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Abstract— In this paper, we report on an empirical study we 

have conducted at Ericsson to understand the handling of crash 

reports (CRs). The study was performed on a dataset of CRs 

spanning over two years of activities on one of Ericsson’s largest 

systems (+4 Million LOC). CRs at Ericsson are divided into two 

types: Internal and External. Internal CRs are reported within 

the organization after the integration and system testing phase. 

External CRs are submitted by customers and caused mainly by 

field failures. We examine the proportion and severity of internal 

CRs and that of external CRs. A large number of external (and 

severe) CRs could indicate flaws in the testing phase. Failing to 

react quickly to external CRs, on the other hand, may expose 

Ericsson to fines and penalties due to the Working Level 

Agreements (WLA) that Ericsson has with its customers. 

Moreover, we contrast the time it takes to handle each type of 

CRs with the dual aim to understand the similarities and 

differences as well as the factors that impact the handling of each 

type of CRs. Our results show that (a) it takes more time to fix 

external CRs compared to internal CRs, (b) the severity attribute 

is used inconsistently through organizational units, (c) 

assignment time of internal CRs is less than that of external CRs, 

(d) More than 50% of CRs are not answered within the 

organization’s fixing time requirements defined in WLA. 

Index Terms— Software Maintenance, Mining Crash Reports, 

Empirical Studies, Industrial Systems. 

I. INTRODUCTION 

Maintenance activities are known to be costly and 

challenging [19]. Studies have shown that the cost of software 

maintenance can reach up to 70% of the overall cost of the 

software development process [1]. At Ericsson, one of the 

largest telecom and software companies in the world, the 

maintenance process is particularly complex due to the large 

client base the company serves. The company needs to react 

quickly when crashes (due to field failure) are reported. Failing 

to do so may have a significant impact on Ericsson’s 

operational costs, and may also cause damages to the 

organization’s reputation. 

At Ericsson, Crash Reports (CRs)
1
 are divided into two 

categories: internal and external reports. Internal reports are 

submitted within the organization to report on failures observed 

                                                           
1
The term crash reports is the way Ericsson refers to bug reports. 

by software integration specialists. External reports, on the 

other hand, are submitted by customers who encounter system 

crashes (or unintended system behavior) in the field. 

Both types of CRs are submitted using the same reporting 

system and mechanism. They are first triaged by a team that 

forms the first line of support. If the first line of support cannot 

provide a fix, it redirects the CR to the second line of support 

that can redirect it again to another line of support until the 

problem is resolved. 

Both types of CRs are constrained by Working Level 

Agreements (WLA) that Ericsson has in place to improve team 

performance and quality of services. Essentially, a WLA 

describes the required fixing time of the CRs depending on 

their severity level. For internal CRs, comparing the actual time 

it takes to fix a CR to the required time in the WLA is used to 

assess the performance of the design and testing teams. For 

external CRs, a WLA contractually engages Ericsson to 

provide solutions to its customers within the required fixing 

time. 

To further improve the CR handling process, Ericsson was 

interested in examining the factors that influence the CR 

process lead time
2 

and the differences in the way internal and 

external CRs are handled, while taking the CR severity level 

into account. Determining the level of CR compliance with the 

WLA requirements is another important aspect. Knowing, for 

example, that a large number of CRs with high severity are 

originated from the field may trigger organizational changes or 

additional investment in tool support, due to the implications 

that such crashes may have on customer satisfaction. Similarly, 

examining CRs that are reported internally could provide 

insight to management teams into how effective the testing and 

integration steps of the development process are. 

To draw an accurate picture of the current state, we have 

conducted an empirical study on Ericsson premises. We 

examined a large dataset
3 

of CRs spanning over two years of 

activities on one of Ericsson’s largest systems (+4 million 

LOC). We studied the current state of the CR handling process 

                                                           
2
  Lead time refers to the lifetime of the CR from the time it is submitted to the 

time it is resolved (or closed). 
3  We cannot reveal the number of CRs because of confidentiality reasons. 



based on the CR type. We compared the proportion and 

severity of internal CRs to that of external CRs. We also 

studied the fixing time of the CRs using the CR type and 

severity as the main variables. Moreover, we examined the CRs 

that do not meet the WLA timing requirements to uncover the 

causes. We used statistical methods such as Mann-Whitney 

tests, Kruskal Wallis, and Pearson’s chi-squared independence 

tests to analyze the data. This paper reports on the main 

findings of this study. 

The remaining parts of this paper are as follows: In Section 

II, we provide definitions and background to understand the 

context of the study. In Section III, we describe the study 

definition and design. The results are presented in Section IV, 

followed by threats to validity in Section V. In Section VI, we 

present related work. Finally, we conclude the paper and 

outline future directions in Section 7. 

II. STUDY SETUP 

Figure 1 illustrates our data collection and analysis process 

that we present here and discuss in more details in the 

subsequent sections. First, we extract data from the CR 

repository. We then mine the reports to extract the internal and 

external CRs and the CR handling information. We compute 

lead time for each CR type. Finally, using statistical methods, 

we analyze the data based on three research questions (RQ) that 

we discuss later, and report on the results. 

