
 1

Understanding the Complexity Embedded in Large
Routine Call Traces with a Focus on Program

Comprehension Tasks

Abdelwahab Hamou-Lhadj

Department of Electrical and Computer
Engineering, Concordia University
1455 de Maisonneuve Blvd. West

Montréal, Québec H3G 1M8 Canada
abdelw@ece.concordia.ca

Timothy C. Lethbridge

School of Information Technology and
Engineering (SITE), University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, K1N 6N5 Canada

tcl@site.uottawa.ca

Abstract

The analysis of execution traces has been shown to be useful in many software
maintenance activities that require a certain understanding of the system’s behaviour.
Traces, however, are extremely large, hence are difficult for humans to analyze without
effective tools. These tools usually support some sort of trace abstraction techniques that
can help users understand the essence of a trace despite the trace being massive. Designing
such tools requires a good understanding of the amount of complexity embedded in traces.
Trace complexity has traditionally been measured using the file size or the number of lines
in the trace. In this paper, we argue that such metrics provide limited indication of the
complexity of a trace. We address this issue by presenting a catalog of metrics for
assessing the various facets of traces of routine calls, with the ultimate objective being to
facilitate the development of tools for the exploration of lengthy traces. We show the
effectiveness of our metrics by applying them to 35 traces generated from four software
systems.

Keyword: Trace analysis, program comprehension, software maintenance, software
metrics

1. Introduction

Understanding the behaviour of software systems is an important aspect of program
comprehension, which in turn is an essential process in software maintenance. The
behaviour of particular runs of a software system is typically represented using execution
traces. However, raw traces of most interesting runs of a program being examined tend to
be overwhelmingly large. This has led to the development of trace analysis tools of various
kinds. A survey of many of these tools and their supported techniques is presented in [1].
Using these tools, software engineers can reduce the size of the trace by applying several
trace abstraction techniques ranging from mere removal of repetitive components to
identifying patterns and automatic filtering of unwanted components.

However, the behaviour embedded in large traces can be so complex that, without good
understanding of the complexity of a trace, it is very hard to know which techniques to

 2

apply. There is, therefore, a need to embed quantitative guidance in tools, in order to semi-
automatically or automatically help the user extract the information most likely to be
relevant. By quantitative guidance, we mean measuring some aspects of a trace, or part of
it, in order to determine whether that the trace is simple enough to understand or useful
enough to display.

At first glance, one might imagine that measuring a trace could be rather
straightforward: A naïve approach might just be to report the file size or the number of
lines in the trace. However, a myriad of subtleties arise, for example:

• The file size and number of lines depend on the schema used to represent the trace
and the syntax used to convey the data specified by such a schema.

• Not all elements of a trace are equally important, nor do all elements contribute
equally to complexity. For example, a long series of identical method calls would
be rather simpler to understand than a highly varied and non-repetitive sequence of
the same length.

• The notion of complexity is itself rather vague, suggesting that we need to be able
to measure a wide variety of aspects that may contribute to complexity so we can
later experiment with various approaches to complexity reduction.

The objective of this paper is to present a set of metrics that we have developed which
measure relevant properties of execution traces, particularly properties that can reveal the
effort required to analyze a large trace and explore its various components. We achieve this
by measuring aspects of an execution trace ranging from the volume of information
contained to more structural relationships among the components invoked in the trace. We
also show the application of these metrics to over thirty execution traces generated from
four software systems. The size of these traces varies from hundred of thousands to million
of events.

This paper is organized as follows: In the next section, we present background
information and related work. We define the metrics in Section 3. The application of the
metrics to 35 traces generated from four software systems is presented in Section 4. We
conclude the paper in Section 5.

2. Background and Related Work
In this section, we motivate the focus on analyzing traces of routine calls by showing

their importance in program comprehension. We introduce the concept of comprehension
units that will help us define a subset of the proposed metrics. The section ends with a
discussion of related work.

