

Mining Telecom System Logs to Facilitate Debugging Tasks

Alf Larsson
PLF System management

Ericsson, Research & Development

Stockholm, Sweden

Alf.Larsson@ericsson.com

Abdelwahab Hamou-Lhadj
SBA Research Lab

ECE, Concordia University

Montreal, Canada

abdelw@ece.concordia.ca

Abstract. Telecommunication systems are monitored

continuously to ensure quality and continuity of service. When

an error or an abnormal behaviour occurs, software engineers

resort to the analysis of the generated logs for troubleshooting.

The problem is that, even for a small system, the log data

generated after running the system for a period of time can be

considerably large. There is a need to automatically mine

important information from this data. There exist studies that

aim to do just that, but their focus has been mainly on software

applications, paying little attention to network information

used by telecom systems. In this paper, we show how data

mining techniques, more particularly the ones based on mining

frequent itemsets, can be used to extract patterns that

characterize the main behaviour of the traced scenarios. We

show the effectiveness of our approach through a

representative study conducted in an industrial setting.

Keywords— System logs, event correlation, troubleshooting of

telecom systems, mining algorithms.

I. INTRODUCTION

Ericsson is one of the largest telecom companies in the

world. It has a much diversified product portfolio comprising

of various network components. These components work

together and are usually distributed in nature. When errors or

abnormal behaviours occur, software engineers turn to the

analysis of logs, generated by monitoring and tracing the

system‟s activities. Logs, however, tend to be overwhelmingly

large, which hinders any viable analysis unless adequate (and

practical) tool support is provided [5, 6].

Log analysis is a broad topic and varies in scope depending

on the application domain. In this paper, we focus on the

problem of extracting meaningful patterns from system logs to

help software engineers understand the main behaviour of the

traced scenario. The ultimate goal is to facilitate debugging and

other maintenance tasks. Consider, for example, the simple

scenario of transferring a file over FTP (File Transfer Protocol)

between two network sites. The generated log file is bound to

noise and network interferences (as it is almost always the case

in industrial systems). Knowing which events are most relevant

to the file transfer itself is a challenging task. But when

performed properly, it can reduce significantly the time and

effort it takes to software engineers to understand and

troubleshoot the system in case the transfer fails.

At Ericsson, a common approach is to look at the

occurrence of events and relate them using timestamp

information. Due to noise and interference in the data, this type

of analysis has limited ability to uncover correct and complete

behaviour. Hence, the process often requires heavy

involvement of domain experts.

In this paper, we investigate the use of data mining

techniques for identifying and analyzing important events and

patterns in large system logs with minimum intervention of the

users.

II. APPROACH

Our approach is shown in Figure 1. It encompasses two main

phases: Pattern Generation and Validation, and Pattern

Matching. The first phase is a learning phase in which we apply

data mining techniques to extract behavioural patterns from

large logs. The extracted patterns are presented to domain

experts for validation. Domain experts can choose to assign a

context (a description and any other relevant information) to

the valid patterns. The patterns with their description are then

saved in a database.

During the pattern matching phase (the second step), we use

the pattern database to correlate events in a random set of logs

generated from systems in operation using pattern matching

techniques. We also support the possibility to correlate these

patterns. This is particularly useful if the traced feature

involves several scenarios. Software engineers can see how

these scenarios are interrelated. These phases are explained in

more details in the subsequent sections, preceded with a

subsection on log generation.

Logs Parser
Mining

Algorithm

Domain

Expert

Pattern

Storage

Mining

Rules

Training

Phase

Logs Parser
Matching/

Correlation

Domain

Expert

Pattern

Storage

Report

Testing

Phase

Figure 1.Overview of the approach

A. Collection of System Logs

We generate logs by exercising the system with a usage

scenario of interest. Our strategy is to run the scenario several

times with different background noise and feed the resulting

log files to a data mining algorithm to automatically extract the

common sequences of events. Our hypothesis is that the events

that are common to the generated log files are the ones that are

also the most relevant. This approach is similar to Software

Reconnaissance introduced by Wilde et al. in [12] and further

improved by many researchers (see [4] for a survey). The

authors compared traces generated from routine call traces to

identify the components that implement a particular scenario.

