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Abstract—The analysis of execution traces can be useful in 

many software engineering activities including debugging, 

feature enhancement, performance analysis, and any other 

task that requires some degree of understanding of the way a 

system behaves. Traces, however, tend to be considerably 

large, which often hinders effective analysis of their content. 

There is a need to investigate ways to help software engineers 

find and understand important information conveyed in a 

trace despite the trace being massive.  Motivated by the work 

done in the area of text mining, we propose, in this paper, a 

trace exploration approach based on examining the trace 

execution phases. The approach consists of automatically 

identifying relevant information about the phases as well as the 

ability to provide an efficient representation of the flow of 

phases by detecting redundant phases using a cosine similarity 

metric. We applied our approach to large traces generated 

from two different systems and were able to quickly 

understand their content and extract higher level views that 

characterize the essence of the information conveyed in these 

traces.  
Program Comprehension, Dynamic Analysis, Text mining, 

Software Maintenance.  

I. INTRODUCTION 

The analysis of execution traces is an important enabler 
for many software maintenance activities that require some 
understanding of the system behavior, such as locating 
system defects [14] and feature enhancement [13]. Trace 
exploration is however a challenging task partly due to the 
sheer size of typical traces, often millions of events. To 
alleviate this task, several trace abstraction techniques have 
been proposed (e.g., [1, 2, 3]). Although these techniques 
have shown to be useful in software maintenance, they suffer 
from several limitations, such as extensive reliance on user 
intervention, and dependence on particular visualization 
schemes [4]. The general consensus in the area of trace 
analysis is that more research is needed. 

In our previous work [18], we presented an approach, 
called trace segmentation, for automatically dividing the 
content of a trace into smaller and meaningful trace segments 
that correspond to the program’s main execution phases. Our 
definition of an execution phase is similar to the one 
presented by Reiss [6]: A segment of program’s execution 
that performs a specific task, where the composing elements 

exhibit a common behavior at a level the programmer would 
recognize, such as initializing variables, performing specific 
computations, etc. Each phase consisted of a group of trace 
elements clustered together based on their relevance to the 
task being represented. We also showed that these phases 
can significantly simplify the exploration of large traces by 
allowing software engineers to navigate through a trace as a 
flow of execution phases instead of a series of mere low-
level events.  

In this paper, we continue this work by proposing a 
method for automatically identifying the trace elements that 
are most relevant to the implementation of each execution 
phase. This is particularly important since it can significantly 
simplify the exploration of large phases by allowing software 
engineers to quickly understand the phases of an execution 
and select the intended ones before deciding to dive into the 
details. Another contribution of the paper is a technique for 
identifying similar phases within a trace. It is possible that a 
single major computation happens several times in different 
periods during the execution of a program. Existing phase 
detection algorithms (e.g., [6, 12]) usually detect each 
occurrence as a different phase (although they are very 
similar). A better representation of a program execution is 
the one where a phase is indentified only once and referred 
to it in other places. 

To achieve our objectives, we adopt techniques from the 
area of text mining, more particularly the Term Frequency, 
Inverse Document Frequency (TF-IDF) technique and the 
cosine similarity measure. We validate our approach using 
traces generated from two software systems.  

The contributions of this paper can be further refined to 
help with tasks such as:  

 The ability for software engineers to understand the 

most relevant elements that implement the traced 

scenario (or software feature). As such, the contribution 

of this paper falls under the category of feature location 

research. 

 The recovery of high-level behavioral design models 

from large execution traces. The most important 

elements of a trace uncovered by our approach can be 

represented, for example, in a UML sequence diagram. 

These models can in turn be used for redocumentation, 



 

 

or for assessing if the system does what it is supposed 

to do by comparing the resulting diagrams with existing 

design diagrams.  

 Any area where trace summaries are needed. This will 

be particularly useful if the proposed techniques are 

integrated in a tool, in which the ability to switch 

between a high-level view of a trace and a detailed view 

is provided. 

The rest of the paper is organized as follows: Section II 
draws analogy between trace analysis and text mining. In 
Section III, we present the approach. Section IV is concerned 
with the case study. We conclude the paper in Section VI 
after we present the related work. 

II. TRACE ANALYSIS AND TEXT MINING  

Dealing with large data spaces, whether the data takes the 
form of traces, text, or any other artifact, is in principle 
subject to similar challenges, among which perhaps the most 
important ones consist of coping with the large volume of 
data, overcoming the limited capacity of the human working 
memory [5], and the constant need to reduce the presence of 
noise in the data so as to focus on what is important.  

