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Abstract—Log parsing is used to extract structures from
unstructured log data. It is a key enabler for many software engi-
neering tasks including debugging, fault diagnosis, and anomaly
detection. In recent years, we have seen an increase in the number
of log parsing techniques and tools. The accuracy of these tools
varies significantly. To improve log parsing tools, we need to
understand the type of parsing errors they make, which is the
purpose of this early research track paper. We achieve this by
examining errors of four leading log parsing tools when applied to
the parsing of four log datasets generated from various systems.
Based on this analysis, we suggest a preliminary classification
of log parsing errors, which contains nine categories of errors.
We believe that this classification is a good starting point for
improving the accuracy of log parsing tools, and also defining
better logging practices.

Index Terms—Log Parsing, Log analytics, Dynamic analysis,
Software logging, AIOps.

I. INTRODUCTION

The analysis of logs can help with many software engi-
neering tasks including debugging [1] [2], detection of data
leakage [3], and anomaly detection [4] [5]. Logs are also used
for AI for IT Operations [6], a growing field of study related
to the maintenance and operations of cloud-based systems. A
log file contains a sequence of log events where each event is
composed of a header and a message. The header is usually
composed of the timestamp, process id, log level, and the
logged function. Log headers follow the same format within
the same file and are usually easy to parse. The log message
is composed of static text and dynamic variables (also called
static and dynamic tokens). The structure of log messages
varies within the same log file and across logs of different
systems, making it challenging to analyze logs.

To address this issue, several log parsing techniques have
been proposed in the literature (e.g., Drain [7], Spell [8], ULP
[9]). The aim is to extract log templates from log events
by clearly distinguishing between the static and dynamic
tokens. Figure 1 shows an example a log event (without
the header) taken from the Hadoop Distributed File Sys-
tem (HDFS) log file and its corresponding log template
where dynamic tokens (blk_5792489080791696128,
/10.251.30.6:33145, and /10.251.30.6:50010)
are replaced by *. A good parser is the one that effectively

Fig. 1. An example of a log event and its corresponding log template

recognizes all templates in a log file. These templates can later
be used to parse incoming log events. A naive solution to this
problem would be to use regular expressions. The problem
is that typical log files may contain thousands of templates
[10] [11]. In addition, as the system evolves, developers
must constantly update the regular expressions, which is not
practical. El-Masri et al. [12] showed that existing parsing
tools rely on a panoply of methods including heuristics, pattern
mining, natural language processing, clustering, and more.
Recent studies [12] [13] compared the accuracy of these tools
for parsing 16 log datasets of the LogHub benchmark1. The
findings show that these tools do not perform consistently
when applied to different log files. While their accuracy on
some datasets is high, it is low on others, making it difficult
for developers to choose which tools to use. To understand the
causes behind these inconsistencies, we embarked on studying
the type of errors these tools make with the long-term objective
to improve existing tools, and to work towards better logging
practices that would simplify the parsing process.

To achieve our goal, we selected four leading log parsing
tools based on their overall accuracy and applied them to the
parsing of four log datasets of the LogHub benchmark. We
then analyzed the incorrectly-parsed log events to understand
the root causes. We present the results of this analysis in the
form of a classification of log parsing errors. To the best of
our knowledge, this study is the first to build a classification
of log parsing errors. Most related work focuses on improving
log parsing algorithms (e.g., [15] [16] [17]).

II. STUDY SETUP

The goal of this preliminary study is to identify and classify
the common errors that occur during log parsing. We believe
that this classification can be a good starting point for the
development of better and more consistent log parsing tools.

