

Exploiting Text Mining Techniques in the Analysis of

Execution Traces

Heidar Pirzadeh
1
, Abdelwahab Hamou-Lhadj

1
, and Mohak Shah

2

1Software Behaviour Analysis Lab

Department of Electrical and Computer Engineering

Concordia University

{s_pirzad, abdelw}@ece.concordia.ca

2Accenture Technology Labs

161 N Clark St, Chicago, IL, 60601, USA

mohak.shah@accenture.com

Abstract—The analysis of execution traces can be useful in

many software engineering activities including debugging,

feature enhancement, performance analysis, and any other

task that requires some degree of understanding of the way a

system behaves. Traces, however, tend to be considerably

large, which often hinders effective analysis of their content.

There is a need to investigate ways to help software engineers

find and understand important information conveyed in a

trace despite the trace being massive. Motivated by the work

done in the area of text mining, we propose, in this paper, a

trace exploration approach based on examining the trace

execution phases. The approach consists of automatically

identifying relevant information about the phases as well as the

ability to provide an efficient representation of the flow of

phases by detecting redundant phases using a cosine similarity

metric. We applied our approach to large traces generated

from two different systems and were able to quickly

understand their content and extract higher level views that

characterize the essence of the information conveyed in these

traces.
Program Comprehension, Dynamic Analysis, Text mining,

Software Maintenance.

I. INTRODUCTION

The analysis of execution traces is an important enabler
for many software maintenance activities that require some
understanding of the system behavior, such as locating
system defects [14] and feature enhancement [13]. Trace
exploration is however a challenging task partly due to the
sheer size of typical traces, often millions of events. To
alleviate this task, several trace abstraction techniques have
been proposed (e.g., [1, 2, 3]). Although these techniques
have shown to be useful in software maintenance, they suffer
from several limitations, such as extensive reliance on user
intervention, and dependence on particular visualization
schemes [4]. The general consensus in the area of trace
analysis is that more research is needed.

In our previous work [18], we presented an approach,
called trace segmentation, for automatically dividing the
content of a trace into smaller and meaningful trace segments
that correspond to the program’s main execution phases. Our
definition of an execution phase is similar to the one
presented by Reiss [6]: A segment of program’s execution
that performs a specific task, where the composing elements

exhibit a common behavior at a level the programmer would
recognize, such as initializing variables, performing specific
computations, etc. Each phase consisted of a group of trace
elements clustered together based on their relevance to the
task being represented. We also showed that these phases
can significantly simplify the exploration of large traces by
allowing software engineers to navigate through a trace as a
flow of execution phases instead of a series of mere low-
level events.

In this paper, we continue this work by proposing a
method for automatically identifying the trace elements that
are most relevant to the implementation of each execution
phase. This is particularly important since it can significantly
simplify the exploration of large phases by allowing software
engineers to quickly understand the phases of an execution
and select the intended ones before deciding to dive into the
details. Another contribution of the paper is a technique for
identifying similar phases within a trace. It is possible that a
single major computation happens several times in different
periods during the execution of a program. Existing phase
detection algorithms (e.g., [6, 12]) usually detect each
occurrence as a different phase (although they are very
similar). A better representation of a program execution is
the one where a phase is indentified only once and referred
to it in other places.

To achieve our objectives, we adopt techniques from the
area of text mining, more particularly the Term Frequency,
Inverse Document Frequency (TF-IDF) technique and the
cosine similarity measure. We validate our approach using
traces generated from two software systems.

The contributions of this paper can be further refined to
help with tasks such as:

 The ability for software engineers to understand the

most relevant elements that implement the traced

scenario (or software feature). As such, the contribution

of this paper falls under the category of feature location

research.

 The recovery of high-level behavioral design models

from large execution traces. The most important

elements of a trace uncovered by our approach can be

represented, for example, in a UML sequence diagram.

These models can in turn be used for redocumentation,

or for assessing if the system does what it is supposed

to do by comparing the resulting diagrams with existing

design diagrams.

 Any area where trace summaries are needed. This will

be particularly useful if the proposed techniques are

integrated in a tool, in which the ability to switch

between a high-level view of a trace and a detailed view

is provided.

The rest of the paper is organized as follows: Section II
draws analogy between trace analysis and text mining. In
Section III, we present the approach. Section IV is concerned
with the case study. We conclude the paper in Section VI
after we present the related work.

II. TRACE ANALYSIS AND TEXT MINING

Dealing with large data spaces, whether the data takes the
form of traces, text, or any other artifact, is in principle
subject to similar challenges, among which perhaps the most
important ones consist of coping with the large volume of
data, overcoming the limited capacity of the human working
memory [5], and the constant need to reduce the presence of
noise in the data so as to focus on what is important.

Research in the area of text mining has long been active
in addressing these challenges, which motivated us to
explore how the application of existing techniques can be
applied to the analysis of traces. However, before drawing
any parallel between the two domains, we first need to
determine the mapping between the concepts in the two
domains as stated by Gentner in his theory of structural
mapping [10]. Figure 1 shows three types of objects in the
domain of text mining: Corpus, Document, and Term, where
a document is a sequence of terms and a corpus is a set of
documents. We propose to view an execution trace as a
corpus and the execution phases that compose it as the
corpus documents. In our previous work [18, 22], we

proposed a way to automatically detect execution phases
from a trace. The essence of this decomposition is revisited
in Section III.A. Each trace element can be viewed as a term
within a phase document. Note that the mapping takes place
not only between objects, but also between the containment
relations between the objects.

