

Towards a Classification of Bugs to Facilitate

Software Maintainability Tasks

Mathieu Nayrolles and Abdelwahab Hamou-Lhadj
Intelligent System Logging and Monitoring (ISyLM) Lab

ECE, Concordia University, Montréal, Canada

{m_nayrol, abdelw}@ece.concordia.ca

ABSTRACT

Software maintainability is an important software quality attribute

that defines the degree by which a software system is understood,

repaired, or enhanced. In recent years, there has been an increase

in attention in techniques and tools that mine large bug

repositories to help software developers understand the causes of

bugs and speed up the fixing process. These techniques, however,

treat all bugs in the same way. Bugs that are fixed by changing a

single location in the code are examined the same way as those

that require complex changes. After examining more than 100

thousand bug reports of 380 projects, we found that bugs can be

classified into four types based on the location of their fixes. Type

1 bugs are the ones that fixed by modifying a single location in the

code, while Type 2 refers to bugs that are fixed in more than one

location. Type 3 refers to multiple bugs that are fixed in the exact

same location. Type 4 is an extension of Type 3, where multiple

bugs are resolved by modifying the same set of locations. This

classification can help companies put the resources where they are

needed the most. It also provides useful insight into the quality of

the code. Knowing, for example, that a system contains a large

number of bugs of Type 4 suggests high maintenance efforts. This

classification can also be used for other tasks such as predicting

the type of incoming bugs for an improved bug handling process.

For example, if a bug is found to be of Type 4 then it should be

directed to experienced developers.

KEYWORDS

Bug Classification, Empirical Studies, Software Maintainability.

1. INTRODUCTION

The analysis of bug provides useful insight that can help with

many maintenance activities such as bug fixing [1][2], bug

reproduction [3]–[5], fault analysis [6], etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SQUADE’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5741-8/18/05. . . $15.00
https://doi.org/10.1145/3194718.3194726

This insight can, in turn, be used to build more maintainable

systems by detecting (and preferably preventing) bugs before a

system is released. There exist many studies that focus on

investigating techniques and tools for bug prediction, detection,

and reproduction (e.g., [3, [8][9]). These studies, however, treat all

bugs as the same. For example, a bug that requires only one fix is

analyzed the same way as a bug that necessitates multiple fixes.

Similarly, if multiple bugs are fixed by modifying the exact same

locations in the code, then we should investigate how these bugs

are related in order to predict them in the future. Note here that we

do not refer to duplicate bugs. Duplicate bugs are marked as

duplicate (and not fixed) and only the master bug is fixed.

As a motivating example, consider Bugs #AMQ-5066 and

#AMQ-5092 from the Apache Software Foundation bug report

management system (used to build one of the datasets in this

paper). Bug #AMQ-5066 was reported on February 19, 2014 and

solved with a patch provided by the reporter. The solution

involves a relatively complex patch that modifies

MQTTProtocolConverter.java, MQTTSubscription.java and

MQTTTest.java files. The description of the bug is as follows:

“When a client sends a SUBSCRIBE message with the

same Topic/Filter as a previous SUBSCRIBE message but

a different QoS, the Server MUST discard the older

subscription, and resend all retained messages limited to

the new Subscription QoS.”

A few months later, another bug, Bug #AMQ-5092 was reported:

“MQTT protocol converters does not correctly generate

unique packet ids for retained and non-retained publish

messages sent to clients. […] Although retained messages

published on creation of client subscriptions are copies of

retained messages, they must carry a unique packet id

when dispatched to clients. ActiveMQ re-uses the retained

message's packet id, which makes it difficult to

acknowledge these messages when wildcard topics are

used.

ActiveMQ also sends the same non-retained message

multiple times for every matching subscription for

overlapping subscriptions. These messages also re-use

the publisher's message id as the packet id, which breaks

client acknowledgment.”

This bug was assigned and fixed by a different person than the

one who fixed bug #AMQ-5066. The fix consists of modifying

slightly the same lines of the code in the exact files used to fix

Bug #AMQ-5066. In fact, Bug #5092 could have been avoided

altogether if the first developer provided a more comprehensive

fix to #AMQ-5066 (a task that is easier said than done). These two

bugs are not duplicates since, according to their description, they

deal with different types of problems and yet they can be fixed by

providing a similar patch. The failures are different while the root

causes (faults in the code) are more or less the same.

From the bug handling perspective, if we can develop a way

to detect such related bug reports during triaging then we can

achieve considerable time saving in the way bug reports are

processed, for example, by assigning them to the same developers.

We also conjecture that detecting such related bugs can help with

other tasks such as bug reproduction. We can reuse the

reproduction of an already fixed bug to reproduce an incoming

and related bug.

The objective of this paper is not to propose a way to detect

such related bug reports or how we can take advantage of them to

improve the bug handling process, but to introduce a new way of

grouping bugs into types that we believe can facilitate research

analysis and software maintainability. We discuss this in more

detail in the next section. We identify bug types by empirically

examining bugs and their fixes of more than 100 thousand bug

reports from Netbeans1 and Apache2 systems.

This paper continues by presenting our proposed bug

classification in Section 2. In Section 3, we present the study

setup. The results of our empirical study are presented in Section

4. Related work is discussed in Section 5, following with a

conclusion in Section 5.