Research in the area of text mining has long been active 
in addressing these challenges, which motivated us to 
explore how the application of existing techniques can be 
applied to the analysis of traces. However, before drawing 
any parallel between the two domains, we first need to 
determine the mapping between the concepts in the two 
domains as stated by Gentner in his theory of structural 
mapping [10]. Figure 1 shows three types of objects in the 
domain of text mining: Corpus, Document, and Term, where 
a document is a sequence of terms and a corpus is a set of 
documents. We propose to view an execution trace as a 
corpus and the execution phases that compose it as the 
corpus documents. In our previous work [18, 22], we 

proposed a way to automatically detect execution phases 
from a trace. The essence of this decomposition is revisited 
in Section III.A. Each trace element can be viewed as a term 
within a phase document. Note that the mapping takes place 
not only between objects, but also between the containment 
relations between the objects. 

There exists a variety of text mining techniques, in this 
study, we want to focus on the ones that make use of three 
types of information:  

 Local information: It refers to the information inside 

individual documents (e.g., term frequency).  

 Global information: It is the information from the 

collection of documents in the corpus (e.g., document 

frequency).  

 Domain information that refers to the information from 

the domain of a term. For example, the term ―can‖ has 

different significance in the domain of literature and the 

domain of packaging [29].  

Similarly, we consider the information inside each phase 
(e.g., the frequency of an element within a phase) as local 
information in trace analysis. Global information in this 
domain can be considered as the information from the 
collection of phases in the trace (e.g., number of phases in 
which a particular element is invoked). Finally, domain 
information in trace analysis is the information about the 
trace elements where they are defined. This information 
could be extracted from the source code or the 
documentation (e.g., static call graph information of each 
element).    

III. APPROACH 

Figure 2 shows our approach for extracting relevant 
information from a trace based on the analysis of its 
execution phases. The approach encompasses two main 
phases. The first phase (Trace Segmentation) consists of 
automatically dividing the content of a trace into execution 
phases. To segment a trace, we use the phase detection 
technique that we presented in [18]. Other phase detection 
techniques such as the ones presented in [6, 12, 7] could also 
be used. 

The second phase consists of the application of a newly 
designed technique called content prioritization with which 
the trace elements of each phase are weighted and the ones 
that have the highest weight are deemed to be the most 
representative elements of a phase. Once the elements are 
weighted, we extract the most representative ones. We also 
use the weighted elements to detect similar phases.  

A. Trace Segmentation 

Our process for segmenting a trace into execution phases 
is composed of two steps [18]: 

 Step 1: Identifying candidate phases using the 

application of gravitational schemes (see next 

subsection) to group the trace elements into phases.  

 Step 2: Identifying the beginning and end of each 

phase using K-means clustering.  

Corpus 

Documents 

Terms 

Trace 

Phases 

Elements 

 

Element 

weighting 
 

: ―Composed of‖ relation : Mapping 

Figure 1. Mapping between the text mining and trace analysis domains 



 

 

Step 1: Phase detection 

In our previous work [18], we have developed a phase 
detection technique that is inspired by Gestalt laws of 
perception (namely similarity and good continuation), which 
describe how people group similar items visually based on 
their perception [21].  Gestalt  psychology is an  application 
of  physics  to  essential  parts  of  brain  physiology by  
telling  the  physiologist  what  kind  of processes  occur  in  
the  brain  when  we  see  visual  objects, and how our 
perceptual systems follow certain grouping principles (e.g., 
good continuation, proximity, and similarity properties of the 
elements) [9, 21] to integrate the scene elements (i.e., objects 
and regions) as a whole and not just as points and lines.  

We have developed two gravitational schemes, more 
precisely the similarity and continuity schemes, based on 
Gestalt laws, which we use as gravitational forces that yield 
the formation of dense groups of trace elements, the 
candidate execution phases. The similarity and continuity 
schemes operate as follows (please refer to [18] for a formal 
description of these schemes). 

The objective of the similarity gravity scheme is to 
reposition the elements of a trace in such a way that similar 
elements gravitate towards each other forming a group of 
dense elements, which could indicate the presence of a 
phase. In other words, the elements of a trace are re-
positioned to make the distance between two same elements 
less than the distance between two different elements.  

In Figure 3, we show the effect of applying the similarity 

gravity scheme to a sample trace composed of routines1 a, 

b, c, and d (Figure 3(1)). The trace elements are mapped 
to a ruler indicating the position of the events as they occur. 
Assume that the similarity scheme works in a way that the 
distance between two calls to the same routine is reduced by 
half, the resulting trace after the application of the similarity 
scheme would therefore lead to two dense groups (see Figure 
3(2)). The first one starts at the first invocation and is 

composed of calls to methods a and b, while the other one, 

                                                           
1 The focus of this paper is on traces of routine (method) calls. 

which starts at the seventh invocation, contains calls to c 

and d. These groups might indicate the presence of two 
phases in the trace, although in practice one needs to 
carefully define the criteria by which two routines should be 
attracted to each other (see [18] for more discussion on this).   