2.1. Traces of Routine Calls
Software engineers can generate several types of traces, including traces of routine

calls, of inter-process communication, and of executed statements. In fact, one can trace
just about any aspect of the system that is deemed helpful to accomplish the task at hand. In
this paper, we focus on tools that process traces of routine (method) calls. Such traces are at
an intermediate level of abstraction between highly detailed statement-level traces and
traces of interactions, such as messages, among high-level system components. The former
are rarely used since they tend to produce vastly more data than needed, whereas the latter

 3

can only reveal the architectural characteristics of the system. Traces of routine calls have
also been shown to be useful at solving practical maintenance problems such as uncovering
faulty behaviours [2], adding new features to an existing system [3, 4], or detecting system
inefficiencies [5].

There are various techniques for generating traces. The first is based on instrumenting
the source code; this consists of inserting probes (e.g., print statements) at appropriate
locations in the source code. Instrumentation is usually done automatically. The second
technique consists of instrumenting the execution environment in which the system runs.
For example, the Java Virtual Machine can be instrumented to generate events of interest.
The advantage of this technique is that it does not require modification of the source code.
Finally, it is also possible to run the system under the control of a debugger. In this case,
breakpoints are set at locations of interest (e.g., entry and exit of a method). This technique
has the advantage of modifying neither the source code nor the environment; however, it
can considerably slow down the execution of the system.

A trace is usually saved in a text file that contains a sequence of lines in which each
line represents an event. An example of this representation is given by Richner and
Ducasse in [6]. Each line records the class of the sender, the identity of the sender, the class
of the receiver, the identity of the receiver and the method invoked. The order of calls of
the resulting call tree can be maintained in two ways, either each entry and exit of the
method is recorded, which results is a very large trace file, or an integer is added to
represent the nesting level of calls. In this case, we do not need to record the exit event of a
method.

2.2. The Concept of Comprehension Unit
We define a comprehension unit as a distinct subtree of a call tree. More precisely, it is

possible to partition the nodes of a tree into equivalence classes such that two nodes n1 and
n2 of a tree t are equivalent if and only if the subtrees of t rooted at these nodes are
isomorphic. In other words, they have the same structure and the nodes at corresponding
places have identical labels. The set of all distinct subtrees of a given tree consists of a
subtree from each equivalence class.

Another way of defining comprehension units is based on the fact that a rooted tree can
always be transformed into its maximum compact form by representing isomorphic
subtrees only once [7, 8]. This transformation results in a directed acyclic graph (DAG).
Each subgraph of the DAG represents a distinct subtree of the tree. Figure 1 shows a tree
structure and its corresponding ordered DAG. The graph shows that the trace contains six
distinct subtrees (i.e., comprehension units for call trees); the subtree rooted at ‘B’ is
repeated twice in the tree but only once in the corresponding graph.

A subset of the metrics presented in this paper is based on this concept of
comprehension units. We hypothesize that in order to fully understand the trace, without
any prior knowledge of the system, the analyst would need to investigate all the
comprehension units that constitute it. It is important to notice that in practice, full
comprehension would rarely be needed because the analyst will achieve his or her
comprehension goals prior to achieving a full comprehension. Also, he or she will likely
not need to try to understand the differences among the many comprehension units that
only have slight differences. The concept of comprehension units therefore helps set an

 4

upper bound on complexity of a trace in terms of the amount of work needed to understand
it.

We deliberately chose to use the term ‘comprehension unit’. Both words in this choice
of terminology have been criticised, but we intend to maintain our choices. The word
‘comprehension’ is used so as to emphasise the fact that we are indeed trying to consider
the distinct parts of the trace that need to be comprehended. Also the term ‘unit’ indicates
that these are items that can be counted; it is clear that the amount of comprehension
required to understand the internals of two comprehension units will likely differ widely,
but the same would be true of other ‘units’ in software engineering such as lines of code,
methods, etc. In other words, it does not matter that the amount of understanding is
different, and it does not matter that there will be other things (other than simply the
subtrees) to understand. The key idea is that two equal comprehension units will not need
understanding more than once.

