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ABSTRACT 

Software maintainability is an important software quality attribute 

that defines the degree by which a software system is understood, 

repaired, or enhanced. In recent years, there has been an increase 

in attention in techniques and tools that mine large bug 

repositories to help software developers understand the causes of 

bugs and speed up the fixing process. These techniques, however, 

treat all bugs in the same way. Bugs that are fixed by changing a 

single location in the code are examined the same way as those 

that require complex changes. After examining more than 100 

thousand bug reports of 380 projects, we found that bugs can be 

classified into four types based on the location of their fixes. Type 

1 bugs are the ones that fixed by modifying a single location in the 

code, while Type 2 refers to bugs that are fixed in more than one 

location. Type 3 refers to multiple bugs that are fixed in the exact 

same location. Type 4 is an extension of Type 3, where multiple 

bugs are resolved by modifying the same set of locations. This 

classification can help companies put the resources where they are 

needed the most. It also provides useful insight into the quality of 

the code. Knowing, for example, that a system contains a large 

number of bugs of Type 4 suggests high maintenance efforts. This 

classification can also be used for other tasks such as predicting 

the type of incoming bugs for an improved bug handling process. 

For example, if a bug is found to be of Type 4 then it should be 

directed to experienced developers.  
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1. INTRODUCTION 

The analysis of bug provides useful insight that can help with 

many maintenance activities such as bug fixing [1][2], bug 

reproduction [3]–[5], fault analysis [6], etc.  
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This insight can, in turn, be used to build more maintainable 

systems by detecting (and preferably preventing) bugs before a 

system is released.  There exist many studies that focus on 

investigating techniques and tools for bug prediction, detection, 

and reproduction (e.g., [3, [8][9]). These studies, however, treat all 

bugs as the same. For example, a bug that requires only one fix is 

analyzed the same way as a bug that necessitates multiple fixes. 

Similarly, if multiple bugs are fixed by modifying the exact same 

locations in the code, then we should investigate how these bugs 

are related in order to predict them in the future. Note here that we 

do not refer to duplicate bugs. Duplicate bugs are marked as 

duplicate (and not fixed) and only the master bug is fixed. 

As a motivating example, consider Bugs #AMQ-5066 and 

#AMQ-5092 from the Apache Software Foundation bug report 

management system (used to build one of the datasets in this 

paper). Bug #AMQ-5066 was reported on February 19, 2014 and 

solved with a patch provided by the reporter. The solution 

involves a relatively complex patch that modifies 

MQTTProtocolConverter.java, MQTTSubscription.java and 

MQTTTest.java files. The description of the bug is as follows: 

 

“When a client sends a SUBSCRIBE message with the 

same Topic/Filter as a previous SUBSCRIBE message but 

a different QoS, the Server MUST discard the older 

subscription, and resend all retained messages limited to 

the new Subscription QoS.” 

 

A few months later, another bug, Bug #AMQ-5092 was reported:  

 

“MQTT protocol converters does not correctly generate 

unique packet ids for retained and non-retained publish 

messages sent to clients. […] Although retained messages 

published on creation of client subscriptions are copies of 

retained messages, they must carry a unique packet id 

when dispatched to clients. ActiveMQ re-uses the retained 

message's packet id, which makes it difficult to  

acknowledge these messages when wildcard topics are 

used. 

ActiveMQ also sends the same non-retained message 

multiple times for every matching subscription for 

overlapping subscriptions. These messages also re-use 

the publisher's message id as the packet id, which breaks 

client acknowledgment.” 

 

This bug was assigned and fixed by a different person than the 

one who fixed bug #AMQ-5066.  The fix consists of modifying 

slightly the same lines of the code in the exact files used to fix 



 

 

Bug #AMQ-5066. In fact, Bug #5092 could have been avoided 

altogether if the first developer provided a more comprehensive 

fix to #AMQ-5066 (a task that is easier said than done). These two 

bugs are not duplicates since, according to their description, they 

deal with different types of problems and yet they can be fixed by 

providing a similar patch.  The failures are different while the root 

causes (faults in the code) are more or less the same.  

From the bug handling perspective, if we can develop a way 

to detect such related bug reports during triaging then we can 

achieve considerable time saving in the way bug reports are 

processed, for example, by assigning them to the same developers. 

We also conjecture that detecting such related bugs can help with 

other tasks such as bug reproduction. We can  reuse the 

reproduction of an already fixed bug to reproduce an incoming 

and related bug.  