There exists a variety of text mining techniques, in this
study, we want to focus on the ones that make use of three
types of information:

 Local information: It refers to the information inside

individual documents (e.g., term frequency).

 Global information: It is the information from the

collection of documents in the corpus (e.g., document

frequency).

 Domain information that refers to the information from

the domain of a term. For example, the term ―can‖ has

different significance in the domain of literature and the

domain of packaging [29].

Similarly, we consider the information inside each phase
(e.g., the frequency of an element within a phase) as local
information in trace analysis. Global information in this
domain can be considered as the information from the
collection of phases in the trace (e.g., number of phases in
which a particular element is invoked). Finally, domain
information in trace analysis is the information about the
trace elements where they are defined. This information
could be extracted from the source code or the
documentation (e.g., static call graph information of each
element).

III. APPROACH

Figure 2 shows our approach for extracting relevant
information from a trace based on the analysis of its
execution phases. The approach encompasses two main
phases. The first phase (Trace Segmentation) consists of
automatically dividing the content of a trace into execution
phases. To segment a trace, we use the phase detection
technique that we presented in [18]. Other phase detection
techniques such as the ones presented in [6, 12, 7] could also
be used.

The second phase consists of the application of a newly
designed technique called content prioritization with which
the trace elements of each phase are weighted and the ones
that have the highest weight are deemed to be the most
representative elements of a phase. Once the elements are
weighted, we extract the most representative ones. We also
use the weighted elements to detect similar phases.

A. Trace Segmentation

Our process for segmenting a trace into execution phases
is composed of two steps [18]:

 Step 1: Identifying candidate phases using the

application of gravitational schemes (see next

subsection) to group the trace elements into phases.

 Step 2: Identifying the beginning and end of each

phase using K-means clustering.

Corpus

Documents

Terms

Trace

Phases

Elements

Element

weighting

: ―Composed of‖ relation : Mapping

Figure 1. Mapping between the text mining and trace analysis domains

Step 1: Phase detection

In our previous work [18], we have developed a phase
detection technique that is inspired by Gestalt laws of
perception (namely similarity and good continuation), which
describe how people group similar items visually based on
their perception [21]. Gestalt psychology is an application
of physics to essential parts of brain physiology by
telling the physiologist what kind of processes occur in
the brain when we see visual objects, and how our
perceptual systems follow certain grouping principles (e.g.,
good continuation, proximity, and similarity properties of the
elements) [9, 21] to integrate the scene elements (i.e., objects
and regions) as a whole and not just as points and lines.

We have developed two gravitational schemes, more
precisely the similarity and continuity schemes, based on
Gestalt laws, which we use as gravitational forces that yield
the formation of dense groups of trace elements, the
candidate execution phases. The similarity and continuity
schemes operate as follows (please refer to [18] for a formal
description of these schemes).

The objective of the similarity gravity scheme is to
reposition the elements of a trace in such a way that similar
elements gravitate towards each other forming a group of
dense elements, which could indicate the presence of a
phase. In other words, the elements of a trace are re-
positioned to make the distance between two same elements
less than the distance between two different elements.

In Figure 3, we show the effect of applying the similarity

gravity scheme to a sample trace composed of routines1 a,

b, c, and d (Figure 3(1)). The trace elements are mapped
to a ruler indicating the position of the events as they occur.
Assume that the similarity scheme works in a way that the
distance between two calls to the same routine is reduced by
half, the resulting trace after the application of the similarity
scheme would therefore lead to two dense groups (see Figure
3(2)). The first one starts at the first invocation and is

composed of calls to methods a and b, while the other one,

1 The focus of this paper is on traces of routine (method) calls.

which starts at the seventh invocation, contains calls to c

and d. These groups might indicate the presence of two
phases in the trace, although in practice one needs to
carefully define the criteria by which two routines should be
attracted to each other (see [18] for more discussion on this).

The second scheme that we have developed, the
continuity gravity scheme, groups trace elements based on
the nesting level of the routine calls by keeping the calls with
higher nesting level closer to the previous routine calls. The
higher is the nesting level of a routine call, the stronger it is
attracted by the previous routine call. Using the nesting level
of calls to detect execution phases has also been the topic of
a number of studies [8, 12]. Watanabe et al. [12] used the
nesting levels of a call tree to detect phases and locate phase
shifts. They suggested that the depth of the call stack (i.e.,
the nesting level) is in local-minimum at the beginning of a
phase indicating a phase transition. They also showed that
the elements that have a high nesting level (i.e.,which are
deep in the tree hierarchy) were unlikely to initiate new
phases.

Figure 3. An example of applying the similarity scheme

Figure 4 shows the result of applying the continuity

gravity scheme to a sample trace, assuming that the distance
between two consecutive nesting calls is reduced by half.
The new positioning of the elements seems to lead to two
distinguishable phases (the phases are more distinguishable
when we omit to visualize the nesting levels – Figure 4(3)).
The first phase begins at the first method invocation and the
second phase starts at the tenth method invocation.