2. BUG TYPES

We can reason about types of bugs in various ways depending on

the purpose of the types. In the area of software testing, for

example, several researchers (e.g., [38][39][40]) have proposed

fault classes such as coding faults, logical faults, resource faults,

data faults, etc. to group faults (bugs). The objective is to improve

the testing process by identifying the fault classes that are most

problematic in a given system. Eldh [39] went one step further by

investigating the relationship between fault classes and crashes in

telecom systems. Among her findings, she showed that bugs in a

fault class can cause many crashes and that the same crash can be

related to bugs from many fault classes. A more recent study is

the one from Hamill et al. [40] where the authors studied fault

classes (similar to the ones presented by Eldh [39]) and their

relationship with crashes in critical safety systems. Similar results

were found. These studies aim to prevent the occurrence of bugs

from occurring by inferring better ways to test the system.

In this paper, we are interested in the broader area of bug

handling by investigating how bugs can be grouped together with

the goal of speeding up the provision of fixes. We look at the

relationship between bugs by examining their fixes. By a fix, we

mean a modification (adding or deleting lines of code) to an

existing file that is used to solve the bug. With this in mind, the

relationship between bugs and fixes can be modeled using the

UML diagram in Figure 1. The diagram only includes bugs that

are fixed. From this figure, we can think of four instances of this

diagram, which we refer to as bug taxonomy or simply bug types

(see Figure 2).

1https://netbeans.org/
2http://www.apache.org/

Fig. 1. Class diagram showing the relationship between bugs and fixed

The first and second types are the ones that we intuitively

know about. Type 1 refers to a bug being fixed in one single

location (i.e., one file), while Type 2 refers to bugs being fixed in

more than one location. In Figure 2, only two locations are shown

for the sake of clarity, but many more locations could be involved

in the fix of a bug. Type 3 refers to multiple bugs that are fixed in

the exact same location. Type 4 is an extension of Type 3, where

multiple bugs are resolved by modifying the same set of locations.

Fig. 2. Proposed taxonomy of bugs

We conjecture that knowing the proportions of each type of

bugs in a system may provide insights into the quality of the

system. Knowing, for example, that in a given system the

proportion of Type 2 and 4 bugs is high may be an indication of

poor system quality since many fixes are needed to address these

bugs. In addition, the existence of a high number of Types 3 and

4 bugs calls for techniques that can effectively find bug reports

related to an incoming bug during triaging. This is similar to the

many studies that exist on detection of duplicates (e.g., [10]–[12]),

except that we are not looking for duplicates but for related bugs

(bugs that are due to failures of different features of the system,

caused by the same faults). To our knowledge, there is no study

that empirically examines bug data with these types in mind,

which is the main objective of this paper. More particularly, the

paper addresses the following research questions:

RQ1: What are the proportions of different types of bugs?

RQ2: How complex/severe is each type of bugs?

 RQ3: How fast are these types of bugs fixed?

We address these questions by empirically examining bugs

and their fixes of more than 100 thousand bug reports from

Netbeans and Apache systems.

3. STUDY SETUP

Figure 3 illustrates our data collection and analysis process that

we present here and discuss in more detail in the following

subsections. First, we extract the raw data from the two bug report

management systems used in this study (Bugzilla3 and Jira4).

3https://netbeans.org/bugzilla/, https://www.bugzilla.org/
4https://issues.apache.org/jira/secure/Dashboard.jspa

Bug Fix 1..* 1..*

Type 1

Type 4

Type 2

Type 3

. . .

. . .

. . .
. . .

Second, we extract the fix to the bugs from the source code

version control system of Netbeans and Apache (Maven5 and

Git6). The extracted data is consolidated in one database where

we associate each bug report to its fix. We mine relevant

characteristics of BRs and their fixes such as opening time,

number of comments, number of times the BR is reopened,

number of changesets for BR and the number of files changed and

lines modified for fixes or patch. Finally, we analyze these

characteristics to answer the aforementioned research questions

(RQ).

3.1. Bug Tracking Systems

Open source bug tracking systems allow end-users to directly

create bug reports (BRs) to report on system crashes. These

systems are also used by development teams to manage the BRs,

and keep track of the fixes. In this study, we collect data from the

Netbeans (Bugzilla/Maven) and Apache Software Foundation

(Jira/Git) bug tracking and version control systems. We chose

these repositories because they contain a large number of bugs.

The lifecycle of a bug in both systems is as follows: After a

bug is submitted by an end-user, it have the UNCONFIRMED

state until it receives enough votes or that a user with the proper

permissions modifies its status to OPEN.

The bug is then assigned to a developer to fix it. When the bug

is in the ASSIGNED state, developers start working on fixing the

bug. A fixed bug moves to the RESOLVED state. Developers

have typically five different possibilities to resolve a bug: FIXED,

DUPLICATE, WONTFIX, WORKSFORME and INVALID.

For the remaining parts of this paper, we use the term

‘resolved bug’ to mean a bug that is revolved and fixed (i.e.,

marked as RESOLVED/FIXED in the bug tracking system). Note

that duplicate bugs are not included in our dataset since they are

marked as RESOLVED/DUPLICATE (the fix is provided when

solving the master bug). Finally, the bug is closed after it is

resolved. A bug can be reopened (set to the REOPENED state)

and then assigned again if the initial fix was not adequate (the fix

did not resolve the problem).