The objective of this paper is not to propose a way to detect 

such related bug reports or how we can take advantage of them to 

improve the bug handling process, but to introduce a new way of 

grouping bugs into types that we believe can facilitate research 

analysis and software maintainability. We discuss this in more 

detail in the next section. We identify bug types by empirically 

examining bugs and their fixes of more than 100 thousand bug 

reports from Netbeans1 and Apache2 systems.  

This paper continues by presenting our proposed bug 

classification in Section 2. In Section 3, we present the study 

setup. The results of our empirical study are presented in Section 

4. Related work is discussed in Section 5, following with a 

conclusion in Section 5. 

2. BUG  TYPES 

We can reason about types of bugs in various ways depending on 

the purpose of the types. In the area of software testing, for 

example, several researchers (e.g., [38][39][40]) have proposed 

fault classes such as coding faults, logical faults, resource faults, 

data faults, etc. to group faults (bugs). The objective is to improve 

the testing process by identifying the fault classes that are most 

problematic in a given system. Eldh [39] went one step further by 

investigating the relationship between fault classes and crashes in 

telecom systems. Among her findings, she showed that bugs in a 

fault class can cause many crashes and that the same crash can be 

related to bugs from many  fault classes. A more recent study is 

the one from Hamill et al. [40] where the authors studied fault 

classes (similar to the ones presented by Eldh [39]) and their 

relationship with crashes in critical safety systems. Similar results 

were found. These studies aim to prevent the occurrence of bugs 

from occurring by inferring better ways to test the system.  

In this paper, we are interested in the broader area of bug 

handling by investigating how bugs can be grouped together with 

the  goal of speeding up the provision of fixes. We  look at the 

relationship between bugs by examining their fixes. By a fix, we 

mean a modification (adding or deleting lines of code) to an 

existing file that is used to solve the bug. With this in mind, the  

relationship between bugs and fixes can be modeled using the 

UML diagram in Figure 1. The diagram only includes bugs that 

are fixed. From this figure, we can think of four instances of this 

diagram, which we refer to as bug taxonomy or simply bug types 

(see Figure 2). 

 

                                                           
1https://netbeans.org/ 
2http://www.apache.org/ 

 

 

Fig. 1. Class diagram showing the relationship between bugs and fixed 

The first and second types are the ones that we intuitively 

know about. Type 1 refers to a bug being fixed in one single 

location (i.e., one file), while Type 2 refers to bugs being fixed in 

more than one location. In Figure 2, only two locations are shown 

for the sake of clarity, but many more locations could be involved 

in the fix of a bug. Type 3 refers to multiple bugs that are fixed in 

the exact same location. Type 4 is an extension of Type 3, where 

multiple bugs are resolved by modifying the same set of locations.  

 

 

 

 

 

 

 

 

 
Fig. 2. Proposed taxonomy of bugs 

We conjecture that knowing the proportions of each type of 

bugs in a system may provide insights into the quality of the 

system. Knowing, for example, that in a given system the 

proportion of Type 2 and 4 bugs is high may be an indication of 

poor system quality since many fixes are needed to address these 

bugs.  In addition, the existence of a high number of Types 3 and 

4 bugs calls for techniques that can effectively find bug reports 

related to an incoming bug during triaging. This is similar to the 

many studies that exist on detection of duplicates (e.g., [10]–[12]), 

except that we are not looking for duplicates but for related bugs 

(bugs that are due to failures of different features of the system, 

caused by the same faults). To our knowledge, there is no study 

that empirically examines bug data with these types in mind, 

which is the main objective of this paper. More particularly, the 

paper addresses the following research questions: 

RQ1: What are the proportions of different types of bugs?  

RQ2: How complex/severe is each type of bugs? 

 RQ3: How fast are these types of bugs fixed? 

We address these questions by empirically examining bugs 

and their fixes of more than 100 thousand bug reports from 

Netbeans and Apache systems. 

3. STUDY SETUP 

Figure 3 illustrates our data collection and analysis process that 

we present here and discuss in more detail in the following 

subsections. First, we extract the raw data from the two bug report 

management systems used in this study (Bugzilla3 and Jira4). 
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Second, we extract the fix to the bugs from the source code 

version control system of Netbeans and Apache (Maven5 and 

Git6).  The extracted data is consolidated in one database where 

we associate each bug report to its fix. We mine relevant 

characteristics of BRs and their fixes such as opening time, 

number of comments, number of times the BR is reopened, 

number of changesets for BR and the number of files changed and 

lines modified for fixes or patch. Finally, we analyze these 

characteristics to answer the aforementioned research questions 

(RQ).  