The second scheme that we have developed, the 
continuity gravity scheme, groups trace elements based on 
the nesting level of the routine calls by keeping the calls with 
higher nesting level closer to the previous routine calls. The 
higher is the nesting level of a routine call, the stronger it is 
attracted by the previous routine call. Using the nesting level 
of calls to detect execution phases has also been the topic of 
a number of studies [8, 12]. Watanabe et al. [12] used the 
nesting levels of a call tree to detect phases and locate phase 
shifts. They suggested that the depth of the call stack (i.e., 
the nesting level) is in local-minimum at the beginning of a 
phase indicating a phase transition. They also showed that 
the elements that have a high nesting level (i.e.,which are 
deep in the tree hierarchy) were unlikely to initiate new 
phases.  

 

 
Figure 3. An example of applying the similarity scheme 

 
Figure 4 shows the result of applying the continuity 

gravity scheme to a sample trace, assuming that the distance 
between two consecutive nesting calls is reduced by half. 
The new positioning of the elements seems to lead to two 
distinguishable phases (the phases are more distinguishable 
when we omit to visualize the nesting levels – Figure 4(3)). 
The first phase begins at the first method invocation and the 
second phase starts at the tenth method invocation. 
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Figure 2. Overview of our proposed approach 
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Figure 4. An example of applying continuity scheme 

 

Step 2: Identification of Phase Boundaries 

Once the trace elements are repositioned using the 
similarity and continuity gravity schemes, we need a way to 
automatically identify the beginning and end of each phase 
because it would be impractical to expect from programmers 
to distinguish the various phases visually for considerably 
large traces. For this, we chose K-means clustering as our 
clustering algorithm. In K-means clustering the number of 
clusters (i.e., the number of phases) should be given as an 
input to the algorithm (perhaps by counting the number of 
distinct phases that he can visually perceive on the plot). 
This, however, can be error prone. Therefore, it would be 
advantageous if the number of clusters could be selected 
automatically according to the complexity of the data. Pelleg 
and Moore [11] proposed an approach to find the best 
partitioning of the data where the average variance of the 
clusters is minimum. It is obvious that as the number of 
clusters increases the average variance of the clusters 
decreases (as K approaches the number of data points the 
variance becomes zero; this is known as overfitting). 
Therefore, the problem is reduced to finding a tradeoff 
between the number of clusters and the average variance of 
the clusters that keeps the number of clusters and the 
variance both minimized. This tradeoff is reached via the 
Bayesian Information Criterion (BIC), which is a model 
selection criterion [23]. In order to avoid the problem of 
overfitting the data, BIC is penalized based on the number of 
parameters in the model.   

As shown in Figure 5, we assume that the user has run 
the K-means algorithm on the repositioned trace (i.e., a trace 
with dense groups of methods formed using the similarity 
and continuity schemes) for a set of different values of K, 

which results in a set of alternative partitionings. To evaluate 
these partitionings, we compute the BIC score of each 
partitioning, the highest BIC means the best available 
partitioning of the execution trace and consequently the best 
estimation of the number of clusters K, and which also 
corresponds to the number of identified phases. 

 

 
Figure 5. BIC supported K-means clustering 

 
In [18], we applied our phase detection algorithm to large 

traces generated from two object-oriented systems. We 
validated the results by studying documentation of both 
systems and showed that our approach was successful in 
dividing these traces into meaningful phases. 

B. Content Prioritization 

The second step of our approach (also the main 
contribution of this paper) is to extract the trace elements that 
are most relevant to each execution phase. For this purpose, 
we use text mining techniques as previously mentioned. 
More precisely, the content prioritization phase is composed 
of the following steps, which are listed here and discussed in 
more detail in the subsequent sections:  

1. We first remove utility routines from the execution 

phases to reduce the noise in the data. The process of 

removing utilities is similar to removing stop words 

from text.  

2. We apply a weighting function to weigh elements of a 

phase according to their relevance. The higher the 

weight, the more representative the element.  

3. We propose a way to select the most representative 

elements in a phase from the list of ranked elements 

obtained in 2.  

4. We measure the similarity between phases based on 

their weighted elements.  

1) Utility Removal: 
Text mining techniques usually start with a preprocessing 

step that removes stop words -The words that add little value 
to the process of finding relevant information. Stop word 
identification, which is the process of identifying these 
words, makes use of domain and global information. For 
example, in the domain of English literature, stop words are 
among auxiliary verbs (e.g., have, be), pronouns (he, it), or 
prepositions (to, for). Similarly, we proceed with removing 
utilities from the trace before weighting its elements. 
According to Hamou-Lhadj et al. [25], a utility is a 
component that implements a low-level concept such as 
accessing methods or language libraries. In this paper, we 
limit ourselves to this type of utilities that can be detected 
without advanced processing techniques.  