Fig. 3. Data collection and analysis process of the study.

5http://hg.netbeans.org/main, https://maven.apache.org/
6https://github.com/apache, http://git-scm.com/

The elapsed time between the time the bug is marked as a new

one and the time it is resolved is known as the fixing time (in

days). If the bug is reopened then the days between the time the

bug is reopened and the time it is marked as RESOLVED/FIXED

are accumulated. Bugs can be reopened many times.

A bug report can (and must according to [13]) have a severity.

The severity is a classification of a bug to indicate the degree of

negative impact on the quality of software and can evolve at any

point during the lifecycle of the bug. In Bugzilla7 (used by

Netbeans), the possible severities are blocker (blocks development

and/or testing work) critical (crashes, loss of data, severe memory

leak), major (major loss of function), normal (regular issue, some

loss of functionality under specific circumstances), minor (minor

loss of function, or other problem where easy workaround is

present) trivial (cosmetic problem like misspelled words or

misaligned text). In Jira8 (used by the Apache Software

Foundation), the severity (also known as priority) is the same at

the exception of the normal level which does not exist.

The relationship between a BR and the actual fix can be hard

to establish and it has been a subject for various research studies

(e.g., [14][15]). While it is considered a good practice to link each

BR with the source code repository by indicating the bug id on the

commit message, more than half of the bugs in our dataset are not

linked to a commit. We exclude these bugs in this study and only

consider the ones that have a commit. This way, we can establish

a link between the bug and its fixes.

3.2. Datasets

In this study, we used two distinct datasets: Netbeans and the

Apache Software Foundation projects. Netbeans is an integrated

development environment (IDE) for developing with many

languages including Java, PHP, and C/C++. The very first version

of Netbeans, then known as Xelfi, appeared in 1996. The Apache

Software Foundation is a U.S non-profit organization supporting

Apache software projects such as the popular Apache web server

since 1999. The characteristics of the Netbeans and Apache

Software Foundation datasets used in this paper are presented in

Table I.

Cumulatively, these datasets span from 2001 to 2014. In

summary, our consolidated dataset contains 102,707 bugs,

229,153 changesets, 68,809 files that have been modified to fix

the bugs, 462,848 comments, and 388 distinct systems. We also

collected 221 million lines of code modified to fix the bugs,

identified 3,284 sub-projects, and 17,984 unique contributors to

these bug report and source code version management systems.

Finally, the cumulated opening time for all the bugs reaches

10,661 working years (3,891,618 working days).

TABLE I. The Netbeans and Apache Datasets. R/F BR stands for

RESOLVED/FIXED bug, CS Changsets, and Projects

Dataset R/F BR CS Files Projects

Netbeans 53,258 122,632 30,595 39

Apache 49,449 106,366 38,111 349

Total 102,707 229,153 68,809 388

7
https://bugzilla.mozilla.org/page.cgi?id=fields.html#bug_severity

8
https://confluence.atlassian.com/display/DEV/JIRA+usage+guidelines

#JIRAusageguidelines-Setthepriority

http://hg.netbeans.org/main
https://github.com/apache

3.3. Study Design

We describe the design of our study by first stating the

research questions, and then explaining the variables, and analysis

methods we used to answer these questions. We formulate three

research questions (RQs) with the ultimate goal to improve our

understanding of each bug type. We focus, however, on Types 2

and 4. This is because these bugs require multiple fixes. They are

therefore expected to be more complex.

The objective of the first research question is to analyze the

proportion of each type of bugs. The remaining two questions

address the complexity of the bugs and the bug fixing duration

according to the type of bugs.

RQ 1: What are the proportions of different types of bugs?

Objective: The answer to this question provides insight into the

distribution of bugs according to their type with a focus on Type 2

and 4 bugs. As discussed earlier, knowing, for example, that bugs

of Type 2 and 4 are the most predominant ones suggests that we

need to investigate techniques to help detect whether an incoming

bug is of Types 2 and 4 by examining historical data. Similarly, if

we can automatically identify a bug that is related to another one

that has been fixed then we can reuse the results of reproducing

the first bug in reproducing the second one.

Hypothesis: To answer this question, we analyze whether Type 2

and 4 bugs are predominant in the studied systems, by testing the

null hypothesis:

 H01A: The proportion of Types 2 and 4 does not change

significantly across the studied systems

We test this hypothesis by observing both a “global” (across

systems) and a “local” predominance (per system) of the different

types of bugs. We must observe these two aspects to ensure that

the predominance of a particular type of bug is not circumstantial

(in few given systems only) but is also not due to some other,

unknown factors (in all systems but not in a particular system).

Variables: We use as variables the amount of resolved/fixed bugs

of each type (1, 2, 3 and 4) that are linked to a fix (commit). As

mentioned earlier, duplicate bugs are excluded. These are marked

as resolved/duplicate in our dataset.