This contributes to solving a problem known as feature location

in code; identifying the most relevant components that

implement a specific feature.

The main difference is that we use a data mining algorithm

instead of correlating traces using graph theory. Also, to our

knowledge, software reconnaissance and other feature location

techniques have not been applied to network logs. This type of

run-time information differs greatly from traces of control flow.

Network logs tend to be more fine-grained and the information

cannot be easily mapped to the source code. Many feature

locations techniques heavily rely on the source code to find

relevant information.

B. Learning Phase: Pattern Generation

There exist several data mining algorithms that extract

patterns from large data. Examples include Apriori [1],

Frequent Pattern tree (FP-tree) [2], FP-Growth [10, 11], etc.

The one we chose to use in this paper is MAFIA [3]. MAFIA

stands for Mining Maximal Frequent Itemsets Algorithm. We

selected MAFIA because of its time efficiency for extracting

long patterns compared to its counterparts [3].

MAFIA starts by building a lattice tree that represents the

lexicographic ordering of the items in an itemset. We will detail

this process in the subsequent paragraphs. The algorithm then

applies a depth-first search algorithm with pruning techniques

to detect maximal frequent itemsets that have a support greater

or equal than a certain threshold. The support of an itemset

represents the number of times it appears in the itemset

database. To illustrate how MAFIA works, let us revisit the

example provided in [3]. In this example, I, the item set,

contains four items I = {1, 2, 3, 4}. A database of itemsets, T, is

a multiset of subsets of I. The objective of the algorithm is to

find the maximal frequent itemsets in T. For example, the result

of applying MAFIA to T = {{1234}, {123}, {134}, {234}} is

{123} (with minimum support = 2).

The algorithm starts by building a lattice in such a way that

the top itemset is the empty set and each lower level k contains

all itemsets of length k. The itemsets are ordered according to

the lexicographic ordering relationship. The lexicographic

subset lattice generated from I is shown in Figure 2. The first

level (k = 0) is the empty set. The next level contains itemsets

of length 1, ordered in the lexicographic way {1} < {2}, etc.

The next level (where the effect of ordering is more noticeable)

contains items of length 2. In this level, Itemsets {12}, {13},

{14}, generated from extending {1}, are also ordered in the

lexicographic manner, etc.
One simple way to find maximal frequent itemsets is to

apply a naïve depth-first algorithm and count the number of

occurrences of each itemset. An itemset with a support greater

or equal to the minimum support is added to the maximal

itemset database (the output of the algorithm), given that a

superset has not already been discovered. The problem with a

simple depth-first algorithm is that it tends to be unnecessarily

slow. This is because it counts the frequency of all itemsets in

the tree despite the fact that some subtrees can be quickly

filtered out earlier in the process if a different reordering is

used. For example, given the subtree rooted at P = {1},

counting the support of {12}, {13}, {14}, P‟s children, first

will reveal that only {12} is frequent (it appears twice in the

database). Items 3 and 4 can then be filtered out so no new

itemsets need to be counted in the subtree rooted at P. In other

words, {123}, {124}, and {234} do not need to be counted

which will save time. Based on this, the MAFIA authors [3]

present various pruning and reordering algorithms to increase

the performance of the algorithm by reducing the search space.

An implementation of MAFIA is made publicly available by

the authors on http://himalaya-tools.sourceforge.net/Mafia/.

Figure 2. Lexicographic ordering lattice (from [3])

To apply MAFIA to log events, we introduce the following

definitions. We call an instance of a given scenario a „window’.

We distinguish each instance with a unique window identifier

(window_id). We save the generated logs in a database table.

Each column consists of a specific attribute of a log event. We

assign a unique integer transaction id to each distinct attribute.