3.1. Bug Tracking Systems 

Open source bug tracking systems allow end-users to directly 

create bug reports (BRs) to report on system crashes. These 

systems are also used by development teams to manage the BRs, 

and keep track of the fixes. In this study, we collect data from the  

Netbeans  (Bugzilla/Maven)  and  Apache  Software Foundation 

(Jira/Git) bug tracking and version control systems. We chose 

these repositories because they contain a large number of bugs.  

The lifecycle of a bug in both systems is as follows: After a 

bug is submitted by an end-user, it have the UNCONFIRMED 

state until it receives enough votes or that a user with the proper 

permissions modifies its status to OPEN. 

The bug is then assigned to a developer to fix it. When the bug 

is in the ASSIGNED state, developers start working on fixing the 

bug. A fixed bug moves to the RESOLVED state. Developers 

have typically five different possibilities to resolve a bug: FIXED, 

DUPLICATE, WONTFIX, WORKSFORME and INVALID. 

For the remaining parts of this paper, we use the term 

‘resolved bug’ to mean a bug that is revolved and fixed (i.e., 

marked as RESOLVED/FIXED in the bug tracking system). Note 

that duplicate bugs are not included in our dataset since they are 

marked as RESOLVED/DUPLICATE (the fix is provided when 

solving the master bug). Finally, the bug is closed after it is 

resolved. A bug can be reopened (set to the REOPENED state) 

and then assigned again if the initial fix was not adequate (the fix 

did not resolve the problem). 

 

 

Fig. 3. Data collection and analysis process of the study. 
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The elapsed time between the time the bug is marked as a new 

one and the time it is resolved is known as the fixing time (in 

days). If the bug is reopened then the days between the time the 

bug is reopened and the time it is marked as RESOLVED/FIXED 

are accumulated. Bugs can be reopened many times. 

A bug report can (and must according to [13]) have a severity. 

The severity is a classification of a bug to indicate the degree of 

negative impact on the quality of software and can evolve at any 

point during the lifecycle of the bug. In Bugzilla7 (used by 

Netbeans), the possible severities are blocker (blocks development 

and/or testing work) critical (crashes, loss of data, severe memory 

leak), major (major loss of function), normal (regular issue, some 

loss of functionality under specific circumstances), minor (minor 

loss of function, or other problem where easy workaround is 

present) trivial (cosmetic problem like misspelled words or 

misaligned text). In Jira8 (used by the Apache Software 

Foundation), the severity (also known as priority)  is the same at 

the exception of the normal level which does not exist. 

The relationship between a BR and the actual fix can be hard 

to establish and it has been a subject for various research studies 

(e.g., [14][15]). While it is considered a good practice to link each 

BR with the source code repository by indicating the bug id on the 

commit message, more than half of the bugs in our dataset are not 

linked to a commit. We exclude these bugs in this study and only 

consider the ones that have a commit. This way, we can establish 

a link between the bug and its fixes.  

3.2. Datasets 

In this study, we used two distinct datasets: Netbeans and the 

Apache Software Foundation projects. Netbeans is an integrated 

development environment (IDE) for developing with many 

languages including Java, PHP, and C/C++. The very first version 

of Netbeans, then known as Xelfi, appeared in 1996. The Apache 

Software Foundation is a U.S non-profit organization supporting 

Apache software projects such as the popular Apache web server 

since 1999. The characteristics of the Netbeans and Apache 

Software Foundation datasets used in this paper are presented in 

Table I.   

Cumulatively, these datasets span from 2001 to 2014. In 

summary, our consolidated dataset contains 102,707 bugs, 

229,153 changesets, 68,809 files that have been modified to fix 

the bugs, 462,848 comments, and 388 distinct systems. We also 

collected 221 million lines of code modified to fix the bugs, 

identified 3,284 sub-projects, and 17,984 unique contributors to 

these bug report and source code version management systems. 

Finally, the cumulated opening time for all the bugs reaches 

10,661 working years (3,891,618 working days). 

