
An Empirical Study on the Handling of Crash

Reports in a Large Software Company: An

Experience Report

Abdou Maiga, Abdelwahab Hamou-Lhadj,

Mathieu Nayrolles, Korosh Koochekian Sabor
SBA Research Lab

ECE, Concordia University, Montreal, QC, Canada

{amiga, abdelw, m_nayrol, k_kooche}@ece.concordia.ca

Alf Larsson
Senior Specialist Observability

Ericsson, Stockholm, Sweden

alf.larsson@ericsson.com

Abstract— In this paper, we report on an empirical study we

have conducted at Ericsson to understand the handling of crash

reports (CRs). The study was performed on a dataset of CRs

spanning over two years of activities on one of Ericsson’s largest

systems (+4 Million LOC). CRs at Ericsson are divided into two

types: Internal and External. Internal CRs are reported within

the organization after the integration and system testing phase.

External CRs are submitted by customers and caused mainly by

field failures. We examine the proportion and severity of internal

CRs and that of external CRs. A large number of external (and

severe) CRs could indicate flaws in the testing phase. Failing to

react quickly to external CRs, on the other hand, may expose

Ericsson to fines and penalties due to the Working Level

Agreements (WLA) that Ericsson has with its customers.

Moreover, we contrast the time it takes to handle each type of

CRs with the dual aim to understand the similarities and

differences as well as the factors that impact the handling of each

type of CRs. Our results show that (a) it takes more time to fix

external CRs compared to internal CRs, (b) the severity attribute

is used inconsistently through organizational units, (c)

assignment time of internal CRs is less than that of external CRs,

(d) More than 50% of CRs are not answered within the

organization’s fixing time requirements defined in WLA.

Index Terms— Software Maintenance, Mining Crash Reports,

Empirical Studies, Industrial Systems.

I. INTRODUCTION

Maintenance activities are known to be costly and

challenging [19]. Studies have shown that the cost of software

maintenance can reach up to 70% of the overall cost of the

software development process [1]. At Ericsson, one of the

largest telecom and software companies in the world, the

maintenance process is particularly complex due to the large

client base the company serves. The company needs to react

quickly when crashes (due to field failure) are reported. Failing

to do so may have a significant impact on Ericsson’s

operational costs, and may also cause damages to the

organization’s reputation.

At Ericsson, Crash Reports (CRs)
1
 are divided into two

categories: internal and external reports. Internal reports are

submitted within the organization to report on failures observed

1
The term crash reports is the way Ericsson refers to bug reports.

by software integration specialists. External reports, on the

other hand, are submitted by customers who encounter system

crashes (or unintended system behavior) in the field.

Both types of CRs are submitted using the same reporting

system and mechanism. They are first triaged by a team that

forms the first line of support. If the first line of support cannot

provide a fix, it redirects the CR to the second line of support

that can redirect it again to another line of support until the

problem is resolved.

Both types of CRs are constrained by Working Level

Agreements (WLA) that Ericsson has in place to improve team

performance and quality of services. Essentially, a WLA

describes the required fixing time of the CRs depending on

their severity level. For internal CRs, comparing the actual time

it takes to fix a CR to the required time in the WLA is used to

assess the performance of the design and testing teams. For

external CRs, a WLA contractually engages Ericsson to

provide solutions to its customers within the required fixing

time.

To further improve the CR handling process, Ericsson was

interested in examining the factors that influence the CR

process lead time
2

and the differences in the way internal and

external CRs are handled, while taking the CR severity level

into account. Determining the level of CR compliance with the

WLA requirements is another important aspect. Knowing, for

example, that a large number of CRs with high severity are

originated from the field may trigger organizational changes or

additional investment in tool support, due to the implications

that such crashes may have on customer satisfaction. Similarly,

examining CRs that are reported internally could provide

insight to management teams into how effective the testing and

integration steps of the development process are.

To draw an accurate picture of the current state, we have

conducted an empirical study on Ericsson premises. We

examined a large dataset
3

of CRs spanning over two years of

activities on one of Ericsson’s largest systems (+4 million

LOC). We studied the current state of the CR handling process

2
 Lead time refers to the lifetime of the CR from the time it is submitted to the

time it is resolved (or closed).
3 We cannot reveal the number of CRs because of confidentiality reasons.

based on the CR type. We compared the proportion and

severity of internal CRs to that of external CRs. We also

studied the fixing time of the CRs using the CR type and

severity as the main variables. Moreover, we examined the CRs

that do not meet the WLA timing requirements to uncover the

causes. We used statistical methods such as Mann-Whitney

tests, Kruskal Wallis, and Pearson’s chi-squared independence

tests to analyze the data. This paper reports on the main

findings of this study.

The remaining parts of this paper are as follows: In Section

II, we provide definitions and background to understand the

context of the study. In Section III, we describe the study

definition and design. The results are presented in Section IV,

followed by threats to validity in Section V. In Section VI, we

present related work. Finally, we conclude the paper and

outline future directions in Section 7.

II. STUDY SETUP

Figure 1 illustrates our data collection and analysis process

that we present here and discuss in more details in the

subsequent sections. First, we extract data from the CR

repository. We then mine the reports to extract the internal and

external CRs and the CR handling information. We compute

lead time for each CR type. Finally, using statistical methods,

we analyze the data based on three research questions (RQ) that

we discuss later, and report on the results.

Fig. 1. Data collection and analysis process of the study

A. Target System

Ericsson is a Radio Access Network supplier to around

50% of all commercially launched WCDMA (Wideband Code

Division Multiple Access) and HSPA (High Speed Packet

Access) networks in the world. More than 410 HSPA networks

are commercially launched in 162 countries, spread on all

continents. The system we used in this study contains more

than 50 different network products, all part of the Radio Access

Network (RAN) which handles video/mobile telephony, mobile

TV, PSTN (public switched telephone network), mobile

broadband and fixed wireless broadband. It is built on a

number of different embedded hardware types, running more

than 200 different software products. The code base is over

four millions of lines, implemented in several languages with

C/C++ and Java dominating. The development team consists of

application teams (Radio Network Controlled and Radio Based

Systems) and the platform CPP (Connectivity Packet

Platform).