The idea is to use the ids for lexicographic ordering. While

assigning transaction ids, window limit is not taken into

consideration. Even if a log entry is found across multiple

windows, it is assigned the same transaction id. Figure 3 shows

an example of two scenarios, represented as windows, with

their events (depicted using A, B, C…). The event attributes are

assigned transactions ids. In this example, I = {1, 2, 3, 4, 5, 6,

7} and T = {{121234}, {1251267}}. The result of the

algorithm (with minimum support = 2), is Itemset {12} which

corresponds to the pattern AB.

 Window ID Window 1 Window 2

 Sample logs for each window A B A B C D A B E A B D F G

 Transaction ID 1 2 1 2 3 4 1 2 5 1 2 6 7

Figure 3. Example of scenarios represented as windows

 We want to note that, in order to obtain a pattern

representing a specific behaviour, we do not consider all

attributes of a log event during the mining process. For

example, a typical log event generated from file transfer

operation will involve the timestamp, protocol, sender‟s IP,

receiver‟s IP, and other information. Considering the timestamp

will end up eliminating the very possibility of obtaining a

pattern by making each event unique because timestamp varies

from one event to another. The decision on which attributes to

select is left to the user. It is always recommended to use

attributes that represent a generalized behaviour. The more

attributes we use, the more restrictive the pattern detection

approach is.

C. Pattern Validation and Context Assignment

Once we extract the patterns, we present them to domain

experts at Ericsson for validation. This is usually done in a

semi-automatic way using a tool we have developed for this

research (see the case study for snapshots). A typical task of the

domain expert is to go through the pattern, assess its quality,

and remove unnecessary data if need be. There might be

situations where the domain expert considers the quality of the

pattern to be poor (e.g., it lacks key events). In this case, he or

she can request either to re-run the pattern mining process by

adjusting its input (adding other attributes) or run the scenario

again with additional background noise to clearly distinguish

the behavioural pattern events from other events.

Once the domain expert deems the pattern to be valid, he or

she assigns a context, which is a high-level description

comprised of the pattern name, the context in which the pattern

appeared (e.g., the network topology, the type of

communication used, the communication protocol, etc.). The

pattern is then saved in the pattern library.

D. Testing Phase: Pattern Matching

We have developed a simple pattern matching algorithm to

identify the event patterns in logs generated from a system in

operation. The algorithm simply matches the log events to the

patterns in the database. Our matching algorithm operates as

follows: Given a sequence of events s1 and a pattern p1 (in the

pattern database), s1 and p1 are considered similar if all events

in p1 appear in s1. In other words, it is enough for s1 to contain

the events that appear in a pattern to be considered as a

candidate pattern. An alternative solution will be to consider

exact matching but this would turn out to be too restrictive

because of noise in the data. Future studies should focus on

measuring similarity based on a certain threshold.

E. Testing Phase: Pattern Correlation

We define pattern correlation as the process of identifying a

relation between the extracted patterns in a given scenario or a

set of scenarios. This task is important for debugging and

performance analysis since it can help software engineers

identify what is happening in the system when multiple

operations occur (e.g., sending an FTP file while at the same

time using HTTP).

Patterns are correlated using two methods: attribute-based

correlation and time-based correlation. In the attribute-based

correlation method, the event attributes are used to find relation

among patterns. For example, if a user wants to know which

events happened in two patterns on a particular IP address, an

attribute-based filtering mechanism can be employed to

identify those events. The resulting output will contain only

those logs from both patterns which belong to the selected IP.

The time-based correlation (the second method) allows users to

see which patterns appear within a particular timeframe.

III. EVALUATION

A. Target System

We chose CPP (Connectivity Packet Platform) as the target

system, which is a proprietary carrier-class technology

developed by Ericsson [9]. It has been positioned for access

and transport products in mobile and fixed networks. Typical

applications on current versions of CPP include third-

generation nodes RBSs (Radio Base Stations), RNCs (Radio

Network Controllers), media gateways, and packet-data service

nodes/home agents. CPP was first developed for ATM

(Asynchronous Transfer Mode) and TDM (Time Division

Multiplexing) transport.