Analysis Method: We answer RQ1 in two steps. The first step is

to use descriptive statistics; we compute the ratio of Types 2 and 4

bugs and the ratio of Types 1 and 3 bugs to the total number of

bugs in the dataset. This shows the importance of Types 2 and 4

bugs compared to Types 1 and 3 bugs. In the second step, we

compare the proportions of the different types of bugs with

respect to the system where the bugs were found. We build the

contingency table with these two qualitative variables (the type

and studied system) and test the null hypothesis H01A to assess

whether the proportion of a particular type of bugs is related to a

specific system or not. We use the Pearson’s chi-squared test to

reject the null hypothesis H01A. Pearson’s chi-squared

independence test is used to analyze the relationship between two

qualitative data, in our study the type bugs and the studied system.

The results of Pearson’s chi-squared independence test are

considered statistically significant at α = 0.05. If p - value < 0.05,

we reject the null hypothesis H01A and conclude that the

proportion of types 3 and 4 bugs is different from the proportion

of type 1 and 2 bugs for each system.

RQ 2: How complex is each type of bugs?

Objective: We address the relation between Types 2 and 4 bugs

and the complexity of the bugs in terms of severity, duplicate and

reopened. We analyze whether Types 2 and 4 bugs are more

complex to handle than Types 1 and 3 bugs, by testing the null

hypotheses:

 H02S: The severity of Types 2 and 4 bugs is not significantly

different from the severity of Types 1 and 3

 H02D: Types 2 and 4 bugs are not significantly more likely to

get duplicated than Types 1 and 3.

 H02R: Type 2 and 4 bugs are not significantly more likely to

get reopened than Types 1 and 3.

Variables: We use as independent variables for the hypotheses

H02S, H02D, H02R the bug type (if the bug is from Types 2 and 4 or

if it is from Types 1 and 3). For H02S we use the severity as

dependent variable to assess the relationship between the bug

severity and the bug type. For H02D (respectively H02R) we use a

dummy variable duplicated (reopened) to assess if a bug has been

duplicated (reopened) at least once or not. This will be used to

assess the relationship between the type of the bugs and the fact

that the bug is more likely to be reopened or duplicated.

Analysis Method: For each hypothesis, we build a contingency

table with the qualitative variables type of bugs (2 and 4 or 1and

3) and the dependent variable duplicated (respectively reopened)

and the severity variable. We use the Pearson’s chi-squared test to

reject the null hypothesis H02D (respectively H02R) and H02S. The

results of Pearson’s chi-squared independence test are considered

statistically significant at α = 0.05. If a p - value < 0.05, we reject

the null hypothesis H02D (respectively H02R) and conclude the fact

that the bug is more likely to be duplicated (respectively

reopened) is related to the bug type and we reject H02S and

conclude that the severity level of the bug is related to the bug

type.

RQ 3 : How fast are these types of bugs fixed?

Objective: In this question, we study the relation between the

different types of bugs and the fixing time. We are interested in

evaluating whether developers take more time to fix Types 2 and

4 bugs than Type 1 and 3, by testing the null hypothesis

 H03: There is no statistically-significant difference

between the duration of fixing periods for Types 2 and 4

bugs and that of Types 1 and 3 bugs.

Variables: To compare the bug fixing time with respect to their

type, we use as independent variable the type Ti of a bug Bi, to

distinguish between Types 1 and 3 bugs and Types 2 and 4 bugs.

We consider as dependent variable the fixing time, FTi, of the bug

Bi. We compute the fixing time FTi of a bug Bi. The fixing time

FTi is the time between when the bug is submitted to when it is

closed/fixed.

Analysis Method: We compute the (non-parametric) Mann-

Whitney test to compare the BR fixing time with respect to the

BR type and analyze whether the difference in the average fixing

time is statistically significant. We use the Mann-Whitney test

because, as a non-parametric test, it does not make any

assumption on the underlying distributions. We analyze the results

of the test to assess the null hypothesis H03. The result is

considered as statistically significant at α = 0.05. Therefore, if p -

value < 0.05, we reject the null hypothesis H03 and conclude that

the average fixing time of Types 1 and 3 bugs is significantly

different from the average fixing time of Types 2 and 4 bugs.

4. STUDY RESULTS AND DISCUSSION

In this section, we report on the results of the analyses we

performed to answer our research questions. We then dedicate a

section to discussing the results.

RQ 1 : What are the proportions of different types of bugs?

Figure 4 shows the percentage of the different types of bugs. As

shown in the figure, we found that 65% of the bugs are from

Types 2 and 4. This shows the predominance of this type of bugs

in all the studied systems. Figure 5 shows the repartition per

dataset. We can see that Netbeans and Apache have 66% and 64%

bugs of Type 1and 3, respectively. To ensure that this observation

is not related to a particular system, we perform Pearson’s chi-

squared test across the studied systems. Table II shows the

contingency table for the studied systems and the result of

Pearson’s chi-squared test. The results show that there is

statistically significant difference between the proportions of the

different types of bugs.

TABLE II. Contingency table and Pearson’s chi-squared tests

System
Type 1

and 3

Type 2

and 4

Pearson’s chi-

squared p-Value

Apache 4910 8626
p-value < 0,0001

Netbeans 9050 17586

TABLE III. Proportion of bug types in amount and percentage.