 

TABLE I.  The Netbeans and Apache Datasets. R/F BR stands for 

RESOLVED/FIXED bug, CS Changsets, and Projects 

Dataset R/F BR CS Files Projects 

Netbeans 53,258 122,632 30,595 39 

Apache 49,449 106,366 38,111 349 

Total 102,707 229,153 68,809 388 

 

                                                           
7
https://bugzilla.mozilla.org/page.cgi?id=fields.html#bug_severity 

8
https://confluence.atlassian.com/display/DEV/JIRA+usage+guidelines 

#JIRAusageguidelines-Setthepriority 

http://hg.netbeans.org/main
https://github.com/apache


 

 

3.3. Study Design 

We describe the design of our study by first stating the 

research questions, and then explaining the variables, and analysis 

methods we used to answer these questions. We formulate three 

research questions (RQs) with the ultimate goal to improve our 

understanding of each bug type. We focus, however, on Types 2 

and 4. This is because these bugs require multiple fixes. They are 

therefore expected to be more complex. 

The objective of the first research question is to analyze the 

proportion of each type of bugs. The remaining two questions 

address the complexity of the bugs and the bug fixing duration 

according to the type of  bugs. 

 

RQ 1: What are the proportions of different types of bugs? 

Objective: The answer to this question  provides insight into the 

distribution of bugs according to their type with a focus on Type 2 

and 4 bugs. As discussed earlier, knowing, for example, that bugs 

of Type 2 and 4 are the most predominant ones suggests that we 

need to investigate techniques to help detect whether an incoming 

bug is of Types 2 and 4 by examining historical data. Similarly, if 

we can automatically identify a bug that is related to another one 

that has been fixed then we can reuse the results of reproducing 

the first bug in reproducing the second one.  

 

Hypothesis: To answer this question, we analyze whether Type 2 

and 4 bugs are predominant in the studied systems, by testing the 

null hypothesis: 

 

 H01A:  The proportion of Types 2 and 4 does not change 

significantly across the studied systems  

 

We test this hypothesis by observing both a “global” (across 

systems) and a “local” predominance (per system) of the different 

types of bugs. We must observe these two aspects to ensure that 

the predominance of a particular type of bug is not circumstantial 

(in few given systems only) but is also not due to some other, 

unknown factors (in all systems but not in a particular system).  

 

Variables: We use as variables the amount of resolved/fixed bugs 

of each type (1, 2, 3 and 4) that are linked to a fix (commit). As 

mentioned earlier, duplicate bugs are excluded. These are marked 

as resolved/duplicate in our dataset. 

 

Analysis Method: We answer RQ1 in two steps. The first step is 

to use descriptive statistics; we compute the ratio of Types 2 and 4 

bugs and the ratio of Types 1 and 3 bugs to the total number of 

bugs in the dataset. This shows the importance of Types 2 and 4 

bugs compared to Types 1 and 3 bugs. In the second step, we 

compare the proportions of the different types of bugs with 

respect to the system where the bugs were found. We build the 

contingency table with these two qualitative variables (the type 

and studied system) and test the null hypothesis H01A to assess 

whether the proportion of a particular type of bugs is related to a 

specific system or not. We use the Pearson’s chi-squared test to 

reject the null hypothesis H01A. Pearson’s chi-squared 

independence test is used to analyze the relationship between two 

qualitative data, in our study the type bugs and the studied system. 

The results of Pearson’s chi-squared independence test are 

considered statistically significant at α = 0.05. If p - value < 0.05, 

we reject the null hypothesis H01A and conclude that the 

proportion of types 3 and 4 bugs is different from the proportion 

of type 1 and 2 bugs for each system. 

RQ 2: How complex is each type of bugs? 

Objective: We address the relation between Types 2 and 4 bugs 

and the complexity of the bugs in terms of severity, duplicate and 

reopened. We analyze whether Types 2 and 4 bugs are more 

complex to handle than Types 1 and 3 bugs, by testing the null 

hypotheses: 

 H02S: The  severity of Types 2 and 4 bugs is not significantly 

different from the severity of Types 1 and 3 

 H02D: Types 2 and 4 bugs are not significantly more likely to 

get duplicated than Types 1 and 3. 

 H02R: Type 2 and 4 bugs are not significantly more likely to 

get reopened than Types 1 and 3.  

Variables: We use as independent variables for the hypotheses 

H02S, H02D, H02R the bug type (if the bug is from Types 2 and 4 or 

if it is from Types 1 and 3). For H02S we use the severity as 

dependent variable to assess the relationship between the bug 

severity and the bug type. For H02D (respectively H02R) we use a 

dummy variable duplicated (reopened) to assess if a bug has been 

duplicated (reopened) at least once or not. This will be used to 

assess the relationship between the type of the bugs and the fact 

that the bug is more likely to be reopened or duplicated. 