A CPP node contains two parts, an application part and a

platform part. The application part handles the software and

application-specific hardware. The platform part handles

common functions such as internal communication,

supervision, synchronization, and processor structure.

B. Usage Scenarios and Log Generation

We experimented with various scenarios. Due to the

proprietary nature of the system, we choose, in this paper, to

present two scenarios: inter-frequency handover (IFHO) and

the setup of the radio access bearer (RAB). The results are

representative of our findings. Each of these scenarios was

performed across various RBSs, where each RBS was working

on a set of cells available giving a wide variety of logs.

The log generation tool we used in this paper is the Trace

and Error (T & E) package, which is a built-in capability in

CPP, used often by software engineers to integrate, verify, and

troubleshoot CPP applications [9]. T&E supports two

functionalities: the tracing functionality and the error handling

functionality. The tracing functionality helps the system and

functional behaviors to be traced and reported at software

development. The error functionality helps to log fault

conditions. The T & E log shows a history of recorded trace

and error events on the system.

C. Learning Phase: Pattern Generation and Validation

Scenario 1: IFHO

To generate pattern for IFHO, we run the scenario several

times with different background noise. We generated a log file

for each run. The size of log files varies from 3 to 7 GB. An

IFHO event has many attributes including the event ID,

DeviceFrom, DeviceTo, LoadModule, Message, MessageType,

MessageText, and Parameters. We fed the log files to the

pattern generation component of our approach. We selected the

attributes “MessageType” and “MessageText” as the main

attributes for the pattern generation process.

Figure 4. The IFHO extracted pattern

A domain expert at Ericsson analyzed the resulting pattern

and removed some events including repeated signals and

heartbeat type messages. These events are considered as noise

and can occur at any instant. It took around one hour for the

domain expert to clean up the automatically extracted pattern.

We believe that this step could be automated (at least at a

certain extent) in the future by studying what constitute noise in

such systems and build a predefined list of events that can be

removed before applying the mining algorithm. We do not

expect, however, to completely discard the domain expert from

the process. In fact, we believe that domain expert feedback is

very useful during the whole process. The final pattern for

IFHO consists of 15 events as shown in Figure 4 (note that we

do not show some of the event attributes to save space). The

pattern is then saved in the pattern database under the name

IFHO pattern.

Scenario 2: Radio Access Bearer (RAB) Setup

We followed the same process as for the previous scenario.

We run RAB several times with various background noises.

The size of the log files varies from 4 GB to 7 GB. The pattern

mining algorithm generated a pattern. We gave this pattern to a

domain expert who (as before) removed additional data

(considered as noise). The resulting pattern contains 31 events

and it is partially shown in Figure 5. The pattern is then saved

under the contextual name: RAB set-up.

Figure 5. The RAB set-up pattern

D. Testing Phase: Pattern Identification and Correlation

Once we identified the patterns, we used them to find

patterns in the system during operation. For this purpose, we

started by correlating patterns based on their attributes. To do

that, we needed a log file which had a combination of

scenarios. We chose a scenario that combines a set of different

telecommunication sub-scenarios including IFHO, soft

handover, softer handover, RAB set-up, etc. We run the

scenario as it would be in real world (i.e. with background

noise). The generated log file was fed to the pattern matching

and correlation component of the framework. We were able to

automatically identify the IFHP and RAB patterns using the

pattern database built during the learning process.

Once we had the pattern highlighted, we were able to use

attribute and time based correlation techniques to gain insight

into what is happening in the scenario. For example, we were

able to identify the most frequent destination site for IFHO

messages. We conducted similar experiments using time

correlation by identifying the patterns that occur within a

specific timeframe. We needed for this task to do some

preprocessing steps to align the time generated from parallel

systems. The correlation, in this case, showed all complete

patterns obtained for IFHO and RAB between these time

intervals. This was helpful for following the flow of messages

exchanged between different network sites.