B. Crash Report Management System at Ericsson

Developers report faults and crashes in the system to warn

on pending issues with the system functionalities. They use

various issue-tracking systems to post the descriptions of faults

and fixes. The issue-tracking system, used by the studied unit

within Ericsson is called MHWeb. MHWeb is an integrated

Web-based environment for maintenance and customer

support. It has many components to allow design, maintenance,

and support teams to share information that describe faults in

the system, fixes, etc. The tool offers an easy-to-use interface

for CR handling, analysis and measurement. MHWeb typical

functionalities include searching and browsing of CRs.

In MHWeb, a CR is described using the following

information:

• CR reference: This is a unique reference for the CR.

• CR type: The type of the CR (internal or external).

• CR severity: The severity of a CR is measured based

on the impact of the fault on network traffic. The CR is

of severity “A” when the crash affects more than 30% of

the traffic or the crash leads to a complete failure. The

CR is of severity “B” when the crash affects less than

30% of the traffic or more than 30% in a single

occasion. Finally, the CR is considered of severity “C”

when it is a minor fault not affecting the traffic at all.

• CR Status: The current status of the CR (registered,

assigned, cancelled, fixed, finished, etc.).

• Product information: The faulty product and version,

affected by the fault.

• History data: This describes the stages of the CRs and

the people who are responsible of handling each stage.

A simplified view of the CR states and the state transition

from reporting to providing a solution is described below:

1. The CR is registered.

2. The CR is assigned to a design team to solve it.

3. The CR is solved.

4. A technical answer is provided.

In this study, we only consider CRs with the status

"Finished". That is, we exclude ongoing CRs. It should also be

mentioned that we exclude duplicate CRs from the dataset.

Duplicate reports are marked as duplicate by developers.

C. Data Parsing and Computation

For each CR, we extract the reference number from

MHWeb and download its corresponding html file. We extract

information from the html files including the description of the

CR (CR type, submitter, severity, etc.) and the CR historical

data and handling process. Based on the historical data which

 Extract data

Compute CR

Lead Times, and

Assignment and

Answering Times

Crash report

characteristics

RQ1 RQ2 RQ3

 Analyses (Mann-

Withney, Cliff d,

Kruskal-Wallis)

Results

CR

Repository

(MHWeb)

contains the date and time of each step of the CR, we compute

the duration between each step and we extract:

• ATi: The CR assignment time is the time interval

between the time the CR is registered to the time it is

assigned to a design team.

• FTi: The CR fixing time is the time interval between

the time the CR is registered to when the technical

answer to the CR is provided.

III. STUDY DESIGN

We describe the design of our study by first stating the

research questions, and then explaining the variables, and

analysis methods we used to answer these questions. We

formulate three research questions (RQs) with the overall

objective to understand the similarities and differences between

the way internal CRs and external CRs are handled at Ericsson.

The objective of the first research question is to analyze the

importance of the testing process (i.e., before the product is

released to the customers) by contrasting the number of internal

CRs vs. external CRs. The remaining two questions address the

duration of CR handling including the duration of CR

assignment and fixing according to CR type (i.e., internal,

external) and severity.

RQ1: What is the proportion of internal vs. external

CRs?

One direct benefit in answering this question it to help

Ericsson’s development teams assess (at least in the beginning)

the effectiveness of the testing process. Knowing, for example,

that there is a high number of external CRs may trigger project

managers to enhance the testing process so as to find more

internal CRs (especially the critical ones) and fix them before

the product is released to customers.

To answer this question, we compare the proportion of

internal CRs to the total number of CRs. Since not all faults

have the same severity level, we also examine the severity of

the CRs with respect to their type. For this part, we state the

following null hypothesis:

• H01: The proportion of internal CRs is not

significantly different from the proportion of external

CRs with respect to the CR severity.

Variables: When comparing the proportion of internal CRs to

that of external CRs based on severity, we use as variables the

type of CRs (internal, external) and the severity levels (A, B,

C). We build a contingency table and perform the test of

independence between the observed frequencies.

Analysis method: We answer RQ1 in two steps. The first step

is to use descriptive statistics; we compute the ratio of internal

CRs and external CRs to the total number of CRs in the dataset.

This shows the importance of CR (in proportion) found during

the testing process compared to the proportion of CRs sent by

customers. In the second step, we compare the severity of CRs

detected internally to the severity of CRs detected by customers

by computing the number of CRs for each type and each

severity level (A, B, C). We build the contingency table with

these two qualitative variables (the type and severity) and we

test the null hypothesis H01 to assess if the number of CRs of a

particular severity is related to the CR type. We use the

Pearson’s chi-squared test to reject the null hypothesis H01.

Pearson’s chi-squared independence test is used to analyze the

relationship between two qualitative data, in our study the CR

type and CR severity. The results of Pearson’s chi-squared

independence test are considered statistically significant at α =

0.05. If p-value < 0.05, we reject the null hypothesis H01 and

conclude that the proportion of internal CRs for each severity

level are significantly different from the proportion of external

CRs in severity. is used to format your paper and style the text.

All margins, column widths, line spaces, and text fonts are

prescribed; please do not alter them. You may note

peculiarities. For example, the head margin in this template

measures proportionately more than is customary. This

measurement and others are deliberate, using specifications that

anticipate your paper as one part of the entire proceedings, and

not as an independent document. Please do not revise any of

the current designations.

RQ2: How fast are CRs fixed?