Application of

Gravitational

Schemes

Trace

with dense

groups of

elements

BIC-supported

K-means

Clustering

Trace Segmentation

T

P1 P2 P3 P4 P5
1 2 3 4

P1 P2 P3 P5
1 2

3

4

Performs

x

Performs

y

Performs

z

Performs

w

T’

Detecting

Similar

Phases

Element

Weighting

Content Prioritization

 Extracting Relevant

Information

T’’

Figure 2. Overview of our proposed approach

Removing

utilities

Figure 4. An example of applying continuity scheme

Step 2: Identification of Phase Boundaries

Once the trace elements are repositioned using the
similarity and continuity gravity schemes, we need a way to
automatically identify the beginning and end of each phase
because it would be impractical to expect from programmers
to distinguish the various phases visually for considerably
large traces. For this, we chose K-means clustering as our
clustering algorithm. In K-means clustering the number of
clusters (i.e., the number of phases) should be given as an
input to the algorithm (perhaps by counting the number of
distinct phases that he can visually perceive on the plot).
This, however, can be error prone. Therefore, it would be
advantageous if the number of clusters could be selected
automatically according to the complexity of the data. Pelleg
and Moore [11] proposed an approach to find the best
partitioning of the data where the average variance of the
clusters is minimum. It is obvious that as the number of
clusters increases the average variance of the clusters
decreases (as K approaches the number of data points the
variance becomes zero; this is known as overfitting).
Therefore, the problem is reduced to finding a tradeoff
between the number of clusters and the average variance of
the clusters that keeps the number of clusters and the
variance both minimized. This tradeoff is reached via the
Bayesian Information Criterion (BIC), which is a model
selection criterion [23]. In order to avoid the problem of
overfitting the data, BIC is penalized based on the number of
parameters in the model.

As shown in Figure 5, we assume that the user has run
the K-means algorithm on the repositioned trace (i.e., a trace
with dense groups of methods formed using the similarity
and continuity schemes) for a set of different values of K,

which results in a set of alternative partitionings. To evaluate
these partitionings, we compute the BIC score of each
partitioning, the highest BIC means the best available
partitioning of the execution trace and consequently the best
estimation of the number of clusters K, and which also
corresponds to the number of identified phases.

Figure 5. BIC supported K-means clustering

In [18], we applied our phase detection algorithm to large

traces generated from two object-oriented systems. We
validated the results by studying documentation of both
systems and showed that our approach was successful in
dividing these traces into meaningful phases.

B. Content Prioritization

The second step of our approach (also the main
contribution of this paper) is to extract the trace elements that
are most relevant to each execution phase. For this purpose,
we use text mining techniques as previously mentioned.
More precisely, the content prioritization phase is composed
of the following steps, which are listed here and discussed in
more detail in the subsequent sections:

1. We first remove utility routines from the execution

phases to reduce the noise in the data. The process of

removing utilities is similar to removing stop words

from text.

2. We apply a weighting function to weigh elements of a

phase according to their relevance. The higher the

weight, the more representative the element.

3. We propose a way to select the most representative

elements in a phase from the list of ranked elements

obtained in 2.

4. We measure the similarity between phases based on

their weighted elements.

1) Utility Removal:
Text mining techniques usually start with a preprocessing

step that removes stop words -The words that add little value
to the process of finding relevant information. Stop word
identification, which is the process of identifying these
words, makes use of domain and global information. For
example, in the domain of English literature, stop words are
among auxiliary verbs (e.g., have, be), pronouns (he, it), or
prepositions (to, for). Similarly, we proceed with removing
utilities from the trace before weighting its elements.
According to Hamou-Lhadj et al. [25], a utility is a
component that implements a low-level concept such as
accessing methods or language libraries. In this paper, we
limit ourselves to this type of utilities that can be detected
without advanced processing techniques.

2) Element Weighting:
In text mining, the process of term weighting is used for

finding representative terms in each documents of a corpus.
One of the best known weighting schemes is called TF-IDF
(Term Frequency, Inverse Document Frequency) [19]. The
goal of TF-IDF term weighting is to obtain high weights for
terms that are representative of a document’s content and
lower weights for terms that are less representative. The
weight of a term depends both on how often it appears in the
given document (term frequency, or tf) and on how often it
appears in all the documents of the collection (document
frequency, or df). In general, a high frequency of a term
(high tf) in one document shows the importance of that term
while if a term is scattered between different documents
(high df), then it is considered less important. Therefore, if a
term has high tf and low df (or high idf -inverse document
frequency) then it will have a higher weight.

A similar idea can be adapted to trace analysis to weigh
the elements of a trace. We suggest a weighting function that
considers the frequency of trace elements across the
execution phases. Our hypothesis is that a trace element that
appears often in a particular phase, but appears relatively
infrequently in other phases potentially indicates that it is
doing something important in that particular phase. We use
the trace T shown in Figure 6, where the execution phases
are already identified, to illustrate the proposed weighting
function.

Our weighting function is composed of three factors:
local, global, and normalization. The weight of an element i
in a phase k has the following general form:

kikiki NGLw ,, 

where kiL , is the local weight of the element i in phase k

(local information) which is usually based on the number of
occurrences of the element in the phase. iG is the global

weight of the element in the phases of the trace (global
information). This factor tends to under-weigh these
elements that are too common in the trace. kN is the

normalization factor for the element weights in phase k. We
create an index vector called element vector for each phase.
The magnitude of each element in this vector indicates how
well that element represents the content of the phase based
on its frequency within the phase and other phases. If an
element occurs very frequently in some phases, but occurs
rarely in the trace as a whole, it will be given high weight in
the element vector.