 

 

2) Element Weighting: 
In text mining, the process of term weighting is used for 

finding representative terms in each documents of a corpus. 
One of the best known weighting schemes is called TF-IDF 
(Term Frequency, Inverse Document Frequency) [19]. The 
goal of TF-IDF term weighting is to obtain high weights for 
terms that are representative of a document’s content and 
lower weights for terms that are less representative. The 
weight of a term depends both on how often it appears in the 
given document (term frequency, or tf ) and on how often it 
appears in all the documents of the collection (document 
frequency, or df ). In general, a high frequency of a term 
(high tf) in one document shows the importance of that term 
while if a term is scattered between different documents 
(high df), then it is considered less important. Therefore, if a 
term has high tf and low df (or high idf -inverse document 
frequency) then it will have a higher weight.  

A similar idea can be adapted to trace analysis to weigh 
the elements of a trace. We suggest a weighting function that 
considers the frequency of trace elements across the 
execution phases. Our hypothesis is that a trace element that 
appears often in a particular phase, but appears relatively 
infrequently in other phases potentially indicates that it is 
doing something important in that particular phase. We use 
the trace T shown in Figure 6, where the execution phases 
are already identified, to illustrate the proposed weighting 
function. 

Our weighting function is composed of three factors: 
local, global, and normalization. The weight of an element i 
in a phase k has the following general form: 

kikiki NGLw ,,   

where kiL ,  is the local weight of the element i in phase k 

(local information) which is usually based on the number of 
occurrences of the element in the phase. iG  is the global 

weight of the element in the phases of the trace (global 
information). This factor tends to under-weigh these 
elements that are too common in the trace. kN  is the 

normalization factor for the element weights in phase k. We 
create an index vector called element vector for each phase. 
The magnitude of each element in this vector indicates how 
well that element represents the content of the phase based 
on its frequency within the phase and other phases. If an 
element occurs very frequently in some phases, but occurs 
rarely in the trace as a whole, it will be given high weight in 
the element vector.  

The element frequency i,jef  of element i in phase j is 

defined as the number of times that i occurs in j. Similar to 
approaches in text mining, and since the importance of an 
element does not increase proportionally with the element’s 
frequency, we use the following local weighting kiL , for 

element frequency. 
 





 


otherwise                                                0

0 if                               log1 10
,

i,ji,j
ki

efef
L  

 

In Figure 6, kiL , is calculated for the elements in each of 

the 3 phases of trace T. For instance, in Phase 1, the element 
―d‖ is invoked twice, therefore, the local weight of 
L(d)=1+log(2)=1.3. 

 

 
Following the general form, we want to assign the weight 

kiw ,  to element i in phase k in proportion to the frequency 

of occurrence of the element in phase k, and in inverse 
proportion to the number of phases in which the element is 
invoked. It should be noted that the phase lengths, and hence 
the number of non-zero element weights assigned to a phase, 
varies widely. To allow a meaningful final retrieval 
similarity, it is convenient to use a length normalization 
factor as part of the element weighting formula. A high-

quality element weighting formula for kiw , , the weight of 

element i in phase k is 
 

 

Figure 6. Running example to illustrate the weighting function 
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where i,kef is the occurrence frequency of element i in phase 

k, N is the total number of phases, in is the number of phases 

with element i assigned and e is the total number of 
elements. The factor   )/log( inN is an inverse phase 

frequency (similar to ―idf‖) factor which decreases as the 
elements are used widely in a trace and the denominator in 
the equation is used for weight normalization. This factor is 
used to adjust the element vector of the phase to its norm, so 
all the phases have the same modulus and can be compared 
no matter the size of the phase.  

This weighting system enables us to adjust the weighting 
for an element according to not only local but also global 
information available in the entire trace. Figure 6 shows 

kiw , for the elements in each phase. For instance, 1,dw  the 

weight of element ―d‖ in Phase 1, given that G(d) in the trace 
is 0.17,  is calculated as follows: 

 

45.0

)26.0()22.0()17.0(

17.03.1

222
1,"" 




Phasedw  

 

3) Extracting Relevant Information: 
The output of the element weighting step is a list of phase 

elements ranked according to their relevance. We need to 
determine a threshold with which we can select the most 
representative elements among this list. For example, a 
software engineer can decide to only consider the top 20% of 
the elements that have the highest ranking to be the most 
representative elements of a phase.  

