
A Project on Software Defect Prevention at Commit-Time: A

Success Story of University-Industry Research Collaboration

Wahab Hamou-Lhadj

ECE, Concordia University

Montréal, QC, Canada

wahab.hamou-lhadj@concordia.ca

Mathieu Nayrolles
La Forge Research Lab, Ubisoft

Montréal, QC, Canada

mathieu.nayrolles@ubisoft.com

ABSTRACT

In this talk, we describe a research collaboration project between

Concordia University and Ubisoft. The project consists of

investigating techniques for defect prevention at commit-time for

increased software quality. The outcome of this project is a tool

called CLEVER (Combining Levels of Bug Prevention and

Resolution techniques) that uses machine learning to

automatically detect coding defects as programmers write code.

The main novelty of CLEVER is that it relies on code matching

techniques to detect coding mistakes based on a database of

historical code defects found in multiple related projects. The tool

also proposes fixes based on known patterns.

CCS CONCEPTS

• Software and its engineering → Software defect analysis

KEYWORDS

University-Industry Research Project, Bug Prevention at Commit-

Time, Machine Learning, Software Maintenance and Evolution.

1 INTRODUCTION

Software maintenance tasks are known to be costly [1], which

explains the growing interest in industry-scale techniques for the

detection and prevention of software defects. This is valid for

most software organizations including Ubisoft, one of the world’s

leading video game development companies. The company

specializes in the design and implementation of high-budget video

games such as Prince of Persia, Far Cry and Assassin's Creed, and

is heavily invested in software development and maintenance

tasks. To continue its expansion with more and larger games,

while preserving quality, Ubisoft embarked on a research project

in collaboration with Concordia University to explore software

quality control techniques that can detect or even prevent the

insertion of bugs, preferably, before system modifications reach

the central software repository, i.e., at commit-time.

SER&IP'18, May 29, 2018, Gothenburg, Sweden

©2018 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.

ACM ISBN 978-1-4503-5744-9/18/05…$15.00

https://doi.org/10.1145/3195546.3206423

The project should achieve a number of requirements. The

techniques must operate at commit-time, embedded within

Ubisoft’s code versioning systems. This requirement ensures that

the accompanying tool fits well with the developers’ workflow,

eliminating the need to download and install external tools, which

typically require extensive settings and a high learning curve. The

new tool should also be scalable to work with Ubisoft complex

ecosystem, composed of software systems that are highly coupled

containing millions of files and commits, developed and

maintained by more than 8,000 developers scattered across 29

locations in six continents.

With these requirements in mind, the research team at

Concordia started working with Ubisoft software developers to

understand better the industrial context and the type of systems

that are used. Together, we defined the scope of the project and

formed a team that includes students and developers from Ubisoft.

The lead student was assigned to work on Ubisoft premises on a

full-time basis during the project. The project lasted

approximately one year. Regular meetings were held to follow

progress and make the necessary adjustments.

2 THE CLEVER SOLUTION

After reviewing the literature and analyzing Ubisoft systems,

we came up with a two-phase approach for detecting risky

commits, which we call CLEVER (Combining Levels of Bug

Prevention and Resolution techniques). The first phase consists of

building a metric-based model to assess the likelihood that an

incoming commit is risky or not. For this phase, we adapted

Commit-guru, a tool proposed by Rosen et al. [2, 3]. The next

phase, which is the main novelty of CLEVER and the focus of this

talk, relies on clone detection to compare code blocks extracted

from suspicious commits, detected in the first phase, with millions

of known fault-introducing commits that are saved in a database.

This phase was based on earlier work of the research team, in

which they developed techniques that use code matching to detect

defects at commit-time with applications to open source systems.

In a nutshell, the second phase works as follows: for each

commits that is detected as suspicious using a metric-based

model, we extract the corresponding code block and compare it to

the code blocks of a database of historical defect-introducing

commits that we built by mining commits of Ubisoft systems. If

there is a match, then the new commit is flagged as risky. To

compare the extracted blocks to the ones in the database, we use

clone detection techniques, more specifically, text-based clone

detection techniques. For this, we use a modified version of

NICAD, a known clone detector [4]. NICAD is freely available

and has shown to perform well. Another important feature of

CLEVER is that it operates across multiple projects by comparing

incoming commits to commits from other systems that share

common dependencies. This is important because industrial

systems, such as those at Ubisoft, have many dependencies,

making them vulnerable to the same faults. This feature also adds

value to CLEVER because it provides developers with the

opportunity to share code written for other systems by completely

different teams. The long term objective is to have CLEVER as a

tool where developers, across multiple teams, share fixes and

experiences.