Analysis Method: For each hypothesis, we build a contingency 

table with the qualitative variables type of bugs (2 and 4 or 1and 

3) and the dependent variable duplicated (respectively reopened) 

and the severity variable. We use the Pearson’s chi-squared test to 

reject the null hypothesis H02D (respectively H02R) and H02S. The 

results of Pearson’s chi-squared independence test are considered 

statistically significant at α = 0.05. If a p - value < 0.05, we reject 

the null hypothesis H02D (respectively H02R) and conclude the fact 

that the bug is more likely to be duplicated (respectively 

reopened) is related to the bug type and we reject H02S and 

conclude that the severity level of the bug is related to the bug 

type. 

RQ 3 : How fast are these types of bugs fixed?  

Objective: In this question, we study the relation between the 

different types of bugs and the fixing time. We are interested in 

evaluating whether developers take more time to fix Types 2 and 

4 bugs than Type 1 and 3, by testing the null hypothesis  

 H03: There is no statistically-significant difference 

between the duration of fixing periods for Types 2 and 4 

bugs and that of Types 1 and 3 bugs. 

 

Variables: To compare the bug fixing time with respect to their 

type, we use as independent variable the type Ti  of a bug Bi, to 

distinguish between Types 1 and 3 bugs  and Types 2 and 4 bugs. 

We consider as dependent variable the fixing time, FTi, of the bug 

Bi. We compute the fixing time FTi of a bug Bi. The fixing time 

FTi is the time between when the bug is submitted to when it is 

closed/fixed.  

Analysis Method: We compute the (non-parametric) Mann-

Whitney test to compare the BR fixing time with respect to the 

BR type and analyze whether the difference in the average fixing 

time is statistically significant. We use the Mann-Whitney test 

because, as a non-parametric test, it does not make any 



 

 

assumption on the underlying distributions. We analyze the results 

of the test to assess the null hypothesis H03. The result is 

considered as statistically significant at α = 0.05. Therefore, if p - 

value < 0.05, we reject the null hypothesis H03 and conclude that 

the average fixing time of Types 1 and 3 bugs is significantly 

different from the average fixing time of Types 2 and 4 bugs. 

4. STUDY RESULTS AND DISCUSSION 

In this section, we report on the results of the analyses we 

performed to answer our research questions. We then dedicate a 

section to discussing the results. 

RQ 1 : What are the proportions of different types of bugs? 

Figure 4 shows the percentage of the different types of bugs. As 

shown in the figure, we found that 65% of the bugs are from 

Types 2 and 4. This shows the predominance of this type of bugs 

in all the studied systems. Figure 5 shows the repartition per 

dataset. We can see that Netbeans and Apache have 66% and 64% 

bugs of Type 1and 3, respectively. To ensure that this observation 

is not related to a particular system, we perform Pearson’s chi-

squared test across the studied systems. Table II shows the 

contingency table for the studied systems and the result of 

Pearson’s chi-squared test. The results show that there is 

statistically significant difference between the proportions of the 

different types of bugs. 

TABLE II.  Contingency table and Pearson’s chi-squared tests 

System 
Type 1 

and 3 

Type 2 

and 4 

Pearson’s chi-

squared p-Value 

Apache 4910 8626 
p-value < 0,0001 

Netbeans 9050 17586 

 

 

 

 

 

 

 

 

TABLE III.  Proportion of bug types in amount and percentage. 

Dataset T1 T2 T3 T4 Total 

Netbeans 
776 

(2.90%) 

240 

(0.90%) 

8372 

(31.29%) 

17366 

(64.91%) 
26754 

Apache 
1968 

(14.32%) 
1248 

(9.08%) 
3101 

(22.57%) 
7422 

(54.02%) 
13739 

Total 
2744 

(6.78%) 

1488 

(3.74%) 

11473 

(28.33%) 

24788 

(61.21%) 
40493 

 

Table III shows the number of bugs for each type of bugs and 

the percentage of each type of bugs. We can see that Types 3 and 

4 bugs represent 28.33% and 61.21% of the total of bugs, 

respectively. Types 1 and 2 represent only 6.78% and 3.74%. 

Together, Types 3 and 4 bugs represent almost 90% of the total 

number of bugs linked to a commit. 

RQ 2 : How complex is each type of bugs? 

Figure 5 and 6 show the proportion of each bug type with respect 

to their severity for each dataset. Table V shows the proportion of 

each bug type with respect to their severity and dataset. For 

Netbeans, the bugs we examined in our dataset are either labeled 

as Blocker or Normal (despite the fact that Netbeans uses Bugzilla 

that supports all the severity levels presented in the previous 

section). 

