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Abstract 
Maintaining a large software system is an inherently difficult task that often involves locating 

and comprehending system features prior to performing the actual maintenance task at hand. 

Feature location techniques were introduced to locate the source code components implementing 

specific software features. Common to these approaches is that they rely either on exercising 

several features of a system, and/or domain experts to guide the feature location process. In this 

paper, we present a novel hybrid feature location approach that combines static and dynamic 

analysis techniques. Our approach uses a component dependency graph of the system to provide 

a ranking of the components according to their feature relevance. The ranking itself is based on 

the impact of a component modification on the remaining parts of a system. Our approach can 

almost be completely automated without requiring an extensive knowledge of the system.  A case 

study performed on two open source projects is presented to evaluate the applicability and 

effectiveness of our approach. 

1. Introduction  
System evolution, an important aspect of the software life cycle, depends greatly on the ability of 

a maintainer to identify these parts of the source code that implement specific features. A 

software feature can be defined as a function of the system that can be triggered by an external 

user [8]. Software maintainers typically do not need to analyze and comprehend an entire system 

prior to making modifications or adding new system functionality. Required software 

modifications often relate directly to features and their implementations [31].  As a result, 
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programmers often adopt an as-need comprehension strategy [16], in which case programmers 

tend only to comprehend these portions of the program that are relevant the affected feature.  As 

part of such an as-needed approach, programmers will first make an attempt to locate these code 

segments that implement the feature being modified, followed by understanding the code and 

making the required changes. However, identifying these relevant source code segments is an 

inherently difficult task due to several factors. (1) A lack of traceability between documentation 

and source code caused by the unavailability of roundtrip engineering tools and/or inadequate 

processes within organizations to enforce consistent and up-to-date documentation, and (2) the 

lack of a clear mapping  between a system’s features and their corresponding code segments. 

This disconnection is often a direct result of bad design decisions and excessive ad-hoc 

maintenance activities performed on the system. As a result, a feature tends to be often 

distributed over several different modules resulting in complex and often difficult to comprehend 

dependencies among source code segments.  

A commonly used approach to support software evolution is based on the use of feature location 

techniques to help identifying and locating features in the source code [4]. Existing feature 

location techniques can be grouped into two main categories depending on the use of static and 

dynamic analysis techniques. Static analysis consists of analysing the source code in order to 

extract the system’s components (e.g., classes, methods, or any other module of the system) and 

how they interact with each other, whereas, dynamic analysis techniques are based on the 

analysis of the system behavioural aspects, commonly through the study of their execution 

traces. 

The first category, pure dynamic approaches, require the generation of execution traces that are 

then clustered or compared in order to identify the components of a single feature (e.g., Software 

Reconnaissance [32]). A general limitation with these pure dynamic approaches, however, is the 

need to generate as input for the analysis execution traces that are created by exercising several 

features of the system. The need to exercise several features can not only result in a significant 

number of traces to be generated, but it also relies on availability of domain knowledge about 

existing features and the inputs required to generate these traces. 
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The second category relies on a combination of static and dynamic analysis. The approaches in 

this category utilize static information to further process the execution trace generated for the 

feature under study. For this purpose, several techniques were presented, such as the ones based 

on concept analysis [8], latent semantic indexing [7], etc. The major limitation with these 

techniques is that they require a significant amount of user interaction and domain knowledge to 

allow the user to indicate which parts of the source code should be analyzed.   

The work presented in this paper is a continuation of our previous work on feature location [23], 

where we discussed in general how impact analysis can be applied to address the feature location 

problem and [22] where we introduced two feature location techniques based on impact analysis. 

In this research, we further extend our work on feature location that combines dynamic analysis, 

requiring only a single feature execution trace as input, with impact analysis based on static 

dependency analysis.   

The main contributions of this paper are as follows: 

• We present a novel approach for feature location using impact analysis by measuring the 

impact of the components invoked during the execution of a given feature on the rest of 

the system. Our hypothesis is that the smaller the impact set of a component 

modification, the more likely it is that the component is specific to a feature. Conversely, 

we expect a component affecting many parts of a system to be invoked in multiple traces 

and therefore rendering it as less specific to a particular feature. 

• As part of this research we introduce four different feature location algorithms that vary 

in the way the impact of a component modification is measured. The first impact metric 

considers only the impact due to modification of a component on the rest of the software. 

The second metric improves over the first metric by considering additionally information 

about the system architecture. The third metric considers both the impact due to the 

modification of a component on rest of the system as well as the number of components 

that affect this component. The last metric adds additional weight to the previous metric 

by adding information about the system architecture.    
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• We applied the algorithms to traces generated from two object-oriented software systems 

to evaluate the applicability of our approach. 

The remaining part of this paper is organized as follows: Section 2 presents a survey of existing 

feature location techniques along with their advantages and limitations. The feature location 

algorithms and approach are presented in Section 3. The evaluation of our approach is presented 

in Section 4. We conclude the paper in Section 5 with a summary of the main contributions and 

some future work. 

2. Related Work 

In this section, we present a survey of what we consider the most influencing work in feature 

analysis. Wilde and Scully [32] introduced in 1995 the concept of Software Reconnaissance, 

which relies on dynamic analysis to locate source code components that implement a specific 

feature. The authors’ approach necessitates two main steps. The first step consists of generating 

multiple execution traces by exercising several features of the system, which are then compared 

during the second step. The components specific to the feature under study are the ones that are 

only invoked in its corresponding trace. One of the drawbacks of this approach is that it requires 

exercising several features of the system although the final objective is to identify only the 

components of a single feature. In addition, it is not clear how many features need to be 

considered for the approach to be effective. Furthermore it is essential in this approach to select a 

balanced set of features (i.e., features that cover different parts of the system) for the software 

reconnaissance approach to be effective. This requires from the software engineers using this 

technique to be knowledgeable of the system under study. 

Wong et al.  enhanced the Software Reconnaissance approach proposed in [32], by including 

three measurements used to identify the extent to which a particular component belongs to a 

feature [33, 34]. Their first metric is called Disparity and measures the closeness of a feature to a 

given program component. The authors claim that the disparity is equal to the set of blocks in 

either a component or a feature under consideration (but not in both) divided by the union of a 

set of blocks in a feature and components under consideration. They define blocks as an 

execution slice or code statements. Their second metric is called Concentration, which they 

define as the intersection of the set of blocks in a component (under consideration) and the set of 
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blocks in a feature (under consideration) divided by a set of blocks in the feature under 

consideration. Their third metric, called Dedication, measures how much of a program 

component is concentrated in a feature. They calculate this as the intersection of the set of blocks 

in the component under consideration and the set of blocks in the feature under consideration 

divided by the set of blocks in this component.    

The Reconnaissance approach was also extended by Antoniol et al. [1]. Their main contribution 

was to filter out unwanted events from the execution traces prior to comparing them. Examples 

of such events included unwanted mouse motion events, frequently occurring events, 

automatically generated code, etc. For this purpose, the authors used a combination of 

knowledge-based filtering and probabilistic ranking techniques. Another contribution of their 

work is the application of software reconnaissance to traces generated from multi-threaded 

applications.  

Eisenberg and De Volder [9] proposed a feature location technique based on ranking the 

components invoked in traces. According to them, a component occurring several times in the 

execution of a feature under different situations (i.e., normal and exceptional scenarios) should 

be regarded as an important component, whereas a component that occurs in traces of several 

features should be considered as a utility component and should be ranked lower in comparison 

with other components.   