 

Fig. 1. Data collection and analysis process of the study 

A. Target System 

Ericsson is a Radio Access Network supplier to around 

50% of all commercially launched WCDMA (Wideband Code 

Division Multiple Access) and HSPA (High Speed Packet 

Access) networks in the world. More than 410 HSPA networks 

are commercially launched in 162 countries, spread on all 

continents. The system we used in this study contains more 

than 50 different network products, all part of the Radio Access 

Network (RAN) which handles video/mobile telephony, mobile 

TV, PSTN (public switched telephone network), mobile 

broadband and fixed wireless broadband. It is built on a 

number of different embedded hardware types, running more 

than 200 different software products. The code base is over 

four millions of lines, implemented in several languages with 

C/C++ and Java dominating. The development team consists of 

application teams (Radio Network Controlled and Radio Based 

Systems) and the platform CPP (Connectivity Packet 

Platform). 

B. Crash Report Management System at Ericsson 

Developers report faults and crashes in the system to warn 

on pending issues with the system functionalities. They use 

various issue-tracking systems to post the descriptions of faults 

and fixes. The issue-tracking system, used by the studied unit 

within Ericsson is called MHWeb.  MHWeb is an integrated 

Web-based environment for maintenance and customer 

support. It has many components to allow design, maintenance, 

and    support teams to share information that describe faults in 

the   system, fixes, etc. The tool offers an easy-to-use interface 

for CR handling, analysis and measurement. MHWeb typical 

functionalities include searching and browsing of CRs. 

In MHWeb, a CR is described using the following 

information: 

• CR reference: This is a unique reference for the CR. 

• CR type: The type of the CR (internal or external). 

• CR severity: The severity of a CR is measured based 

on the impact of the fault on network traffic. The CR is 

of severity “A” when the crash affects more than 30% of 

the traffic or the crash leads to a complete failure.  The 

CR is of severity “B” when the crash affects less than 

30% of the traffic or more than 30% in a single 

occasion.  Finally, the CR is considered of severity “C” 

when it is a minor fault not affecting the traffic at all. 

• CR Status: The current status of the CR (registered, 

assigned, cancelled, fixed, finished, etc.). 

• Product information: The faulty product and version, 

affected by the fault. 

• History data: This describes the stages of the CRs and 

the people who are responsible of handling each stage. 

A simplified view of the CR states and the state transition 

from reporting to providing a solution is described below: 

1. The CR is registered. 

2. The CR is assigned to a design team to solve it. 

3. The CR is solved. 

4. A technical answer is provided. 

In this study, we only consider CRs with the status 

"Finished". That is, we exclude ongoing CRs. It should also be 

mentioned that we exclude duplicate CRs from the dataset. 

Duplicate reports are marked as duplicate by developers. 

C. Data Parsing and Computation 

For each CR, we extract the reference number from 

MHWeb and download its corresponding html file. We extract 

information from the html files including the description of the 

CR (CR type, submitter, severity, etc.) and the CR historical 

data and handling process. Based on the historical data which 
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contains the date and time of each step of the CR, we compute 

the duration between each step and we extract: 

• ATi: The CR assignment time is the time interval 

between the time the CR is registered to the time it is 

assigned to a design team. 

• FTi: The CR fixing time is the time interval between 

the time the CR is registered to when the technical 

answer to the CR is provided. 

III. STUDY DESIGN 

We describe the design of our study by first stating the 

research questions, and then explaining the variables, and 

analysis methods we used to answer these questions. We 

formulate three research questions (RQs) with the overall 

objective to understand the similarities and differences between 

the way internal CRs and external CRs are handled at Ericsson. 

The objective of the first research question is to analyze the 

importance of the testing process (i.e., before the product is 

released to the customers) by contrasting the number of internal 

CRs vs. external CRs. The remaining two questions address the 

duration of CR handling including the duration of CR 

assignment and fixing according to CR type (i.e., internal, 

external) and severity. 

RQ1: What is the proportion of internal vs. external 

CRs? 

One direct benefit in answering this question it to help 

Ericsson’s development teams assess (at least in the beginning) 

the effectiveness of the testing process.  Knowing, for example, 

that there is a high number of external CRs may trigger project 

managers to enhance the testing process so as to find more 

internal CRs (especially the critical ones) and fix them before 

the product is released to customers. 

To answer this question, we compare the proportion of 

internal CRs to the total number of CRs. Since not all faults 

have the same severity level, we also examine the severity of 

the CRs with respect to their type. For this part, we state the 

following null hypothesis: 

• H01: The proportion of internal CRs is not 

significantly different from the proportion of external 

CRs with respect to the CR severity. 

Variables: When comparing the proportion of internal CRs to 

that of external CRs based on severity, we use as variables the 

type of CRs (internal, external) and the severity levels (A, B, 

C). We build a contingency table and perform the test of 

independence between the observed frequencies. 

Analysis method: We answer RQ1 in two steps. The first step 

is to use descriptive statistics; we compute the ratio of internal 

CRs and external CRs to the total number of CRs in the dataset. 

This shows the importance of CR (in proportion) found during 

the testing process compared to the proportion of CRs sent by 

customers. In the second step, we compare the severity of CRs 

detected internally to the severity of CRs detected by customers 

by computing the number of CRs for each type and each 

severity level (A, B, C). We build the contingency table with 

these two qualitative variables (the type and severity) and we 

test the null hypothesis H01 to assess if the number of CRs of a 

particular severity is related to the CR type. We use the 

Pearson’s chi-squared test to reject the null hypothesis H01. 