This question has three aspects. First, we analyze the time it

takes to resolve each type of CRs. This will help Ericsson

designers and project managers evaluate the resources

dedicated to each CR type. Second, we study the impact of CR

severity on the CR fixing time. The objective is to assess

whether Ericsson’s designers take into account the CR severity

when prioritizing the CRs. Answering this question can help

Ericsson evaluate whether the severity attribute, as it is

currently defined, should be maintained for CR prioritization or

there is need to investigate additional criteria.

To asses these two aspects of question RQ2 we state the

following null hypotheses.

• H02A: There is no statistically-significant difference

between the fixing time of external CRs and that of

internal CRs.

• H02BInt: There is no relation between the fixing

time of internal CRs and the severity of the CRs.

• H02BExt: There is no relation between the fixing

time of external CRs and the severity of the CRs.

The third aspect of RQ2 is to evaluate if CRs are handled

according to the timing requirements defined in the WLA of

Ericsson (not shown in this paper for confidentiality reasons).

This is critical, especially, for external CRs. Failing to meet

these requirements can expose Ericsson to additional costs. We

compare the duration of CR fixing time to the deadlines

defined in the WLA for each CR type and severity level. We

compute the percentage of CRs that meet the WLA

requirements. Knowing this will help Ericsson evaluate if the

actual WLA deadlines for CR fixing should be maintained, or

if there is a need to do a re-evaluation.

Variables: To compare the CR fixing time with respect to their

type we use as independent variable the type Ti of a CR CRi, to

distinguish between internal and external CRs. We consider as

dependent variable the fixing time FTi of a CR. We compute

the fixing time FTi of a CR CRi . The fixing time FTi is the

time between when the CR is registered and when a technical

answer is provided. To analyze the impact of the severity of the

CR on the fixing time, we consider as independent variable the

CR severity and as dependent variable the CR fixing time FTi.

In addition, we compare the time spent in average to answer a

CR to the time defined in the WLA and we analyze the

proportion of CRs which satisfy the WLA requirements.

Analysis method: We analyze RQ2 in three steps. First, we

compute the (non-parametric) Mann-Whitney test to compare

the CR fixing time with respect to the CR type and analyze

whether the difference in the average fixing time is statistically

significant. We use the Mann-Whitney test because, as a non-

parametric test, it does not make any assumption on the

underlying distributions. We analyze the results of the test to

assess the null hypothesis H02A. The result is considered as

statistically significant at α = 0.05. Therefore, if p-value < 0.05,

we reject the null hypothesis H02A and conclude that the

average fixing time of internal CRs is significantly different

from the average fixing time of external CRs. Other than

testing the null hypothesis, we also estimate the magnitude of

the difference in average between the fixing time of the two

types of CRs. We use the non-parametric effect size measure

Cliff’s d, which indicates the magnitude of the effect size of the

treatment on the dependent variable. Cliff’s d is defined as Eq.

1 [8]:

xy

i j

ij

xy

jiji

nn

d

nn

xyxy
d

..

)(#)(#
∑∑

=
<−>

= (1)

where di j = sign(yi − x j) and #(yi > x j) the number of

comparisons between observations in the two groups for which

the Group i observation is larger than the Group j observation.

The effect size is small for 0.147 ≤ d < 0.33, medium for

0.33 ≤ d < 0.474, and large for d ≥ 0.474 [8].

Second, we analyze for each type of CRs the impact of

severity on the fixing time. We use Kruskal-Wallis one-way

analysis of variance by ranks to analyze the impact of the type

and severity of CRs on the fixing time. The Kruskal-Wallis test

aims at testing the hypothesis that several populations have the

same continuous distribution versus the alternative that

measurements tend to be higher in one or more of the

populations. We want to see if there is a statistically significant

difference between the fixing time according to the CR severity

and type. In other words, does the fixing time of the CR

increase or decrease according to its severity? Kruskal-Wallis

one-way analysis of variance by ranks is a non-parametric test

that does not require making assumption about the data set

distribution. Using Kruskal-Wallis test, we test the null

hypotheses H02BInt (respectively H02BExt) to see if there is a

statistically-significant difference between the fixing time of

internal CRs (respectively external) according to their severity.

The results of the Kruskal-Wallis test are considered

statistically significant at α = 0.05. If p-value < 0.05, we reject

the null hypothesis H02BInt (respectively H02BExt) and

conclude that the severity of internal CRs (respectively

external) impact significantly its fixing time. Third, we

compare the fixing time of the CRs to the deadlines specified in

the WLA. We compute the percentage of CRs (according to

their type and severity) that meet the WLA requirements.

RQ3: How fast are CRs Assigned?

After working with Ericsson software engineers and

examining a large number of CRs, we have observed that the

CR assignment at Ericsson tends to be considerably time

consuming. Bhattacharya et al. [4] also found that CR

assignment is problematic despite the quality of the CR data.

At Ericsson, there are many factors that impact the assignment

time including the size of the organization and the large

number of its products and customers [10]. The assignment

activity takes place before starting solving the problem. It could

be a bottleneck task if it is performed inefficiently (i.e., without

automation). Assigning a CR to the proper organizational unit

is a challenging task. We have therefore decided to study the

relation between the CR type and the duration of CR

assignment activity. Similar to the previous questions, we took

into account the severity levels. This will help assess the

importance of the severity attribute during CR assignment.

We analyze whether the assignment of external CRs takes

more time than the assignment of internal CRs by testing the

null hypothesis:

• H03A: There is no statistically-significant difference

between the duration of the assignment of external

CRs and that of internal CRs.

In this research question, we analyze the duration of the

assignment activity with respect to the severity. We test the

following null hypotheses:

• H03BInt: There is no relation between the duration of

internal CRs assignment and the CR severity.

• H03BExt: There is no relation between the duration of

external CRs assignment and the CR severity.