1https://zenodo.org/record/3227177#.YUqmXtNPFRE



A. Log Parsing Tools

Zhu et al. [13] compared the performance of 13 parsing
tools and found that the best performing tools are Drain [7],
AEL [14], and Spell [8]. We chose these three tools in this
study. In addition, recently, Sedki et al. [9] presented ULP
(Universal Log Parser) and showed that it performs better
than Drain, AEL, and Spell. We, therefore, decided to include
ULP as well. Drain [7] abstracts log messages into event
types using a parse tree and uses a similarity metric that
compares leaf nodes to event types to identify log groups. AEL
(Abstracting Execution Logs) [14] relies on textual similarity.
AEL tokenizes log events and assigns them to bins based on
the number of terms they contain and then abstracts them into
templates. Spell (Streaming Parser for Event Logs using an
LCS) [8] converts log messages into event types. It relies on
the idea that log messages that are produced by the same
logging statement can be assigned a type, which represents
their longest common sequence. ULP [9] combines string
matching and local frequency analysis to parse large log files.

B. Datasets and Ground Truth

The datasets used in this study consist of log files of the
LogHub benchmark [13]2. The benchmark contains 16 log
datasets that are generated from different types of systems,
namely distributed systems, supercomputers, operating sys-
tems, mobile applications and server applications. Each log
dataset of the LogHub benchmark comes with a subset of
2,000 log events that have been parsed manually. The log
templates were identified, and each log event out of the 2,000
events was associated with a specific log template. These
labelled log datasets are used as ground truth against which we
can check the accuracy of log parsing tools. For the purpose
of this study, we selected randomly one log dataset from each
type of systems to have representative datasets. In total, we
have four log datasets as shown in Table I. The table also
shows the number of templates for each log dataset.

TABLE I
LOG DATASETS FROM THE LOGHUB BENCHMARK USED IN THIS STUDY

System Type Num of Templates
OpenStack Distributed system 43
Linux Operating system 118
HealthApp Mobile application 75
Apache Server application 6

C. Procedure of Identifying Parsing Errors

We consider a parsing error if a tool generates a template
that is different from that of the ground truth. More precisely,
we wrote a script to check if the static tokens are correctly
identified and are in the same order as the ground truth. We
also check that all the dynamic tokens are found and are
in the same order as the ground truth. If the same error is
repeated multiple times, we count it only once. Note that we
ignore missing or excessive special characters to avoid being

2https://zenodo.org/record/3227177#.YUqmXtNPFRE

too restrictive in the comparison. We use each parsing tool to
parse the four datasets included in this study. Then, using a
script we compare the result of parsing each log event to the
ground truth. The incorrectly-parsed log events (i.e., the ones
for which the parser generates a template that is different from
that of the ground truth) are checked manually to find the root
causes. We group similar errors into categories, which form
our classification. We also compute the distribution of each
type of errors for each parser across the datasets.

III. RESULTS

After analyzing manually thousands of incorrectly-parsed
log events, we found a total of 523 parsing errors (all the data
used in this study is available on Zenodo3). We reviewed each
parsing error carefully to understand the causes. We found
that these errors can be classified into nine categories that are
list in what follows and discuss in more details in the next
subsections. Table II shows the distribution of parsing errors
for each tool across the four datasets. Table III shows the
breakdown of the number of errors found for each dataset.
We found that the highest number of errors appears in Linux
(231 log parsing errors across the four log parsing tools),
followed by OpenStack (151 errors), HealthApp (130 errors).
For Apache, we only have 11 errors, mainly because of the
low number of templates Apache contains (6 templates).

• C1 - Dynamic tokens with special characters
• C2 - Dynamic tokens with alpha-numerical characters
• C3 - Dynamic tokens with space
• C4 - Dynamic tokens expressed as text only
• C5 - Same type of dynamic token in different formats
• C6 - Dynamic tokens that represent constant values
• C7 - No demarcation between the tokens
• C8 - Static tokens with properties of dynamic tokens
• C9 - Log events differing slightly in their structure