Pearson’s chi-squared independence test is used to analyze the 

relationship between two qualitative data, in our study the CR 

type and CR severity. The results of Pearson’s chi-squared 

independence test are considered statistically significant at α = 

0.05. If p-value < 0.05, we reject the null hypothesis H01 and 

conclude that the proportion of internal CRs for each severity 

level are significantly different from the proportion of external 

CRs in severity. is used to format your paper and style the text. 

All margins, column widths, line spaces, and text fonts are 

prescribed; please do not alter them. You may note 

peculiarities. For example, the head margin in this template 

measures proportionately more than is customary. This 

measurement and others are deliberate, using specifications that 

anticipate your paper as one part of the entire proceedings, and 

not as an independent document. Please do not revise any of 

the current designations. 

RQ2: How fast are CRs fixed? 

This question has three aspects. First, we analyze the time it 

takes to resolve each type of CRs. This will help Ericsson 

designers and project managers evaluate the resources 

dedicated to each CR type. Second, we study the impact of CR 

severity on the CR fixing time.  The objective is to assess 

whether Ericsson’s designers take into account the CR severity 

when prioritizing the CRs. Answering this question can help 

Ericsson evaluate whether the severity attribute, as it is 

currently defined, should be maintained for CR prioritization or 

there is need to investigate additional criteria. 

To asses these two aspects of question RQ2 we state the 

following null hypotheses. 

• H02A: There is no statistically-significant difference 

between the fixing time of external CRs and that of 

internal CRs. 

• H02BInt: There is no relation between the fixing 

time of internal CRs and the severity of the CRs. 

• H02BExt: There is no relation between the fixing 

time of external CRs and the severity of the CRs. 

The third aspect of RQ2 is to evaluate if CRs are handled 

according to the timing requirements defined in the WLA of 

Ericsson (not shown in this paper for confidentiality reasons). 

This is critical, especially, for external CRs. Failing to meet 

these requirements can expose Ericsson to additional costs. We 

compare the duration of CR fixing time to the deadlines 

defined in the WLA for each CR type and severity level. We 

compute the percentage of CRs that meet the WLA 

requirements. Knowing this will help Ericsson evaluate if the 

actual WLA deadlines for CR fixing should be maintained, or 

if there is a need to do a re-evaluation. 

Variables: To compare the CR fixing time with respect to their 

type we use as independent variable the type Ti of a CR CRi, to 

distinguish between internal and external CRs. We consider as 



dependent variable the fixing time FTi of a CR. We compute 

the fixing time FTi of a CR CRi . The fixing time FTi is the 

time between when the CR is registered and when a technical 

answer is provided. To analyze the impact of the severity of the 

CR on the fixing time, we consider as independent variable the 

CR severity and as dependent variable the CR fixing time FTi. 

In addition, we compare the time spent in average to answer a 

CR to the time defined in the WLA and we analyze the 

proportion of CRs which satisfy the WLA requirements. 

Analysis method: We analyze RQ2 in three steps. First, we 

compute the (non-parametric) Mann-Whitney test to compare 

the CR fixing time with respect to the CR type and analyze 

whether the difference in the average fixing time is statistically 

significant. We use the Mann-Whitney test because, as a non-

parametric test, it does not make any assumption on the 

underlying distributions. We analyze the results of the test to 

assess the null hypothesis H02A. The result is considered as 

statistically significant at α = 0.05. Therefore, if p-value < 0.05, 

we reject the null hypothesis H02A and conclude that the 

average fixing time of internal CRs is significantly different 

from the average fixing time of external CRs. Other than 

testing the null hypothesis, we also estimate the magnitude of 

the difference in average between the fixing time of the two 

types of CRs. We use the non-parametric effect size measure 

Cliff’s d, which indicates the magnitude of the effect size of the 

treatment on the dependent variable. Cliff’s d is defined as Eq. 

1 [8]: 
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where di j = sign(yi − x j ) and #(yi  >  x j ) the number of 

comparisons between observations in the two groups for which 

the Group i observation is larger than the Group j observation.  

The effect size is small for 0.147 ≤ d < 0.33, medium for                      

0.33 ≤ d < 0.474, and large for d ≥ 0.474 [8]. 

Second, we analyze for each type of CRs the impact of          

severity on the fixing time.  We use Kruskal-Wallis one-way 

analysis of variance by ranks to analyze the impact of the type 

and severity of CRs on the fixing time. The Kruskal-Wallis test 

aims at testing the hypothesis that several populations have the 

same continuous distribution versus the alternative that         

measurements tend to be higher in one or more of the                 

populations. We want to see if there is a statistically significant 

difference between the fixing time according to the CR severity 

and type. In other words, does the fixing time of the CR 

increase or decrease according to its severity? Kruskal-Wallis 

one-way analysis of variance by ranks is a non-parametric test 

that does not require making assumption about the data set 

distribution. Using Kruskal-Wallis test, we test the null 

hypotheses H02BInt (respectively H02BExt) to see if there is a 

statistically-significant difference between the fixing time of 

internal CRs (respectively external) according to their severity. 