Variables: We use as independent variable the type Ti of a CR

(CRi). For the dependent variables, we measure the assignment

time, ATi , of the CRs. We compute the time spent between the

time the CR is registered until it is assigned to the right

designer to be fixed. When analyzing the impact of the severity

of the CR on the assignment time, we consider as independent

variable the severity of the CR and as dependent variable the

CR assignment time, ATi .

Analysis method: First, we compute the (non-parametric)

Mann-Whitney test to compare the CR assignment time with

respect to the CR type (as in RQ2). This will show if a

particular type of CRs is assigned faster than the other one. We

test the null hypothesis H03A to know whether the difference in

average between the assignment time of internal CRs and that

of external CRs is statistically significant. Second, we analyze

if the severity of a CR impacts its assignment time. We use

Kruskal-Wallis one-way analysis of variance by ranks to

analyze for each type of CR (internal, external), the impact of

the severity of CR on the assignment time. We test the null

hypotheses H03BInt and H03BExt according to the results of

Kruskal-Wallis one-way analysis of variance by ranks. The

results are considered as statistically significant at α = 0.05.

Therefore, if p-value < 0.05, we reject the null hypothesis

H03BInt (respectively H03BExt) and conclude that the severity

of internal (respectively external) CRs impact significantly the

assignment time.

IV. STUDY RESULTS AND DISCUSSION

In this section, we report on the results of the analyses

performed to answer the research questions. As we showed in

Section 2, we used a CR dataset covering two years of

maintenance activities on one Ericsson largest systems. For

confidentiality reasons, throughout this paper, we do not reveal

the exact number of CRs, the CR fixing and assignment time,

and the WLA required fixing time. Instead, we use relative data

(i.e., percentages).

A. What is the proportion of internal vs. external CRs?

Figure 2 shows the percentage of internal and external CRs.

As shown in the figure, we found that 64% of the total reported

CRs are internal, i.e., detected during integration system

testing, whereas only 36% of the total CRs are external, i.e.,

sent by customers. In other words, the percentage of internal

CRs is almost twice the percentage of external CRs. On one

hand, this finding is considered positive and reflects good

performance of the testing teams, especially given such a large

organization and that the system under study is one of the

largest systems at Ericsson. On the other hand, 36% of external

crashes is still considered high and should require acute

attention from the management team.

Fig. 2. Percentages of internal and external CRs

Figure 3 shows the proportion of internal and external CRs

by severity. To assess the null hypothesis H01, we performed

the Pearson’s chi-squared independence test.

An interesting observation is that the percentage of internal

CRs of severity “A” (16%) is higher than the percentage of

external CRs of severity “A” (12%). This means that the

designers find internally the most critical crashes before the

product is released to the customer. Also when analyzing the

percentage of CRs of severity “A” for both internal and

external CRs, we can observe that the percentage of CRs of

severity “A” is lower which could indicate overall a good

system quality process. However, because of the critical nature

of faults of severity “A” and their cost implications, it is still

recommended to conduct additional studies to further reduce

the percentage of CRs of this severity level.

Fig. 3. Proportions of internal and external CRs by severity

B. How fast are CRs fixed?

We analyze the difference in the fixing time between

internal and external CRs. We conduct Mann-Whitney test to

assess H02A. Table 1 reports on the results of the Mann-

Whitney test and Cliff’s d effect size.

TABLE 1: MANN-WHITNEY TESTS AND CLIFF’S D RESULTS FOR ANSWERING

TIME OF INTERNAL CRS COMPARED TO EXTERNAL CRS

 Median M-W p Cliff’s d
Internal CRs 3

< 0.01 0.56
External CRs 4

The results show that the difference between the fixing time

of internal CRs and the fixing time of external CRs is

statistically significant with large effect size.

Therefore, we can reject the null hypothesis H02A and

conclude that the fixing of external CRs takes more time with

large effect size than the fixing of internal CRs.

The fixing of internal CRs takes less time than the external

CRs. This observation can be explained by the fact that, as

expected, design teams have more knowledge about the system

than external users and therefore can provide relevant

information to understand the crash, locate the fault, and fix it.

In addition, at Ericsson, external CRs cannot normally be

answered until a team of reviewers have acknowledged the

According to the results of the test (p-value < 0.001), we

reject the null hypothesis H01 and conclude that there is a

significant different between the severity of internal CRs

and external CRs.

proposed answer. This team does not meet daily. This may

explain the delay in closing external CRs.

To understand the relation between the CR severity and CR

fixing time, we compute the test of Kruskal-Wallis one-way

analysis of variance by ranks. The result of the test for internal

CRs (p – value = 0.4734) and the result for external CRs (p–

value = 0.6987) show that there is no relation between the

severity of a CR and the fixing time.

Therefore, we cannot reject the null hypotheses H02BInt

and H02BExt and we conclude that there is no effect of the

severity of CRs on the fixing time.

We analyze the impact of the CR severity on the fixing

time. Figure 4 shows the difference in fixing time for internal

and external CRs according to the severity and the WLA

required fixing time.

(a) Internal CRs (b) External CRs

Fig. 4. Fixing time and WLA required time for internal and external CRs in

days—the time unit is days mapped to an interval between 1 to 10 to protect
the confidentiality ofthe original data

This result is surprising. We expected the opposite.

Intuitively, the more severe a CR, the less time it should take to

fix it. It is more logical to answer faster a CR of severity “A”

before the other CRs because of the impact of the crash on the

system. As mentioned earlier, a crash of severity “A” affects

more than 30% of the traffic or may cause a network failure.

In addition, as we can see from Figure 4(a), the fixing time

of crashes of severity “A” for both types of CRs is higher than

the fixing time of crashes of severity “B” and “C”. This finding

seems to indicate that the designers do not consider the severity

attribute as submitted by the CR submitters. According to the

discussion we had with software engineers at Ericsson, we

found out that the reason for which the severity level does not

impact the fixing time is due to three main factors. The

submitter may assign a high severity level to the CR just to

speed up the answering process to receive a fix within

reasonable time. This seems to happen for external CRs more

than the internal ones.

