while the system is running.

The approach can be used for in-house as well as field testing. It

can also be applied by system operators to pinpoint the causes of

performance degradation.

The main contributions of this work are as follows: First, we out-

line our solution for performance anomaly detection. Our method

is entirely reliant on execution trace data, and as such can provide

developers with a detailed analysis of performance without any

knowledge requirements of the software’s internals. Second, we use

critical path analysis to improve upon methods that rely on system

call data in accuracy and imposed overhead. Third, we propose

multiple sequence alignment, a technique commonly used in the

life sciences [11], as an effective method to specifically pinpoint dif-

ferences in anomalous executions, thereby simplifying the software

debugging process.

The remaining parts of this paper are as follows: Firstly, Section

2 presents prior related works. After that, Section 3 describes each

step of the proposed framework in detail. Then, Section 4 discusses

the experimental evaluation of our approach using two case studies.

Finally, Section 5 concludes this paper and discusses plans for future

work.

2 RELATEDWORK
Several previous works have explored different methods for per-

formance anomaly detection. The earliest of such works tend to

focus on statistical profiling methods [28]. However, statistical ap-

proaches typically do not provide any insight as to the root cause

of an identified anomaly, but instead work to just label data as

normal or anomalous. Other machine learning based techniques

using Markov models, neural networks, and so forth have also been

examined in previous works [13]. While these approaches present

several advantages over the statistical approaches, they are often

much more computationally expensive.

System call data is a common data source for performance anom-

aly detection techniques. Tracing based methods have also been

utilized for different kinds of software analyses, including perfor-

mance monitoring [23], intrusion detection [21, 24], root cause

detection [4], and program comprehension [6, 29]. Tracing tools

are capable of providing a fine grained picture of software execution

while imposing minimal overhead, thereby allowing for detailed

analyses. They do this by recording different runtime events at pre-

defined tracepoints. Resource utilization metrics like CPU, memory,

disk, and file usages may also be derived from kernel traces using

methods described by Giraldeau et al. in [15]. The resulting trace

file may contain millions of events, and as such machine learning

algorithms like LSTM [26], ELM [7] and classifiers [36] are often

used in trace data analysis.

One method to interpret trace data is pairwise sequence align-

ment, which is a technique originally used in life sciences to find

common subsequences in RNA, DNA, and proteins [11]. Other

works have explored applying these alignments methods to auto-

matically compare of trace data [34, 35], which when donemanually

is a time consuming and error-prone task. One shortcoming of these

existing studies is that they only compare two traces and highlight

their differences. This can be problematic as it can be challenging

to find a single trace that perfectly exemplifies a program’s normal

performance, especially considering that performance variations

may occur without being anomalous.

To address this issue, we explored the use of multiple sequence

alignment techniques. Multiple sequence alignment is the process

of aligning several sequences, and consequently it is more com-

putationally complex than pairwise alignment. There are several

multiple sequence alignment methods made for biological sequence

analysis, such as CLUSTALW [33], T-Coffee [27], and Progressive

POA [16]. In [11], Edgar presents MUltiple Sequence Comparison

by Log- Expectation (MUSCLE) as the ideal multiple sequence align-

ment method in both space and time complexity. Thus, we have

chosen to use the MUSCLE algorithm within our framework. This

allows us to compare anomalous traces to a group of several normal

traces, giving a more thorough analysis than pairwise sequence

alignment.

Clustering techniques are also common in trace data analysis. For

instance in [22], Kohyarnejadfard et al. utilize DBSCAN clustering

to discover anomalous subsequences of system calls. In [30], Rhee et
al. generate system call distribution vectors and use a hierarchical

clustering approach to find groups of trace data resulting from the

same user code. In our performance anomaly detection framework,

we use machine learning clustering to discover different execution

types, however instead of using system call data we turn to critical

path analysis.

Critical path analysis has already been established as an effective

tool in general program performance analysis. It is often used to

Trace Collection

Critical Path
Extraction

Data Vectorization

Normal Data

Average Based
Approach

Probability Based
Approach

Anomaly Detection

Trace Collection

Critical Path
Extraction

Data Vectorization

Sample Data

Execution Clustering

Anomaly Identification

Cluster Pairing

Cluster Comparison

Anomaly Localization

String Representation
Generation

Multiple Sequence
Alsignment

Figure 1: The proposed framework.

help developers interpret raw trace data, as deciphering possibly

millions of trace events is often non-trivial task. For instance, Hen-

driks et al. [17] discuss how they can compare the critical paths of

different executions to identify performance bottlenecks. In [31],

Sambasivan et al. present Spectroscope, which is a tool used to ex-

tract critical paths to diagnose the cause of response-timemutations

within distributed systems. This is presented as a powerful solution

for identifying performance changes between two system versions

or time periods. In [14], Giraldeau et al. discuss how critical path

analysis can improve execution latency and diagnose the root cause

of performance problems.

In this paper, we work to combine the advantages seen with

critical path analysis with multiple sequence alignment techniques.

This results in a thorough model of normal execution that can be

used to point developers to specific differences between the soft-

ware’s normal execution and anomalies identified using machine

learning clustering.