We tested CLEVER on 12 major Ubisoft systems. The results

show that CLEVER can detect risky commits with 79% precision

and 65% recall. In addition, a user study, conducted with Ubisoft

developers, showed that 66.7% of CLEVER-proposed fixes were

accepted by Ubisoft software developers, making CLEVER a

simple and yet powerful approach for the detection and resolution

of risky commits. An enhanced version of CLEVER is currently

being deployed at Ubisoft and will be made available to thousands

of developers across various divisions. A paper describing the

technical aspects of CLEVER was accepted for publication at The

Mining Software Repository Conference (MSR 2018).

3 LESSONS LEARNED

Many lessons learned were already reported in the MSR paper

such as the need to understand the industrial context, leveraging

an iterative and incremental process, communicating effectively,

and estimating properly the effort and time it takes to develop

production-level tools. In this talk, we will review these lessons

and cover additional ones, mentioned below. We hope that this

feedback would be useful to researchers who want to embark on a

collaborative project with industry.

Understanding the benefits of the project to both parties:

Understanding how the project benefits the company and the

university helps both parties align their vision and work towards a

common goal and set of objectives. From Ubisoft’s perspective,

the project provides sound mechanisms for building reliable

systems. In addition, the time saved from detecting and fixing

defects can be shifted to the development of new functionalities

that add value to Ubisoft customers. For the university research

team, the project provides an excellent opportunity for gaining a

better understanding of the complexity of industrial systems and

how research can provide effective and practical solutions. Also,

working closely with software developers helps uncover the

practical challenges they face within the company’s context.

Companies vary significantly in terms of culture, development

processes, etc. Research effort should be directed to develop

solutions that overcome these challenges, while taking into

account the organizational context.

Focusing on low-hanging fruits in the beginning of the project:

Low-hanging fruits are quick fixes and solutions. We found that it

is a good idea to showcase some quick wins early in the project to

show the potential of the proposed solutions. In the beginning of

the project, we applied the two-phase process of CLEVER to

some small systems with a reasonable number of commits. We

showed that the approach improved over the use of metrics alone.

We also showed that CLEVER was able to make suggestions on

how to fix the detected risky commits. This encouraged us to

continue on this path and explore additional features.

Building a strong technical team: Working on industrial projects

requires all sort of technical skills including programming in

various programming languages, use of tools, tool integration, etc.

The strong technical skills of the lead student of this project were

instrumental to the success of this project. It should be noted that

Ubisoft systems are programmed using different languages, which

complicated the code matching phase of CLEVER. In addition,

Ubisoft uses multiple bug management and version control

systems. Downloading, processing, and manipulating commits

from various environment requires excellent technical abilities.

Managing change: Any new initiate brings with it important

changes to the way people work. Managing these changes from

the beginning of the project increases the chances for tool

adoption. To achieve this, we used a communication strategy that

involved all the stakeholders including software developers and

management to make sure that potential changes that CLEVER

would bring are thoroughly and smoothly implemented, and that

the benefits of change are long-lasting.

4 CONCLUSION

In this talk, we share our experience conducting a research project

at Ubisoft. The project consists of developing techniques and a

tool for detecting defects before they reach the code repository.

Our approach, called CLEVER, achieves this in two phases using

a combination of metric-based machine learning models and clone

detection. An enhanced version of CLEVER is being deployed at

Ubisoft.

ACKNOWLEDGEMENTS

We thank the teams at Ubisoft for their participation in this

project, and acknowledge the role of the Natural Science and

Engineering Research Council of Canada (NSERC) for funding

partly this project.

REFERENCES

[1] M. Newman. Software errors cost us economy $59.5 billion annually. NIST

Assesses Technical Needs of Industry to Improve Software-Testing, 2002.

[2] C. Rosen, R. Graw, E. Shihab. Commit Guru: Analytics and Risk Prediction of
Software Commits. In Proceedings of the Joint Meeting on Foundations of

Software Engineering , (2015), 966–969.

[3] Y. Kamei, E. Shihab, B. Adams, A. Hassan, A. Mockus, A. Sinha, and N.

Ubayashi. A Large-Scale Empirical Study of Just-In-Time Quality Assurance.

In IEEE Transactions on Software Engineering (TSE), 39(6), (2013), 757 - 773.

[4] J. R. Cordy and C. K. Roy. The NiCad Clone Detector. In Proceedings of the

International Conference on Program Comprehension, (2011), 219–220.