We have shown the results to Ericsson software engineers

working on troubleshooting tasks. The feedback we received

shows that the approach holds real promise in simplifying the

analysis of telecommunication logs, and reducing the time and

effort spent on understanding their content.

IV. CONCLUSIONS

In this paper, we demonstrated the potential of using data

mining techniques, more particularly the MAFIA approach, to

extract useful information from telecom logs. The objective is

to help software engineers analyze these logs more efficiently

and precisely. Based on the feedback we received from

software engineers at Ericsson, the approach is helpful and

promising. In particular, they report that this technique (1)

reduces the manual effort put into indentifying relevant events

required for debugging, and (2) increases the precision of

relevant event identification. As future work, we intend to

continue exploring the application of data mining approaches to

alternative types of log analysis. We will also investigate what

constitute noise in this type of data to further reduce the time

spent by domain experts to identify patterns. Some techniques

that can be useful to explore in this context are the ones

presented in [7], in which the authors discuss the impact of

utilities (noise) on the size of traces.

Acknowledgment: Thank you to software engineers at

Ericsson, Stockholm, for active participation and providing

continuous feedback.

V. REFERENCES

[1]. R. C. Agrawal, T. Imielinski, and R. Srikant, “Mining

association rules between sets of items in large databases,”

In Proc. of the ACM International conference on

Management of data, pp. 207-216, 1993.

[2]. R. C. Agarwal, C. Aggarwal, and V.V.V. Prasad, “A tree

projection algorithm for generation of frequent itemsets,” J.
of Parallel and Distributed Computing, pp. 350–371, 2001.

[3]. D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A

maximal frequent itemset algorithm for transactional

databases,” In Proc. of the 17th International Conference on

Data Engineering, pp. 443 - 452, 2001.

[4]. B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk,

"Feature Location in Source Code: A Taxonomy and

Survey," Journal of Software: Evolution and Process, 25(1),
pp. 53–95, 2013.

[5]. A. Hamou-Lhadj, "Techniques to Simplify the Analysis of

Execution Traces for Program Comprehension," Ph.D.

Dissertation, School of Information Technology and
Engineering (SITE), University of Ottawa.

[6]. A. Hamou-Lhadj, and T. Lethbridge, "Measuring Various

Properties of Execution Traces to Help Build Better Trace

Analysis Tools," In Proc. of the 10th International

Conference on Engineering of Complex Computer Systems,
pp. 559-568, 2005.

[7]. A. Hamou-Lhadj, and T. Lethbridge, "Reasoning About the

Concept of Utilities," ECOOP International Workshop on

Practical Problems of Programming in the Large, LNCS,

Vol 3344, Springer-Verlag, pp. 10-22, 2004.

[8]. G. Jakobson, L. Lewis, and J. Buford, “An Approach to

Integrated Cognitive Fusion,” In Proc. of 7th International
Conference on Information Fusion, 2004.

[9]. L-Ö. Kling, Å. Lindholm, L. Marklund and G. B. Nilsso,

“CPP. Ericsson Review No. 2”, 2002. Available

online:http://www.ericsson.com/ericsson/corpinfo/publicatio

ns/review/2002_02/files/2002023.pdf

[10]. B. S. Kumar and K.V.Rukmani, “Implementation of Web

Usage Mining Using APRIORI and FP Growth Algorithms,”
Journal of Advanced Net and App, 1(6), pp. 400-404, 2010.

[11]. Y-C. Li, C-C. Chang, “A New FP-Tree Algorithm for

Mining Frequent Itemsets,” Springer Lecture Notes in
Computer Science Volume 3309, pp 266-277, 2004.

[12]. N. Wilde and M. Scully, "Software Reconnaissance:

Mapping Program Features to Code," Journal of Software

Maintenance: Research and Practice, 7(1), pp.49-62, 1995.