 

 

Fig. 4. Proportion of Type 1 and 3 versus Type 2 and 4 with respect 

to their severity in the Apache dataset. 

 

Fig. 5. Proportion of Types 1 and 3 versus Types 2 and 4 with respect 

to their severity in the Netbeans dataset. 

For the Apache dataset, the severity levels range from Blocker 

to Trivial as shown in Figure 5.  Figure 6 shows that in Netbeans 

around 67% of Types 2 and 4 bugs are normal. The same holds 

for Types 1 and 3 bugs (66% are considered of normal severity). 

This indicates that most Types 2 and 4 bugs and Types 1 and 3 

bugs are not critical in the Netbeans dataset.  For the Apache 

dataset, the results indicate that the majority of the bugs are 

considered of major severity (66% for Types 1 and 3 and 72% for 

Types 2 and 4). It is challenging to understand the discrepancy 

between the two datasets partly because of the way the severity is 

assigned to BRs.  Table IV shows the result of the Pearson chi-

squared tests for the H02S, H02D and H02R hypotheses. 

We can thus reject the null hypothesis H01A and 

conclude that there is a predominance of Types 2 and 

4 bugs in all studied systems and this observation is 

not related to a specific system. 



 

 

TABLE IV.  Pearon’s chi squared p-values for the severity, the 

reopen and the duplicate factors with respect to a dataset. 

System Factor 
Pearson’s chi-

squared p-value 

Apache 

Severity p-value < 0.005 

Reopened p-value < 0.005 

Duplicated p-value < 0.005 

Netbeans 

Severity p-value < 0.005 

Reopened p-value < 0.005 

Duplicated p-value < 0.005 

 

 

 

 

 

 

 

TABLE V.  Proportion of each bug type with respect to severity 

Severity T1 T2 T3 T4 

Netbeans  

Blocker 
340 

43.81% 

109 

45.42% 

2850 

34.04% 

5687 

32.75% 

Normal 
436 

56.19% 
131 

54.58% 
5522 

65.96% 
11678 

67.25% 

Total 
776 

100% 

240 

100% 

8372 

100% 

17365 

100% 

Apache 

Blocker 
68 

3.46% 

53 

4.25% 

115 

3.71% 

329 

4.43% 

Critical 
84 

4.27% 
44 

3.53% 
213 

6.87% 
565 

7.61% 

Major 
1245 

63.26% 

811 

64.98% 

2096 

67.59% 

5427 

73.12% 

Minor 
408 

20.73% 
276 

22.12% 
501 

16.16% 
899 

12.11% 

Trivial 
113 

5.74% 

31 

2.48% 

159 

5.13% 

161 

2.17% 

Total 
1918 

100% 

1215 

100% 

3084 

100% 

7381 

100% 

TABLE VI.  Percentage and occurrences of bugs duplicated by 

other bugs and reopenned with respect to their bug type and 

dataset 

Type T1 T2 T3 T4 Total 

Netbeans 

Dup. 
6.06% 

(47) 

4.59% 

(11) 

5.09% 

(426) 

5.87% 

(1019) 

5.62% 

(1503) 

Reop. 
4.38% 

(34) 

7.08% 

(17) 

4.81% 

(403) 

7.09% 

(1231) 

6.30% 

(1685) 

Apache 

Dup 
2.59% 
(51) 

2.24% 
(28) 

1.61% 
(50) 

2.91% 
(216) 

2.51% 
(345) 

Reop 
5.59% 

(110) 

6.49% 

(81) 

3.10% 

(96) 

6.90% 

(512) 

5.82% 

(799) 

Total 

Dup 
3.57% 

(98) 

2.62% 

(39) 

4.15% 

(476) 

4.98% 

(1235) 

4.56% 

(1848) 

Reop 
5.25% 
(144) 

6.59% 
(98) 

4.35% 
(499) 

7.03% 
(1743) 

6.13% 
(2484) 

 

Table VI shows the occurrences of duplicate and reopened 

bugs with respect to their bug type in each dataset. In Netbeans, 

the proportion of Type 1 bugs that are marked as source of 

duplicate is 6.06%, 4.59% for Type 2 bugs, 5.09% for Type 3 

bugs  and  5.87% for   Type 4   bugs with a total of 1503 bugs 

over 26754 (5.62%). In Apache, the proportion of Type 1 bugs 

marked as a source of a duplicate is 2.59% and 2.24%, 1.61% and 

2.91% for Types 2, 3 and 4, respectively. Overall, the types that 

are more likely to be marked as source of duplicates at least  once  

are  Type 4  with  4.98%. 