The results of the Kruskal-Wallis test are considered 

statistically significant at α = 0.05. If p-value < 0.05, we reject 

the null hypothesis H02BInt (respectively H02BExt) and 

conclude that the severity of internal CRs (respectively 

external) impact significantly its fixing time. Third, we 

compare the fixing time of the CRs to the deadlines specified in 

the WLA. We compute the percentage of CRs (according to 

their type and severity) that meet the WLA requirements. 

RQ3: How fast are CRs Assigned? 

After working with Ericsson software engineers and 

examining a large number of CRs, we have observed that the 

CR assignment at Ericsson tends to be considerably time 

consuming. Bhattacharya et al. [4] also found that CR 

assignment is problematic despite the quality of the CR data. 

At Ericsson, there are many factors that impact the assignment 

time including the size of the organization and the large 

number of its products and customers [10]. The assignment 

activity takes place before starting solving the problem. It could 

be a bottleneck task if it is performed inefficiently (i.e., without 

automation). Assigning a CR to the proper organizational unit 

is a challenging task. We have therefore decided to study the 

relation between the CR type and the duration of CR 

assignment activity. Similar to the previous questions, we took 

into account the severity levels. This will help assess the 

importance of the severity attribute during CR assignment. 

We analyze whether the assignment of external CRs takes 

more time than the assignment of internal CRs by testing the 

null hypothesis: 

• H03A: There is no statistically-significant difference 

between the duration of the assignment of external 

CRs and that of internal CRs. 

In this research question, we analyze the duration of the 

assignment activity with respect to the severity. We test the 

following null hypotheses: 

• H03BInt: There is no relation between the duration of 

internal CRs assignment and the CR severity. 

• H03BExt: There is no relation between the duration of 

external CRs assignment and the CR severity. 

Variables: We use as independent variable the type Ti of a CR 

(CRi). For the dependent variables, we measure the assignment 

time, ATi , of the CRs. We compute the time spent between the 

time the CR is registered until it is assigned to the right 

designer to be fixed. When analyzing the impact of the severity 

of the CR on the assignment time, we consider as independent 

variable the severity of the CR and as dependent variable the 

CR assignment time, ATi . 

Analysis method: First, we compute the (non-parametric) 

Mann-Whitney test to compare the CR assignment time with 

respect to the CR type (as in RQ2). This will show if a 

particular type of CRs is assigned faster than the other one. We 

test the null hypothesis H03A to know whether the difference in 

average between the assignment time of internal CRs and that 

of external CRs is statistically significant. Second, we analyze 

if the severity of a CR impacts its assignment time. We use 

Kruskal-Wallis one-way analysis of variance by ranks to 

analyze for each type of CR (internal, external), the impact of 



the severity of CR on the assignment time. We test the null 

hypotheses H03BInt and H03BExt according to the results of 

Kruskal-Wallis one-way analysis of variance by ranks. The 

results are considered as statistically significant at α = 0.05. 

Therefore, if p-value < 0.05, we reject the null hypothesis 

H03BInt (respectively H03BExt) and conclude that the severity 

of internal (respectively external) CRs impact significantly the 

assignment time. 

IV.  STUDY RESULTS AND DISCUSSION 

In this section, we report on the results of the analyses         

performed to answer the research questions. As we showed in 

Section 2, we used a CR dataset covering two years of         

maintenance activities on one Ericsson largest systems. For     

confidentiality reasons, throughout this paper, we do not reveal 

the exact number of CRs, the CR fixing and assignment time, 

and the WLA required fixing time. Instead, we use relative data 

(i.e., percentages). 

A. What is the proportion of internal vs. external CRs? 

Figure 2 shows the percentage of internal and external CRs. 

As shown in the figure, we found that 64% of the total reported 

CRs are internal, i.e., detected during integration system 

testing, whereas only 36% of the total CRs are external, i.e., 

sent by customers. In other words, the percentage of internal 

CRs is almost twice the percentage of external CRs. On one 

hand, this finding is considered positive and reflects good 

performance of the testing teams, especially given such a large 

organization and that the system under study is one of the 

largest systems at Ericsson. On the other hand, 36% of external 

crashes is still considered high and should require acute 

attention from the management team. 

 

Fig. 2. Percentages of internal and external CRs 

Figure 3 shows the proportion of internal and external CRs 

by severity. To assess the null hypothesis H01, we performed 

the Pearson’s chi-squared independence test. 

 

 

 

 

 

 

An interesting observation is that the percentage of internal 

CRs of severity “A” (16%) is higher than the percentage of 

external CRs of severity “A” (12%). This means that the 

designers find internally the most critical crashes before the 

product is released to the customer. Also when analyzing the 

percentage of CRs of severity “A” for both internal and 

external CRs, we can observe that the percentage of CRs of 

severity “A” is lower which could indicate overall a good 

system quality process.  However, because of the critical nature 

of faults of severity “A” and their cost implications, it is still 

recommended to conduct additional studies to further reduce 

the percentage of CRs of this severity level. 

 
Fig. 3. Proportions of internal and external CRs by severity 

B. How fast are CRs fixed? 

We analyze the difference in the fixing time between 

internal and external CRs. We conduct Mann-Whitney test to 

assess H02A. Table 1 reports on the results of the Mann-

Whitney test and Cliff’s d effect size. 

TABLE 1: MANN-WHITNEY TESTS AND CLIFF’S D RESULTS FOR ANSWERING 

TIME OF INTERNAL CRS COMPARED TO EXTERNAL CRS 
 

 Median M-W p Cliff’s d 
Internal CRs 3 

< 0.01 0.56 
External CRs 4 

 

The results show that the difference between the fixing time 

of internal CRs and the fixing time of external CRs is 

statistically significant with large effect size. 