The element frequency i,jef of element i in phase j is

defined as the number of times that i occurs in j. Similar to
approaches in text mining, and since the importance of an
element does not increase proportionally with the element’s
frequency, we use the following local weighting kiL , for

element frequency.





 


otherwise 0

0 if log1 10
,

i,ji,j
ki

efef
L

In Figure 6, kiL , is calculated for the elements in each of

the 3 phases of trace T. For instance, in Phase 1, the element
―d‖ is invoked twice, therefore, the local weight of
L(d)=1+log(2)=1.3.

Following the general form, we want to assign the weight

kiw , to element i in phase k in proportion to the frequency

of occurrence of the element in phase k, and in inverse
proportion to the number of phases in which the element is
invoked. It should be noted that the phase lengths, and hence
the number of non-zero element weights assigned to a phase,
varies widely. To allow a meaningful final retrieval
similarity, it is convenient to use a length normalization
factor as part of the element weighting formula. A high-

quality element weighting formula for kiw , , the weight of

element i in phase k is

Figure 6. Running example to illustrate the weighting function

      





e

j
jkj

iki

ki

nNef

nNef
w

1

2
,

,

,

/log1log

)/log()1)(log(

kiL , iG

kN

1

where i,kef is the occurrence frequency of element i in phase

k, N is the total number of phases, in is the number of phases

with element i assigned and e is the total number of
elements. The factor)/log(inN is an inverse phase

frequency (similar to ―idf‖) factor which decreases as the
elements are used widely in a trace and the denominator in
the equation is used for weight normalization. This factor is
used to adjust the element vector of the phase to its norm, so
all the phases have the same modulus and can be compared
no matter the size of the phase.

This weighting system enables us to adjust the weighting
for an element according to not only local but also global
information available in the entire trace. Figure 6 shows

kiw , for the elements in each phase. For instance, 1,dw the

weight of element ―d‖ in Phase 1, given that G(d) in the trace
is 0.17, is calculated as follows:

45.0

)26.0()22.0()17.0(

17.03.1

222
1,"" 




Phasedw

3) Extracting Relevant Information:
The output of the element weighting step is a list of phase

elements ranked according to their relevance. We need to
determine a threshold with which we can select the most
representative elements among this list. For example, a
software engineer can decide to only consider the top 20% of
the elements that have the highest ranking to be the most
representative elements of a phase.

Another possible method is to set a cap on the maximum
number of elements we want to extract and compute the
number of elements per phase proportionally to the size of
that phase as follows:












 *)(

T

P
MPR

i
i

where R(Pi) in the number of most relevant elements of a
phase Pi, M is the maximum number of element considered
given as input, |T| is the size of the trace after removing the

utilities, and iP is the size of a phase. In the example of

Figure 6, if the maximum number of elements that we want
is set to 3, given that the size of the trace which is 25, we
have:

 R(Phase1)=3*8/25=1

 R(Phase2)=3*8/25=1

 R(Phase3)=3*9/25=1

Then for each phase we chose the top 1 element from the

element vector as the most representative of that phase. This
way, ―m‖ is the most representative element of Phase 2 and
―a‖ is the most representative of both phases 1 and 3.
We can further improve the information contained in each
phase, and hence facilitate the browsing the trace, by

enriching the phase most representative elements with any
descriptive information such as source code comments or
any information extracted from valid documentation. We are
aware that this informal source of data might not be reliable
in practice though. In the worst case scenario, the element
names will be the only information that can be used. Figure 7
shows the high-level flow of phases in Trace T of Figure 6
where the relevant information about each phase is added.
The trace T can now be browsed as a sequence of phases
with relevant information rather than a large trace of events.

4) Determining Similar Phases:

The similarity between two objects is in general regarded
as how much they share in common. In the domain of text
mining, the most commonly used measure for evaluating the
similarity between two documents is the cosine of the angle
between term vectors representing the documents. In the
same way, the similarity between two phases can be
calculated based on the list of their matching elements.

More precisely, we measure the similarity between each
pair of phases by calculating the cosine of the angle between
the element vectors yx PP , representing the phases:














n

i
yi

n

i
xi

n

i
yixi

yx

ww

ww
PPS

1

2
,

1

2
,

1
,,

)()(

),(

The weights cannot be negative and, thus, the similarity

between two phases ranges from 0 to 1, where 0 indicates
independence, 1 means exactly the same, and in-between
values indicate intermediate similarity.

To determine the similarity between the phases, we take
the element vector of each phase and measure the similarity
between each pair of vectors. If the similarity between two
phases is more than a user-specified threshold they are
considered as the same. As a result, for phases that are
repeated in a sequence of phases, the first occurrence is kept
and the next occurrences are referred to the first occurrence.
It should be noted that, by definition, consecutive execution
phases must be dissimilar enough to be detected as separate
phases in the first place.

For our sample trace T in Figure 6, the similarities
between phases are shown in Figure 8. If we consider a
threshold of 90% for two phases to be considered similar,
then Phase 1 and Phase 3 are the same. This enables us to
reduce the high-level flow of the phases to the one shown in
Figure 8.

Information about

element ―a‖

Phase 1 Phase 2 Phase 3

Information about

element ―m‖

Information about

element ―a‖

Figure 7. Flow of phases with relevant information added

IV. CASE STUDIES

We conducted experiments with traces generated from
two software systems WEKA [24] and ArgoUML [16] that
we present separately in this section. Both systems where
instrumented using TPTP (the Eclipse instrumentation tool).