Another possible method is to set a cap on the maximum 
number of elements we want to extract and compute the 
number of elements per phase proportionally to the size of 
that phase as follows: 
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where R(Pi) in the number of most relevant elements of a 
phase Pi, M is the maximum number of element considered 
given as input, |T| is the size of the trace after removing the 

utilities, and iP is the size of a phase. In the example of 

Figure 6, if the maximum number of elements that we want 
is set to 3, given that the size of the trace which is 25, we 
have: 
 

 R(Phase1)=3*8/25=1 

 R(Phase2)=3*8/25=1  

 R(Phase3)=3*9/25=1 

 
Then for each phase we chose the top 1 element from the 

element vector as the most representative of that phase. This 
way, ―m‖ is the most representative element of Phase 2 and 
―a‖ is the most representative of both phases 1 and 3.  
We can further improve the information contained in each 
phase, and hence facilitate the browsing the trace, by 

enriching the phase most representative elements with any 
descriptive information such as source code comments or 
any information extracted from valid documentation. We are 
aware that this informal source of data might not be reliable 
in practice though. In the worst case scenario, the element 
names will be the only information that can be used. Figure 7 
shows the high-level flow of phases in Trace T of Figure 6 
where the relevant information about each phase is added. 
The trace T can now be browsed as a sequence of phases 
with relevant information rather than a large trace of events. 

 
4) Determining Similar Phases: 

The similarity between two objects is in general regarded 
as how much they share in common. In the domain of text 
mining, the most commonly used measure for evaluating the 
similarity between two documents is the cosine of the angle 
between term vectors representing the documents. In the 
same way, the similarity between two phases can be 
calculated based on the list of their matching elements.  

More precisely, we measure the similarity between each 
pair of phases by calculating the cosine of the angle between 
the element vectors yx PP ,  representing the phases:  
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The weights cannot be negative and, thus, the similarity 

between two phases ranges from 0 to 1, where 0 indicates 
independence, 1 means exactly the same, and in-between 
values indicate intermediate similarity.  

To determine the similarity between the phases, we take 
the element vector of each phase and measure the similarity 
between each pair of vectors. If the similarity between two 
phases is more than a user-specified threshold they are 
considered as the same. As a result, for phases that are 
repeated in a sequence of phases, the first occurrence is kept 
and the next occurrences are referred to the first occurrence. 
It should be noted that, by definition, consecutive execution 
phases must be dissimilar enough to be detected as separate 
phases in the first place.  

For our sample trace T in Figure 6, the similarities 
between phases are shown in Figure 8. If we consider a 
threshold of 90% for two phases to be considered similar, 
then Phase 1 and Phase 3 are the same. This enables us to 
reduce the high-level flow of the phases to the one shown in 
Figure 8. 
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Figure 7. Flow of phases with relevant information added 



 

 

 

IV. CASE STUDIES 

We conducted experiments with traces generated from 
two software systems WEKA [24] and ArgoUML [16] that 
we present separately in this section. Both systems where 
instrumented using TPTP (the Eclipse instrumentation tool). 

A. WEKA: 

WEKA is a machine learning tool that implements 
several learning algorithms [24]. We used WEKA 3.7.3 
(latest version) which consists of 76 packages, 1133 classes, 
14210 methods, and 226220 lines of code. 

To generate a trace, we applied the WEKA machine 
learning toolkit to build a decision tree learning algorithm for 
classifying data instances. Each data instance is typically a 
vector of attribute values where each attribute denotes some 
measurement of interest. Training involves executing the 
decision tree learning algorithm on a set of training data 
instances. The algorithm identifies specific patterns in the 
data and outputs a decision tree model each node of which 
uses a predicate built on specific data attributes to fine tune 
the classification. The output decision tree model is 
subsequently evaluated on a separate set of test data 
instances. The model evaluates the predicate on each node of 
the decision tree against their corresponding values in each 
data instance and outputs a class prediction. Different 
performance statistics, e.g., prediction accuracy over all test 
instances, are then calculated for evaluation purposes [27]. 
As such, the core process of learning a model consists of 
three main stages: data input, learning a model from training 
data, evaluating the model on test data.  

The detailed steps of the scenario we used to generate a 
trace are: (a) Run the WEKA Explorer tool, select a training 
set, go to the Classify tab, (b) Select the classifier J48 (see 
[28] for a description on this algorithm), select the ―supplied 
test set‖ option, (c) Select a test set, start the classification, 
close the program. 

The generated trace contains 87,2291method calls. Since 
each routine requires two events (entry and exit events) , the 

size of the trace in terms of events is 1,744,582. The number 
of distinct routines involved in the trace is 1309. 

The application of the phase detection technique resulted 
in the identification of four main phases. This can be seen in 
Figure 9 that shows four dense groups of methods appearing 
in the phase detection. Table 1 shows the size of the detected 
phase (SP) in terms of the number of method calls.  