A. Log Parsing Error Classification

1) C1-Dynamic tokens with special characters: Dynamic
tokens that contain special characters such as 11.5 and
203.205.147.206:8080@0 are usually hard to parse. This is
because most parsers use special characters as delimiters,
resulting in splitting dynamic variables with special characters
into several tokens. As an example, Drain, Spell, and ULP
parse the Openstack log event memory limit 14.5 MB
into the log template : memory limit *.* MB while the
correct template is memory limit * MB. Based on Table
II, this category of errors appears more frequently in Linux
and Apache datasets with an average error ratio when using
all four tools of 16.82% and 25% respectively. This is most
likely due to the high number of dynamic tokens with special
characters in these datasets. Note that, unlike other tools,
ULP does not make C1 errors when applied to Apache.
Understanding the reasons behind this requires future studies
that investigate the relationship between the parsing algorithms
and the characteristics of the datasets.

3Link to the data used in this paper: https://doi.org/10.5281/zenodo.7623145



TABLE II
ERROR DISTRIBUTION PER DATASET

Error distribution for Linux (%) Error distribution for Openstack (%)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9

Drain 18.03 22.95 4.92 3.28 1.64 1.64 40.98 3.28 3.28 14.58 60.42 6.25 0.00 0.00 0.00 6.25 4.17 8.33
Spell 17.86 26.79 7.14 5.36 1.79 3.57 26.79 8.93 1.79 16.67 68.75 6.25 0.00 0.00 0.00 0.00 8.33 0.00
AEL 18.64 23.73 3.39 1.69 1.69 0.00 37.29 10.17 3.39 7.14 46.43 3.57 0.00 0.00 0.00 17.86 21.43 3.57
ULP 12.73 23.64 3.64 10.91 1.82 5.45 34.55 1.82 5.45 14.81 29.63 18.52 0.00 0.00 0.00 14.81 7.41 14.81
Average 16.82 24.28 4.77 5.31 1.73 2.67 34.90 6.05 3.48 13.30 51.31 8.65 0.00 0.00 0.00 9.73 10.33 6.68

Error distribution for Apache (%) Error distribution for HealthApp (%)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9

Drain 33.33 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00 2.86 5.71 0.00 0.00 0.00 0.00 74.29 8.57 8.57
Spell 33.33 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00 5.71 14.29 0.00 0.00 0.00 2.86 65.71 14.29 14.29
AEL 33.33 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00 2.86 8.57 0.00 0.00 0.00 0.00 77.14 14.29 14.29
ULP 0.00 0.00 0.00 0.00 0.00 100.0 0.00 0.00 0.00 0.00 7.69 0.00 0.00 0.00 7.69 53.85 15.38 15.38
Average 25.00 0.00 0.00 0.00 0.00 75.00 0.00 0.00 0.00 2.86 9.07 0.00 0.00 0.00 2.64 67.75 13.13 13.13

TABLE III
ERRORS FOUND FOR EACH DATASET

Linux Openstack Apache HealthApp
Drain 61 48 3 35
Spell 56 48 3 41
AEL 59 28 3 41
ULP 55 27 2 13
Total 231 151 11 130

2) C2-Dynamic tokens with alpha-numerical characters:
Dynamic tokens that contain a mix of numbers and text
(e.g., a489c8f0cda93) are often detected only partially.
The parsers usually recognize the numerical parts of the
token, but fail to consider the textual part as part of the
dynamic tokens. For example, the result of parsing the token
cp-1.slom1.tcloud-pg0.utah.cloudlab.us is
cp-*.slom*.tcloud-pg*.utah.cloudlab.us
or insta/_base/a*c*f*cda* for the variable
a489c8f0cda93, which is incorrect in both cases.
Overall, C2 is the second most predominant error in average.
As shown in Table II, C2 errors are considerable high when
parsing OpenStack log dataset with an error ratio varying
from 29.63% (ULP) to 68.75% (Spell), an average of 51.31%.