Dataset T1 T2 T3 T4 Total

Netbeans
776

(2.90%)

240

(0.90%)

8372

(31.29%)

17366

(64.91%)
26754

Apache
1968

(14.32%)
1248

(9.08%)
3101

(22.57%)
7422

(54.02%)
13739

Total
2744

(6.78%)

1488

(3.74%)

11473

(28.33%)

24788

(61.21%)
40493

Table III shows the number of bugs for each type of bugs and

the percentage of each type of bugs. We can see that Types 3 and

4 bugs represent 28.33% and 61.21% of the total of bugs,

respectively. Types 1 and 2 represent only 6.78% and 3.74%.

Together, Types 3 and 4 bugs represent almost 90% of the total

number of bugs linked to a commit.

RQ 2 : How complex is each type of bugs?

Figure 5 and 6 show the proportion of each bug type with respect

to their severity for each dataset. Table V shows the proportion of

each bug type with respect to their severity and dataset. For

Netbeans, the bugs we examined in our dataset are either labeled

as Blocker or Normal (despite the fact that Netbeans uses Bugzilla

that supports all the severity levels presented in the previous

section).

Fig. 4. Proportion of Type 1 and 3 versus Type 2 and 4 with respect

to their severity in the Apache dataset.

Fig. 5. Proportion of Types 1 and 3 versus Types 2 and 4 with respect

to their severity in the Netbeans dataset.

For the Apache dataset, the severity levels range from Blocker

to Trivial as shown in Figure 5. Figure 6 shows that in Netbeans

around 67% of Types 2 and 4 bugs are normal. The same holds

for Types 1 and 3 bugs (66% are considered of normal severity).

This indicates that most Types 2 and 4 bugs and Types 1 and 3

bugs are not critical in the Netbeans dataset. For the Apache

dataset, the results indicate that the majority of the bugs are

considered of major severity (66% for Types 1 and 3 and 72% for

Types 2 and 4). It is challenging to understand the discrepancy

between the two datasets partly because of the way the severity is

assigned to BRs. Table IV shows the result of the Pearson chi-

squared tests for the H02S, H02D and H02R hypotheses.

We can thus reject the null hypothesis H01A and

conclude that there is a predominance of Types 2 and

4 bugs in all studied systems and this observation is

not related to a specific system.

TABLE IV. Pearon’s chi squared p-values for the severity, the

reopen and the duplicate factors with respect to a dataset.

System Factor
Pearson’s chi-

squared p-value

Apache

Severity p-value < 0.005

Reopened p-value < 0.005

Duplicated p-value < 0.005

Netbeans

Severity p-value < 0.005

Reopened p-value < 0.005

Duplicated p-value < 0.005

TABLE V. Proportion of each bug type with respect to severity

Severity T1 T2 T3 T4

Netbeans

Blocker
340

43.81%

109

45.42%

2850

34.04%

5687

32.75%

Normal
436

56.19%
131

54.58%
5522

65.96%
11678

67.25%

Total
776

100%

240

100%

8372

100%

17365

100%

Apache

Blocker
68

3.46%

53

4.25%

115

3.71%

329

4.43%

Critical
84

4.27%
44

3.53%
213

6.87%
565

7.61%

Major
1245

63.26%

811

64.98%

2096

67.59%

5427

73.12%

Minor
408

20.73%
276

22.12%
501

16.16%
899

12.11%

Trivial
113

5.74%

31

2.48%

159

5.13%

161

2.17%

Total
1918

100%

1215

100%

3084

100%

7381

100%

TABLE VI. Percentage and occurrences of bugs duplicated by

other bugs and reopenned with respect to their bug type and

dataset

Type T1 T2 T3 T4 Total

Netbeans

Dup.
6.06%

(47)

4.59%

(11)

5.09%

(426)

5.87%

(1019)

5.62%

(1503)

Reop.
4.38%

(34)

7.08%

(17)

4.81%

(403)

7.09%

(1231)

6.30%

(1685)

Apache

Dup
2.59%
(51)

2.24%
(28)

1.61%
(50)

2.91%
(216)

2.51%
(345)

Reop
5.59%

(110)

6.49%

(81)

3.10%

(96)

6.90%

(512)

5.82%

(799)

Total

Dup
3.57%

(98)

2.62%

(39)

4.15%

(476)

4.98%

(1235)

4.56%

(1848)

Reop
5.25%
(144)

6.59%
(98)

4.35%
(499)

7.03%
(1743)

6.13%
(2484)

Table VI shows the occurrences of duplicate and reopened

bugs with respect to their bug type in each dataset. In Netbeans,

the proportion of Type 1 bugs that are marked as source of

duplicate is 6.06%, 4.59% for Type 2 bugs, 5.09% for Type 3

bugs and 5.87% for Type 4 bugs with a total of 1503 bugs

over 26754 (5.62%). In Apache, the proportion of Type 1 bugs

marked as a source of a duplicate is 2.59% and 2.24%, 1.61% and

2.91% for Types 2, 3 and 4, respectively. Overall, the types that

are more likely to be marked as source of duplicates at least once

are Type 4 with 4.98%.

Second, we analyze the reopened bugs to see the link between

the reopening and the type of bugs. We perform Pearson’s chi-

squared test to reject the null hypothesis H02R.

Third, we analyze the duplicated bugs to see if there is a link

between the bug type and the fact duplication. We perform

Pearson’s chi-squared test to reject the null hypothesis H02D.

Fig. 6. Fixing time of Types 1 and 3 versus fixing time of

Types 2 and 4 with respect to their datasets.