Eisenbarth et al. [8] proposed a feature location approach based on concept analysis. Their 

approach uses dynamic analysis to gather traces that correspond to software features of the 

system, similar to Wilde and Scully’s technique [32]. They combined the content of traces with a 

static dependency graph to build a concept lattice that maps features to components. One of the 

shortcomings of this approach is that the concept lattice shows also overlapping components, i.e., 

the ones that implement several features. To overcome this issue, users are required to navigate 

the concept lattice and identify manually the components specific to each feature. This process 

necessitates a considerable effort from the users and a good understanding of the source code as 

well as the domain of the application.  

Concept analysis has also been applied for different types of dependency analysis, including 

impact analysis, reuse and comprehension. Gold et al. [10] introduced a framework of concept 
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slicing approaches that combine concept assignment and program slicing to extract executable 

domain level slices. Our approach differs from their approach in several aspects, including its 

overall objective. Gold et al. focus in their approach on the computation of executable 

subprograms for the purpose of reuse and testing, we on the other hand only identify and rank 

components based on their relevance with respect to the implementation of a particular feature. 

Our approach is mostly automatic, with no or only very limited user involvement. This compares 

to Gold’s et al. approach that requires the existence of a domain level model and manual linking 

of the concepts to various artefacts.  

Furthermore, we argue that in the context of feature location, maintainers do not require all the 

syntactical and semantic details that have to be included in an executable subprogram. 

Maintainers are often only interested in identifying the components that are the most specific to a 

specific feature.  

In [11], the authors address one of the shortcomings of their previous work [10] by making the 

Hypothesis Based Concept Assignment approach used as input to the slicing algorithm [10] less 

restrictive, by allowing for the overlapping of concept boundaries. They introduce a genetic and 

a search based algorithm to address the problem of identifying overlapping concept boundaries. 

In Binkley et al. [3] the authors showed that based on evidence from experimental studies they 

performed, executable concept slices can aid in comprehending static and dynamic aspects of the 

program. The results collected in this paper indicate that slicing criteria can be raised to the 

domain level as an executable concept slice; thus increasing its applicability for testing and 

reuse. 

Poshyvanyk et al. present an approach that is based on processing a single trace derived from the 

feature under investigation [24, 25]. They applied information retrieval techniques to extract 

knowledge from the source code that describes the components invoked in the trace. Through an 

iterative process, the resulting knowledge is explored by queries containing key terms that 

describe the feature are executed in order to locate the source code components implementing the 

feature. The advantage of this approach is that it requires only one trace instead of many traces as 

it is the case in other approaches. The disadvantage is that it relies heavily on informal 
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knowledge such as source code comments, identifiers, etc. to extract knowledge about the trace 

components.    

Greevy et al. [12] exploited the relationship between features and classes to analyze the 

evolution of features and to detect changes in the code from a feature perspective. Rather than 

detecting feature specific components, the main focus of this work is to investigate how the role 

of classes may change during the evolution of a system (for example, by understanding the 

number of features they participate in as the system evolves).  

Kothari et al. [17] presented an approach for identifying canonical features of a system and their 

comprehension at the source code level. A canonical feature in their context is a small set of 

features that implement different parts of the system. They compute their canonical feature set, 

by first building test cases to exercise all the features of the system and record the resulting 

traces. In the next step, for each of the traces a dynamic call graph is generated. Using a 

similarity measurement tool, they computed the pair wise similarity among the call graphs using 

a similarity matrix. Call graph similarity can be measured using simple metrics such as (a) the 

number of function nodes the call graphs have in common, (b) the number of call edges they 

have in common, or (c) a more sophisticated approximate graph matching algorithm. In their 

approach they used the similarity among subgraphs to compute the degree to which features 

share common significant amount of code, with two similar features sharing several vertices 

(functions) and edges (function call relations). The amount of code of a particular feature that is 

not shared with the other features (i.e., through their dynamic call graphs) is deemed to be the 

most specific to this particular feature. One of the main drawbacks of this technique is that it 

requires computing the similarity matrix by exercising each and every feature of the system 

under consideration. 

Salah et al. [28] introduced a feature location approach that combines three system interaction 

views, an object interaction, a class interaction and a feature interaction view. The object 

interaction view is constructed from the execution traces that are generated by exercising a 

subset of its features. This view shows how objects interact with each other through method 

invocation. The class interaction view is simply an abstraction of the object view by grouping 

objects by their class types. The feature interaction view shows the relationships between the 
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features based on the objects (or classes) invoked in their corresponding traces. The mapping 

between the feature interaction view and the object (or class) interaction view enables the analyst 

to uncover the components implementing a specific feature. In an attempt to reduce the number 

of components invoked in multiple traces, the authors proposed using marked traces, which are 

traces where an analyst needs to manually indicate the beginning and the end of the trace 

generation process. However, marked traces not only require user interactions, they also do not 

guarantee that the resulting traces will contain only the components that are most relevant to a 

traced feature.  

Robillard et al. proposed a technique to locate concerns in source code [27]. A concern, also 

called a software aspect, can be considered as a particular feature where the implementing 

components crosscut many modules of the system. The authors introduced the concept of a 

concern graph, which abstracts the implementation details of a particular concern. The vertices 

of the graph consist of the components (e.g., routines) involved in the implementation of this 

particular software aspect. The edges represent the relationships among these components. The 

process of creating a concern graph encompasses two steps. In the first step, the software 

engineer builds a component dependency graph from the system. This step is usually performed 

automatically. The second step consists of iteratively querying the component dependency graph 

to identify the components specific to a particular concern. This step requires from the developer 

to have some knowledge of the system under study. The authors have also developed a tool 

called FEAT (Feature Analysis and Exploration Tool) that partially automate the tasks of 

creating a program model from the source code, formulating queries, extracting concern graphs, 

and displaying the concern graphs to the developer in a convenient and manageable form. Using 

this tool the developer can also view the implementation details of a concern graph into source 

code. 

Common to most of these reviewed techniques is that they suffer from two major limitations. 

Even if a user might only be interested in locating a specific feature, most of these techniques 

require exercising several system features in order to be able to identify the components 

associated with a specific feature. Exercising several features however not only requires the 

generation of the appropriate input data for each feature execution, but also domain knowledge 
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in selecting the appropriate features that need to be used in order to obtain a balanced input set 

that would result in unbiased results.  

The second drawback with most existing techniques is that they require significant human 

intervention either during locating or interpreting the feature related data, resulting in a 

significant cost and effort overhead. As a result, there is a clear need for more automated 

techniques to reduce the cost associated with these interactive feature location approaches. In 

addition, many existing techniques require users to have a good prior understanding of the 

system before applying the techniques. This contradicts the goal of feature location, which is to 

assist software engineers in comprehending how a particular feature is implemented.  

Similar to other approaches, our feature location approach combines static and dynamic analysis. 

However, in comparison to the existing work, our approach operates on only one trace that 

corresponds to the feature under study, and it facilitates the automatic identification of feature-

specific components. Our approach applies a ranking mechanism to guide software engineers in 

locating feature-specific components without the need for prior knowledge of the system. 

3. Feature Location Methodology 

In this section, we present our feature location methodology, which combines static and dynamic 

analysis techniques. We use dynamic analysis to generate a trace that corresponds to the feature 

under study. Static analysis is applied to rank the components invoked in the generated trace 

according to their relevance with respect to the executed feature. The ranking technique 

presented in this paper is based on impact analysis, i.e., by measuring the impact of a component 

modification on the rest of the system.  

The organization of this section is as follows: In Section 3.1, we present our definition of a 

software feature. In Section 3.2, we describe our overall approach. The detailed steps of the 

proposed approach are further elaborated in Sections 3.2.1 and 3.2.2, which cover the generation 

of traces from software features, and the application of impact analysis for locating feature-

specific components.  
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3.1. What is a Software Feature? 