In the next step, the original trace with its phases 
annotated is given to the utility removal component, where 
accessing methods are removed. The resulting trace is then 
processed to weigh the elements of each phase. Table 1 
shows the number of elements with non-zero weights in the 
element vector for each phase (SV). The element vector is 
passed to the ―preparation of relevant information‖ 
component where the top first 20% of the methods in each 
element vector is selected as most representative methods for 
each phase. This threshold is selected arbitrarily. Future 
studies should focus on investigating ways to set this 
threshold automatically, although we anticipate that this 
threshold will vary from one system to another. A tool that 
integrates our techniques should allow enough flexibility to 
vary this threshold.   Table 2 shows the representative 
methods of each phase (the methods are sorted based on their 
original order of invocation to help with better understanding 
of the flow of events).  Table 1 shows the number of 
representative methods for each phase (SR). 

 
Table 1. Statistics about representative elements 

Phases (SP) (SV) (SR) Ratio 

SR/SP 

Phase 1 82544 95 19 0.02% 

Phase 2 124586 137 27 0.02% 

Phase 3 445291 69 14 0.003% 

Phase 4 219871 127 25 0.01% 

 
We referred to the source code and the WEKA 

documentation [24] to extract descriptions of the routines 
that were deemed most representative of each phase. We 
were able to interpret the phases that composed the original 
trace by analyzing the phases’ most relevant information, 
which significantly simplified the understanding of the entire 
trace. In what, we briefly discuss the information contained 
in the trace. 

The first phase involves initialization of the WEKA 
toolkit itself. Since WEKA has a Graphical User Interface 
(GUI), this initialization also involves calls to processes that 

relevant info. 
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Figure 8. Calculating the similarity between phases 
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Figure 9: detected phases for execution trace of WEKA 



 

 

establish communication channels through this GUI. Some 
prominent examples in the most frequently called routine in 

Phase 1 can be seen with regard to the weka.core.tee 
objects. These objects refer to the WEKA's I/O stream 
initialization that enables it to both communicate with GUI 
interface selections by the user and establish streams for data 
input and results output.  

The next phase (Phase 2) involves reading and 
organizing the data in requisite data structures. This phase 
prepares the data as well as enables data capabilities based 
on data specifics. Data organization and preparation is 

represented by the calls to the weka.core.Instances 

and weka.core.Capabilities methods that involve 
organizing and handling instances in an ordered set, and set 
the classifier-specific data handling preferences respectively. 

The following phase (Phase 3) involves executing  
the learning algorithm to build a model on the training  
data. This is represented by methods in the 

weka.classifiers.trees.j48 class.  
Finally, the last phase consists of the evaluation of the 

decision tree model output by Phase 3, on a set of test 
instances. This is indicated by calls to the methods in 

weka.classifiers.Evaluation class.  
Since a prediction is obtained on each individual  

test data instance, repeated calls to 
weka.classifiers,Evaluation.evaluationFo

rSingleInstance method can be seen. This method 
performs an instance-wise evaluation of the decision tree 
model. This phase also estimates different performance 
statistics for the model.  

The phase element vectors were also used to determine 
the similarity between each pair of phases. As shown in 
Table 3, the calculated similarities between every pair of 
phases was less than 1%. This meant that the high-level flow 
of phases cannot be further reduced. The small value of 
similarities between consecutive phases also showed the 
good quality of the phase detection.   

 

Table 3. Similarities between phases for WEKA Trace 

 P2 P3 P4 

P1 0.18 % 0.04% 0.00% 

P2  0.98% 0.68% 

P3   0.48% 

 
Finally, the high-level view of the flow of phases with 

assigned description (extracted by reading the WEKA 
documentation) is shown in Figure 10. This high-level 
information flow is obtained by investigating a very small 
percentage of the original trace, which is quantified as SR/SP 
(Table 1). The content prioritization step, except for 
assigning description to the selected phase elements which is 
done manually, took 74 sec on  an  Intel  Core  Duo  CPU  
2.00GHz,  2MB  cache, 1GB  main  memory,  running  
Windows  XP. 

 

 

B. ArgoUML: 

For the second case study, we applied our technique to a 
trace generated from ArgoUML [16] by exercising the 
following scenario: Starting up ArgoUML, drawing a class 
on the class diagram, and quitting ArgoUML). The resulting 
trace contained 38321 method calls (2330 distinct methods). 
Figure 11 shows the result of applying the phase detection 
technique to the ArgoUML trace. Five phases have been 
identified. Table 4 shows the size of each detected phase as 
the number of method calls (SP). Similar to the previous case 
study, we applied the removal of utilities and the element 
weighting steps on the resulting trace elements. The top 20% 
of each vector is selected as most representative elements of 
each phase (see Table 4 for the number of representatives for 
each phase (SR)). The information about the representative 
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Reading and organizing 

training and test data: 
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properties, data 

preprocessing 

Executing learning 

algorithm: outputs a 
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Figure 10. Flow of phases with relevant information added 