3 METHODOLOGY
The process of detecting and investigating a software’s performance

anomalies can be complicated and time consuming. To assist devel-

opers with this tedious task, we propose a performance anomaly

detection framework that operates using execution trace data. This

framework requires two different sets of trace data as input, which

will be referred to as the normal and sample data sets. The normal

data set is used to model the software’s typical performance. The

sample data set is then compared to the normal data set to check

for any anomalies.

An overview of the proposed framework is shown in Figure 1.

First, trace data is collected to generate the two data sets. Delineat-

ing events are then used to break up the trace data into individual

executions. Each execution’s critical path is then extracted and

vectorized. Average based and probability based methods are em-

ployed to determine if there are anomalies present in the sample

data set. If this is the case, we conduct a fine grained analysis to

identify specific anomalies. Clustering methods are employed to

identity the different execution types present in both the normal

and sample data. Clusters from the sample data set are compared

to their most similar clusters in the normal data set to identity

outliers, and multiple sequence alignment is used to pinpoint the

differences.

3.1 Trace Collection
Linux Tracing Toolkit: next generation (LTTng) [9] is a lightweight

open source tracing tool that is capable of extracting detailed in-

formation from multiple software layers, while imposing minimal

overhead. Within this context, LTTng is used to record different

events from the kernel-level, which are then used to provide valu-

able insights as to what occurs within a system at runtime. Raw

trace data consists of a sequence of timestamped events taken from

several concurrently running threads. At each event various meta-

data fields known as contexts are recorded. These contexts can be

the timestamp, process ID (PID), event types, and so forth. The

Linux kernel has tracepoints pre-inserted, and therefore in a Linux

system these kernel-level tracepoints do not require any additional

instrumentation.

In this work, we use the term execution to describe any tasks or

behaviour of interest. Our methods are meant to be applicable for

several different scenarios. Thus, an execution could be a function

call, the compilation of an application, a view rendering, and so

on. In order to conduct a meaningful analysis, the raw trace data

must first be divided into individual executions. To do this, delin-

eating events are also collected to indicate the start and end of an

execution. For some types of executions these can be kernel-level

events, however in some cases collecting data from the userspace

Thread A

Thread B

Thread C

A0 A1 A2 A3 ...

B0 B1 B2 B3 ...

C0 C1 C2 C3 ...

B3 A1 C0 C1 ...B0 B1 A0

Figure 2: A visualization of an interleaved events compared
to the individual threads’ true ordering

level might be required. As an example, when examining trace data

collected from an Apache web server where an execution is a web

request, the userspace events request_start and request_exit
may be recorded to indicate when an execution starts and ends,

respectively [12].

We trace several executions to make up two distinct data sets:

the normal data set and the sample data set. The normal data set

is collected to model the software when it is exhibiting normal

performance behaviour. This process is then repeated to generate

the sample data set. The sample data set might be collected from

the software running in a new environment, a new version of the

software, and so forth. Making a comparison between the two

data sets’ performance will allow us to check if any performance

impacting anomalies have been introduced, and if this is the case

help to identify the root cause.

3.2 Critical Path Extraction
Upon collecting trace data for both the normal and sample data

sets, we extract the critical path of each execution. An execution’s

critical path is defined as its longest execution sequence [32], and

thus it shows which elements have contributed to the execution’s

overall latency. The benefits of examining critical paths for the

purpose of performance analysis are threefold. Firstly, a critical

path gives a compact yet comprehensive representation of all the

interactions between a thread and other threads running simulta-

neously within the system. Secondly, simply combining the trace

events of multiple threads into interleaved sequences can break the

true per-thread ordering result in an inaccurate representation of

program execution, as shown in Figure 2. Hence extracting and

analysing the critical path gives a more accurate representation of

execution events. Finally, to extract an execution’s critical path we

only need to collect a small number of trace events, which imposes

far less overhead than enabling all kernel events while tracing. The

required kernel level events are as follows [14]:

• sched_switch indicates that a new thread has replaced a

different thread that had been previously running on a CPU.

• sched_wakeup indicates that a previously blocked thread

is now ready to run.

• irq_handler_entry indicates that the hardware interrupt

handler has started its execution.

• irq_handler_exit indicates that the hardware interrupt
handler has ended its execution.

• hrtimer_expire_entry indicates when a high resolution

timer interrupt has started its execution.

• hrtimer_expire_exit indicates when a high resolution

timer interrupt has completed execution.

• softirq_entry indicates that the software interrupt han-
dler has started its execution.

• softirq_exit indicates that the software interrupt handler
has ended its execution.

To determine an execution’s critical path, we modify an algo-

rithm that was first introduced by Giraldeau et al. [14]. Throughout
the tracing period a thread may be in one of several execution states.

There are two possible running states: running in system call mode

and running in usermode. These two running states differ in the

level of privileges required for their execution, with system call

mode being able to execute kernel functions. Additionally there are

several blocked states: blocked for disk, blocked for futex, blocked

for another task (i.e., process or thread), blocked for interrupt han-

dling, and so forth. We determine the various execution states of

each thread, and they then use these states to generate a specialized

directed acyclic graph.