Perhaps the most commonly used definition of a software feature in feature location research is 

the one proposed by Eisenbarth et al. in [8]. The authors define a software feature as a 

behavioural aspect of the system that represents a particular functionality, triggered by an 

external user [8].  

In [8], Eisenbarth et al. discuss the relationship between a software feature, a scenario, and a 

computation unit (Figure 1). A scenario is an instance of a software feature where the user needs 

to specify a series of inputs to trigger that feature. A scenario can invoke a number of features at 

the same time. A computational unit refers to the source code components that are executed by 

exercising the feature on the system. A feature is implemented by many computational units, and 

at the same time a given computational unit can be used in the implementation of multiple 

features. 

In our research, we also define a software feature as any specific scenario of a system that is 

triggered by an external user. However, we further extend this definition by adding that a 

software feature is similar to the concept of use cases found in UML [30]. As a result, we assume 

that a particular instance of a feature (based on a selected data input) corresponds to a scenario. 

We also do not distinguish between primary and exceptional scenarios although it is advisable to 

include at least the primary scenario, since these scenarios tend to correspond to the most 

common program execution associated with a particular feature. 

3.1 Overall Approach  

Figure 2 provides a general overview of our approach used to identify components implementing 

a specific feature. In this paper, we limit the components of interest to classes in the system. 

However, we believe that our approach is also applicable at other component abstraction levels, 

such as methods, packages, or any other modules.  

Figure 2 illustrates our feature location approach which is based on a combination of static and 

dynamic analysis. An execution trace is generated by exercising the feature under study. There 

exist various techniques for generating traces such as inserting probes in the source code, 

instrumentation of the binaries, or modifying the run-time environment to support the generation 
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of traces. These techniques are automatic and do not require human intervention. In our approach 

we used source code instrumentation due to its simplicity and the abundance of available tool 

support. Once the system is instrumented, we execute the instrumented version by exercising the 

feature to be analyzed. From this feature trace, we extract the distinct classes invoked, while 

executing the particular feature (i.e., on the fly). We call the distinct classes invoked in a feature 

trace the execution profile of the feature. It should be noted that the trace does not need to be 

saved. We use the term feature trace to refer to a trace that corresponds to a particular feature 

execution. Next a class dependency graph (static analysis) is created to rank the distinct classes 

invoked during the feature execution to identify their relevance to the feature. The ranking 

technique itself is based on the impact set of a component (i.e., a class) modification on the other 

parts of the system. We hypothesize that the smaller the impact of a component modification is, 

the more likely it is that this component is specific to the particular feature.  The rationale behind 

this is as follows: classes that impact many other parts of the system will most likely be invoked 

in many other feature traces, making them non-feature specific.  It has been shown previously  

[14, 13]  that these classes often correspond to utility classes that help implementing the core 

functionality of the system. On the other hand, one would expect a feature-specific class to be 

self-contained (i.e., low coupling and high cohesion), and a modification to such a class should 

result in a very low impact on the remaining parts of the system. Furthermore, there will be 

situations where the impact set of a class is in between these two cases, indicating classes that 

implement functionality shared by similar features. 

Based on the above discussion, we characterize the components invoked in a feature-trace 

according to the following three categories: 

• Relevant Components: Components that are most relevant to the feature at hand. In other 

words, these components are not invoked in any other feature trace. 

• Related Components: Components that are involved in the implementation of related 

features, and therefore, are expected to appear in these related feature traces. 

• Utility Components: Components that are mere utilities and therefore are used by many 

other features of a system.  
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In the next section, we discuss the applicability of impact analysis to the feature location 

problem. In particular, we introduce four impact metrics to measure the degree to which a 

specific component can be deemed relevant to the studied feature.  

3.2. Impact Analysis 

Impact analysis is the process of identifying these parts of a program that are potentially affected 

by program modification. Impact analysis is an essential activity for planning system changes, 

making changes, accommodating certain types of software changes, and tracing through the 

effects of changes [19, 29].  

3.2.1. Building a Class Dependency Graph 

A class dependency graph is a directed graph where the nodes are the system’s classes and the 

edges represent a dependency relationship among the classes.  Several types of relationships may 

exist between two classes such as the ones based on method calls, generalization and realization 

relationships, etc. It should be noted that the accuracy of the impact analysis depends greatly on 

the types of dependency relations supported by the analysis. For our impact analysis we are in 

particular interested in the method invocations. These function calls are traced using a static call 

graph including require points-to analysis for polymorphic calls. There exist various techniques 

for the points-to analysis, among them are, Unique Name (UN) [5], Class Hierarchy Analysis 

(CHA) [2, 6], and Rapid Type Analysis (RTA). Each algorithm has its own advantages and 

imitations. In this paper, we use RTA for its simplicity, efficiency, and tool support [2]. 

3.2.2. Impact Metrics 

We have developed four metrics for evaluating the impact of a class modification on the 

remaining parts of the system. These metrics differ in the way the impact of a component 

modification is computed.  

3.4.2.1  Definitions 

Definition 1: Impact Set 

We define the impact set for modifying a component C, as the set of components that depend 

directly or indirectly on C. More formally, a class dependency graph can be represented using a 

directed graph G = (V, E) where V is a set of classes and E a set of directed edges between 
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classes. The impact set of C consists of the set of predecessors of C. A predecessor of a node is 

defined as follows: Consider an edge e = (x, y) from node x to y, If there exist a path that leads 

from x to y, then x is said to be a predecessor of y. For example, the impact set of class C5 in 

Figure 3 consists of the classes C6, C7 C4, C3, and C1 (i.e., the predecessors of node C5) since 

there exist a path between each of these classes and the class C5. Note that the same class may 

occur in multiple paths. In this case, such a class is considered only once in the impact set. This 

also handles situations where two classes are mutually dependent on each other.  

It should be noted that the fact that two components depend on each other does not necessarily 

lead to a change in one component if the other one has been modified. This is because the change 

may not affect the dependency itself. However, when using static analysis to measure the impact 

of a component modification, we can only refer to the potential impact since a component can be 

modified in all possible ways.  

Definition 2: Class Afferent Impact 

The Class Afferent Impact (CAI) of a class C consists of the number of classes that are affected 

(directly or indirectly) when C is modified (i.e., the cardinality of the impact set of C). 

Definition 3: Class Efferent Impact 

The Class Efferent Impact (CEI) of a class C is the number of classes that will affect (directly or 

indirectly) C if they change. These are the classes in the directed graph that can be reached 

through C, also called the descendants of C in the class dependency graph. It should be noted 

that the intersection between CAI and CEI is not necessarily empty, since some components can 

be affected by a change to C while at the same time they can affect C. 

Definition 4: Package Afferent Impact 

We define the Package Afferent Impact (PAI) of a class C as the number of packages that are 

affected by a modification of C. The package afferent impact will be used to weigh some of the 

metrics presented in this section. It should be note that we consider all packages of the system as 

separate packages no matter if they belong to another package or not. 

The class (and package) afferent and efferent impact should not be confused with the afferent 

and efferent couplings proposed by Robert Martin [21], used to assess the quality of a design by 
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analyzing the stability of its subsystems. The afferent and afferent couplings focus on measuring 

fan-in and fan-out of a subsystem using a subsystem dependency graph, whereas  our focus on 

measuring the impact of a component change on the rest of the system. 

3.4.2.2 The One Way Impact Metric (OWI) 

There exist several metrics that measure the relationships among a system’s components (e.g., 

MOOSE metrics [18]). However, these metrics are used to assess the overall quality of a design 

and do not necessarily measure the impact of a component on the overall system. In this paper, 

we propose four simple and yet powerful metrics that focus specifically on measuring this impact 

set. 