A. WEKA:

WEKA is a machine learning tool that implements
several learning algorithms [24]. We used WEKA 3.7.3
(latest version) which consists of 76 packages, 1133 classes,
14210 methods, and 226220 lines of code.

To generate a trace, we applied the WEKA machine
learning toolkit to build a decision tree learning algorithm for
classifying data instances. Each data instance is typically a
vector of attribute values where each attribute denotes some
measurement of interest. Training involves executing the
decision tree learning algorithm on a set of training data
instances. The algorithm identifies specific patterns in the
data and outputs a decision tree model each node of which
uses a predicate built on specific data attributes to fine tune
the classification. The output decision tree model is
subsequently evaluated on a separate set of test data
instances. The model evaluates the predicate on each node of
the decision tree against their corresponding values in each
data instance and outputs a class prediction. Different
performance statistics, e.g., prediction accuracy over all test
instances, are then calculated for evaluation purposes [27].
As such, the core process of learning a model consists of
three main stages: data input, learning a model from training
data, evaluating the model on test data.

The detailed steps of the scenario we used to generate a
trace are: (a) Run the WEKA Explorer tool, select a training
set, go to the Classify tab, (b) Select the classifier J48 (see
[28] for a description on this algorithm), select the ―supplied
test set‖ option, (c) Select a test set, start the classification,
close the program.

The generated trace contains 87,2291method calls. Since
each routine requires two events (entry and exit events) , the

size of the trace in terms of events is 1,744,582. The number
of distinct routines involved in the trace is 1309.

The application of the phase detection technique resulted
in the identification of four main phases. This can be seen in
Figure 9 that shows four dense groups of methods appearing
in the phase detection. Table 1 shows the size of the detected
phase (SP) in terms of the number of method calls.

In the next step, the original trace with its phases
annotated is given to the utility removal component, where
accessing methods are removed. The resulting trace is then
processed to weigh the elements of each phase. Table 1
shows the number of elements with non-zero weights in the
element vector for each phase (SV). The element vector is
passed to the ―preparation of relevant information‖
component where the top first 20% of the methods in each
element vector is selected as most representative methods for
each phase. This threshold is selected arbitrarily. Future
studies should focus on investigating ways to set this
threshold automatically, although we anticipate that this
threshold will vary from one system to another. A tool that
integrates our techniques should allow enough flexibility to
vary this threshold. Table 2 shows the representative
methods of each phase (the methods are sorted based on their
original order of invocation to help with better understanding
of the flow of events). Table 1 shows the number of
representative methods for each phase (SR).

Table 1. Statistics about representative elements

Phases (SP) (SV) (SR) Ratio

SR/SP

Phase 1 82544 95 19 0.02%

Phase 2 124586 137 27 0.02%

Phase 3 445291 69 14 0.003%

Phase 4 219871 127 25 0.01%

We referred to the source code and the WEKA

documentation [24] to extract descriptions of the routines
that were deemed most representative of each phase. We
were able to interpret the phases that composed the original
trace by analyzing the phases’ most relevant information,
which significantly simplified the understanding of the entire
trace. In what, we briefly discuss the information contained
in the trace.

The first phase involves initialization of the WEKA
toolkit itself. Since WEKA has a Graphical User Interface
(GUI), this initialization also involves calls to processes that

relevant info.

about ―a‖

relevant info.

about ―m‖

Phase 1 Phase 2

Phase 1

Phase 2

Phase 2 Phase 3

0% 91%

9%

Figure 8. Calculating the similarity between phases

Phase 1 Phase 2 Phase 3 Phase 4

Figure 9: detected phases for execution trace of WEKA

establish communication channels through this GUI. Some
prominent examples in the most frequently called routine in

Phase 1 can be seen with regard to the weka.core.tee
objects. These objects refer to the WEKA's I/O stream
initialization that enables it to both communicate with GUI
interface selections by the user and establish streams for data
input and results output.

The next phase (Phase 2) involves reading and
organizing the data in requisite data structures. This phase
prepares the data as well as enables data capabilities based
on data specifics. Data organization and preparation is

represented by the calls to the weka.core.Instances

and weka.core.Capabilities methods that involve
organizing and handling instances in an ordered set, and set
the classifier-specific data handling preferences respectively.

The following phase (Phase 3) involves executing
the learning algorithm to build a model on the training
data. This is represented by methods in the

weka.classifiers.trees.j48 class.
Finally, the last phase consists of the evaluation of the

decision tree model output by Phase 3, on a set of test
instances. This is indicated by calls to the methods in

weka.classifiers.Evaluation class.
Since a prediction is obtained on each individual

test data instance, repeated calls to
weka.classifiers,Evaluation.evaluationFo

rSingleInstance method can be seen. This method
performs an instance-wise evaluation of the decision tree
model. This phase also estimates different performance
statistics for the model.

The phase element vectors were also used to determine
the similarity between each pair of phases. As shown in
Table 3, the calculated similarities between every pair of
phases was less than 1%. This meant that the high-level flow
of phases cannot be further reduced. The small value of
similarities between consecutive phases also showed the
good quality of the phase detection.