The second factor lies in the fact that the submitter (internal

or external) has little knowledge of the severity classification

scheme. At the present time, there are no tools that could help

identify the severity level by observing the effect of the crash

on the network traffic.

The third factor is related to how the design teams in

different organizational units function at Ericsson. There seems

to be a lack of consistency on how the severity levels are

defined (and interpreted). This has led some designers to use

their own CR prioritization criteria that do not always map to

the severity classification defined at the corporate level. These

results can help direct managers about the necessity to conduct

further studies to understand how internally each team

prioritizes the CRs. The ultimate objective is to set standards

and guidelines that could be used by all the design teams to

prioritize consistently the CRs. Another recommendation that

emerged from these findings is the necessity to invest in tools

for fault diagnosis that could automatically suggest adequate

severity levels by observing the impact of faults on network

traffic. Such recommendation systems can reduce the time and

efforts spent on analyzing fault severity. They can also help

standardize the way severity levels are reported.

Finally, we compare the CR fixing time by severity to the

WLA required fixing time. Figure 4 shows for each severity

level the average fixing time and the WLA required fixing time

for internal and external CRs. Then, we analyze the percentage

of CRs with respect to the WLA required fixing time (see

Figure 5). Figure 4 shows that, in average, the time it takes to

fix a CR exceeds the required time according to WLA for each

CR type and severity level. For internal CRs, the fixing time of

CRs of severity “A” takes four times longer than what is

required in the WLA. Similarly, the fixing of CRs of severity

“B” and “C” are in average two times longer. This finding is

almost the same for external CRs.

We also found that the severity is not a discriminating

factor that impacts the percentage of CRs that respect the

WLA. We note that the rate of the CRs with severity “A” that

meet the WLA requirements is the lowest compared to other

severity levels (29% internal and 31% external CRs) (see

Figures 6 and 7). In fact, for all CR types and severity levels,

the ratio of the CRs that satisfy WLA does not exceed 50%.

This is problematic giving that not being able to meet the WLA

may be costly to Ericsson.

These results are consistent with the results of previous

research questions that suggest that prioritization of CRs is not

performed on the basis of severity. As discussed earlier, this

could be explained by the consistency and the relevance of the

severity attribute as well as the way severity levels are used

(and interpreted) by different design teams.

Another important factor that contributes to these findings

is concerned with the WLA requirements themselves. Crashes

that are truly of severity “A” are usually caused by faults that

are difficult to detect and fix. Paradoxically, the WLA requires

for such crashes to be addressed the fastest way possible. That

said, WLA requirements seem to have been designed with a

focus on the business value of handling CRs with less attention

to the technical implications of fixing severe crashes.

Combined with lack of diagnosis tools, it becomes very

challenging for design teams to properly evaluate the

importance of a crash, and even more challenging to estimate

the time it would take to bring the fixes, which defeats the

purpose of having predefined fixing times such as the ones in

WLA in the first place.

Based on these findings, it becomes clear that there is a

need for consistent CR prioritization criteria based on work

team habits and the complexity of the crashes. Another

recommendation is to review the WLA requirements and adjust

them to take into account the complexity of the failures, a

problem that is easier said than done, given the inherent

challenges in assessing failure complexity.

(a) Internal CRs (b) External CRs

Fig. 5. Percentage of internal CRs satisfying the WLA required time.

C. How fast are CRs Assigned?

We conduct the Mann-Whitney test to assess the null

hypothesis H03A on the difference between assignment time

according to the type of CRs. Table 2 reports the results of the

Mann-Whitney test and Cliff’s d effect size to compare the

assignment time of internal CRs and the assignment time of

external CRs.

TABLE 2. MANN-WHITNEY TEST AND CLIFF’S D RESULTS FOR ASSIGNMENT

TIME OF INTERNAL CRS COMPARED TO EXTERNAL CRS

 Median M-W p Cliff’s d
Internal CRs 0.5 < 0.01 0.36
External CRs 0.9

The results show that the difference between the

assignment time of internal CRs and the assignment time of

external CRs is statistically significant with medium effect size.

Therefore, we can reject the null hypothesis H03A and

conclude that the assignment of external CRs takes more

time with medium effect size than the assignment of

internal CRs.

The assignment of CRs is a triaging task. A triaging team

uses the information provided when the crash is reported to

redirect the CRs to the right development teams. The

assignment is performed quickly if the CR is described in

sufficient details to help triagers identify the right developer. It

is expected that internal CRs are assigned faster than external

CRs. This is because, unlike customers, developers have better

knowledge of the system and the type of faults.

Furthermore, we analyze the impact of the CR severity on

the assignment time. Figure 6 shows the difference in

assignment time for internal and external CRs according to the

CR severity. We compute the test of Kruskal-Wallis one-way

analysis of variance by ranks. For external CRs, the result of

Kruskal-Wallis (p-value=0.2441) shows that the severity does

not impact the assignment time while for the internal CRs the

result of the test (p- value < 0.05) shows that the severity has a

significant impact on assignment time.

Fig. 6. Assignment time by CR severity for internal and external CRs (the y-

axis shows the number of days, mapped to an interval of 1 to 20 for

confidentiality reasons).

Therefore, we can reject the null hypothesis H03BInt and

conclude that when assigning internal CRs, designers are

taking into account the severity of the CR. On the contrary,

we cannot reject the null hypothesis H03BExt and we

conclude that there is no evidence of the impact of CR

severity on the assignment of external CRs.