The first metric is referred to as the One Way Impact (OWI) metric and considers exclusively the 

impact modification of a class on the system, i.e., CAI.   

We define the OWI metric of a class C as: 

• S = A set that contains all the classes of the system under study. We assume in this 

paper that the system under study has more than one class. That is the cardinality of 

set S is always greater than 1. 

||

|)(|
 )(

S

cCAI
cOWI =  

The OWI has a range from 0 to 1. It converges to 0 if the class has a small impact on the rest of 

the system, which is a good indicator that the class is specific to the feature in question. On the 

other hand, a class with an OWI value close to 1, indicates that a class might be used in various 

features and therefore a change in this class might cause many parts of the systems to change. 

This indicates that this class is used to support the implementation of various features.  

The running example in Figure 4 will be revisited throughout this section to illustrate how our 

impact analysis metrics can identify feature related components. In this example, we assume that 

the classes that are relevant to the specific feature all located in package P1. However, the feature 

profile created from this specific feature trace also contains additionally the classes C6, C7, and 

C8. 
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Table 1 shows the result of applying the one way impact metric to the example in Figure 4.  The 

table is sorted in an ascending order based on the OWI values and shows that the metric was able 

to group successfully all P1 classes (the most relevant classes) in the top part of the table. The 

class C6 is used by many other classes of the system, which suggests that it is a utility class. 

Similarly classes C7 and C8 where close ranked at the bottom together with C6, since they are 

used by the utility class C6. 

���������	

���
��� � ��������� 
���������������

Package Class CAI OWI 

P1 C1 0 0.000 

P1 C2 1 0.083 

P1 C3 1 0.083 

P1 C5 1 0.083 

P1 C12 2 0.167 

P1 C4 5 0.417 

P2 C6 7 0.583 

P2 C8 8 0.667 

P2 C7 9 0.750 

3.2.2.3 The Two Way Impact Metric (TWI) 

The Two Way Impact metric considers both, the impact of a class modification on the rest of the 

system (i.e., its afferent impact), as well as the number of classes that impact this class if these 

classes change (i.e., the efferent impact, CEI, of the class).  

The rationale for using the efferent impact is based on a study conducted by Hamou-Lhadj et al. 

to automatically detect utility components that exist in a software system [15, 13]. The authors 

used in their work, fan-in analysis to measure the extent to which a routine can be considered a 

utility. According to their findings, a routine with high fan-in (incoming edges in the call graph) 

should be considered a utility as long as its fan-out (outgoing edges) is not high. They argued 

that the more calls a routine has from different places then the more purposes it likely has, and 

hence the more likely it is to be a utility. On the other hand, if a routine has many calls (outgoing 
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edges in the call graph), this is evidence that it is performing a complex computation and 

therefore it is needed to understand the system.   

The TWI metric uses a similar approach, except that it considers the impact of a component 

modification rather than its mere fan-in. In other words, we do not only considers the direct 

impact associated with a component change by including all components that are directly 

associated with it, but also the ones that are indirectly affected by this component change. This 

allows us to measure the fact that the afferent impact of a component can be very high without 

necessarily having a high fan-in. For example in Figure 5, the class C2 has a very low fan-in (one 

incoming edge) but a high afferent impact value (five classes are affected by changing C2).  

We define the two way impact metric (TWI) of a class C as follows: 
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If a class does not depend on any other class (i.e., CEI = 0) then TWI is the same as the one way 

impact metric. The interesting case is when CEI is different from zero. In this case 
||
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S

cCAI  

reflects the fact that the classes with large CAI  (class afferent impact) are the ones that are most 

likely to be non-feature specific classes, as previously discussed. Through )
)(

||
(

cCEI
S

Log �
��metric 

also takes into account the efferent impact although with a lower weight than the afferent impact 

using the Log function. The reason behind this is that we believe that the afferent impact should 

be weighted more than the efferent impact since a class modification that causes a considerably 

large number of changes in the system should be classified as utility no matter what the value of 

its efferent impact is.    
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We divide the result of both parts by |)(| SLog  to ensure that the entire formula varies from 0 to 

1, with 0 being a component that is feature specific and not shared by any component in the 

system and 1 being a component that is shared among all components in the system. 

When applying the metrics to the running example, the two way impact metric favoured the class 

C6 over the class C4 as being the most relevant to the feature under study. This is because C4 

does not depend on any other class (CEI = 0), whereas C6 depends on two classes (CEI = 2), 

which might suggest that it is more important than C4. This classification is not necessarily 

incorrect since utility classes might also have a local scope. For example, C4 could be a utility 

class for the P1 package, whereas C6 is a utility class for the entire system. Therefore, having 

these two classes at the bottom of the table should be seen as a good outcome of the algorithm. 
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Package Class CAI CEI TWI 

P1 C1 0 11 0.000 

P1 C2 1 6 0.018 

P1 C5 1 5 0.023 

P1 C3 1 2 0.046 

P1 C12 2 1 0.120 

P2 C6 7 2 0.325 

P1 C4 5 0 0.417 

P2 C8 8 1 0.481 

P2 C7 9 0 0.750 

Next, we introduce our Weighted OWI and Weighted TWI metrics to improve on the OWI and 

TWI metric by also considering the package afferent impact as part of the measurement.  

3.4.2.4 The Weighted One Way Impact Metric (WOWI) 

The Weighted One Way Impact metric uses available information about the system architecture 

to further enhance the already introduced one way impact metric. More specifically, for the 

WOWI metric, also the number of packages is considered that are affected by a class 

modification (i.e., the package afferent impact, PAI). The rationale behind this is that a class 

affecting more packages (that is affecting classes belonging to majority of packages in the 

system) is more likely to be a feature irrelevant class in comparison to a class affecting less 
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number of packages. For example, a class that affects five classes from three different packages 

will more likely be included in the execution profile of several features than a class that affects 

five classes of the same package. In other words, two classes that have the same OWI value may 

be ranked differently if they affect a different number of packages, and in such a case, the 

component that crosses the least number of packages will be given more importance than the one 

that affects a larger number of packages.  

Given the above, we can introduce now the following metric: 

||

)(
)( )(

P

cPAI
xcOWIcWOWI = �

• P is a set that contains the packages of the system. 

The range for the )(cWOWI is from 0 to 1, with 0 being a component that is feature specific and 

not shared by any other component or package in the system, and 1 being a component that is 

shared among all components and packages of the system.  

���������	

���
��� � � ���
��������� 
���������������

Package Class CAI PAI WOWI 

P1 C1 0 1 0.000 

P1 C2 1 1 0.017 

P1 C5 1 1 0.017 

P1 C3 1 1 0.017 

P1 C12 2 1 0.033 

P1 C4 5 1 0.083 

P2 C6 7 5 0.583 

P2 C8 8 5 0.667 

P2 C7 9 5 0.750 

The weighted one way impact metric results in a similar outcome as the non-weighted one way 

metric when applied to the running example (see Table 3). However, it should be noticed that the 

gap between the relevant classes (P1 classes) and the non-relevant classes (P2 classes) is 

considerably larger than the gap between these two categories of classes when we applied the 

non weighted OWI.  
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3.2.2.5  The Weighted Two Way Impact (WTWI) 

Similar to the Weighted One Way Impact metric, the weighted two way impact (WTWI) can be 

seen as a further improvement over the two way impact metric by also considering the number of 

packages affected due to a component modification.  