A visualization of an execution’s critical path in the form of a

graph is shown in Figure 3. This graph, which is formally referred

to as an execution graph, is representative of the inter-thread inter-

actions and dependencies. The critical path is then extracted from

an execution graph by recursively substituting each blocking edge

with the corresponding waking thread.

3.3 Data Vectorization
The length of different critical path sequences may vary, so we gen-

erate vector representations to create simplified and standardized

representation of the various critical paths. This allows for more

straightforward comparisons between executions for the purpose

of anomaly detection. It also allows us to use machine learning

clustering algorithms, as they typically expect fixed-sized vectors

as input.

In this work we generate two types of vectors for each execution

in both the normal and sample data sets. The first of these two

vectors are critical path count vectors. With this representation, one

vector represents a single execution, and each of its components

represents the number of times the execution’s critical path entered

the corresponding state. For each execution, we also generate a crit-
ical path duration vector. With this format, each vector component

represents the total time an execution’s critical path spent in the

corresponding execution state. These vector representations are

similar to the system call sequence vectorization methods previ-

ously explored in [10, 19, 22]. A simplified example to illustrate the

vectorization process for both representation methods is shown in

Figure 4.

The critical path count vectors are representative of their ex-

ecutions’ critical path structure, and by extension, its execution

behaviour. It is reasonable to assume that when given the same

Figure 3: An execution’s critical path shown as an execution graph.

0 1 2 3 4 5

Count

Running
Blocked

for Disk

Blocked

for CPU

1

1

...

RunningRunningRunningRunning

2

3

Blocked

for Disk

1

1

...

...

Duration

Figure 4: An example of how a critical path sequence is con-
verted to critical path count vectors and critical path duration
vectors.

workload, executions of the same type should have similar perfor-

mance [3]. A single piece of software may exhibit a wide range

of execution behaviours with varying performance expectations,

so we compare the critical path count vectors to determine if exe-

cutions are similar enough to justify their comparison. Clustering

these vectors eliminates the need for manual analysis of each exe-

cution, which can be time consuming and requires deep knowledge

of the program’s internals. As such, the count vectors alone are not

necessarily used to measure performance, but instead they are used

to identify which executions are comparable.

While we use the critical path count vectors to show an execu-

tion’s structure, we use its critical path duration vector to represent

of the execution’s performance. Counting events or system calls is

commonly used in other works to evaluate performance, however

because critical path states are a more generalized or abstracted

representation of that data, the count vectors alone would not be

adequate to measure performance. For instance, a long abnormal

blocked state would not be distinguishable from a shorter normal

blocked state using critical path counts. That’s why we also have

to consider the states’ durations. These duration vectors are rep-

resentative of the execution’s performance, as the critical paths

indicate what contributed to a given execution’s overall runtime.

User visible performance problems will result in longer state dura-

tions, which would then be reflected in the critical path duration

vectors.

Algorithm 1: Anomaly Identification Algorithm

for all 𝑠 ∈ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒𝑠 do
𝑎1 = 𝑛𝑜𝑟𝑚𝑎𝑙_𝑑𝑎𝑡𝑎.getAverage(𝑠);

𝑠𝑡𝑑 = 𝑛𝑜𝑟𝑚𝑎𝑙_𝑑𝑎𝑡𝑎.getStandardDev(𝑠);

𝑎2 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑎𝑡𝑎.getAverage(𝑠);

if 𝑎2 >𝑎1 + 𝑡1 * 𝑠𝑡𝑑 then
flagAnomaly(𝑠);

end
𝑥 =

��{𝑒 ��𝑒 > 𝑎1, 𝑒 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙_𝑑𝑎𝑡𝑎}
��

𝑝1 = 𝑥 /

��𝑛𝑜𝑟𝑚𝑎𝑙_𝑑𝑎𝑡𝑎
��

𝑦 =

��{𝑒 ��𝑒 > 𝑎2, 𝑒 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑎𝑡𝑎}
��

𝑝2 = 𝑦 /

��𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑎𝑡𝑎
��

if 𝑝2 >𝑝1 * 𝑡2 then
flagAnomaly(𝑠);

end
end

3.4 Anomaly Detection
After we have generated the vectors for our two data sets, we

examine their critical path state duration vectors to determine

if the sample data set contains anomalies. At this stage, we are

conducting a preliminary course grained analysis to determine if

a closer look at the executions is even necessary. For each critical

path state s, we look for evidence of performance abnormalities

using an average based and probability based approach, both of

which are shown in Algorithm 1.

With the average based approach, we are checking if there was

a noticeable increase in time spent in one or more of the execution

states. For instance, if the sample executions spent more time wait-

ing for CPU than normal, this would be detected using the average

based approach. For each state we first compute the average time

the executions within the normal data set spent in the state a1, as
well as the standard deviation std. We also compute the average

time that executions from the sample data set spent in the same

state a2. If the sample average is greater than the normal average

added to the standard deviation multiplied by a predefined value t1,
then it is said that the sample data contains performance anomalies.