Therefore, we can reject the null hypothesis H02A and 

conclude that the fixing of external CRs takes more time with 

large effect size than the fixing of internal CRs. 

The fixing of internal CRs takes less time than the external 

CRs. This observation can be explained by the fact that, as 

expected, design teams have more knowledge about the system 

than external users and therefore can provide relevant 

information to understand the crash, locate the fault, and fix it. 

In addition, at Ericsson, external CRs cannot normally be 

answered until a team of reviewers have acknowledged the 

According to the results of the test (p-value < 0.001), we 

reject the null hypothesis H01 and conclude that there is a 

significant different between the severity of internal CRs 

and external CRs. 



proposed answer. This team does not meet daily. This may 

explain the delay in closing external CRs. 

To understand the relation between the CR severity and CR 

fixing time, we compute the test of Kruskal-Wallis one-way 

analysis of variance by ranks. The result of the test for internal 

CRs (p – value = 0.4734) and the result for external CRs (p–

value = 0.6987) show that there is no relation between the 

severity of a CR and the fixing time. 

 

Therefore, we cannot reject the null hypotheses H02BInt 

and H02BExt and we conclude that there is no effect of the 

severity of CRs on the fixing time. 

We analyze the impact of the CR severity on the fixing 

time. Figure 4 shows the difference in fixing time for internal 

and external CRs according to the severity and the WLA 

required fixing time. 

 
(a) Internal CRs                                (b) External CRs 

Fig. 4. Fixing time and WLA required time for internal and external CRs in 

days—the time unit is days mapped to an interval between 1 to 10 to protect 
the confidentiality ofthe original data 

This result is surprising. We expected the opposite. 

Intuitively, the more severe a CR, the less time it should take to 

fix it. It is more logical to answer faster a CR of severity “A” 

before the other CRs because of the impact of the crash on the 

system.  As mentioned earlier, a crash of severity “A” affects 

more than 30% of the traffic or may cause a network failure. 

In addition, as we can see from Figure 4(a), the fixing time 

of crashes of severity “A” for both types of CRs is higher than 

the fixing time of crashes of severity “B” and “C”. This finding 

seems to indicate that the designers do not consider the severity 

attribute as submitted by the CR submitters.  According to the 

discussion we had with software engineers at Ericsson, we 

found out that the reason for which the severity level does not 

impact the fixing time is due to three main factors. The 

submitter may assign a high severity level to the CR just to 

speed up the answering process to receive a fix within 

reasonable time. This seems to happen for external CRs more 

than the internal ones. 

The second factor lies in the fact that the submitter (internal 

or external) has little knowledge of the severity classification 

scheme. At the present time, there are no tools that could help 

identify the severity level by observing the effect of the crash 

on the network traffic. 

The third factor is related to how the design teams in             

different organizational units function at Ericsson. There seems 

to be a lack of consistency on how the severity levels are 

defined (and interpreted). This has led some designers to use 

their own CR prioritization criteria that do not always map to 

the severity classification defined at the corporate level. These 

results can help direct managers about the necessity to conduct 

further studies to understand how internally each team 

prioritizes the CRs. The ultimate objective is to set standards 

and guidelines that could be used by all the design teams to 

prioritize consistently the CRs. Another recommendation that 

emerged from these findings is the necessity to invest in tools 

for fault diagnosis that could automatically suggest adequate 

severity levels by observing the impact of faults on network 

traffic. Such recommendation systems can reduce the time and 

efforts spent on analyzing fault severity. They can also help 

standardize the way severity levels are reported. 

Finally, we compare the CR fixing time by severity to the 

WLA required fixing time. Figure 4 shows for each severity 

level the average fixing time and the WLA required fixing time 

for internal and external CRs. Then, we analyze the percentage 

of CRs with respect to the WLA required fixing time (see 

Figure 5). Figure 4 shows that, in average, the time it takes to 

fix a CR exceeds the required time according to WLA for each 

CR type and severity level.  For internal CRs, the fixing time of 

CRs of severity “A” takes four times longer than what is 

required in the WLA. Similarly, the fixing of CRs of severity 

“B” and “C” are in average two times longer.  This finding is 

almost the same for external CRs. 

We also found that the severity is not a discriminating 

factor that impacts the percentage of CRs that respect the 

WLA. We note that the rate of the CRs with severity “A” that 

meet the WLA requirements is the lowest compared to other 

severity levels (29% internal and 31% external CRs) (see 

Figures 6 and 7). In fact, for all CR types and severity levels, 

the ratio of the CRs that satisfy WLA does not exceed 50%. 

This is problematic giving that not being able to meet the WLA 

may be costly to Ericsson. 

These results are consistent with the results of previous 

research questions that suggest that prioritization of CRs is not 

performed on the basis of severity. As discussed earlier, this 

could be explained by the consistency and the relevance of the 

severity attribute as well as the way severity levels are used 

(and interpreted) by different design teams. 