The WTWI metrics therefore corresponds to: 

||

)(
)( )(

P

cPAI
xcTWIcWTWI = �

Table 4 shows the result after applying the WTWI to the example in Figure 4. As a result of 

using the WTWI metric, class C4 was placed back in the pool of relevant classes. This is because 

it only affects one package as opposed to the classes of P2 package which affect five packages. 

In addition, the WTWI improves over the non-weighted TWI by enlarging the gap between the 

relevant and non-relevant classes.  
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Package Class CAI CEI PAI WTWI 

P1 C1 0 11 1 0.000 

P1 C2 1 6 1 0.004 

P1 C5 1 5 1 0.005 

P1 C3 1 2 1 0.009 

P1 C12 2 1 1 0.024 

P1 C4 5 0 1 0.083 

P2 C6 7 2 5 0.325 

P2 C8 8 1 5 0.481 

P2 C7 9 0 5 0.750 

3.5 Summary 

In this section, we presented our approach for addressing the feature location by focusing on the 

identification of the classes that are the most relevant to the feature to be analyzed.  

Our approach combines both static and dynamic analysis. A trace is generated by exercising a 

feature under study. The invoked classes in the trace are ranked based on identifying the impact 
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of a class modification on the rest of the system. Our hypothesis is that the higher the impact, the 

less relevant the component. To measure the impact of a component modification on the rest of 

the system, we proposed four impact metrics that operate on the class dependency graph. The 

first metric, the One Way Impact Metric (OWI), considers only the impact of a class 

modification on the rest of the system. The second metric, the Two Way Impact metric (TWI), 

considers both, the impact of a class modification on the rest of the system (i.e., its afferent 

impact), as well as the number of classes that impact this class if these classes change (i.e., the 

efferent impact, CEI, of the class). The two other metrics, the Weighted One Way Impact 

(WOWI) metric and the Weighted Two Way Impact (WTWI) metric, both use architectural 

information to further refine the OWI and TWI metrics.  

4. Evaluation  

In this section, we present an initial evaluation of our feature location techniques. The objective 

of the study is to investigate the following questions: 

Q1: How effective the above feature location techniques are in their ability to detect the 

components that are most relevant to a specific feature? 

Q2:  What is the difference between applying the various impact metrics presented in the paper?   

For this purpose, we applied our approach to traces generated from two open source object-

oriented software systems described in the following section. 

4.1 Target Systems 

We apply the proposed feature location techniques on feature traces generated for two Java-

based systems called Weka1 (Vers.3.0), and Checkstyle2 (Vers. 3.3). Weka has been developed at 

the University of Waikato, New Zealand. It is a machine learning tool that supports several 

algorithms such as classification algorithms, regression techniques, clustering and association 

rules. It consists in the total of 10 packages, 142 classes, and 95 KLOC.  
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The second system, Checkstyle, which is a development tool to guide programmers in writing 

Java code that adheres to a specified coding standard. The tool allows programmers to create 

XML-based files to represent almost any coding standard. Checkstyle uses ANTLR3 (ANother 

Tool for Language Recognition) and the Apache regular expression pattern matching package4. 

These two packages have been excluded from this analysis. Checkstyle (without ANTLR and the 

Apache module) has 17 packages, 210 classes, and 130 KLOC. 

We selected Weka and Checkstyle because both systems are well documented. For Weka,  

packages and most important classes are documented in a book dedicated to the tool and 

machine learning in general [33]. A detailed description of the Checkstyle architecture can be 

found on the tool website. Having this documentation available enabled us to validate the results 

obtained from our approach against the documented feature implementations. 

4.2 Applying Feature Locations Algorithms 

4.2.1 Feature Selection 

We applied our feature location techniques to two software features, one for each system. For the 

Weka system, we applied our approach to identify the classes that are specific to the 

implementation of the M5 algorithm. The M5 algorithm is a classification algorithm based on the 

so-called model trees [26]. For the Checkstyle system, we selected the CheckCode feature that is 

used to check Java code for coding problems such as uninitialized variables, etc.  

4.2.2  Generation of Feature-Traces 

To generate the corresponding traces, we instrumented Weka and CheckStyle using our own 

instrumentation tool based on the Bytecode Instrumentation Toolkit framework [20]. Probes 

were inserted at each entry and exit method (including constructors) of both systems. For each 

feature discussed in the previous section, we generated two execution traces, which correspond 

to the selected features, by executing the instrumented version of Weka and CheckStyle. We 

used as input for exercising the features sample data provided in the corresponding system 

documentations. In our approach there is no need to store the entire feature trace, instead we only 
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store the distinct classes invoked. Table 5 shows the number of distinct classes invoked in M5 

and CheckCode traces.  
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Feature (System) Number of Classes 

M5 (Weka) 26 

CheckCode (Checkstyle) 68 

4.2.3 Applying the Impact Metrics 

For the evaluation we used the Structural Analysis for Java (SA4J)5 tool to parse the source code 

and generate a global class dependency table that contains various metrics including the class 

afferent and efferent impacts. SA4J supports also a large spectrum of relations among classes 

such as: accesses, calls, contains, extends, implements, instantiates, references, etc. 

In addition, the tool provides architectural information of a system such as the number of 

packages, the content of each package, and the relationships between packages. We used the 

package dependency graphs to compute the package afferent impact, which is needed for the 

computation of the weighted one way impact and weighted two way impact metrics. In the 

following subsections, we present the result of applying our feature location approach based on 

the OWI, WOWI, TWI, and WTWI metrics. 

4.2.3.1 The One Way Impact Metric (OWI) 

Table 6 shows the result of applying the OWI metric (in ascending order of OWI) for  the Weka 

feature trace M5. We use bold font to show classes that are ranked as most relevant component, 

italics font for the related components, and underline font to represent utility components.  

The execution profile of the M5 feature (i.e., the distinct classes invoked in the M5 feature trace) 

consists of classes that belong to the following packages: m5 (12 classes), classifiers (2 

classes), filters (3 classes), estimators (1 class), and core (8 classes).  
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Package Class |CAI| OWI*1000 
weka.classifiers.m5 M5Prime 1 7.04 
weka.classifiers.m5 Node 2 14.08 
weka.classifiers.m5 Options 3 21.13 
weka.classifiers.m5 SplitInfo 3 21.13 
weka.classifiers.m5 Function 3 21.13 
weka.classifiers.m5 Errors 4 28.17 
weka.classifiers.m5 Ivector 4 28.17 
weka.classifiers.m5 Dvector 4 28.17 
weka.classifiers.m5 Impurity 4 28.17 
weka.classifiers.m5 Values 5 35.21 
weka.classifiers.m5 Matrix 7 49.30 
weka.filters ReplaceMissingValuesFilter 7 49.30 
weka.filters NominalToBinaryFilter 7 49.30 
weka.classifiers.m5 M5Utils 10 70.42 
weka.filters Filter 33 232.39 
weka.classifiers Evaluation 33 232.39 
weka.core Queue 34 239.44 
weka.classifiers Classifier 35 246.48 
weka.estimators KernelEstimator 37 260.56 
weka.core Statistics 49 345.07 
weka.core Instances 108 760.56 
weka.core Instance 108 760.56 
weka.core Attribute 109 767.61 
weka.core Utils 126 887.32 
weka.core FastVector 127 894.37 

According to the Weka documentation [33], the package m5 contains the key classes that 

implement the M5 model tree algorithm. The classifiers package (excluding its sub-

packages) contains common classes that most Weka classifications algorithms (including M5) 

use. The classes defined in the filters package are used to extract the data used by the Weka 

classification algorithms. The classes used by the M5 algorithm are: NominalToBF and 

ReplaceMissingVF. The class Filter is a superclass from which all filters are inherited. 