With the probability based approach, we first compute the per-

centage of executions in the normal and sample data sets that spent

longer in a given state than the normal data set’s average. These

two values will be referred to as p1 and p2. If p2 exceeds p1 mul-

tiplied by another predefined value t2, this would also indicate

that the sample data set has anomalous executions. The average

based approach checks if executions exceed a threshold for normal

execution, whereas the probability based approach checks if the

Client Web Server

Database

Figure 5: A web server architecture.

sample executions are consistently higher than normal while still

being within this threshold, which can be another indication of

performance abnormalities.

If after examining each of the execution states no abnormalities

are found, then the software is said to be free of performance anom-

alies and the process is complete. Otherwise, the executions are

examined more closely following the steps described in subsequent

sections.

3.5 Anomaly Identification
In order to conduct fine grained anomaly detection, wemust first de-

termine which normal set executions are comparable to the sample

executions. A single program may exhibit a wide range of critical

paths with different performance expectations. For example, con-

sider a web server with the architecture shown in Figure 5 where

an execution is defined as a web request. A read request and a write

request could both be without any abnormalities while still having

drastically different critical paths.

There are additional factors that may result in normal variations

between the two executions’ critical path structure or their overall

performance, including but not limited to the number of concurrent

users, availability of system resources, and input size. For instance,

one of these factors could be the frequency of disk accesses. To

reduce this time consuming operation, many systems implement

disk caching. If all the data is already found in the cache then no disk

operations are required, which results in faster processing times. In

the case where some of the required data is not found in the cache,

the request will be blocked to recover any missing information.

There may also be executions where the main thread must wait

for the another thread to complete a task before it can complete

its execution. All of these scenarios are from the same system, yet

they result in different internal executions, hence different critical

paths and processing times (as shown in Figure 6).

As some executions are expected to perform differently without

being anomalous, we can not use a single definition of normal

performance to identify anomalies. An alternative method that we

utilize in this work is to examine the execution types separately.

Grouping the executions based on their critical path similarity

allows us to identify and separately analyze each execution type.

This is more precise than an overgeneralized monolithic model

of normal execution, and allows us to find executions that have

suboptimal performance for their assigned group. It will ultimately

be up to the user to ensure that the normal data properly and

Algorithm 2: Cluster Pairing Algorithm

for all 𝑐1 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
𝑡 = 0;

𝑝𝑎𝑖𝑟 = null;

for all 𝑐2 ∈ 𝑛𝑜𝑟𝑚𝑎𝑙_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
𝑡𝑒𝑚𝑝 = 𝑛𝑜𝑟𝑚𝑎𝑙_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 .clone();

𝑡𝑒𝑚𝑝 .combine(𝑐1, 𝑐2);

𝑠 = 𝑡𝑒𝑚𝑝 .getSilhouetteScore();

if 𝑠 >𝑡 then
𝑡 = 𝑠;

𝑝𝑎𝑖𝑟 = 𝑐2;

end
end
pair(𝑐1, 𝑝𝑎𝑖𝑟);

end

comprehensively exhibits the system’s expected behaviours, but

the users would not have to concern themselves with manually

sorting or grouping the data by execution type.

We find these execution groups within our normal and sample

data set using machine learning clustering. We argue that the crit-

ical path count vectors are indicative of the executions’ critical

path structure, and thus clustering these vectors will automatically

find the different execution types. Ordering Points to Identify the

Clustering Structure (OPTICS) [1] is a machine learning clustering

algorithms that is capable of identifying arbitrarily shaped clusters.

Most well-known clustering algorithms require highly influential

input parameters that are not easily determined. For instance, with

the popular K-Means clustering algorithm [25] the number of clus-

ters must be predetermined. OPTICS is presented as an alternative

clustering algorithm that only requires that the minimum number

of points needed to create a cluster be specified beforehand. OP-

TICS works by creating an ordered list representing the input data’s

density-based clustering structure. Samples within this list are po-

sitioned in such a way that they are next to their closest neighbour.

Clusters may then be extracted from this list when observing the

points’ reachability distances.

Once the OPTICS clustering has identified the different execution

types within the normal and sample data sets, we determine which

normal clusters are the most similar to each of the sample clusters.

We do this following the steps outlined in Algorithm 2. We take

a sample data cluster c1 and check the silhouette score (1) after

combining it with each of the clusters c2 from the normal data set.

The silhouette score is a metric that measures the consistency of a

cluster, and as such can be used to see which groups should have

comparable performance metrics. The sample data cluster will be

paired with the normal cluster that results in the highest silhouette

score. This process is repeated for each of the clusters in the sample

data set.

𝑠𝑖 =
𝑜𝑢𝑡𝑖 − 𝑖𝑛𝑖

𝑚𝑎𝑥 (𝑖𝑛𝑖 , 𝑜𝑢𝑡𝑖)
(1)

We then use the most similar normal cluster to model normal

execution for our sample group. We identify outliers using a similar

method to the average based anomaly detection approach discussed

READ

syscall_entry_read syscall_entry_read

System Calls

READ

syscall_entry_read syscall_entry_read

System Calls

Kernel Layer Block Device Request

WaitingThread 1

RunningThread 2

Running Running

Running Waiting

Operations Critical Paths

Running Blocked For CPU Blocked For Disk

1) Cache hit

2) Cache miss

3) Multithreaded operation

Figure 6: A visualization of the different critical paths found with different operations.

in Section 3.4. The average and standard deviation for each execu-

tion state in the normal group is calculated. Any executions within

the monitored group with a state duration that exceeds the normal

average plus the standard deviation multiplied by a threshold are

marked as anomalies. Any anomalies will go though the fault local-

ization process discussed in Section 3.6 to help developers identify

the root cause of the performance anomaly.