Another important factor that contributes to these findings 

is concerned with the WLA requirements themselves. Crashes 

that are truly of severity “A” are usually caused by faults that 

are difficult to detect and fix. Paradoxically, the WLA requires 

for such crashes to be addressed the fastest way possible. That 

said, WLA requirements seem to have been designed with a 

focus on the business value of handling CRs with less attention 

to the technical implications of fixing severe crashes. 

Combined with lack of diagnosis tools, it becomes very 

challenging for design teams to properly evaluate the 

importance of a crash, and even more challenging to estimate 



the time it would take to bring the fixes, which defeats the 

purpose of having predefined fixing times such as the ones in 

WLA in the first place. 

Based on these findings, it becomes clear that there is a 

need for consistent CR prioritization criteria based on work 

team habits and the complexity of the crashes. Another 

recommendation is to review the WLA requirements and adjust 

them to take into account the complexity of the failures, a 

problem that is easier said than done, given the inherent 

challenges in assessing failure complexity. 

 
(a) Internal CRs                                (b) External CRs 

Fig. 5. Percentage of internal CRs satisfying the WLA required time. 

C. How fast are CRs Assigned? 

We conduct the Mann-Whitney test to assess the null 

hypothesis H03A on the difference between assignment time 

according to the type of CRs. Table 2 reports the results of the 

Mann-Whitney test and Cliff’s d effect size to compare the 

assignment time of internal CRs and the assignment time of 

external CRs. 

TABLE 2. MANN-WHITNEY TEST AND CLIFF’S D RESULTS FOR ASSIGNMENT 

TIME OF INTERNAL CRS COMPARED TO EXTERNAL CRS 
 

 Median M-W p Cliff’s d 
Internal CRs 0.5 < 0.01 0.36 
External CRs 0.9 

The results show that the difference between the 

assignment time of internal CRs and the assignment time of 

external CRs is statistically significant with medium effect size. 

Therefore, we can reject the null hypothesis H03A and 

conclude that the  assignment of  external CRs takes more 

time  with medium effect size than the assignment of 

internal CRs. 

The assignment of CRs is a triaging task. A triaging team 

uses the information provided when the crash is reported to 

redirect the CRs to the right development teams. The 

assignment is performed quickly if the CR is described in 

sufficient details to help triagers identify the right developer. It 

is expected that internal CRs are assigned faster than external 

CRs. This is because, unlike customers, developers have better 

knowledge of the system and the type of faults. 

Furthermore, we analyze the impact of the CR severity on 

the assignment time. Figure 6 shows the difference in                    

assignment time for internal and external CRs according to the 

CR severity. We compute the test of Kruskal-Wallis one-way 

analysis of variance by ranks. For  external  CRs,  the  result  of  

Kruskal-Wallis (p-value=0.2441) shows that the severity does 

not impact the assignment time while for the internal CRs the 

result of the test (p- value < 0.05) shows that the severity has a 

significant impact on assignment time. 

 
Fig. 6. Assignment time by CR severity for internal and external CRs (the y-

axis shows the number of days, mapped to an interval of 1 to 20 for 

confidentiality reasons). 

Therefore, we can reject the null hypothesis H03BInt and 

conclude that when assigning internal CRs, designers are 

taking into account the severity of the CR. On the contrary, 

we cannot reject the null hypothesis H03BExt and we 

conclude that there is no evidence of the impact of CR 

severity on the assignment of external CRs. 

We observe that the assignment time of internal is impacted 

significantly by the CR severity.  One might expect that the 

more severe the CR, the faster it is assigned.  We found, 

however, that CRs of severity “A” take more time than CRs of 

severity “B” and “C”. This may be due to the complexity of the 

severe CRs, but does not justify, at least from the business 

standpoint, the slow reaction. On the contrary, we found that 

there is no significant impact of CR severity on the assignment 

time of external CRs.  Even if the difference is not statistically 

significant for external CRs, the trend between the assignment 

time according to the CR severity is the opposite for internal 

CRs. This is again due to the relevance and the consistency of 

the use of the severity attribute as a CR prioritization criterion 

as discussed in RQ2. 

D. Discussion 

Severity of crash reports: As we showed in this study, the 

severity of crash reports is not a good indicator for prioritizing 

crashes. Similar findings are noted by other researchers when 



working on open source systems (see the work by Khomh et al. 

[10]). While severity may be well defined, it is used 

inaccurately and interpreted differently by various stakeholders 

(customers, developers, and managers). In addition, we believe 

that customers should not be asked to specify the severity of 

crashes. It is at their advantage to indicate that a crash has a 

high severity to receive fixes within reasonable time. One 

solution to overcome this issue is to have automated solutions 

that can determine the severity of crashes by monitoring, for 

example, network traffic. An alternative solution would be to 

assign this task to CR triagers. Crash reporting systems should 

generate data that can facilitate this task. 

Need for fault diagnosis tools: Not all faults are the same. 

The discussions we had with a team of five Ericsson software 

engineers suggest that a better way to handle crashes is to 

group the faults into categories, and use the resulting 

classification to improve the assignment and fixing time of 

CRs. Possible classification criteria include the impact of the 

fault on the system’s functional and non-functional 

requirements. For example, we can group faults that impact 

system availability into one category, since availability is 

usually managed through dedicated middleware. Knowing 

these categories in advance can not only help with CR triaging 

tasks, but also help build automated fault diagnosis tools. These 

tools can collect additional data that can later be automatically 

attached to the reports when a certain fault category is detected. 