Table 3. Similarities between phases for WEKA Trace

 P2 P3 P4

P1 0.18 % 0.04% 0.00%

P2 0.98% 0.68%

P3 0.48%

Finally, the high-level view of the flow of phases with

assigned description (extracted by reading the WEKA
documentation) is shown in Figure 10. This high-level
information flow is obtained by investigating a very small
percentage of the original trace, which is quantified as SR/SP
(Table 1). The content prioritization step, except for
assigning description to the selected phase elements which is
done manually, took 74 sec on an Intel Core Duo CPU
2.00GHz, 2MB cache, 1GB main memory, running
Windows XP.

B. ArgoUML:

For the second case study, we applied our technique to a
trace generated from ArgoUML [16] by exercising the
following scenario: Starting up ArgoUML, drawing a class
on the class diagram, and quitting ArgoUML). The resulting
trace contained 38321 method calls (2330 distinct methods).
Figure 11 shows the result of applying the phase detection
technique to the ArgoUML trace. Five phases have been
identified. Table 4 shows the size of each detected phase as
the number of method calls (SP). Similar to the previous case
study, we applied the removal of utilities and the element
weighting steps on the resulting trace elements. The top 20%
of each vector is selected as most representative elements of
each phase (see Table 4 for the number of representatives for
each phase (SR)). The information about the representative

Weka initialization:

GUI initialization,

Open I/O streams

and create caches

Reading and organizing

training and test data:

setting appropriate data

properties, data

preprocessing

Executing learning

algorithm: outputs a

decision tree

classifier/Also read

test data

Evaluate the

classifier on test

data and estimate

performance

statistics

Phase 1 Phase 2 Phase 3 Phase
4

Figure 10. Flow of phases with relevant information added

Table 2. Representative elements of the WEKA trace

Reps. of Phase 1 Reps. of Phase 3

weka.core.Tee.add

weka.core.WekaPackageManager.loadPackages

weka.core.ClassDiscovery.initCache

weka.core.ClassCache.initFromDir

weka.core.ClassCache.add
weka.core.ClassCache.cleanUp

weka.core.ClassCache.extractPackage

weka.core.ClassCache.initFromJar

weka.core.ClassDiscovery.find

weka.core.ClassDiscovery.hasInterface

weka.core.ClassCache.remove

weka.core.ClassDiscovery.addCache

weka.gui.GenericPropertiesCreator.isValidClassname

weka.core.ClassDiscovery.isSubclass

weka.core.Stopwords.add

weka.core.Tee.size

weka.core.converters.AbstractFileSaver.resetOptions
weka.core.converters.AbstractSaver.resetOptions

weka.gui.GenericObjectEditor.registerEditor

weka.core.WekaEnumeration.hasMoreElements

weka.core.WekaEnumeration.nextElement

weka.classifiers.trees.j48.Distribution.add

weka.classifiers.trees.j48.Distribution.numClasses

weka.classifiers.trees.j48.Distribution.total
weka.core.Instances.quickSort

weka.core.Instances.partition

weka.classifiers.trees.j48.EntropyBasedSplitCrit.logFunc

weka.classifiers.trees.j48.Distribution.shiftRange

weka.classifiers.trees.j48.Distribution.perBag

weka.classifiers.trees.j48.InfoGainSplitCrit.splitCritValu

e

weka.classifiers.trees.j48.EntropyBasedSplitCrit.newEnt

weka.classifiers.trees.j48.Distribution.numBags

weka.classifiers.trees.j48.Distribution.perClassPerBag

Reps. of Phase 2 Reps. of Phase 4

weka.gui.explorer.Explorer.addCapabilitiesFilterListener

weka.core.Instances.numAttributes

weka.core.Attribute.indexOfValue

weka.core.AbstractInstance.weight

weka.core.Instances.numInstances

weka.core.Instances.instance
weka.gui.explorer.PreprocessPanel.updateCapabilitiesFilt

er

weka.core.Capabilities.assign

weka.core.Capabilities.handles

weka.core.Capabilities.disable

weka.core.Capabilities.hasDependency

weka.core.Capabilities.disableDependency

weka.core.Instances.classIndex

weka.core.Capabilities.enable

weka.core.AbstractInstance.classIndex

weka.core.AbstractInstance.isMissing

weka.core.DenseInstance.value
weka.core.Instances.attributeStats

weka.core.AttributeStats.addDistinct

weka.experiment.Stats.add

weka.experiment.Stats.calculateDerived

weka.gui.explorer.ClassifierPanel.updateCapabilitiesFilter

weka.gui.explorer.ClustererPanel.updateCapabilitiesFilter

weka.gui.explorer.AttributeSelectionPanel.updateCapabili

tiesFilter

weka.core.Instances.swap

weka.core.Attribute.isString

weka.core.Capabilities.enableDependency

weka.gui.explorer.ClassifierErrorsPlotInstances.process

weka.classifiers.Evaluation.evaluateModelOnceAndRec

ordPrediction

weka.classifiers.Evaluation.evaluationForSingleInstance

weka.core.AbstractInstance.dataset

weka.core.DenseInstance.freshAttributeVector
weka.core.DenseInstance.toDoubleArray

weka.classifiers.trees.J48.distributionForInstance

weka.classifiers.trees.j48.ClassifierTree.distributionForI

nstance

weka.core.AbstractInstance.numClasses

weka.classifiers.trees.j48.ClassifierTree.localModel

weka.classifiers.trees.j48.ClassifierTree.son

weka.classifiers.trees.j48.ClassifierSplitModel.classProb

weka.classifiers.trees.j48.NoSplit.weights

weka.classifiers.trees.j48.Distribution.prob

weka.classifiers.Evaluation.updateStatsForClassifier

weka.classifiers.Evaluation.updateMargins
weka.classifiers.Evaluation.makeDistribution

weka.classifiers.Evaluation.updateNumericScores

weka.classifiers.evaluation.NominalPrediction.updatePre

dicted

weka.core.AbstractInstance.classAttribute

weka.classifiers.evaluation.NominalPrediction.distributi

on

weka.classifiers.evaluation.NominalPrediction.actual

weka.classifiers.evaluation.NominalPrediction.weight

weka.gui.visualize.Plot2D.convertToPanelX

weka.gui.visualize.Plot2D.convertToPanelY

methods is gathered from the documentation and comments
in the source code of the system [26].