3) C3-Dynamic tokens with space: Dynamic tokens that
contain spaces (e.g., ”/v2/54/servers/ HTTP/1.1”) are hard
to detect and often times are interpreted as many variables
by most log parsing techniques. These tools consider
space is often considered as a default separator. The log
event from OpenStack 3 DELETE "/v2/54/servers/
HTTP/1.1" status: 204 len: 203 time: 23 is
interpreted by Drain as * "DELETE * HTTP * status:

* len: * time: * while the correct template is *
"DELETE * status: * len: * time: *. Based on
Table II, this error appears mainly with Linux and OpenStack.
For OpenStack, 8.65% of the logging errors could be avoided
if this error was caught by the parser.

4) C4 - Dynamic variable expressed as text only : This cat-
egory of errors refers to parsing situations where the dynamic
variable is composed of text only, for example, to represent
user names (a common case in Linux logs), and is hardly
deciphered as dynamic. These variables are often misclassified

as static text by a log parser. For example, Spell parses the
Linux log event session opened for user root into
session opened for user root while the expected
is session opened for user * . As shown in Table
II, C4 errors appear mainly when parsing the Linux dataset.
This is more related to the presence of usernames such as root
and admin, commonly found in operating systems.

5) C5 - Same type of a dynamic variable expressed in
different formats: This happens when the dynamic token,
which refers to the same variable type, is expressed in different
formats. For example, for HDFS log, the block id is written
in different format blk_-5140072410813878235,
blk_4292382298896622412. Parsing the log events
BLOCK* ask 10.250.18.114:50010 to delete
blk_-5140072410813878235, from HDFS, the block
id with ”-” was not detected by ULP, whereas the log event
BLOCK* ask 10.251.122.79:50010 to delete
blk_8048594464172649365 was detected correctly. The
parser did not consider the two variables as identical because
they don’t have the same structure. As shown in Table II, we
only noticed C5 errors in the Linux dataset with a relatively
small average error ratio of 1.73%.

6) C6 - Dynamic tokens that represent constant val-
ues): Dynamic tokens that have the same value across
the entire log file are difficult to parse because most
parsers use some sort of frequency-based analysis to rec-
ognize dynamic tokens. This often happens when the dy-
namic token represents a constant in the code. For ex-
ample, the Apache log event workerEnv.init() ok
/etc/httpd/conf/workers2.properties refer to a
file that contains system properties. The file name is constant.
Most log parsers are unable to recognize this variable because
its value never changes in the log. C6 errors are present in
all the log datasets we analyzed. In average, C6 is the 3rd
most common cause of parsing errors (with an average error
ratio of 20.05%), slightly behind C2 (20.95%). The problem is
worse for Apache with an average error ratio of 75%. Clearly,
detecting constant dynamic tokens can significantly improve
parsing Apache and other similar log files.



7) C7 - No demarcation between the tokens: We found
many cases of static and dynamic tokens that are out-
put into one single token without any clear demarcation.
For example, ULP parses the Android log event Process
com.tencent.mobileqq:qzone (pid 12236) has
died as Process * ( pid * ) has died whereas
the expected template is Process *:qzone (pid *)
has died. Notice that the static token qzone was removed
by ULP from the template because it was concatenated to the
dynamic token com.tencent.mobileqq without having a
delimiter. Overall, C7 is the number one cause of log parsing
errors (see Table II). C7 causes 67.75 % of the errors resulting
from parsing HealthApp dataset. After analyzing HealthApp
log events, we noticed that they contain a large number of
various delimiters such as comma, space, equality, colon, and
so on that seem to mislead the parsers.

8) C8 - Static tokens that have similar properties as
dynamic tokens: This error occurs in the presence of
static tokens that contain digits and special characters,
resembling at a certain degree dynamic tokens. For example,
ULP parses the event For more details see:
http://wiki.apache.org/hadoop/NoRouteToHost
into For more details see:
http://*/hadoop/NoRouteToHost while the
correct template is For more details see:
http://wiki.apache.org/hadoop/NoRouteToHost.
Here the URL does not refer to the value of a variable, but it
is part of the static text of the log message. C8 errors affect
mainly HealthApp and OpenStack log datasets.