TABLE VII. Average Fixing time with respect to bug type

Dataset T1 T2 T3 T4 Average

Netbeans 97.66 117.42 100.26 156.67 118.00

Apache 73.48 118.12 38.04 52.83 70.62

Average 85.57 117.77 69.15 104.75 94.31

RQ 3 : How fast are these types of bugs fixed ?

According to the results of the test (p-value <

0.005), we reject the null hypothesis H02R and

conclude that there is a significant relationship

between the reopening of a bug and its type.

According to the results of the test (p-value <

0.005), we reject the null hypothesis H02D and

conclude that there is a significant relationship

between the duplication of a bug and its type.

According to the test (p-value < 0.005), we reject the

null hypothesis H02S and conclude that there is a

significant difference between the severity of Types 1

and 3 bugs and the severity of Types 2 and 4 bugs.

Figure 7 shows the fixing time for Types 1 and 3 versus Types

2 and 4 for Netbeans and the Apache Software Foundation. In

Netbeans, 98.96 and 137.05 days are required to fix Types 1 and 3

and Types 2 and 4, respectively. In Apache, 55.76 and 85.48 days

are required to fix Types 1 and 3 and Types 2 and 4, respectively.

Table VII shows the average fixing time of bugs with respect to

their bug type in each dataset.

We analyze the difference in the fixing time of bugs with

respect to their bug type by conducting a Mann-Whitney test to

assess H03.The results show that the difference between the fixing

time of Types 2 and 4 and Types 1 and 3 is statistically significant

(p-value < 0,005).

Discussion:

Repartition of bug types: One important finding of this study is

that there is significantly more Types 2 and 4 bugs than Types 1

and 3 in all studied systems. Moreover, this observation is not

system-specific. The traditional one-bug/one-fault way of thinking

about bugs only accounts for 35% of the bugs. We believe that,

recent triaging algorithms [13][16]–[18] can benefit from these

findings by developing techniques that can detect Type 2 and 4

bugs. This would result in better performance in terms of reducing

the cost, time and efforts required by developers in the bug fixing

process.

Severity of bugs: We discussed the severity and the complexity

of a bug in terms of its likelihood to be reopened or marked as

duplicates (RQ2). Although clear guidelines exist on how to

assign the severity of a bug, it remains a manual process

performed by the bug reporters. In addition, previous studies,

notably those by Khomh et al. [16], showed that severity is not a

consistent/trustworthy characteristic of a BR, which leads to the

emergence of studies for predicting the severity of bugs (e.g.,

[19]–[21]). Nevertheless, we discovered that there is a significant

difference between the severities of Types 1 and 3 compared to

Types 2 and 4.

Complexity of bugs: At the complexity level, we use the number

of times a bug is reopened as a measure of complexity. We found

that there is a significant relationship between the number of

reopenings of bugs and the types. In our datasets, Types 1 and 3

bugs are reopened in 1.88% of the cases, while Types 2 and 4 are

reopened in 5.73%. Assuming that the reopening is a

representative metric for the complexity of bug, Types 2 and 4 are

three times more complex than Types 1 and 3. Finally, if we

consider multiple reopenings, Types 2 and 4 account for almost

80% of the bugs that are reopened more than once. While current

approaches aiming to predict which bug will be reopen use the

number of modified files [22]–[24], we believe that they can be

improved by taking into account the bug type. For example, if we

can detect that an incoming bug if of Type 2 or 4 then it is more

likely to be reopened than a bug of Type 1 or 3.

Impact of a bug: To measure the impact of bugs on end users and

developers, we use the number of times a bug is duplicated. This

is because if a bug has many duplicates, it means that a large

number of users have experienced the corresponding failure. We

found that there is a significant relationship between the bug type

and the fact that a bug gets duplicated. Types 1 and 3 bugs are

duplicated in 1.41% of the cases while Types 2 and 4 are

duplicated in 3.14%. Using duplication as a metric of bug impact,

Types 2 and 4 have more than two times bigger impact than Types

1 and 3. Similarly to the reopening metric, if we consider multiple

duplications, Types 2 and 4 account for 75% of the bugs that get

duplicated more than once and more than 80% of the bugs that get

duplicated more than twice. We believe that approaches targeting

the identification of duplicates [27][10][28][29] could leverage

this classification to detect duplicates BRs with higher recall and

precision.

Fixing time: Our third research question aimed to determine if the

type of a bug impacts its fixing time. Not only we found that the

type of a bug does significantly impact its fixing time, but we also

found that, in average Types 2 and 4, stay open 111.26 days while

Types 1 and 3 last for 77.36 days. Types 2 and 4 are 1.4 time

longer to fix than Types 1 and 3.We therefore believe that,

approaches aiming to predict the fixing time of a bug (e.g., [7],

[30], [31]) can highly benefit from accurately predicting the type

of a bug and therefore better plan the required man-power to fix

the bug.

5. RELATED WORK

Researchers have been studying the relationships between the bug

and source code repositories since more than two decades. To the

best of our knowledge the first ones who conducted this type of

study on a significant scale were Perry and Stieg [32]. In the last

two decades, many aspects of these relationships have been

studied in depth. For example, researchers were interested in

improving the bug reports themselves by proposing guidelines

[13], and by further simplifying existing bug reporting models

[33]. Another field of study consist of assigning these bug reports,

automatically if possible, to the right developers during triaging

[34][17][18][35]. Another set of approaches focus on how long it

takes to fix a bug [7][31][2] and where it should be fixed [25][26].