The idea is to work towards a crash reporting system that is 

‘intelligent’ enough to include data that is most relevant to the 

fault at hand. 

Quality of the crash reports: The quality of crash report 

descriptions is another cause of delaying the fixing of crash 

reports. Despite the fact that Ericsson has in place well defined 

data quality guidelines
4
 for reporting crashes, many of the crash 

reports we examined in this study do not follow these 

guidelines and sometimes even omit essential information. We 

believe that this is due to many factors. The first one is lack of 

training of the users of these guidelines (crash reporters and 

submitters). The second reason is that these guidelines are not 

enforced in crash reporting tools (e.g., MHWeb). For example, 

simple completeness and consistency checks could have 

improved the quality of many of the reports we have examined. 

Another important factor that can improve the quality of CR 

descriptions is to have consistent terminology. This is can be 

achieved by building a common data dictionary. 

Moreover, we believe that CR descriptions should be 

combined with more formal crash report data such as crash 

traces for a better categorization of CRs. This is aligned with 

the survey conducted by Bettenberg et al. in [3], in which the 

authors found that crash traces and more formal data should be 

used for triaging and CR handling in general. An example of a 

technique that detects duplicate reports based on traces is the 

one proposed by Kim et al. in [26]. Traces, however, can be 

challenging to analyze because of their large size ([9]). 

Techniques for trace reduction through abstraction such as the 

ones presented in [16, 17] may be needed.  

                                                           
4
For confidentiality reasons, we cannot reveal the content of the guidelines. 

Working level agreements: The fact that more than 50% 

of the CRs do not comply with the WLA requirements is an 

alarming issue. On one hand, this can be addressed by having 

automated fault diagnosis tools and improving the various 

aspects of handling CRs as discussed earlier. The process of 

handling external CRs, in particular, can reduce the impact of 

this issue, since external CRs require a team of reviewers to 

approve the resolutions. This team does not meet on a daily 

basis, which may cause significant delays. On the other hand, 

there is an organizational dimension to this issue. At the 

managerial level, a WLA is used for performance evaluation. 

Many of the performance indicators in a WLA were designed 

with a business objective in mind. There seems to be a gap 

between the business objectives and the implementation of 

these objectives at the operational level. Therefore, we 

conjecture that the solution must involve both management and 

technical staff to find appropriate performance indicators from 

both the business and operational (technical) sides.  

V. THREATS TO VALIDITY 

We discuss the threats to the validity of our study following 

the guidelines for case study research [22]. 

Construct validity: Construct validity threats concern the 

relation between theory and observation. In our study, the 

construct validity threats are mainly due to measurement errors 

and how we build our dataset. We extract CR information and 

history by parsing the html files of the CR coming from 

MHWeb. We rely on information provided by users on 

MHWeb.  Some designers may fix the CR long time before 

changing the CR status in MHWeb and this may bias our data. 

Internal Validity:  Threats to internal validity do not affect 

our study, being an exploratory study [22]. We do not claim 

causation; we only report the observations from the results of 

our study and discuss some explanation. 

Conclusion Validity: Conclusion validity threats concern 

the relation between the treatment and the outcome. We paid 

attention not to violate assumptions of the performed statistical 

tests. We used non-parametric tests that do not make any 

assumption about the data set distribution (i.e., Mann-Whitney 

tests and Cliff’s d effect size, Kruskal-Wallis tests etc.). We 

used two years activities crash reports from one large system 

from Ericsson involving thousands of designers. Again we do 

not claim causality, we report the results of our observation and 

discuss and explain these results. 

External Validity: Threats to external validity concern the 

possibility to generalize our results. Ericsson is a  very large 

software organization and the system under study is one of the 

largest systems and we take CRs that cover two years of 

activities, which we believe is a very representative dataset.  

However, this is related to an industrial context. In future work, 

we will conduct the same study on open source projects to 

compare the results. 

VI. RELATED WORK 

In what follows, we summarize related studies on crash 

report handling and analysis with a focus on studies that deal 

with reducing the bug fixing lead time. We discuss what 



distinguishes our work from the existing literature at the end of 

the section. 

Zaman et al. [23] conducted a case study on the Firefox 

project and analyzed the bugs lead time by categorizing the 

bugs based on whether they are caused by security attacks or 

due to performance degradation. They found that security bugs 

are fixed and triaged much faster than performance bugs. 

Marks et al. [14] studied the bug fixing time in open source 

projects based on three categories: the bug location, the 

reporter of the bug, and the description of the bug. Their main 

finding is that the factors that affect the bug fixing time vary 

according to the project and over time. Weiss et al. [21] 

proposed a technique based on mining past bug reports to find 

similar bugs in new versions. They have also worked on 

predicting the fixing time by using K-Nearest Neighbour 

(kNN) clustering algorithm.   Panjer [15] conducted as case on 

study on Eclipse project and built a prediction model of the bug 

lifetime.   They found that the most important factors that 

influence the bug lifetime are the comments, the severity of the 

bug determined by the development team and the product. Tian 

et al. [27] proposed to improve the detection of bug reports by 

having better ways to compute the similarity between two 

reports. 