It should be emphasized that the DAG corresponding to a call tree must be ordered in
order to be able to restore the initial order of calls. In addition, it is important to note that
the graph representation of a trace does not necessarily result in a loss of information
associated with individual nodes of the tree such as timing information. What is needed is
to augment the nodes of the graph with ordered collections that holds the information
associated with each node.

2.3. Existing Dynamic Metrics
Research in software metrics has long been concentrated on the development of metrics

that measure the complexity of static aspects of a program. These metrics include the
number of lines of code, the cyclomatic complexity metric, coupling and cohesion, etc.
Very little attention, however, has been placed on metrics that assess the complexity
embedded in run-time information.

After a thorough review of existing literature, we have not encountered any work that
focuses on measuring the various facets of a trace of routine calls. Most existing trace
analysis techniques simply use the number of events invoked in a trace or the size of the
trace file as an indicator of complexity. Hamou-Lhadj and Lethbridge survey these
techniques in [1].

The studies most relevant to this paper are those conducted by Reiss et al. [9]. The
authors propose converting a dynamic call tree into an ordered DAG (as discussed earlier)
with the objective being to save storage space. They measure the compression gain of
applying such a transformation to several traces. A subset of our metrics – those that
involve what we call comprehension units – has the objective of measuring various
properties of the ordered DAG resulting from transforming the call tree. The work we
present in this paper with respect to this particular subset of metrics progresses beyond the
above work in two ways. First, our primary goal is to use these metrics to facilitate the
exploration of complex traces rather than simply saving space. Second, we define the
metrics in a formal way. Finally, as we will describe in Section 3.3, we design the metrics
to support various ways of assessing the similarity between subtrees of a call tree before
turning them into a DAG; existing studies consider exact matches only.

Ducasse et al. proposed a metric-guided visualization technique, called run-time
polymetric view, to help software maintainers understand various aspects of the execution

 5

of object-oriented systems [10, 11]. Their approach allows a software maintainer to view
statistical information about the system’s execution such as the number of classes that are
the most instantiated, the number of invoked methods for each class, and other
characteristics of the system’s execution. For this purpose, their technique relies on
collecting aggregate data about the system’s execution without having to save the traces.
As such, one cannot use their technique to understand the flow of execution of the system.
The metrics presented in this paper go beyond collecting statistics about the system’s
execution to form a complete framework for assessing the complexity of traces in order to
build techniques for reducing this complexity and hence enabling software maintainer
understand the flow of execution of the system.

Greevy et al. proposed a technique that can help software engineers understand how a
software system evolves by studying the impact of change on the software features of the
system [12]. To achieve this, they developed many metrics to characterize the role that a
software component (more precisely, a class) plays in implementing the features of the
system. Examples of these metrics include measuring the number of classes that do not
participate in any of the features under analysis, the number of classes that participate in
only one feature, the number of classes that participate in less than half of the features, etc.
These metrics have not been designed to assess the complexity of a trace but rather to
understand how a trace generated from exercising a particular feature changes during
software evolution.

Dufour et al. presented an extensive list of metrics to measure various aspects of run-
time information generated from Java programs [13]. Their metrics range from measuring
the size of traces to more advanced features such as the degree to which polymorphism is
used in a Java program. Although these metrics are interesting, they do not directly
quantify the amount of information found in a trace of routine calls. However, they can
help design techniques for reducing the complexity of traces. For example, one can hide the
details of polymorphic methods if the need is to display the content of the trace at a high-
level. Knowing the number of polymorphic calls invoked in a trace can help predict the
gain resulting from applying this complexity reduction technique.

3. The Catalog of Metrics
In this subsection, we develop a set of metrics that can be used to measure useful

properties of execution traces. We motivate the design of these metrics using the
Goals/Questions/Metrics (GQM) model [14] as a framework.

The top level goal can be stated as follows:

To enable software engineers to more quickly understand the behaviour of
a running system through the analysis of its execution traces.

The expression “behaviour of a running system” simply means the execution path taken
when the system is provided with certain inputs. Understanding the path taken through a
running system (i.e., dynamic analysis) can be essential to diagnose why something is
being executed incorrectly, or is not being executed.