With the rapidly increasing number of bugs, the community was

also interested in prioritizing bug reports [36], and in predicting

the severity of a bug [19]. Finally, researchers proposed

approaches to predict which bug will get reopened [23][24],

which bug report is a duplicate of another one [27]–[29] and

which locations are likely to yield new bugs [8][37].

However, to the best of our knowledge, there are not many

attempts to classify bugs the way we present in this paper. In her

Ph.D. thesis dissertation [39], Sigrid Eldh discussed the

classification of trouble reports with respect to a set of fault

classes that she identified. Fault classes include computational

logical faults, resource faults, function faults, etc. She conducted

studies on Ericsson systems and showed the distributions of

trouble reports with respect to these fault classes. A research paper

was published on the topic in [39]. or safety critical [40]. Hamill

et al. [40] proposed a classification of faults and failures in critical

safety systems. They proposed several types of faults and show

how failures in critical safety systems relate to these classes. They

found that only a few fault types were responsible for the majority

of failures. They also compare on pre-release and post-release

faults and showed that the distributions of fault types differed for

pre-release and post-release failures. Another finding is that

coding faults are the most predominant ones.

Our study differs from these studies in the way that we focus

on the bugs and their fixes across a wide range of systems,

programming languages, and purposes. This is done indecently

Therefore, we can reject the null hypothesis H03 and

conclude that the fixing of Types 2 and 4 bugs takes

more time than the fixing of Types 1 and 3 bugs.

from a specific class of faults (such as coding faults, resource

faults, etc.). This is because our aim is not to improve testing as it

is the case in the work of Eldh [39] and Hamill et al. [40]. Our

objective is to propose a classification that can allow researchers

in the field of mining bug repositories to use the taxonomy as a

new criterion in triaging, prediction, and reproduction of bugs.

6. CONCLUSION

In this paper, we proposed a taxonomy of bugs and performed an

empirical study on two large open source datasets: the Netbeans

IDE and the Apache Software Foundation’s projects. Our study

aimed to analyse: (1) the proportion of each type of bugs; (2) the

complexity of each type in terms of severity, reopening and

duplication; and (3) the required time to fix a bug depending on its

type. The key findings are: Types 2 and 4 account for 65% of the

bugs; Types 2 and 4 have a similar severity compared to Types 1

and 3; Types 2 and 4 are more complex (reopening) and have a

bigger impact (duplicate) than Types 1 and 3; it takes more time

to fix Types 2 and 4 than Types 1 and 3.

REFERENCES

[1] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How Long Will It Take

to Fix This Bug?,” in Proc. of the 4th International Workshop on Mining

Software Repositories (MSR), 2007.

[2] R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study of long lived

bugs,” in 2014 Software Evolution Week - IEEE Conference on Software

Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), 2014,

pp. 144–153.

[3] N. Chen, “Star: stack trace based automatic crash reproduction,” IEEE

Transactions on Software Eng., 41(2), 2014, pp. 198-220.

[4] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making software failures

reproducible by preserving object states,” in Proc. of the 22nd European

conference on Object-Oriented Programming, 2008, pp. 542–565.

[5] W. Jin and A. Orso, “BugRedux: Reproducing field failures for in-house

debugging,” in Proc. of the 34th Intern. Conf. on Software Engineering (ICSE),

2012, pp. 474–484.

[6] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi, “Software Fault

Localization Using N -gram Analysis,” in Proc. of the 3rd Conference on

Wireless Algorithms, Systems, and Applications, 2008, pp. 548–559.

[7] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: an empirical

study of commercial software projects,” in Proc. of the International Conference

on Software Engineering (ICSE), pp. 1042–1051, 2013.

[8] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting Faults

from Cached History,” in Proc. of the 29th Inter. Conf. on Software Eng.

(ICSE), 2007, pp. 489–498.

[9] M. Nayrolles, A. Hamou-Lhadj, T. Sofiene, and A. Larsson, “JCHARMING : A

Bug Reproduction Approach Using Crash Traces and Directed Model

Checking,” in Proc. of the 22nd International Conference on Software Analysis,

Evolution and Reengineering (SANER), 2015, pp. 101–110.

[10] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model

approach for accurate duplicate bug report retrieval,” in Proc. of the 32nd

ACM/IEEE International Conference on Software Engineering (ICSE), 2010.

[11] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug

report detection with a combination of information retrieval and topic

modeling,” in Proc. of the 27th IEEE/ACM International Conference on

Automated Software Engineering(ASE), 2012, pp. 70-79.

[12] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of Duplicate Defect

Reports Using Natural Language Processing,” in Proc. of the 29th International

Conference on Software Engineering, 2007, pp. 499–510.

[13] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.

Zimmermann, “What makes a good bug report?,” in Proc. of the 16th ACM

SIGSOFT Intern Symposium on Foundations of Software Engineering, 2008.

[14] R. Wu, H. Zhang, S. Kim, and S. Cheung, “Relink: recovering links between

bugs and changes,” in Proc. of the 19th Symposium and the 13th European

Conference on Foundations of Software Engineering (FSE), 2011, pp. 15–25.