Table 2. Representative elements of the WEKA trace  

Reps. of Phase 1 Reps. of Phase 3 

weka.core.Tee.add 

weka.core.WekaPackageManager.loadPackages 

weka.core.ClassDiscovery.initCache 

weka.core.ClassCache.initFromDir 

weka.core.ClassCache.add 
weka.core.ClassCache.cleanUp 

weka.core.ClassCache.extractPackage 

weka.core.ClassCache.initFromJar 

weka.core.ClassDiscovery.find 

weka.core.ClassDiscovery.hasInterface 

weka.core.ClassCache.remove 

weka.core.ClassDiscovery.addCache 

weka.gui.GenericPropertiesCreator.isValidClassname 

weka.core.ClassDiscovery.isSubclass 

weka.core.Stopwords.add 

weka.core.Tee.size 

weka.core.converters.AbstractFileSaver.resetOptions 
weka.core.converters.AbstractSaver.resetOptions 

weka.gui.GenericObjectEditor.registerEditor 

 

weka.core.WekaEnumeration.hasMoreElements 

weka.core.WekaEnumeration.nextElement 

weka.classifiers.trees.j48.Distribution.add 

weka.classifiers.trees.j48.Distribution.numClasses 

weka.classifiers.trees.j48.Distribution.total 
weka.core.Instances.quickSort 

weka.core.Instances.partition 

weka.classifiers.trees.j48.EntropyBasedSplitCrit.logFunc 

weka.classifiers.trees.j48.Distribution.shiftRange 

weka.classifiers.trees.j48.Distribution.perBag 

weka.classifiers.trees.j48.InfoGainSplitCrit.splitCritValu

e 

weka.classifiers.trees.j48.EntropyBasedSplitCrit.newEnt 

weka.classifiers.trees.j48.Distribution.numBags 

weka.classifiers.trees.j48.Distribution.perClassPerBag 

Reps. of Phase 2 Reps. of Phase 4 

weka.gui.explorer.Explorer.addCapabilitiesFilterListener 

weka.core.Instances.numAttributes 

weka.core.Attribute.indexOfValue 

weka.core.AbstractInstance.weight 

weka.core.Instances.numInstances 

weka.core.Instances.instance 
weka.gui.explorer.PreprocessPanel.updateCapabilitiesFilt

er 

weka.core.Capabilities.assign 

weka.core.Capabilities.handles 

weka.core.Capabilities.disable 

weka.core.Capabilities.hasDependency 

weka.core.Capabilities.disableDependency 

weka.core.Instances.classIndex 

weka.core.Capabilities.enable 

weka.core.AbstractInstance.classIndex 

weka.core.AbstractInstance.isMissing 

weka.core.DenseInstance.value 
weka.core.Instances.attributeStats 

weka.core.AttributeStats.addDistinct 

weka.experiment.Stats.add 

weka.experiment.Stats.calculateDerived 

weka.gui.explorer.ClassifierPanel.updateCapabilitiesFilter 

weka.gui.explorer.ClustererPanel.updateCapabilitiesFilter 

weka.gui.explorer.AttributeSelectionPanel.updateCapabili

tiesFilter 

weka.core.Instances.swap 

weka.core.Attribute.isString 

weka.core.Capabilities.enableDependency 

weka.gui.explorer.ClassifierErrorsPlotInstances.process 

weka.classifiers.Evaluation.evaluateModelOnceAndRec

ordPrediction 

weka.classifiers.Evaluation.evaluationForSingleInstance 

weka.core.AbstractInstance.dataset 

weka.core.DenseInstance.freshAttributeVector 
weka.core.DenseInstance.toDoubleArray 

weka.classifiers.trees.J48.distributionForInstance 

weka.classifiers.trees.j48.ClassifierTree.distributionForI

nstance 

weka.core.AbstractInstance.numClasses 

weka.classifiers.trees.j48.ClassifierTree.localModel 

weka.classifiers.trees.j48.ClassifierTree.son 

weka.classifiers.trees.j48.ClassifierSplitModel.classProb 

weka.classifiers.trees.j48.NoSplit.weights 

weka.classifiers.trees.j48.Distribution.prob 

weka.classifiers.Evaluation.updateStatsForClassifier 

weka.classifiers.Evaluation.updateMargins 
weka.classifiers.Evaluation.makeDistribution 

weka.classifiers.Evaluation.updateNumericScores 

weka.classifiers.evaluation.NominalPrediction.updatePre

dicted 

weka.core.AbstractInstance.classAttribute 

weka.classifiers.evaluation.NominalPrediction.distributi

on 

weka.classifiers.evaluation.NominalPrediction.actual 

weka.classifiers.evaluation.NominalPrediction.weight 

weka.gui.visualize.Plot2D.convertToPanelX 

weka.gui.visualize.Plot2D.convertToPanelY 

 



 

 

methods is gathered from the documentation and comments 
in the source code of the system [26]. 