In this paper, we use the concept of software features as a means to exercise the system
and generate execution traces. Perhaps the most common definition of a software feature is

 6

by Eisenbarth et al, who describe it is a behavioural aspect of the system that represents a
particular functionality, triggered by an external user [15]. These authors also discuss the
relationship between a software feature, a scenario, and a computational unit. According to
them a scenario is an instance of a software feature, where the user needs to specify a series
of inputs to trigger the feature. A computational unit refers to the source code components
that are executed by exercising the feature on the system. A feature is implemented by
many computational units, and at the same time a given computational unit can be used in
the implementation of multiple features. A trace can then been seen as a sequence of
computational units invoked by exercising a specific feature, or more precisely, a particular
scenario of this feature.

To achieve the above mentioned top-level goal, and in accordance with the GQM
approach, we have designed questions that aim to characterize the effort required for
understanding an execution trace. We present these questions along with the metrics that
address them.

The metrics we present are designed to explore the possible space of size and
complexity metrics. Not all of them are necessarily of equal value. Later in the paper we
present case studies where we use some of them to actually measure some traces.

3.1. Call Volume Metrics

This category of metrics aims to answer the following related questions:

Q1a: How many nodes of any type does a trace contain in total?

Q1b: What is the ratio of the size of the processed trace to the size of the original
trace?

The first sub question (Q1a) asks in simplest terms how much we would have to ‘look
at’ if we had to examine the entire trace, or how much we would have to ‘process’ if we
were to perform a computation on the entire trace. Answering this question establishes a
baseline for other measurements we might want to take.

We can answer Q1a for any trace, including the original trace obtained from a trace-
gathering tool, or a trace that has been processed in some way to shorten it, e.g. by treating
a sequence of identical nodes as one node.

The second subquestion (Q1b) allows us to determine how much smaller a processed
trace is, as compared to the original trace. This allows us to measure the effectiveness of
the processing at reducing the volume of nodes that have to be examined.

The following metrics are designed to address these questions:

Full size [S]: The full size is the raw number of calls recorded in the trace; it is the number
of nodes in the call tree without any of the manipulations described below, such as
removing repetitions. Most existing trace analysis techniques rely on the size of traces as
the main metric for complexity, e.g., [2, 3, 5, 6]. Full size forms a baseline for subsequent
computations and will always be numerically larger than any of the other size metrics
described below. Note that we say that it is the number of calls recorded. It is possible that
some or many calls are not recorded. For example, a software engineer will often choose to
not record invocations of private methods. He or she may also sample execution during a

 7

certain time period only, or record only invocations in a certain subsystem. S is therefore
always relative to the instrumentation used to gather the trace, but nevertheless represents
the size of everything the software engineer has to work with in a given trace.

Size after removing contiguous repetitions [Scr]: This is the number of lines in the trace
after removing contiguous repetitions due to loops and recursion. In other words, many
identical calls are mapped into a single line by processing the trace. We refer to this process
as the repetition-removal stage. Note that by identical, we are referring to identity between
subtrees. At the leaf level of the call tree, the sequences AAABBB and AABBBB would
result in Scr=2 (i.e., the nodes AB), whereas AABBBAA would result in Scr=3 (nodes
ABA). And one level higher, ACCDDACDBD

1 and ACDDDBDDD would both result in Scr=5
(nodes ACDBD), whereas ACCDBDDACD would result in Scr=8 (nodes ACDBDACD).

According to our experience working with many execution traces, it seems that the number
of lines after repetition removal is a much better indicator of the amount of work that will
be required to fully understand the trace. This is due to the fact that the full size of a trace,
S, is highly sensitive to the volume of input data used during the execution of the system.
To understand the behaviour of an algorithm by analyzing its traces, it is often just as
effective to study the trace after most of the repetitions are collapsed. And, in that case,
studying a trace of execution over a very large data set would end up being similar to
studying a trace of execution over a moderately sized data set.