Anbalagan and Vouk [2] conducted an empirical study on 

the time taken to correct bug in an open source project (i.e., 

Ubuntu distribution). They build a prediction model of the bug 

fixing time. They found that most of the bugs are corrected by 

people in small groups. They also found that there is a relation 

between the number of people involved in a bug report and the 

time taken to fix the bug. Similarly Giger et al [7] investigated 

using open source projects (i.e., Eclipse, Mozilla, and Gnome) 

the relation between bug reports characteristics and bug fixing 

time. They build a prediction model for the bug fixing time. 

They reach a precision of 0.65 and a recall 0.69 when 

predicting eclipse bug fixing time. 

Canfora et al. [5] used a survival model to analyze the time 

it takes to fix a bug. They conducted a case study on Eclipse, 

Mozilla, OpenLDAP and Vuze projects and found that long-

lived bugs can be characterized by changes to specific code 

constructs. Bhattacharya et al. [4] conducted a study on the 

bugs in the Google android platform and android open-source 

applications. They found that the bug triage is problematic 

despite the high quality of bug report. They also found that 

fixing security bugs takes more time than others. 

Dhaliwal et al. [6] conducted a study of crash-reports from 

Mozilla Firefox and found that grouping crash reports triggered 

by multiple bugs takes longer time to be fixed than the bugs 

where crash reports triggered by each bug are grouped 

separately. They proposed a grouping approach based on 

groups that contain the crash reports triggered by only one bug. 

Kim et al. [12] proposed crash reports grouping approach based 

on crash graphs consisting on an aggregated view of multiple 

crashes. They showed that the crash graphs could reduce 

misclassification and help predict fixable crashes. Soh et al. 

[20] conducted a study using open source projects on 

understanding how developers spend their effort during 

maintenance activities. They showed that there is no relation 

between the complexity of the fixing tasks and the effort spent 

by maintainers. However, the maintainers spent most of the 

time exploring files which are not relevant to fixing of the bug. 

Zhang et al. [24] studied using open source projects the delays 

between the bug assignment and the bug fixing. They found 

that the delays in bug fixing are due mainly to the bug type, the 

severity of the bugs, the operating system, the description of 

the bugs, and the comments of the bugs. Podgurski et al. [18] 

presented a clustering approach for automatic classification and 

prioritization of CRs. They applied their approach to open 

source compilers. Although their work is not aimed at 

investigating the CR process lead time (which is the objective 

of this paper), the authors argued that prioritization of CRs 

should be automated to allow incoming CRs to be properly 

prioritized. 

Aggarwal et al. [25] showed that domain knowledge, if 

available, can improve the detection of duplicate reports. They 

developed a method to extract contextual word lists from 

software-engineering literature and use the list to deduplicate 

crash reports. 

The problem of CR prioritization has also been tackled by 

Kim et al. in [13]. Through an empirical investigation of 

Firefox crash reports, the authors showed that only 10 to 20 

crashes account for the large majority of crash reports. 

Therefore, predicting these crashes should improve the CR 

process handling time. 

In summary, most of the studies conducted so far are 

limited to open source systems. Many of these studies have 

also a different scope than ours. In this paper, the emphasis is 

on examining the differences between the way internal and 

external CRs are handled at Ericsson using the CR severity 

levels as well as the WLA required fixing time. This is because 

the handling of each CR type has different implications on 

Ericsson’s operational costs. Providing insights on the way 

CRs are handled and pinpointing the key challenges faced by 

software engineers when dealing with each type of CR can help 

Ericsson put in place the proper strategies and devote the right 

resources to overcome these challenges. 

VII. CONCLUSION AND FUTURE WORKS 

We performed an empirical study at Ericsson to analyze: 

(1) the importance of internal CRs vs. external CRs; (2) the 

impact of the type and severity of CRs the fixing time and the 

level of satisfaction in delivering the answer to CR according to 

the WLA; (3) the impact of the type and severity of CRs on the 

assignment time. We performed our study on a dataset of CRs 

resulting from two years of activities on one of the large 

industrial systems at Ericsson. The key findings are: (a) it takes 

more time to fix external CRs compared to internal CRs; (b) 

the severity attribute does not have an impact on the fixing 

time; (c) the assignment time of internal CRs is less than that of 

external CRs; and (d) less than 50% of CRs are answered 

within the organization’s fixing time requirements defined in 

WLA. We attribute these results to many factors. First, the 

severity attribute does not seem to be used consistently across 

the organization including the customers, which often leads to 

poor prioritization of CRs. The second factor is related to the 



fact that it is often challenging to provide an adequate 

description of the fault. This is mainly due to lack of automated 

diagnosis tools. It is also caused by the poor quality of the data 

provided when submitting a report, despite the existence of 

corporate data collection guidelines. Finally, we have noticed 

that design team across organizational units tend to adopt their 

own work practices which may result in inconsistencies in the 

way CRs are prioritized and handled. 

To build on this work, we need to gain more comprehensive 

knowledge on the faults and the type of faults that are reported. 

This would allow us to develop criteria to be used as guidance 

for software engineers and customers when prioritizing the 

CRs. This knowledge can also be used to design automatic 

fault diagnosis tools. Moreover, we need to understand how the 

quality of the data in the CRs can be improved to accelerate the 

assignment of CRs to the design teams. The ultimate goal of 

these studies altogether is to improve the CR fixing time. 

Finally, we need to work with software engineers at Ericsson to 

study how design teams work internally and propose 

standardized practices to enforce any existing (or new) 

guidelines for CR management.  
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