Second, we analyze the reopened bugs to see the link between 

the reopening and the type of bugs. We perform Pearson’s chi-

squared test to reject the null hypothesis H02R. 

 

 

 

 

 

 

 

 

Third, we analyze the duplicated bugs to see if there is a link 

between the bug type and the fact duplication. We perform 

Pearson’s chi-squared test to reject the null hypothesis H02D. 

 

 

 

 

 

 

 

 

 

Fig. 6. Fixing time of Types 1 and 3 versus fixing time of 

Types 2 and 4 with respect to their datasets. 

TABLE VII.  Average Fixing time with respect to bug type 

Dataset T1 T2 T3 T4 Average 

Netbeans 97.66 117.42 100.26 156.67 118.00 

Apache 73.48 118.12 38.04 52.83 70.62 

Average 85.57 117.77 69.15 104.75 94.31 

RQ 3 : How fast are these types of bugs fixed ?  

According to the results of the test (p-value < 

0.005), we reject the null hypothesis H02R and 

conclude that there is a significant relationship 

between the reopening of a bug and its type. 

According to the results of the test (p-value < 

0.005), we reject the null hypothesis H02D and 

conclude that there is a significant relationship 

between the duplication of a bug and its type. 

According to the test (p-value < 0.005), we reject the 

null hypothesis H02S and conclude that there is a 

significant difference between the severity of Types 1 

and 3 bugs and the severity of Types 2 and 4 bugs. 



 

 

Figure 7 shows the fixing time for Types 1 and 3 versus Types 

2 and 4 for Netbeans and the Apache Software Foundation. In 

Netbeans, 98.96 and 137.05 days are required to fix Types 1 and 3 

and Types 2 and 4, respectively. In Apache, 55.76 and 85.48 days 

are required to fix Types 1 and 3 and Types 2 and 4, respectively. 

Table VII shows the average fixing time of bugs with respect to 

their bug type in each dataset. 

We analyze the difference in the fixing time of bugs with 

respect to their bug type by conducting a Mann-Whitney test to 

assess H03.The results show that the difference between the fixing 

time of Types 2 and 4 and Types 1 and 3 is statistically significant 

(p-value < 0,005). 

 

 

 

 

 

Discussion: 

Repartition of bug types: One important finding of this study is 

that there is significantly more Types 2 and 4 bugs than Types 1 

and 3 in all studied systems. Moreover, this observation is not 

system-specific. The traditional one-bug/one-fault way of thinking 

about bugs only accounts for 35% of the bugs. We believe that, 

recent triaging algorithms [13][16]–[18] can benefit from these 

findings by developing techniques that can detect Type 2 and 4 

bugs. This would result in better performance in terms of reducing 

the cost, time and efforts required by developers in the bug fixing 

process.  

Severity of bugs: We discussed the severity and the complexity 

of a bug in terms of its likelihood to be reopened or marked as 

duplicates (RQ2). Although clear guidelines exist on how to 

assign the severity of a bug, it remains a manual process 

performed by the bug reporters. In addition, previous studies, 

notably those by Khomh et al. [16], showed that severity is not a 

consistent/trustworthy characteristic of a BR, which leads to the 

emergence of studies for predicting the severity of bugs (e.g.,  

[19]–[21]). Nevertheless, we discovered that there is a significant 

difference between the severities of Types 1 and 3 compared to 

Types 2 and 4.  

Complexity of bugs: At the complexity level, we use the number 

of times a bug is reopened as a measure of complexity. We found 

that there is a significant relationship between the number of 

reopenings of bugs and the types. In our datasets, Types 1 and 3 

bugs are reopened in 1.88% of the cases, while Types 2 and 4 are 

reopened in 5.73%. Assuming that the reopening is a 

representative metric for the complexity of bug, Types 2 and 4 are 

three times more complex than Types 1 and 3. Finally, if we 

consider multiple reopenings, Types 2 and 4 account for almost 

80% of the bugs that are reopened more than once. While current 

approaches aiming to predict which bug will be reopen use the 

number of modified files [22]–[24], we believe that they can be 

improved by taking into account the bug type. For example, if we 

can detect that an incoming bug if of Type 2 or 4 then it is more 

likely to be reopened than a bug of Type 1 or 3.  