The estimators package contains classes that implement various techniques for estimating 

the machine learning models used by Weka classification algorithms. The class 

KernelEstimator invoked in the M5 trace is used by M5 and many other classification 

algorithms as well. Finally, the core package contains general-purpose utilities used by all 

Weka algorithms whether they are classification algorithms or not. 
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By further analyzing the Weka documentation we were able to verify that the OWI-based feature 

location technique ranked successfully most of the M5 specific classes (shown in bold) as 

relevant components, except for the class M5Utils. It also grouped at the bottom of the table 

most classes of the utility package core (underlined). The classes shown in Italics represent the 

related components, used by M5 and some other Weka’s classification algorithms. 

Although the OWI-based feature location technique produced good results, a closer look at the 

values of OWI revealed that the value for classes Matrix from the m5 package, and 

ReplaceMissingValuesFilter and NominalToBinaryFilter from the filterers 

package are identical (OWI = 49.30/1000). In other words, the algorithm did not provide a clear 

cut between the relevant and the related components.  

For the CheckCode feature we followed a similar assessment process. The execution profile of 

the CheckCode feature revealed that it consists of classes belonging to the following packages: 

coding (32 classes), checkstyle (12 classes), checks (5 classes), grammars (2 classes), 

and apis (17 classes). As for Weka, we consulted the documentation of Checkstyle to 

understand the most components of the CheckCode feature. The package coding is the one that 

contains the key classes that implement the various checking procedures most relevant to this 

feature.  

Table 7, sorted in ascending OWI order , shows the result after applying the OWI metric to the 

Checkstyle feature trace CheckCode (note some classes are omitted to avoid cluttering the table). 

From Table 7, one can observe that the OWI-based feature location ranked successfully most of 

the CheckCode feature specific classes (shown in bold). The only major exceptions are the 

classes: AbstractSuperCheck and AbstractNestedDepthCheck. These classes have 

a large class afferent impact (CAI = 3) compared to all other classes of the coding package 

(CAI = 1). This is due to the fact that they are abstract classes, and as such, they implement 

general purpose functions used by many other classes.  
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The packages checkstyle, checks, and grammars contain classes that implement 

common functionality used by most checks performed within Checkstyle. For example the 

classes of the grammars package contain operations that build a grammar from the code 

inputted for analysis. Most of these classes, represented in Italics, are ranked after classes of the 

coding package with a few exceptions. For example, the class 

checkstyle.DefaultConfiguration, checks.DescendantTokenCheck, 

checks.GenericIllegalRegexpCheck and checkstyle.checker were ranked 

Package Class |CAI| OWI OWI*1000 

coding ExplicitInitializationCheck 1 0 4.76 
28 other classes of the coding package are omitted here, all of them  with a 
OWI value of 4.76 
coding StringLiteralEqualityCheck 1 0 4.76 
checkstyle DefaultConfiguration 1 0 4.76 
checks DescendantTokenCheck 2 0.01 9.52 
checks GenericIllegalRegexpCheck 2 0.01 9.52 
checkstyle Checker 3 0.01 14.29 
coding AbstractSuperCheck 3 0.01 14.29 
coding AbstractNestedDepthCheck 3 0.01 14.29 
checkstyle DefaultLogger 3 0.01 14.29 
checkstyle TreeWalker 3 0.01 14.29 
checkstyle ConfigurationLoader 3 0.01 14.29 
checkstyle PropertiesExpander 3 0.01 14.29 
checks AbstractTypeAwareCheck 3 0.01 14.29 
checkstyle PackageNamesLoader 4 0.02 19.05 
checkstyle PropertyCacheFile 4 0.02 19.05 
checkstyle StringArrayReader 4 0.02 19.05 
grammars GeneratedJava14Lexer 4 0.02 19.05 
grammars GeneratedJava14Recognizer 4 0.02 19.05 
checkstyle PackageObjectFactory 5 0.02 23.81 
apis FilterSet 6 0.03 28.57 
checkstyle DefaultContext 7 0.03 33.33 
checkstyle AbstractLoader 7 0.03 33.33 
checks CheckUtils 8 0.04 38.10 
apis AbstractFileSetCheck 8 0.04 38.10 
apis TokenTypes 9 0.04 42.86 
apis AuditEvent 13 0.06 61.90 
checks AbstractFormatCheck 17 0.08 80.95 
apis ScopeUtils 19 0.09 90.48 
11 other classes of the apis package are omitted here, all of them with an 
OWI value ranging from 95.24 to 704.76 
apis SeverityLevel 150 0.71 714.29 
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among the most important classes. These classes are not as important as those of the coding 

package as they are used by many features of the Checkstyle tool. In Table 7, these classes are 

shown in Italics, indicating that they are neither specific to the CheckCode feature nor utility 

classes. The One Way Impact metrics also detected successfully the utility classes, which are 

packaged in the apis package, with a few exception, such as the class FilterSet, which was 

misplaced by our approach.  
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Packages Class |CAI| |PAI| WOWI*1000 
weka.classifiers.m5 M5Prime 1 1 0.70 
weka.classifiers.m5 Node 2 1 1.41 
weka.classifiers.m5 Options 3 1 2.11 
weka.classifiers.m5 SplitInfo 3 1 2.11 
weka.classifiers.m5 Function 3 1 2.11 
weka.classifiers.m5 Errors 4 1 2.82 
weka.classifiers.m5 Ivector 4 1 2.82 
weka.classifiers.m5 Dvector 4 1 2.82 
weka.classifiers.m5 Impurity 4 1 2.82 
weka.classifiers.m5 Values 5 1 3.52 
weka.classifiers.m5 Matrix 7 1 4.93 
weka.classifiers.m5 M5Utils 10 1 7.04 
weka.filters ReplaceMissingValuesFilter 7 3 14.79 
weka.filters NominalToBinaryFilter 7 3 14.79 
weka.filters Filter 33 4 92.96 
weka.classifiers Evaluation 33 4 92.96 
weka.classifiers Classifier 35 4 98.59 
weka.core Queue 34 5 119.72 
weka.estimators KernelEstimator 37 5 130.28 
weka.core Statistics 49 8 276.06 
weka.core Instances 108 8 608.45 
weka.core Instance 108 8 608.45 
weka.core Attribute 109 8 614.08 
weka.core Utils 126 9 798.59 
weka.core FastVector 127 9 804.93 

 

Similar to Weka, the OWI-based feature location technique did not succeed to provide a clear cut 

between the different categories of classes (i.e., relevant components, related components, and 

utilities). For example, the OWI metric value for the classes from the coding package and 

defaultconfiguration from the checkstyle package are similar (OWI = 4.76/1000), 

although these two classes should be in different categories. 
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4.2.3.2 The Weighted One Way Impact Metric (WOWI) 

Table 8 shows the result of applying WOWI metric to the M5 feature in Weka. As shown in 