Table 4. Statistics about representative elements

Phases (SP) (SV) (SR) Ratio

SR/SP

Phase 1 16035 334 47 0.29%

Phase 2 9089 231 34 0.37%

Phase 3 4225 270 38 0.89%

Phase 4 3832 113 16 0.41%

Phase 5 5140 83 12 0.23%

Similar to the previous system, we were able to

understand the original trace by examining the most relevant
elements of its phases, which we briefly (due to space
limitation) review in what follows.

 The first phase focuses on the initialization of ArgoUML
where the main application frame (e.g., main panes:
navigation pane, multieditor pane, to-do pane, and details
pane), status bar, and project are set up. The second phase is
concerned with loading auxiliary modules from the input
stream and adding them to the Post Load Actions list, which
contains actions that are run after ArgoUML has started. The
third phase is the phase where the actual class element is
drawn. This phase is followed with two other small phases.
The first of these phases (Phase 4) refreshes and updates the
models properties set in the previous phase, such as
boundaries, NameText, font, and etc. The representative
methods of the last phase (e.g., save methods, menu selection
method, and exit methods) clearly show the termination of
the application.

Table 5. Similarities between phases for ArgoUML Trace

 P2 P3 P4 P5

P1 0.79 % 0.16% 0.01% 0.00%

P2 0.32% 0.33% 0.53%

P3 2.50% 0.13%

P4 3.75%

The element vectors are then used to measure the

similarity between phases. As shown in Table 5, a very small
similarity between the phases does not suggest any change to
the sequence of phases in the high-level as shown
in Figure 12.

Finally, the high-level view of the flow of phases with
assigned description is shown in Figure 12. Table 4 shows

the percentage of the element investigated in each phase to
extract relevant information (SR/SP). The content
prioritization stage except for the information gathering
which is done manually took 14 sec on an Intel Core Duo
CPU 2.00GHz, 2MB cache, 1GB main memory, running
Windows XP.

V. RELATED WORK

Wilde et al. [9] introduced the concept of Software
Reconnaissance where traces generated by exercising several
features are compared to identify components specific to the
feature at hand. In our approach, we only generate one trace
for generating a flow of phases. Eisenbarth et al. [20]
proposed a hybrid feature location approach where formal
concept analysis is applied on the execution traces to
determine the relation between features.

Poshyvanyk et al. [17] introduced an approach based on
information retrieval (IR) for feature location. Our work
adapts a text mining technique on the trace elements for
identifying their significance in each phase.

Asadi et al. [30, 31] also proposed an interesting
approach which uses IR to identify concepts in execution
traces. Our work is different from theirs in that we use all
three types of trace global, local, and domain information for
our flow of phases while they use English literature for stop-
word removal, static structure of the code for local and
global information.

Greevy et al. [1] exploited the relationship between
features and classes to analyze the way features of a system
evolve and to detect changes in the code from a feature
perspective. Rather than detecting feature specific
components, the main focus of the authors approach is on

ArgoUML initialization:

system initialization,

initialize critic

subsystem, and GUI

initialization

Loading module

from the input

stream. Perform

commands from the

command line. Start

critic thread

Termination of the

application

refresh and update

model properties

such as boundaries,

NameText, font,

and etc

Add a class diagram:

prepare the figure, add

to the model, give it

priority for critic.

Phase 1 Phase 3 Phase
5

Phase 2 Phase 4

Figure 12. Flow of phases with relevant information added

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Figure 11. Detected phases for execution trace of ArgoUML

studying how the classes may change their roles during
software evolution.

Visualization approaches [6, 14, 15] have also been used
to reduce the amount of trace information to look at. The
advantage of our approach over these is that it does not
require efforts hypothesis in detecting phases, their flow, and
their relevant information. Watanabe [12] proposed a phase
detection technique based on the investigation of LRU cache
and [8] suggest a possible analogy between analysis of trace
information and signal processing where users can identify
similar phases within a trace and between the traces. Both
techniques are not focused on providing the user with
relevant information about phases.

VI. CONCLUSION

We proposed a technique for extracting important
information about a trace by analyzing the most relevant
information of the execution phases that compose it. We
demonstrated through the case study that our approach can
significantly simplify the analysis of large traces. Immediate
future direction would be to continue experimenting with
this approach. We also need to investigate thresholds that
govern the phase detection technique as well as the way most
representative phase elements are selected. We would also
like to investigate ways in which our proposed technique can
help maintainers in redocumentation, extraction of
crosscutting concerns, and fault localization. Finally, we are
also interested in investigating how trace segmentation based
on phase detection can play an important role in recovering a
system's conceptual plans.