9) C9 - Log events differing slightly in their structure:
Logs events that use a slightly different structure fall
into this category. For example, Spell considers the
events pam unix(sshd:auth): authentication
failure; logname= uid=0 euid=0 tty=ssh
ruser= rhost= and pam unix(sshd:auth):
authentication failure; logname= uid=0
euid=0 tty=ssh ruser= rhost= user= as similar
because they start with the same tokens. These cases seem to
occur when the parser gives more weight to the static tokens
at the beginning of the event, assuming that log events that
start with the same tokens are identical. C9 errors represent
13.13% of the total number of errors in HealthApp logs.

B. Recommendations

Our analysis shows that most parsing errors can be ad-
dressed using the following recommendations.

1) R1: Improving the pre-processing step of a log parser:
Log parsers rely on a pre-processing step to identify trivial
dynamic tokens (e.g., IP addresses, URLs) using regular
expressions. This reliance on regular expressions during pre-
processing can have detrimental effects which make up 28.5%
of total captured errors in our experiments. For instance,
in the case of C2 errors, if the numbers are captured first
during pre-processing, it results in complex outcomes like
/var/lib/nova/insta/_base/a*c*f*c*da* which
greatly complicate the log parsing logic. Similarly, when

extracting a variable based solely on its format in the case of
C5 errors or when substituting a static token like the wiki link
http://wiki.apache.org with a dynamic variable in
the case of C8 errors, similar complications have been noticed.

It is recommended to minimize the use of regular expres-
sions during pre-processing in order to prevent these types of
errors. This can be achieved by restricting regular expressions
to only the most challenging cases that cannot be detected by
the parsers including cases of less common dynamic tokens
such as system parameters, configuration numbers, or specific
system method names that are mistaken for dynamic variables.

2) R2: Improving tokenization using prior knowledge of the
log events: In the log parsing process, the first step is to extract
a list of tokens from each log message through tokenization.
The study found that 65.51% of the total errors, including
C1, C2, C3 and C7 errors, are related to how the tokenization
is done. One solution would be to create a list of frequent
dividers for each dataset using a prior analysis of a sample
of log events. For example, Apache logs make a great use of
the special characters ”[ |=]” as word delimiters. Knowing this
in advance can help better tokenize Apache log events. The
unique case of the dividers ”.” and ”:” commonly found in IP
addresses, decimals, etc. can be handled in a more targeted
manner to determine whether or not these characters should
be used to separate tokens during the tokenization stage.

3) R3: Improving the formatting of logging statements:
To address C3, C7, C8, and C9 errors, it is recommended
to improve the formatting of logging statements using tags
describing the data being logged. For example, we can add
a tag to a file name indicating that it should be recognized
by a parser as a file name. Following a standardized way for
writing logging statements ensures consistency in interpreting
and analyzing the generated log events. Good logging practices
should also enhance the quality and readability of log events,
making it easier to understand and analyze log files effectively.

IV. CONCLUSION AND FUTURE WORK

We presented a preliminary classification of log parsing
errors. The resulting classification contains nine categories
of errors, which range from errors related to the formatting
of static and dynamic tokens to errors caused by complex
structures of log events. Future work includes extending the
current study to larger datasets to verify the generalizability
of the results. We should also examine the interplay between
parsing errors and the type of systems. By exploring the
commonalities between datasets of different systems, such as
operating systems, mobile devices, and distributed systems,
we could further improve the accuracy of log parsing tools.
In addition, we need to conduct further studies to understand
how existing parsing algorithms can be improved to reduce
these errors. The recommendations presented in this paper are
a good starting point. Finally, parsing can be further improved
if consistency in writing logging statements is enforced. We
can use parsing errors to guide the development of better and
more consistent logging practices.
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