Table 8, this approach can produce better results than the non-weighted OWI metric, by 

improving the grouping of the classes. More specifically, the grouping created with WOWI 

shows compared to the OWI metrics a wider gap and therefore a clearer distinction between the 

feature specific classes and the ones which are less relevant to the M5 feature. 
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Package Class |CAI| |PAI| WOWI*1000 
coding ExplicitInitializationCheck 1 1 0.28 
28 other classes of the coding package are omitted here, all of them with a  WOWI value of 
0.28 
coding StringLiteralEqualityCheck 1 1 0.28 
checkstyle DefaultConfiguration 1 1 0.28 
checkstyle Checker 3 1 0.84 
coding AbstractSuperCheck 3 1 0.84 
coding AbstractNestedDepthCheck 3 1 0.84 
checkstyle DefaultLogger 3 1 0.84 
checkstyle ConfigurationLoader 3 1 0.84 
checkstyle PropertiesExpander 3 1 0.84 
checks DescendantTokenCheck 2 2 1.12 
checks GenericIllegalRegexpCheck 2 2 1.12 
checkstyle PackageNamesLoader 4 1 1.12 
checkstyle PackageObjectFactory 5 1 1.40 
checkstyle TreeWalker 3 2 1.68 
checkstyle PropertyCacheFile 4 2 2.24 
checkstyle StringArrayReader 4 2 2.24 
checks AbstractTypeAwareCheck 3 3 2.52 
grammars GeneratedJava14Lexer 4 3 3.36 
grammars GeneratedJava14Recognizer 4 3 3.36 
checkstyle DefaultContext 7 2 3.92 
checkstyle AbstractLoader 7 2 3.92 
apis FilterSet 6 3 5.04 
checks CheckUtils 8 3 6.72 
apis AuditEvent 13 3 10.92 
apis TokenTypes 9 5 12.61 
apis AbstractFileSetCheck 8 6 13.45 
checks AbstractFormatCheck 17 4 19.05 
apis ScopeUtils 19 7 37.25 
11 other classes of the apis package are omitted here, all of these classes have a WOWI 
value ranging from 39.22 to 663.31. 
apis SeverityLevel 150 16 672.27 
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Similar to the observation made for the Weka case study, the weighted OWI provides also better 

results than the non-weighted OWI when applied to the CheckCode feature example (Table 9). It 

not only improves the grouping of the classes of the coding package but also enlarges the gap 

between among the relevant and the related classes. More precisely, the gap between the 

misplaced classes (AbstractSuperCheck and AbstractNestedDepthCheck) of 

coding package and the rest of the coding package classes has been reduced. However, the 

problem of having the same WOWI metric value for the classes from the coding package and 

defaultconfiguration from the checkstyle package still remains, as in the previous 

technique. The WOWI metrics also shows an improvement in the ranking of classes in the apis 

package. Using the WOWI metrics classes are now group closer to each other at the bottom of 

the table. However, the approach also misplaced two classes CheckUtils and 

AbstractFormatCheck at the end with apis package utility classes. 
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Packages Class |CEI| |CAI| TWI*1000 
weka.classifiers.m5 M5Prime 35 1 1.95 
weka.classifiers.m5 Node 19 2 5.57 
weka.classifiers.m5 Function 12 3 10.19 
weka.classifiers.m5 SplitInfo 11 3 10.53 
weka.classifiers.m5 Options 9 3 11.31 
weka.classifiers.m5 Impurity 10 4 14.54 
weka.classifiers.m5 Dvector 9 4 15.08 
weka.classifiers.m5 Values 8 5 19.6 
weka.classifiers.m5 Errors 1 4 24.23 
weka.classifiers.m5 Ivector 1 4 24.23 
weka.filters ReplaceMissingValuesFilter 11 7 24.58 
weka.filters NominalToBinaryFilter 11 7 24.58 
weka.classifiers.m5 Matrix 5 7 31.47 
weka.classifiers.m5 M5Utils 8 10 39.2 
weka.classifiers Evaluation 18 33 94.32 
weka.filters Filter 10 33 119.95 
weka.classifiers Classifier 8 35 137.2 
weka.estimators KernelEstimator 7 37 151.23 
weka.core Queue 1 34 205.95 
weka.core Statistics 1 49 296.81 
weka.core Instances 7 108 441.43 
weka.core Instance 7 108 441.43 
weka.core Attribute 5 109 490.08 
weka.core Utils 4 126 599.16 
weka.core FastVector 2 127 696.1 
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4.2.3.3 The Two Way Impact Metric (TWI) 

Table 10 shows the result of applying the TWI metric to locate the M5 feature in the Weka 

system.  
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Package Class |CAI| |CEI| TWI*1000 
coding ExplicitInitializationCheck 1 22 1.97 
28 classes of the coding package are omitted here, all of these classes have a TWI 
value ranging from 1.92 to 2.14 
coding StringLiteralEqualityCheck 1 18 2.14 
checkstyle DefaultConfiguration 1 2 3.78 
checks DescendantTokenCheck 2 19 4.19 
checks GenericIllegalRegexpCheck 2 19 4.19 
checkstyle TreeWalker 3 32 4.94 
checkstyle Checker 3 21 6.03 
checks AbstractTypeAwareCheck 3 20 6.15 
coding AbstractSuperCheck 3 20 6.15 
coding AbstractNestedDepthCheck 3 18 6.42 
checkstyle DefaultLogger 3 11 7.65 
checkstyle ConfigurationLoader 3 3 10.58 
checkstyle PropertiesExpander 3 2 11.35 
checkstyle PackageNamesLoader 4 4 13.31 
grammars GeneratedJava14Lexer 4 3 14.11 
checkstyle PropertyCacheFile 4 2 15.13 
grammars GeneratedJava14Recognizer 4 2 15.13 
checkstyle StringArrayReader 4 1 16.58 
checkstyle PackageObjectFactory 5 2 18.92 
apis FilterSet 6 5 19 
apis AbstractFileSetCheck 8 13 19.29 
checkstyle DefaultContext 7 2 26.48 
checks CheckUtils 8 3 28.22 
checkstyle AbstractLoader 7 1 29.01 
checks AbstractFormatCheck 17 18 36.38 
apis TokenTypes 9 1 37.3 
13 classes of the apis package are omitted here, all of these classes have a TWI value 
ranging from 45.86 to 584.39 
apis SeverityLevel 150 1 621.69 

In general, the results achieved using the TWI metric did not provide any further improvement 

over the previous metrics, except for its ability to allow for a grouping of all utility classes within 

one block. As shown in Table 10, the core package classes form now one block located at the 

bottom of the table. The TWI metric however did misplace an additional relevant component 

(the class m5.Matrix). The overall TWI distribution presents an improvement compared to the 
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previous metrics, with the TWI distribution showing a better ranking of the components from the 

most relevant to the least relevant, with the exception of the few misplaced classes. 

When applied to the CheckCode feature (see Table 11), the results obtained are similar to the one 

obtained by the OWI and WOWI metrics, except a better classification of the utility classes (i.e., 

the ones belonging to the apis package) was achieved. For example, the classes 

apis.TokenType and apis.AuditEvent, which were both misplaced using the OWI and 

WOWI metric, were correctly grouped by the TWI metrics with the other apis classes. 
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Packages Class |CEI| |CAI| |PAI| WTWI*1000 
weka.classifiers.m5 M5Prime 35 1 1 0.2 
weka.classifiers.m5 Node 19 2 1 0.56 
weka.classifiers.m5 Function 12 3 1 1.02 
weka.classifiers.m5 SplitInfo 11 3 1 1.05 
weka.classifiers.m5 Options 9 3 1 1.13 
weka.classifiers.m5 Impurity 10 4 1 1.45 
weka.classifiers.m5 Dvector 9 4 1 1.51 
weka.classifiers.m5 Values 8 5 1 1.96 
weka.classifiers.m5 Errors 1 4 1 2.42 
weka.classifiers.m5 Ivector 1 4 1 2.42 
weka.classifiers.m5 Matrix 5 7 1 3.15 
weka.classifiers.m5 M5Utils 8 10 1 3.92 
weka.filters ReplaceMissingValuesFilter 11 7 3 7.37 
weka.filters NominalToBinaryFilter 11 7 3 7.37 
weka.classifiers Evaluation 18 33 4 37.73 
weka.filters Filter 10 33 4 47.98 
weka.classifiers Classifier 8 35 4 54.88 
weka.estimators KernelEstimator 7 37 5 75.62 
weka.core Queue 1 34 5 102.97 
weka.core Statistics 1 49 8 237.45 
weka.core Instances 7 108 8 353.15 
weka.core Instance 7 108 8 353.15 
weka.core Attribute 5 109 8 392.06 
weka.core Utils 4 126 9 539.24 
weka.core FastVector 2 127 9 626.49 

4.2.3.4 The Weighted Two Way Impact Metric (WTWI) 

Table 12 shows the result of applying the feature location techniques based on the WTWI metric. 