3.6 Anomaly Localization
Once we have determined which executions are exhibiting anoma-

lous behaviour, we set out to find the specific differences between

the anomalies and normal executions. To do this we employmultiple

sequence alignment techniques, which are commonly used in the

life sciences to compare biological sequences like DNA, RNA, and

proteins [11]. There exist studies that explore the use of sequence

alignment for the purpose of trace comparison (e.g., [34, 35]), but

these studies focus on single executions only, making it challenging

to distinguish between anomalous behaviour and normal variations

from the selected normal executions. We overcome this problem by

proposing the use of multiple sequence alignments, which address

this issue by comparing the anomalous execution to a group of

normal executions.

Multiple sequence alignment is also an improvement on other

trace comparison methods that simply point out the difference

between two sequences. Even within a group of similar executions,

it is highly unlikely to find two critical path sequences that are

identical. Aligning several executions can help to find comparable

regions, thereby allowing us to point out anomalous performance

as well as improbable sections of the critical path sequence.

A B A

A B A

A

Critical Paths

1)

A2)

String
Representations

1) A B A

2) A A B A A

Figure 7: The conversion of different execution critical paths
to their string representations.

This process starts by generating text representations of the

anomalous execution and the corresponding group normal of ex-

ecutions from the normal data set. Each of the execution states is

assigned a character, and a string made up of those characters is

made for each execution’s critical path. A visual representation of

this process is shown in Figure 7. The amount of time the execution

spent in each of the states making up the critical path sequence is

also recorded.

The generated critical path sequences are then aligned so that

similar regions of execution can be compared to highlight abnor-

malities. There are many existing algorithms for multiple sequence

alignment. The one used in our proposed methodology is MUltiple

Sequence Comparison by Log- Expectation (MUSCLE) [11], which

is presented as an improvement in accuracy and computational

complexity when compared to other well known multiple sequence

Normal Executions

Anomalous Execution

A

A

A

A

B

B

B

C

C

D

D

D

-

-

-

-

Figure 8: A visualization of the critical path sequences of four
executions after undergoing multiple sequence alignment.
Different states correspond to different characters, gaps are
denoted by ’-’.

alignment algorithms. MUSCLE builds a progressive alignment by

assigning sequences to leaf nodes of a binary tree, and then align-

ing the children of each node. It then takes this tree and works to

improve and refine the initial alignments. This results in the input

sequences having gaps inserted so that similar execution states are

aligned with each other.

At each point in the resulting aligned sequences, the probability

that a normal execution would be in a given execution state is

computed. The average time that an execution would stay in that

state is also computed for each step. Abnormalities in the anomalous

execution’s structure as well as notable differences in how long

components within the critical path sequence took can then be

presented as specific anomalies.

For instance, take the simplified example of multiple sequence

alignment shown in Figure 8. A developer would be shown that

the anomalous execution unexpectedly entered the D state at the

second point of the aligned execution sequence. Furthermore, the

developer would also be notified if the anomalous execution spent

significantly longer in the A or B states than what was average

for the normal executions. This significantly narrows down the

search space for the developer. Instead of having to examine the

anomalous execution in its entirety, they could begin by examining

where the abnormalities occur.

4 EVALUATION AND DISCUSSION
To test the effectiveness of our proposed approach, we examined

and evaluated two separate case studies. In the first study, we ex-

amined two versions of a userspace application to ensure that our

framework is capable of identifying anomalies caused by software

bugs. In the second case study, we examined containerized applica-

tions to see if the approach could identify anomalies caused by an

application’s environment. These experiments were all conducted

on a virtual machines created with Oracle VM VirtualBox 6.1.18

that were allocated two CPUs. The guest operating system used was

Ubuntu 20.04.1 with Linux kernel 5.8.0, and traces were recorded

using LTTng 2.11.2.

Table 1: Tracing Overhead

Benchmark Duration (ms) Overhead

No Tracing 1076.50 0%

Full Kernel Tracing 1329.26 +23.479%

Minimal Tracing 1128.08 +4.79145%

4.1 Userspace Application
For this case study we traced several executions of a test application

written using Python 3.8.5. The application was specifically written

to exhibit a range of execution types, including read operations,

write operations, etc. After collecting a normal data set, a new

version of the application with intentionally added software bugs

was created and traced to make up a sample data set. As we chose

to evaluate an application that we implemented, we were able to

determine if the identified root causes of performance problems

were real with a reasonable level of certainty. Throughout both

tracing periods, we also recorded when the different execution

types occurred so that we could be manually label the extracted

critical paths.

The normal data was made up of about 100 executions, whereas

the sample data set consisted of 10 executions taken from the new

version of the software. The executions within the sample data set

took on average 2-3 seconds longer than those within the normal

data set. When clustering the executions using their critical path

count vectors, we said that a minimum number of 5 points were

required to make a cluster.