[15] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,

“Recovering traceability links between code and documentation,” IEEE

Tranactions on Software Engineering, vol. 28, no. 10, pp. 970–983, 2002.

[16] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An Entropy Evaluation

Approach for Triaging Field Crashes: A Case Study of Mozilla Firefox,” in

Proc. of the 18th Working Conference on Reverse Engineering, 2011, pp.

261–270.

[17] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug

tossing graphs,” in Proc. of the 7th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Eoftware Engineering (FSE), 2009, pp. 111-120.

[18] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy set-based

automatic bug triaging,” in Proceeding of the 33rd international conference

on Software engineering (ICSE), 2011, pp. 884-887.

[19] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity

of a reported bug,” in Proc. of the 7th IEEE Working Conference on Mining

Software Repositories (MSR), 2010, pp. 1–10.

[20] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing

Mining Algorithms for Predicting the Severity of a Reported Bug,” in Proc.

of the 15th European Conference on Software Maintenance and

Reengineering (CSMR), 2011, pp. 249–258.

[21] Y. Tian, D. Lo, and C. Sun, “Information Retrieval Based Nearest Neighbor

Classification for Fine-Grained Bug Severity Prediction,” in Proc. of the 19th

Working Conference on Reverse Engineering (WCRE), 2012, pp. 215–224.

[22] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams, A. E.

Hassan, and K. Matsumoto, “Predicting Re-opened Bugs: A Case Study on

the Eclipse Project,” in Proc. of the 17th Working Conference on Reverse

Engineering (WCRE), 2010, pp. 249–258.

[23] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characterizing

and predicting which bugs get reopened,” in Proc. of the 34th International

Conference on Software Engineering (ICSE), 2012, pp. 1074–1083.

[24] D. Lo, “A Comparative Study of Supervised Learning Algorithms for Re-

opened Bug Prediction,” in Proc. of 17th European Conference on Software

Maintenance and Reengineering (CSMR), 2013, pp. 331–334.

[25] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? More

accurate information retrieval-based bug localization based on bug reports,”

in Proc. of the 34th International Conference on Software Engineering

(ICSE), 2012, pp. 14–24.

[26] D. Kim, Y. Tao, S. Member, S. Kim, and A. Zeller, “Where Should We Fix

This Bug? A Two-Phase Recommendation Model,” IEEE Transactions on

Softwware Engineering, vol. 39, no. 11, 2013, pp. 1597–1610.

[27] N. Bettenburg, R. Premraj, and T. Zimmermann, “Duplicate bug reports

considered harmful … really?,” in Proc. of the IEEE International

Conference on Software Maintenance (ICSM), 2008, pp. 337–345.

[28] Y. Tian, C. Sun, and D. Lo, “Improved Duplicate Bug Report Identification,”

in Proc. of the 16th European Conference on Software Maintenance and

Reeng., 2012, pp. 385–390.

[29] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking

systems,” in Proc. of IEEE International Conference on Dependable Systems

and Networks With FTCS and DCC (DSN), 2008, pp. 52–61.

[30] L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” in Proc. of the 4th

International Workshop on Mining Software Repositories, 2007, pp. 29–29.

[31] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: Can We

Do Better?” in Proc. of the 8th Working Conference on Mining software

repositories (MSR), 2011, pp. 207-210.

[32] C. S. S. Perry, E. Dewayne, “Software faults in evolving a large, real-time

system: a case study,” in Software Engineering—ESEC, 1993, pp. 48–67.

[33] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “Towards

a simplification of the bug report form in eclipse,” in Proc. of the

International Workshop on Mining Software Repositories, 2008, pp. 145-148.

[34] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in

Proceeding of the 28th International Conference on Software Engineering

(ICSE), 2006, pp. 361-370.

[35] G. Bortis and A. van der Hoek, “PorchLight: A tag-based approach to bug

triaging,” in Proc. of the 35th International Conference on Software Eng.

(ICSE), 2013, pp. 342–351.

[36] D. Kim, X. Wang, S. Member, S. Kim, A. Zeller, S. C. Cheung, S. Member,

and S. Park, “Which Crashes Should I Fix First?: Predicting Top Crashes at

an Early Stage to Prioritize Debugging Efforts,” IEEE Transactions on

Software Enineering, vol. 37, no. 3, pp. 430–447, 2011.

[37] S. Kim, T. Zimmermann, K. Pan, and E. Jr. Whitehead, “Automatic

Identification of Bug-Introducing Changes,” in Proc. of the 21st International

Conference on Automated Software Engineering (ASE), 2006, pp. 81–90.

[38] S. Eldh, S. Punnekkat, H. Hansson, and P. Jönsson., “Component testing is

not enough-a study of software faults in telecom middleware,” in Testing of

Software and Communicating Systems, 2007, vol. 4581, pp. 74–89.

 [39] S. Eldh, "On Test Design," PhD Dissertation, Mälardalen University Press

Dissertations, No. 105, 2011.

[40] M. Hamill and K. Goseva-Popstojanova, “Exploring fault types, detection

activities, and failure severity in an evolving safety-critical software system,”

Springer Software Quality Journal, vol. 23, no. 2, pp. 229–265, 2014.