The results achieved by this metric are considerably better than the ones obtained by the previous 

approaches. One can observe (Table 12) that the classes of the m5 package were all identified 

and grouped together as the most relevant classes to the M5 feature. Also, the core package 
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utility classes were grouped together at the end showing that these classes are least important for 

this feature. As a result, using the WTWI, none of the classes were misplaced.  

����������	
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Package Class |CAI| |CEI| |PAI| WTWI*1000 
coding ExplicitInitializationCheck 1 22 1 0.12 
28 other classes of the coding package are omitted here, all of these classes have a WTWI value 
ranging from 0.12 to 0.13. 
coding StringLiteralEqualityCheck 1 18 1 0.13 
checkstyle DefaultConfiguration 1 2 1 0.22 
checkstyle Checker 3 21 1 0.35 
coding AbstractSuperCheck 3 20 1 0.36 
coding AbstractNestedDepthCheck 3 18 1 0.38 
checkstyle DefaultLogger 3 11 1 0.45 
checks DescendantTokenCheck 2 19 2 0.49 
checks GenericIllegalRegexpCheck 2 19 2 0.49 
checkstyle TreeWalker 3 32 2 0.58 
checkstyle ConfigurationLoader 3 3 1 0.62 
checkstyle PropertiesExpander 3 2 1 0.67 
checkstyle PackageNamesLoader 4 4 1 0.78 
checks AbstractTypeAwareCheck 3 20 3 1.09 
checkstyle PackageObjectFactory 5 2 1 1.11 
checkstyle PropertyCacheFile 4 2 2 1.78 
checkstyle StringArrayReader 4 1 2 1.95 
grammars GeneratedJava14Lexer 4 3 3 2.49 
grammars GeneratedJava14Recognizer 4 2 3 2.67 
checkstyle DefaultContext 7 2 2 3.12 
apis FilterSet 6 5 3 3.35 
checkstyle AbstractLoader 7 1 2 3.41 
checks CheckUtils 8 3 3 4.98 
apis AbstractFileSetCheck 8 13 6 6.81 
apis AuditEvent 13 3 3 8.09 
checks AbstractFormatCheck 17 18 4 8.56 
apis TokenTypes 9 1 5 10.97 
12 other classes of the apis package are omitted here,. Their  WTWI value ranges from 27.6 to 530.51 
apis SeverityLevel 150 1 16 585.12 

 

The results of applying the WTWI-based feature location technique to the CheckCode feature are 

shown in Table 13. WTWI shows similar results as achieved by WOWI-based technique. 

However, the WTWI approach misplaced some classes of the checkstyle package such at the 

classes AbstractLoader, AbstractFormatCheck (two abstract classes), and 

CheckUtils with the apis classes. As mentioned previously, abstract classes seem to behave 

differently from the other classes. As for CheckUtils, it is a utility class whose scope is 
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within the checks package, unlike the classes of the apis package, which are system-level 

utilities.  

4.3  Discussion  

In this section, we discuss how the evaluation of our approach addresses the questions that the 

study aimed to investigate.  

Q1: How effective the above feature location algorithms are in their ability to detect the 

components that are most relevant to a specific feature?  

The overall results achieved by our feature location techniques show that they can be effective in 

locating the components that implement a particular feature, which answers the first research 

question investigated by this evaluation.  In terms of features, applying our approach for the 

Weka M5 feature showed better results compared to the Checkstyle CheckCode feature. This is 

perhaps due to the fact that the Weka system is considerably smaller that Checkstyle, and hence 

less complex.  

Q2:  What is the difference between applying the various impact metrics presented in the paper?   

We were able to observe settle differences among the results generated by our four impact 

metrics.   

One Way Impact Metric:  This metric worked quite well in detecting most important 

components for the feature M5 and CheckCode. With the exception of just one specific class of 

M5 feature and two specific classes of CheckCode feature it provided us with a correct grouping 

of the classes. However, one of the major disadvantage of this metric is its inability to create a 

clear-cut difference among the different categories of classes (relevant, related and utilities). 

Secondly the metric also misplaced a few classes with high OWI value by grouping them with 

the utility classes. 

Weighted One way Impact Metric:  Using this technique an improvement in the grouping of 

the classes was achieved. Specifically it ranked all the most important classes of the M5 feature 

rightly at the top. It also reduced the gap between the misplaced CheckCode feature classes and 

the rest of the important classes. 
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Two Way Impact Metric:  This technique showed no additional improvement in grouping of 

the relevant classes over the OWI and WOWI metrics. The classes that were initially misplaced 

by OWI Metric remained misplaced using the TWI metrics.  However, the metric showed some 

improvement in grouping the utility classes closer together as one block. All the utility classes of 

the Core package were placed at the end and also the gap between misplaced apis package 

classes of CheckCode feature was reduced. 

Weighted Two Way Impact Metric:  For the feature M5 this technique showed the best results 

in comparison with the previous techniques. A clear cut difference was achieved between the 

different categories (relevant, related and utilities) of classes involved in the feature- trace of M5 

feature. In case of CheckCode feature some classes still remained misplaced and this technique 

showed results similar to those achieved by WOWI Metric. �

5. Conclusion and Future Work 

In this paper, we presented a novel feature location technique that supports the mapping of 

features to code. We in particular focused on identifying automatically these classes that are 

implementing the code most relevant to the feature being analyzed. 

Our approach is based on a combination of static and dynamic analysis. A trace is generated by 

exercising the feature under study (dynamic analysis). A static class dependency graph (static 

analysis) is then used to rank the classes invoked in the trace according to their relevance to the 

feature. We ranked the classes by measuring their impact on the rest of the system. The rationale 

behind measuring the impact is that classes with a small impact set are likely to be specific to the 

feature at hand, whereas classes with a large(r) impact set have typical multiple purposes, and 

hence are less feature specific.  

Based on this hypothesis we introduced four new techniques to measure the impact set of a class 

modification on the rest of a system. Each metric has its own characteristics with respect to its 

ability to locate and group the identified classes based on their degree of feature relevance. 

We applied our techniques to several features of the software systems Weka and Checkstyle. The 

overall results of our experimental evaluation were very promising. Not only were we able to 

identify the components involved in the feature, but also rank them according to their relevance 

to the traced features. Further, analysis of our metrics showed that our weighted techniques 
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(WOWI and WTWI) delivers overall better results compared to the non- weighted ones (OWI 

and TWI). In addition, our approach is very simple and almost completely automatic, requiring 

almost no human intervention.  

The immediate future work consists of conducting further experimentation on other feature 

traces. In particular, we intend to target larger systems with less well designed architectures to 

further evaluate our approach.  

There is also a need to determine a threshold above which to consider classes as relevant to the 

feature. We anticipate that each system might have its own threshold, and that software engineers 

will dynamically change the threshold depending on their expertise of the system. Therefore, an 

analysis tool that would support the techniques presented in this paper should allow enough 

flexibility for the users to change the threshold.  

Finally, during the analysis of the results of the experimental studies, we noticed that abstract 

classes showed a different behaviour compared to other classes. They tend to have a higher 

afferent impact. There is a need to further investigate this behaviour and propose other means to 

rank abstract classes. 
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