We observe that the assignment time of internal is impacted

significantly by the CR severity. One might expect that the

more severe the CR, the faster it is assigned. We found,

however, that CRs of severity “A” take more time than CRs of

severity “B” and “C”. This may be due to the complexity of the

severe CRs, but does not justify, at least from the business

standpoint, the slow reaction. On the contrary, we found that

there is no significant impact of CR severity on the assignment

time of external CRs. Even if the difference is not statistically

significant for external CRs, the trend between the assignment

time according to the CR severity is the opposite for internal

CRs. This is again due to the relevance and the consistency of

the use of the severity attribute as a CR prioritization criterion

as discussed in RQ2.

D. Discussion

Severity of crash reports: As we showed in this study, the

severity of crash reports is not a good indicator for prioritizing

crashes. Similar findings are noted by other researchers when

working on open source systems (see the work by Khomh et al.

[10]). While severity may be well defined, it is used

inaccurately and interpreted differently by various stakeholders

(customers, developers, and managers). In addition, we believe

that customers should not be asked to specify the severity of

crashes. It is at their advantage to indicate that a crash has a

high severity to receive fixes within reasonable time. One

solution to overcome this issue is to have automated solutions

that can determine the severity of crashes by monitoring, for

example, network traffic. An alternative solution would be to

assign this task to CR triagers. Crash reporting systems should

generate data that can facilitate this task.

Need for fault diagnosis tools: Not all faults are the same.

The discussions we had with a team of five Ericsson software

engineers suggest that a better way to handle crashes is to

group the faults into categories, and use the resulting

classification to improve the assignment and fixing time of

CRs. Possible classification criteria include the impact of the

fault on the system’s functional and non-functional

requirements. For example, we can group faults that impact

system availability into one category, since availability is

usually managed through dedicated middleware. Knowing

these categories in advance can not only help with CR triaging

tasks, but also help build automated fault diagnosis tools. These

tools can collect additional data that can later be automatically

attached to the reports when a certain fault category is detected.

The idea is to work towards a crash reporting system that is

‘intelligent’ enough to include data that is most relevant to the

fault at hand.

Quality of the crash reports: The quality of crash report

descriptions is another cause of delaying the fixing of crash

reports. Despite the fact that Ericsson has in place well defined

data quality guidelines
4
 for reporting crashes, many of the crash

reports we examined in this study do not follow these

guidelines and sometimes even omit essential information. We

believe that this is due to many factors. The first one is lack of

training of the users of these guidelines (crash reporters and

submitters). The second reason is that these guidelines are not

enforced in crash reporting tools (e.g., MHWeb). For example,

simple completeness and consistency checks could have

improved the quality of many of the reports we have examined.

Another important factor that can improve the quality of CR

descriptions is to have consistent terminology. This is can be

achieved by building a common data dictionary.

Moreover, we believe that CR descriptions should be

combined with more formal crash report data such as crash

traces for a better categorization of CRs. This is aligned with

the survey conducted by Bettenberg et al. in [3], in which the

authors found that crash traces and more formal data should be

used for triaging and CR handling in general. An example of a

technique that detects duplicate reports based on traces is the

one proposed by Kim et al. in [26]. Traces, however, can be

challenging to analyze because of their large size ([9]).

Techniques for trace reduction through abstraction such as the

ones presented in [16, 17] may be needed.

4
For confidentiality reasons, we cannot reveal the content of the guidelines.

Working level agreements: The fact that more than 50%

of the CRs do not comply with the WLA requirements is an

alarming issue. On one hand, this can be addressed by having

automated fault diagnosis tools and improving the various

aspects of handling CRs as discussed earlier. The process of

handling external CRs, in particular, can reduce the impact of

this issue, since external CRs require a team of reviewers to

approve the resolutions. This team does not meet on a daily

basis, which may cause significant delays. On the other hand,

there is an organizational dimension to this issue. At the

managerial level, a WLA is used for performance evaluation.

Many of the performance indicators in a WLA were designed

with a business objective in mind. There seems to be a gap

between the business objectives and the implementation of

these objectives at the operational level. Therefore, we

conjecture that the solution must involve both management and

technical staff to find appropriate performance indicators from

both the business and operational (technical) sides.

V. THREATS TO VALIDITY

We discuss the threats to the validity of our study following

the guidelines for case study research [22].

Construct validity: Construct validity threats concern the

relation between theory and observation. In our study, the

construct validity threats are mainly due to measurement errors

and how we build our dataset. We extract CR information and

history by parsing the html files of the CR coming from

MHWeb. We rely on information provided by users on

MHWeb. Some designers may fix the CR long time before

changing the CR status in MHWeb and this may bias our data.

Internal Validity: Threats to internal validity do not affect

our study, being an exploratory study [22]. We do not claim

causation; we only report the observations from the results of

our study and discuss some explanation.

Conclusion Validity: Conclusion validity threats concern

the relation between the treatment and the outcome. We paid

attention not to violate assumptions of the performed statistical

tests. We used non-parametric tests that do not make any

assumption about the data set distribution (i.e., Mann-Whitney

tests and Cliff’s d effect size, Kruskal-Wallis tests etc.). We

used two years activities crash reports from one large system

from Ericsson involving thousands of designers. Again we do

not claim causality, we report the results of our observation and

discuss and explain these results.

External Validity: Threats to external validity concern the

possibility to generalize our results. Ericsson is a very large

software organization and the system under study is one of the

largest systems and we take CRs that cover two years of

activities, which we believe is a very representative dataset.

However, this is related to an industrial context. In future work,

we will conduct the same study on open source projects to

compare the results.

VI. RELATED WORK

In what follows, we summarize related studies on crash

report handling and analysis with a focus on studies that deal

with reducing the bug fixing lead time. We discuss what

distinguishes our work from the existing literature at the end of

the section.

Zaman et al. [23] conducted a case study on the Firefox

project and analyzed the bugs lead time by categorizing the

bugs based on whether they are caused by security attacks or

due to performance degradation. They found that security bugs

are fixed and triaged much faster than performance bugs.