4.1.1 Data Collection Overhead. To examine the overhead that is

imposed with execution tracing, we observed runtime performance

with three distinct tracing configurations:

• No tracing: To provide a base case, an execution’s perfor-

mance was recorded without the use of any execution trac-

ing.

• Full Kernel Tracing: To provide a point of comparison,

we perform system tracing with all kernel tracepoints en-

abled. This configuration is not necessary for the proposed

methodology, and is only meant to show the worst case

scenario.

• Minimal Kernel Tracing: The enabled tracepoints are lim-

ited to only those required for the proposed methodology.

A list of the necessary tracepoints is provided in Section 3.

The results taken from the average of 10 executions are shown

in Table 1. These results show that trace data collection using full

kernel tracing imposes a 23.48% overhead, however this can be

significantly improved by limiting the trace events to only what is

necessary for defining and extracting critical paths of execution.

The configuration required for the proposed approach only im-

poses a 4.79% overhead. Therefore, the performance impact of our

anomaly detection framework is negligible.

4.1.2 Execution Clustering. To ensure that critical path count vec-

tor clustering can be used to distinguish between different execution

types, we used OPTICS clustering with the generated normal data

set. The resulting clusters are shown in Figure 9. To evaluate the

clustering, an execution was said to be properly assigned to a cluster

Figure 9: A visualization of the critical path count vector
clustering. Vector dimensionality was reduced using PCA.

Figure 10: A visualization of the critical path count vector
clustering. A sample cluster (red) and its paired normal clus-
ter (green) is shown with the remaining vectors within the
normal data set (black). Vector dimensionality was reduced
using PCA.

if the majority of executions within that cluster were of the same

type. Using this definition, we saw that the clustering method put

86.67% of the executions into an appropriate cluster. Accordingly,

the proposed clustering method is shown to be a suitable tech-

nique for discerning between different execution types without the

need for manual analysis or knowledge of the program’s internal

structure.

4.1.3 Cluster Pairing. To test if our cluster pairing technique would
properly assign sample clusters to normal clusters made up of

executions with the same execution type, we first used OPTICS

clustering to identify the different groups present in the sample

data set. We then used the silhouette score to pair each cluster with

one of the normal clusters. We saw that despite the differences

in critical path structure due to the injected faults, the highest

silhouette score was achieved when a sample cluster was paired

with a normal cluster of the same execution type. A visualization of

the normal data with a sample data cluster is shown in Figure 10.

4.1.4 Anomaly Detection. Using the cluster pairings, we applied
the outlier detection methods to determine which executions exhib-

ited anomalous performance. When using the anomaly detection

techniques we said that values greater than 1.5 standard deviations

above the average were said to be anomalous. We then took those

identified anomalies and tested the multiple sequence alignment

method. Based on our results, we saw that the multiple sequence

alignment method was capable of distinguishing between normal

and anomalous states within the critical path sequences. Take for

example the execution show in Figure 11. When manually review-

ing the critical paths that made up the normal data set, we saw that

it was typical for executions of that type to occasionally be in the

blocked state for an extended period of time. Our methods did not

simply mark all blocked states as anomalous. Instead, it was able to

correctly identify several smaller blocked states as anomalies. This

shows that our methodology goes beyond simply identifying long

blocked periods. Thus multiple sequence alignment allows us to

more accurately pinpoint abnormalities than we would looking at

runtime alone.

4.2 Container Resource Provisioning
In recent years, container-based virtualization has been gaining

popularity for both individual and industrial uses. From the kernel

perspective, trace events from a process running within a container

are no different from those running on the host [20]. To perform

container aware tracing we just need to ensure that certain infor-

mation is collected during tracing. Each container has an unique

namespace. Thus by enabling the namespace ID (pid_ns) context,
as well as the thread ID (tid) and virtual thread ID (vtid) contexts,
one can identify which events belong to a specific container. By

using tools like lsns 1
, we can identify the namespaces of each

container running on the host [8]. Thus, the proposed methodology

is capable of finding anomalous containers and providing insight

as to the root cause.

In this case study, we set up several container with Docker 20.10.7.

and Ubuntu 20.04 images. Within these experiments, an execution

was defined as one call of a bash script that retrieved files using

GNU Wget. As containers share their host’s resources, container

products often allow users to specify restrictions on resources like

CPU andmemory. This is to help to mitigate the risk of performance

impacting resource contention that is often seen with running too

many containers concurrently [5]. However, it can be difficult to

determine the optimal value of these parameters, and miscalcula-

tions may severely impact the container’s overall performance. The

normal data was collected from a container that was given no such

resource constraints, and as such it was permitted to used as much

of any resource as the host’s kernel scheduler allowed. Trace data

collected from containers with different resource constraints made

up the sample data set.

4.2.1 Execution Clustering. Even when examining a simple pro-

gram, we saw that clustering the normal data set executions by

their critical path similarity still resulted in several distinct groups.

A visualization of these groups is shown in Figure 13. This goes to

show the importance of the critical path clustering. We saw that

1
https://man7.org/linux/man-pages/man8/lsns.8.html

Figure 11: An anomalous execution’s critical path, where the blocked state is represented by the colour purple.