Impact of a bug: To measure the impact of bugs on end users and 

developers, we use the number of times a bug is duplicated. This 

is because if a bug has many duplicates, it means that a large 

number of users have experienced the corresponding failure. We 

found that there is a significant relationship between the bug type 

and the fact that a bug gets duplicated. Types 1 and 3 bugs are 

duplicated in 1.41% of the cases while Types 2 and 4 are 

duplicated in 3.14%. Using duplication as a metric of bug impact, 

Types 2 and 4 have more than two times bigger impact than Types 

1 and 3. Similarly to the reopening metric, if we consider multiple 

duplications, Types 2 and 4 account for 75% of the bugs that get 

duplicated more than once and more than 80% of the bugs that get 

duplicated more than twice. We believe that approaches targeting 

the identification of duplicates [27][10][28][29] could leverage 

this classification to detect duplicates BRs with higher recall and 

precision. 

Fixing time: Our third research question aimed to determine if the 

type of a bug impacts its fixing time. Not only we found that the 

type of a bug does significantly impact its fixing time, but we also 

found that, in average Types 2 and 4, stay open 111.26 days while 

Types 1 and 3 last for 77.36 days. Types 2 and 4 are 1.4 time 

longer to fix than Types 1 and 3.We therefore believe that, 

approaches aiming to predict the fixing time of a bug (e.g., [7], 

[30], [31])  can highly benefit from accurately predicting the type 

of a bug and therefore better plan the required man-power to fix 

the bug. 

5. RELATED WORK  

Researchers have been studying the relationships between the bug 

and source code repositories since more than two decades. To the 

best of our knowledge the first ones who conducted this type of 

study on a significant scale were Perry and Stieg [32]. In the last 

two decades, many aspects of these relationships have been 

studied in depth. For example, researchers  were interested in 

improving the bug reports themselves by proposing guidelines 

[13], and by further simplifying existing bug reporting models 

[33]. Another field of study consist of assigning these bug reports, 

automatically if possible, to the right developers during triaging  

[34][17][18][35]. Another set of approaches focus on how long it 

takes to fix a bug [7][31][2] and where it should be fixed [25][26]. 

With the rapidly increasing number of bugs, the community was 

also interested in prioritizing bug reports [36], and in predicting 

the severity of a bug [19]. Finally, researchers proposed 

approaches to predict which bug will get reopened [23][24], 

which bug report is a duplicate of  another one [27]–[29] and 

which locations are likely to yield new bugs [8][37]. 

However, to the best of our knowledge, there are not many 

attempts to classify bugs the way we present in this paper. In her 

Ph.D. thesis dissertation [39], Sigrid Eldh discussed the 

classification of trouble reports with respect to a set of fault 

classes that she identified. Fault classes include computational 

logical faults, resource faults, function faults, etc. She conducted 

studies on Ericsson systems and showed the distributions of 

trouble reports with respect to these fault classes. A research paper 

was published on the topic in [39]. or safety critical [40]. Hamill 

et al. [40] proposed a classification of faults and failures in critical 

safety systems. They proposed several types of faults and show 

how failures in critical safety systems relate to these classes. They 

found that only a few fault types were responsible for the majority 

of failures. They also compare on pre-release and post-release 

faults and showed that the distributions of fault types differed for 

pre-release and post-release failures. Another finding is that 

coding faults are the most predominant ones.  

Our study differs from these studies in the way that we focus 

on the bugs and their fixes across a wide range of systems, 

programming languages, and purposes. This is done indecently 

Therefore, we can reject the null hypothesis H03 and 

conclude that the fixing of Types 2 and 4 bugs takes 

more time than the fixing of Types 1 and 3 bugs. 



 

 

from a specific class of faults (such as coding faults, resource 

faults, etc.). This is because our aim is not to improve testing as it 

is the case in the work of Eldh [39] and Hamill et al. [40]. Our 

objective is to propose a classification that can allow researchers 

in the field of mining bug repositories to use the taxonomy as a 

new criterion in triaging, prediction, and reproduction of bugs.  

6. CONCLUSION 

In this paper, we proposed a taxonomy of bugs and performed an 

empirical study on two large open source datasets: the Netbeans 

IDE and the Apache Software Foundation’s projects. Our study 

aimed to analyse: (1) the proportion of each type of bugs; (2) the 

complexity of each type in terms of severity, reopening and 

duplication; and (3) the required time to fix a bug depending on its 

type. The key findings are: Types 2 and 4 account for 65% of the 

bugs;  Types 2 and 4 have a similar severity compared to Types 1 

and 3; Types 2 and 4 are more complex (reopening) and have a 

bigger impact (duplicate) than Types 1 and 3; it takes more time 

to fix Types 2 and 4 than Types 1 and 3. 
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