Marks et al. [14] studied the bug fixing time in open source

projects based on three categories: the bug location, the

reporter of the bug, and the description of the bug. Their main

finding is that the factors that affect the bug fixing time vary

according to the project and over time. Weiss et al. [21]

proposed a technique based on mining past bug reports to find

similar bugs in new versions. They have also worked on

predicting the fixing time by using K-Nearest Neighbour

(kNN) clustering algorithm. Panjer [15] conducted as case on

study on Eclipse project and built a prediction model of the bug

lifetime. They found that the most important factors that

influence the bug lifetime are the comments, the severity of the

bug determined by the development team and the product. Tian

et al. [27] proposed to improve the detection of bug reports by

having better ways to compute the similarity between two

reports.

Anbalagan and Vouk [2] conducted an empirical study on

the time taken to correct bug in an open source project (i.e.,

Ubuntu distribution). They build a prediction model of the bug

fixing time. They found that most of the bugs are corrected by

people in small groups. They also found that there is a relation

between the number of people involved in a bug report and the

time taken to fix the bug. Similarly Giger et al [7] investigated

using open source projects (i.e., Eclipse, Mozilla, and Gnome)

the relation between bug reports characteristics and bug fixing

time. They build a prediction model for the bug fixing time.

They reach a precision of 0.65 and a recall 0.69 when

predicting eclipse bug fixing time.

Canfora et al. [5] used a survival model to analyze the time

it takes to fix a bug. They conducted a case study on Eclipse,

Mozilla, OpenLDAP and Vuze projects and found that long-

lived bugs can be characterized by changes to specific code

constructs. Bhattacharya et al. [4] conducted a study on the

bugs in the Google android platform and android open-source

applications. They found that the bug triage is problematic

despite the high quality of bug report. They also found that

fixing security bugs takes more time than others.

Dhaliwal et al. [6] conducted a study of crash-reports from

Mozilla Firefox and found that grouping crash reports triggered

by multiple bugs takes longer time to be fixed than the bugs

where crash reports triggered by each bug are grouped

separately. They proposed a grouping approach based on

groups that contain the crash reports triggered by only one bug.

Kim et al. [12] proposed crash reports grouping approach based

on crash graphs consisting on an aggregated view of multiple

crashes. They showed that the crash graphs could reduce

misclassification and help predict fixable crashes. Soh et al.

[20] conducted a study using open source projects on

understanding how developers spend their effort during

maintenance activities. They showed that there is no relation

between the complexity of the fixing tasks and the effort spent

by maintainers. However, the maintainers spent most of the

time exploring files which are not relevant to fixing of the bug.

Zhang et al. [24] studied using open source projects the delays

between the bug assignment and the bug fixing. They found

that the delays in bug fixing are due mainly to the bug type, the

severity of the bugs, the operating system, the description of

the bugs, and the comments of the bugs. Podgurski et al. [18]

presented a clustering approach for automatic classification and

prioritization of CRs. They applied their approach to open

source compilers. Although their work is not aimed at

investigating the CR process lead time (which is the objective

of this paper), the authors argued that prioritization of CRs

should be automated to allow incoming CRs to be properly

prioritized.

Aggarwal et al. [25] showed that domain knowledge, if

available, can improve the detection of duplicate reports. They

developed a method to extract contextual word lists from

software-engineering literature and use the list to deduplicate

crash reports.

The problem of CR prioritization has also been tackled by

Kim et al. in [13]. Through an empirical investigation of

Firefox crash reports, the authors showed that only 10 to 20

crashes account for the large majority of crash reports.

Therefore, predicting these crashes should improve the CR

process handling time.

In summary, most of the studies conducted so far are

limited to open source systems. Many of these studies have

also a different scope than ours. In this paper, the emphasis is

on examining the differences between the way internal and

external CRs are handled at Ericsson using the CR severity

levels as well as the WLA required fixing time. This is because

the handling of each CR type has different implications on

Ericsson’s operational costs. Providing insights on the way

CRs are handled and pinpointing the key challenges faced by

software engineers when dealing with each type of CR can help

Ericsson put in place the proper strategies and devote the right

resources to overcome these challenges.

VII. CONCLUSION AND FUTURE WORKS

We performed an empirical study at Ericsson to analyze:

(1) the importance of internal CRs vs. external CRs; (2) the

impact of the type and severity of CRs the fixing time and the

level of satisfaction in delivering the answer to CR according to

the WLA; (3) the impact of the type and severity of CRs on the

assignment time. We performed our study on a dataset of CRs

resulting from two years of activities on one of the large

industrial systems at Ericsson. The key findings are: (a) it takes

more time to fix external CRs compared to internal CRs; (b)

the severity attribute does not have an impact on the fixing

time; (c) the assignment time of internal CRs is less than that of

external CRs; and (d) less than 50% of CRs are answered

within the organization’s fixing time requirements defined in

WLA. We attribute these results to many factors. First, the

severity attribute does not seem to be used consistently across

the organization including the customers, which often leads to

poor prioritization of CRs. The second factor is related to the

fact that it is often challenging to provide an adequate

description of the fault. This is mainly due to lack of automated

diagnosis tools. It is also caused by the poor quality of the data

provided when submitting a report, despite the existence of

corporate data collection guidelines. Finally, we have noticed

that design team across organizational units tend to adopt their

own work practices which may result in inconsistencies in the

way CRs are prioritized and handled.

To build on this work, we need to gain more comprehensive

knowledge on the faults and the type of faults that are reported.

This would allow us to develop criteria to be used as guidance

for software engineers and customers when prioritizing the

CRs. This knowledge can also be used to design automatic

fault diagnosis tools. Moreover, we need to understand how the

quality of the data in the CRs can be improved to accelerate the

assignment of CRs to the design teams. The ultimate goal of

these studies altogether is to improve the CR fixing time.

Finally, we need to work with software engineers at Ericsson to

study how design teams work internally and propose

standardized practices to enforce any existing (or new)

guidelines for CR management.