Figure 12: Two execution critical paths, one taken from an execution in the normal data set (bottom) and one of an identified
anomaly (top).

Figure 13: A visualization of the critical path count vector
clustering. Vector dimensionality was reduced using PCA.

average runtime of one group could differ from another group’s

average runtime by up to 164.4%. With such a range of performance

expectations, generating one model of normal performance would

be too imprecise to effectively search for true anomalies within the

sample data.

4.2.2 Anomaly Detection. Using our anomaly detection framework,

we found several suboptimal executions that came from one particu-

lar container. The critical path of one of these anomalous executions

compared to an execution from the normal data set is shown in

Figure 12. Using the multiple sequence alignment techniques, we

found several short preempted states in the anomaly’s critical path

that were not typical for its execution type. Further manual in-

vestigation of these states revealed that when the execution was

preempted, it was not replaced on the CPU. The container from

which this anomalous execution was taken from had its CPU usage

limited to 10% of what was allocated to containers from which the

normal data was collected. Upon discovering that the container’s

performance was suffering due to its configurations, we were able

to grant it access to more resources to fix the problem.

5 CONCLUSIONS AND FUTUREWORK
Customer expectations and software complexity are both rapidly

increasingly, and consequently so is the demand for tools to assist

developers with precise performance anomaly detection. In this

paper, we presented a trace based performance anomaly detection

framework using critical path analysis. LTTng is first used to collect

execution runtime data, which is then separated into individual

executions. Each execution’s critical path is extracted and used to

create critical path count vectors as well as critical path duration

vectors. This process is used to generate a sample and normal data

set. If anomaly detection techniques indicate that anomalous execu-

tions are present in the sample data, then OPTICS clustering is used

to discover the different execution types without the need for man-

ual intervention. Sample data clusters are compared to their most

similar normal data clusters, allowing for a more precise analysis.

Any identified anomalies undergo multiple sequence alignment to

find specific anomalies within their critical path. To demonstrate

the usefulness of this framework, we discussed two experimental

use cases using userspace and containerized applications.

As for future work, we plan to expand upon our current method

to automatically pinpoint the root cause of any identified anomalies.

To do this plan on experimenting with call stack tracing. Addition-

ally, we plan to investigate the use of more advanced deep learning

techniques for performance anomaly detection.

REFERENCES
[1] Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. OPTICS: Ordering

points to identify the clustering structure. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data (New York, NY, USA,

1999), SIGMOD ’99, Association for Computing Machinery, p. 49–60.

[2] Aslanpour, M. S., Gill, S. S., and Toosi, A. N. Performance evaluation met-

rics for cloud, fog and edge computing: A review, taxonomy, benchmarks and

standards for future research. Internet of Things 12 (2020), 100273.
[3] Ates, E., Sturmann, L., Toslali, M., Krieger, O., Megginson, R., Coskun, A. K.,

and Sambasivan, R. R. An automated, cross-layer instrumentation framework

for diagnosing performance problems in distributed applications. In Proceedings

of the ACM Symposium on Cloud Computing (New York, NY, USA, 2019), SoCC

’19, Association for Computing Machinery, p. 165–170.

[4] Biancheri, C., Ezzati-Jivan, N., and Dagenais, M. R. Multilayer virtualized

systems analysis with kernel tracing. In 2016 IEEE 4th International Conference
on Future Internet of Things and Cloud Workshops (FiCloudW) (2016), pp. 1–6.

[5] Cai, L., Qi, Y., Wei, W., and Li, J. Improving resource usages of containers

through auto-tuning container resource parameters. IEEE Access PP (07 2019),

1–1.

[6] Cornelissen, B., Zaidman, A., Deursen, A., Moonen, L., and Koschke, R. A sys-

tematic survey of program comprehension through dynamic analysis. Software
Engineering, IEEE Transactions on 35 (11 2009), 684 – 702.

[7] Creech, G., and Hu, J. A semantic approach to host-based intrusion detec-

tion systems using contiguousand discontiguous system call patterns. IEEE
Transactions on Computers 63, 4 (2014), 807–819.

[8] DENYS, P.-F., Dagenais, M. R., and Pepin, M. Advanced tracing methods for

container messaging systems analysis.

[9] Desnoyers, M., and Dagenais, M. LTTng: Tracing across execution layers,

from the hypervisor to user-space. In Linux Symposium (2008), p. 101.

[10] Dymshits, M., Myara, B., and Tolpin, D. Process monitoring on sequences of

system call count vectors. pp. 1–5.

[11] Edgar, R. MUSCLE: A multiple sequence alignment method with reduced time

and space complexity. BMC bioinformatics 5 (09 2004), 113.
[12] Ezzati-Jivan, N., Fournier, Q., Dagenais, M. R., and Hamou-Lhadj, A. Dep-

Graph: Localizing performance bottlenecks in multi-core applications using

waiting dependency graphs and software tracing. In 2020 IEEE 20th International
Working Conference on Source Code Analysis and Manipulation (SCAM) (2020),
pp. 149–159.

[13] García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., and Vázqez, E.

Anomaly-based network intrusion detection: Techniques, systems and challenges.