ACKNOWLEDGMENT

This work is partly supported by NSERC (Natural Sciences

and Engineering Research Council of Canada).

REFERENCES

[1] O. Greevy, and S. Ducasse, ―Correlating features and code using a
compact two-sided trace analysis approach,‖ In Proc. of CSMR’05,
314-323, 2005.

[2] A. Hamou-Lhadj, E. Braun, D. Amyot, T. Lethbridge, ―Recovering
behavioral design models from execution traces,‖ In Proc. of
CSMR’05, 112-121, 2005.

[3] A. Zaidman and S. Demeyer, ―Managing trace data volume through a
heuristical clustering process based on event execution frequency,‖ In
Proc. of CSMR’04, 329–338, 2004.

[4] A. Hamou-Lhadj, and T. C. Lethbridge, ―A Survey of Trace
Exploration Tools and Techniques,‖ In Proc. of CASCON’04, 42-54,
2004.

[5] G. A. Miller, ―The magical number seven or minus two: Some limits
on our capacity of processing information,‖ Psychological Review,
63(2), 281–97, 1956.

[6] S. P. Reiss, ―Visual representations of executing programs,‖ Journal
of Visual Languages & Computing, 18(2), 126-148, 2007.

[7] H. Pirzadeh, A. Agarwal, A. Hamou-Lhadj, ―An Approach for
Detecting Execution Phases of a System for the Purpose of Program
Comprehension,‖ In Proc. of SERA’10, 207-214, 2010.

[8] A. Kuhn and O. Greevy, ―Exploiting the analogy between traces and
signal processing,‖ In Proc. of ICSM'06, 320-329, 2006.

[9] N. Wilde, M. C. Scully, ―Software Reconnaissance: Mapping
program features to code,‖ Journal of Software Maintainence:
Research and Practice, 7(1), 49-62, 1995.

[10] D. Gentner, ―Structure-mapping: a theoretical framework for
analogy,‖ Cognitive Science,7(2), 155–170, 1983.

[11] D. Pelleg and A. Moore, ―X-means: Extending K-means with
efficient estimation of the number of clusters,‖ In Proc. of ICML’00,
727–734, 2000.

[12] Y. Watanabe, T. Ishio, K. Inoue, ―Feature-level phasedetection for
execution trace using object cache,‖ In Proc. of WODA’08, 8-14,
2008.

[13] T. Systä, ―Understanding the Behaviour of Java Programs‖, In Proc.
of WCRE’00, 214-223, 2000.

[14] D. F. Jerding, J. T. Stasko, ―The Information Mural: A Technique for
Displaying and Navigating Large Information Spaces,‖ IEEE
Transactions on Visualization and Computer Graphics, 4(3), 257-271,
1998.

[15] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk, A.
van Deursen, ―Understanding Execution Traces Using Massive
Sequence and Circular Bundle Views,‖ In Proc. ICPC’07, 49-53,
2007.

[16] ArgoUML, URL: argouml.tigris.org

[17] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, V. Rajlich.
―Feature Location Using Probabilistic Ranking of Methods Based on
Execution Scenarios and Information Retrieval,‖ IEEE Transactions
on Software Engineering, 33(6), 420-432, 2007.

[18] H. Pirzadeh, A. Hamou-Lhadj, "A Novel Approach Based on Gestalt
Psychology for Abstracting the Content of Large Execution Traces
for Program Comprehension", In Proc of ICECCS '11, 221–230,
2011.

[19] T. Joachims, ―Text Categorization with Support Vector Machines:
Learning with Many Relevant Features,‖ In Proc. of ECML98, 137-
142, 1998.

[20] T. Eisenbarth, R. Koschke, D. Simon ―Locating features in source
code,‖ IEEE Transactions on Software Enginnering, 29(3), 210-224,
2003.

[21] K. Koffka. Principles of Gestalt Psychology. Hartcourt, NY, 1935.

[22] H. Pirzadeh, A. Hamou-Lhadj, ―A Software Behaviour Analysis
Framework Based on the Human Perception Systems‖, In Proc. of
ICSE’11, New Ideas and Emerging Results Track, 2011.

[23] G. Schwarz, "Estimating the dimension of a model," The Annals of
Statistics, 6(2), 461–464, 1978.

[24] WEKA, URL: www.cs.waikato.ac.nz/ml/weka/.

[25] A. Hamou-Lhadj and T.C. Lethbridge, ―Summarizing the content of
large traces to facilitate the understanding of the behaviour of a
software system,‖ In Proc. ICPC’06, 181–190, 2006.

[26] L. Tolke et al. Cookbook for Developers of ArgoUML: An
Introduction to Developing the ArgoUML, URL:
http://argouml.tigris.org/

[27] N. Japkowicz and M. Shah. Evaluating Learning Algorithms: A
Classification Perspective. Cambridge University Press, 2011.

[28] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

[29] R.J. Price ―Automatic stop word identification and compensation‖,
US Patent, 7, 720-792, 2010.

[30] F. Asadi, M. Di Penta, G. Antoniol, Y.-G. Gueheneuc, ―A heuristic-
based approach to identify concepts in execution traces,‖ In Proc. of
CSMR’10, 15-18, 2010.

[31] F. Asadi, G. Antoniol, Y.-G. Gueheneuc, ―Concept Location with
Genetic Algorithms: A Comparison of Four Distributed
Architectures,‖ In Proc. of SSBSE '10, 153-162, 2010.