ACKNOWLEDGMENT

We would like to thank the software engineers at Ericsson,

Stockholm, Sweden, for their valuable feedback and their

active participation in this study. This research is partly

supported by MITCAS Canada, and Ericsson.

REFERENCES

[1] N. I. of Standards & Technology, “The economic impacts of inadequate
infrastructure for software testing,” 2002, US Department of Commerce

[2] P. Anbalagan and M. Vouk, “On predicting the time taken to correct

bug reports in open source projects,” in Proc. of the International
Conference on Software Maintenance (ICSM’09), pp. 523–526, 2009.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,

T. Zimmermann, "What makes a good bug report?,” in Proc. of the 16th
ACM SIGSOFT International Symposium on Foundations of Software

engineering, pp. 308-318, 2008.

[4] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. Koduru, “An empirical
analysis of bug reports and bug fixing in open source android apps,” in

Proc. of the 17th European Conference on Software Maintenance and

Reengineering (CSMR’13), pp. 133–143, 2013.
[5] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “How long does

a bug survive? an empirical study,” in Proc. of the 18th Working

Conference on Reverse Engineering (WCRE’11), pp. 191–200, 2011.
[6] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying field crash reports for

fixing bugs: A case study of mozilla firefox,” in Proc. of the 27th

International Conference on Software Maintenance (ICSM’11), pp.
333–342, 2011.

[7] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” In

 Proc. of the 2nd International Workshop on Recommendation Systems
for Software Engineering, (RSSE’10), pp. 52–56, 2010.

[8] R. Grissom and J. Kim. Effect Sizes for Research: A Broad Practical

Approach. Lawrence Erlbaum Associates, 2005.
[9] A. Hamou-Lhadj, "Techniques to Simplify the Analysis of Execution

Traces for Program Comprehension," Ph.D. Dissertation, School of IT

and Engineering (SITE), University of Ottawa, 2005.

[10] F. Khomh, B. Chan, Y. Zou, A. Hassan, "An Entropy Evaluation

Approach for Triaging Field Crashes: A Case Study of Mozilla
Firefox," in Proc. of 18th Working Conference on Reverse Engineering

(WCRE), pp. 261 - 270, 2011.

[11] L. Jonsson, D. Broman, K. Sandahl, and S. Eldh, “Towards automated
anomaly report assignment in large complex systems using stacked

generalization,” in Proc. of the 5th Conference on Software Testing,

Verification and Validation (ICST’12), pp. 437–446, 2012.
[12] S. Kim, T. Zimmermann, and N. Nagappan, “Crash graphs: An

aggregated view of multiple crashes to improve crash triage,” in Proc.

of the 41st International Conference on In Dependable Systems
Networks (DSN’11), pp. 486–493, 2011.

[13] D. Kim, X. Wang, S. Kim, A. Zeller, “Which Crashes Should I Fix

First?: Predicting Top Crashes at an Early Stage to Prioritize Debugging
Efforts,” IEEE Transactions on Software Engineering, 37(3), pp. 430 -

447, 2011.

[14] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs in
large open source projects,” in Proc. of the 7th International

Conference on Predictive Models in Software Engineering

(PROMISE’11), pp. 1–1,2011.
[15] L. Panjer, “Predicting eclipse bug lifetimes,” in ICSE Workshop on

Mining Software Repositories (MSR’07), pp. 29–29, 2007.

[16] H. Pirzadeh, A. Hamou-Lhadj, "A Software Behaviour Analysis
Framework Based on the Human Perception System," in Proc. of the

33rd International Conference on Software Engineering (ICSE'12), pp.

948-951, 2011.
[17] H. Pirzadeh, A. Hamou-Lhadj, "A Novel Approach Based on Gestalt

Psychology for Abstracting the Content of Large Execution Traces for
Program Comprehension," in Proc. of the 16th IEEE International

Conference on Engineering of Complex Computer Systems (ICECCS

'11), pp. 221-230, 2011.
[18] A. Podgurski, D. Leon, P. Francis, W. Masfi, M. Minch, “Automated

support for classifying software failure reports,” in Proc. of the

International Conference on Software Engineering (ICSE’03), pp. 465-
475, 2003.

[19] R. S. Pressman. Software Engineering – A Practitioner’s Approach.

McGraw-Hill Higher Education, 5th edition, November 2001.
[20] Z. Soh, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “Towards

understanding how developers spend their effort during maintenance

activities,” in Proc. of the Working Conference on Reverse Engineering,
pp. 152–161, 2013.

[21] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it

take to fix this bug?” in Proc. of the 4th International Workshop on
Mining Software Repositories (MSR’07), 2007.

[22] R. K. Yin. Case Study Research: Design and Methods (Applied Social

Research Methods). Sage Publications, Inc, 2008.
[23] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance

bugs: A case study on Firefox,” in Proc. of the 8th Working Conference

on Mining Software Repositories (MSR’11), pp. 93–102, 2011.
[24] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study on

factors impacting bug fixing time,” in Proc. of the Working Conference

on Reverse Engineering (WCRE’12), pp. 225-234, 2012.
[25] K. Aggarwal, T. Rutgers, F. Timbers, A. Hindle, "Detecting duplicate

bug reports with software engineering domain knowledge," in Proc. of

the IEEE 22nd International Conference on Software Analysis,
Evolution and Reengineering (SANER’15), pp. 211-220, 2015.

[26] S. Kim, T. Zimmermann, N. Nagappan, "Crash Graphs: An Aggregated

View of Multiple Crashes to Improve Crash Triage," in Proc. of the
2011 IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN’11), 2011.

[27] Y. Tian, C. Sun, and D. Lo, “Improved Duplicate Bug Report
Identification,” in Proc. of 16th European Conference on Software

Maintenance and Reengineering, pp. 385–390, 2012.