Computers Security 28, 1 (2009), 18–28.
[14] Giraldeau, F., and Dagenais, M. Wait analysis of distributed systems using

kernel tracing. IEEE Transactions on Parallel and Distributed Systems 27, 8 (2016),
2450–2461.

[15] Giraldeau, F., Desfossez, J., Goulet, D., Desnoyers, M., and Dagenais, M. R.

Recovering system metrics from kernel trace. In Linux Symposium 2011 (June
2011).

[16] Grasso, C. S., and Lee, C. J. Combining partial order alignment and progressive

multiple sequence alignment increases alignment speed and scalability to very

large alignment problems. Bioinformatics 20 10 (2004), 1546–56.
[17] Hendriks, M., Verriet, J., Basten, T., Theelen, B., Brassé, M., and Somers, L.

Analyzing execution traces: critical-path analysis and distance analysis. Interna-
tional Journal on Software Tools for Technology Transfer 19 (08 2017).

[18] Islam, M. S., Khreich, W., and Hamou-Lhadj, A. Anomaly detection techniques

based on kappa-pruned ensembles. IEEE Transactions on Reliability 67, 1 (2018),
212–229.

[19] Jana, I., and Oprea, A. AppMine: Behavioral analytics for web application

vulnerability detection. pp. 69–80.

[20] Janecek, M., Ezzati-Jivan, N., and Azhari, S. V. Container workload charac-

terization through host system tracing. In 2021 IEEE International Conference on
Cloud Engineering (IC2E) (2021), pp. 9–19.

[21] Khreich, W., Khosravifar, B., Hamou-Lhadj, A., and Talhi, C. An anomaly de-

tection system based on variable n-gram features and one-class svm. Information
and Software Technology 91 (2017), 186–197.

[22] Kohyarnejadfard, I., Aloise, D., Dagenais, M., and Shakeri, M. A framework

for detecting system performance anomalies using tracing data analysis. Entropy
23 (08 2021).

[23] Kohyarnejadfard, I., Shakeri,M., andAloise, D. System performance anomaly

detection using tracing data analysis. In Proceedings of the 2019 5th International
Conference on Computer and Technology Applications (New York, NY, USA, 2019),

ICCTA 2019, Association for Computing Machinery, p. 169–173.

[24] Liu, M., Xue, Z., Xu, X., Zhong, C., and Chen, J. Host-based intrusion detection

system with system calls: Review and future trends.

[25] McQueen, J. Some methods for classification and analysis of multivariate

observations. Computer and Chemistry 4 (01 1967), 257–272.
[26] Nedelkoski, S., Cardoso, J., and Kao, O. Anomaly detection from system

tracing data using multimodal deep learning. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD) (2019), pp. 179–186.

[27] Notredame, C., Higgins, D., and Heringa, J. Notredame, c., higgins, d. g.

heringa, j. t-coffee: A novel method for fast and accurate multiple sequence

alignment. j. mol. biol. 302, 205-217. Journal of Molecular Biology 302 (10 2000),
205–217.

[28] Patcha, A., and Park, J.-M. An overview of anomaly detection techniques:

Existing solutions and latest technological trends. Computer Networks 51, 12
(2007), 3448–3470.

[29] Pirzadeh, H., Shanian, S., Hamou-Lhadj, Abdelwahab, A. L., and Sharifee,

A. An anomaly detection system based on variable n-gram features and one-class

svm. Science of Computer Programming 78, 8.
[30] Rhee, J., Zhang, H., Arora, N., Jiang, G., and Yoshihira, K. Software system

performance debugging with kernel events feature guidance. In 2014 IEEE
Network Operations and Management Symposium (NOMS) (2014), pp. 1–5.

[31] Sambasivan, R., Zheng, A., Rosa, M., Krevat, E., Whitman, S., Stroucken,

M., Wang, W., Xu, L., and Ganger, G. Diagnosing performance changes by

comparing request flows.

[32] Schulz, M. Extracting critical path graphs from MPI applications. In 2005 IEEE
International Conference on Cluster Computing (2005), pp. 1–10.

[33] Thompson, J., Higgins, D., and Gibson, T. Clustal w: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-

specific gap penalties and weight matrix choice. Nucleic acids research 22, 22
(November 1994), 4673—4680.

[34] Weber, M., Brendel, R., and Brunst, H. Trace file comparison with a hierar-

chical sequence alignment algorithm. In 2012 IEEE 10th International Symposium
on Parallel and Distributed Processing with Applications (2012), pp. 247–254.

[35] Weber, M., Mohror, K., Schulz, M., Supinski, B., Brunst, H., and Nagel, W.

Alignment-based metrics for trace comparison. vol. 8097, pp. 29–40.

[36] Zhang, X., Niyaz, Q., Jahan, F., and Sun, W. Early detection of host-based

intrusions in Linux environment. In 2020 IEEE International Conference on Electro
Information Technology (EIT) (2020), pp. 475–479.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Trace Collection
	3.2 Critical Path Extraction
	3.3 Data Vectorization
	3.4 Anomaly Detection
	3.5 Anomaly Identification
	3.6 Anomaly Localization

	4 Evaluation and Discussion
	4.1 Userspace Application
	4.2 Container Resource Provisioning

	5 Conclusions and Future Work
	References