 
Table 4. Statistics about representative elements 

Phases (SP)  (SV) (SR) Ratio 

SR/SP 

Phase 1 16035 334 47 0.29% 

Phase 2 9089 231 34 0.37% 

Phase 3 4225 270 38 0.89% 

Phase 4 3832 113 16 0.41% 

Phase 5 5140 83 12 0.23% 

 
Similar to the previous system, we were able to 

understand the original trace by examining the most relevant 
elements of its phases, which we briefly (due to space 
limitation) review in what follows.  

 The first phase focuses on the initialization of ArgoUML 
where the main application frame (e.g., main panes: 
navigation pane, multieditor pane, to-do pane, and details 
pane), status bar, and project are set up. The second phase is 
concerned with loading auxiliary modules from the input 
stream and adding them to the Post Load Actions list, which 
contains actions that are run after ArgoUML has started. The 
third phase is the phase where the actual class element is 
drawn. This phase is followed with two other small phases. 
The first of these phases (Phase 4) refreshes and updates the 
models properties set in the previous phase, such as 
boundaries, NameText, font, and etc. The representative 
methods of the last phase (e.g., save methods, menu selection 
method, and exit methods) clearly show the termination of 
the application. 

 

Table 5. Similarities between phases for ArgoUML Trace 

 P2 P3 P4 P5 

P1 0.79 % 0.16% 0.01% 0.00% 

P2  0.32% 0.33% 0.53% 

P3   2.50% 0.13% 

P4    3.75% 

 
The element vectors are then used to measure the 

similarity between phases. As shown in Table 5, a very small 
similarity between the phases does not suggest any change to 
the sequence of phases in the high-level as shown  
in Figure 12. 

Finally, the high-level view of the flow of phases with 
assigned description is shown in Figure 12. Table 4 shows 

the percentage of the element investigated in each phase to 
extract relevant information (SR/SP). The content 
prioritization stage except for the information gathering 
which is done manually took 14 sec on  an  Intel  Core  Duo  
CPU  2.00GHz,  2MB  cache, 1GB  main  memory,  running  
Windows  XP. 

 

 

V. RELATED WORK 

Wilde et al. [9] introduced the concept of Software 
Reconnaissance where traces generated by exercising several 
features are compared to identify components specific to the 
feature at hand. In our approach, we only generate one trace 
for generating a flow of phases. Eisenbarth et al. [20] 
proposed a hybrid feature location approach where formal 
concept analysis is applied on the execution traces to 
determine the relation between features.  

Poshyvanyk et al. [17] introduced an approach based on 
information retrieval (IR) for feature location. Our work 
adapts a text mining technique on the trace elements for 
identifying their significance in each phase.  

Asadi et al. [30, 31] also proposed an interesting 
approach which uses IR to identify concepts in execution 
traces. Our work is different from theirs in that we use all 
three types of trace global, local, and domain information for 
our flow of phases while they use English literature for stop-
word removal, static structure of the code for local and 
global information.  

Greevy et al. [1] exploited the relationship between 
features and classes to analyze the way features of a system 
evolve and to detect changes in the code from a feature 
perspective. Rather than detecting feature specific 
components, the main focus of the authors approach is on 
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studying how the classes may change their roles during 
software evolution.  

Visualization approaches [6, 14, 15] have also been used 
to reduce the amount of trace information to look at. The 
advantage of our approach over these is that it does not 
require efforts hypothesis in detecting phases, their flow, and 
their relevant information. Watanabe [12] proposed a phase 
detection technique based on the investigation of LRU cache 
and [8] suggest a possible analogy between analysis of trace 
information and signal processing where users can identify 
similar phases within a trace and between the traces. Both 
techniques are not focused on providing the user with 
relevant information about phases. 

VI. CONCLUSION 

We proposed a technique for extracting important 
information about a trace by analyzing the most relevant 
information of the execution phases that compose it. We 
demonstrated through the case study that our approach can 
significantly simplify the analysis of large traces. Immediate 
future direction would be to continue experimenting with 
this approach. We also need to investigate thresholds that 
govern the phase detection technique as well as the way most 
representative phase elements are selected. We would also 
like to investigate ways in which our proposed technique can 
help maintainers in redocumentation, extraction of 
crosscutting concerns, and fault localization. Finally, we are 
also interested in investigating how trace segmentation based 
on phase detection can play an important role in recovering a 
system's conceptual plans. 
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