Size, treating all called routines as a set [Sset]: This is the number of lines that remains
after all repetitions and ordering are ignored. So for example ACCDDACDBD, ACDDDBDDD
and ACCDBDDACD would all result in Sset=5 (nodes ACDBD).

Collapse ratio after removing contiguous repetitions [Rcr]: This is the ratio of the
number of nodes after removing the contiguous repetitions from the full trace. Rcr = Scr/S.

Knowing that a program does a very high proportion of repetitive work (that Rcr is low)
might lead program understanders to study possible optimizations, or to reduce input size.
Knowing that Rcr is high would suggest that understanding the trace fully will be time
consuming.

The Collapse Ratio is analogous to the notion of ‘compression ratio’ used in the context of
data compression. However, we have carefully avoided using the term ‘compression’ since
it causes confusion: The purpose of compression algorithms is to make data as small as
possible; a decompression process is required to reconstitute the data in order to use it for
any purpose. On the other hand, the purpose of collapsing is to make the data somewhat
smaller by eliminating unneeded data, with the intent being that the result will be
intelligible and useful without the need for ‘uncollapsing’.

Collapse ratio treating calls as a set [Rset]: Analogously to the above, this is Sset/S.

1 We use the notation AC to represent ‘A calls C’

 8

3.2. Component Volume Metrics
This category of metrics is concerned with measuring the number of distinct

components of various types (e.g., classes, packages, etc.) that are invoked during the
execution of a particular scenario. The motivation behind the design of these metrics is that
traces that crosscut many different components of the system are likely to be harder to
understand than traces involving fewer components. In addition to this, it is very common
that software engineers exploring traces map the trace components to their implementation
counterpart in order to better understand a particular functionality. Knowing that a trace
involves a large number of the system components would suggest that tools ought to
support techniques that would easily allow this mapping. This family of metrics is inspired
by the code coverage metrics used in software testing [16], which are used to describe the
degree to which the source code of a program has been tested. In our case, we want to
know the amount of code invoked in typical execution traces.More specifically, these
metrics aim to investigate the following two related questions:

Q2a: How many system components are invoked in a given trace?

Q2b: What is the ratio of the number of components invoked in a trace to the total
number of components of the system?

The term ‘component’ is very general. Separate metrics can be used to measure
invocations of different types of components. In this paper, since the target systems that are
analyzed are all programmed in Java then it may be useful to measure the following:

Number of packages [Np]: This is the number of distinct packages invoked in the trace.
By ‘invoking’ a package we mean that some method in the package is called.

Number of classes [Nc]: This is the number of distinct classes invoked in the trace.

Number of methods [Nm]: This is the number of distinct methods that appear in the trace
(i.e., irrespective of how many times each method is called).

It may be useful to create similar metrics based on other types of components, e.g. the
number of threads involved.

The following ratios enable one to determine the proportion of a system that is covered
by the trace. The more of a system covered, the more time potentially required to
understand the trace, but the more complete an understanding of the entire system may be
gained. Thus we may measure the following:

Ratio of number of trace packages to the number of system packages [Rpsp]: This is
the ratio of the number of packages invoked in a trace to the number of packages of the
instrumented system. More formally, if we let:

� NSp = The number of packages of the instrumented system

� Np = The number of packages as defined above

Then: Rpsp = Np/NSp

 9

Ratio of number of trace classes to the number of system classes [Rcsc]: This is the
ratio of the number of classes invoked in a trace to the number of classes of the
instrumented system. This is computed analogously to Rpsp.

Ratio of number of trace methods to the number of system methods [Rmsm]: This is
the ratio of the number of methods invoked in a trace to the number of methods of the
instrumented system.

3.3. Comprehension Unit Volume Metrics
The comprehension unit volume category of metrics is computed from the graph

representation of the trace. A similar metric was presented by Reiss et al. [9], except that
Reiss et al. focused on the size of the file that contains the graph compared to the size of
the trace file. We argued earlier that the file size can be misleading since it depends on the
schema used to carry the trace data. In this study, we focus on the number of
comprehension units of the trace which are represented as the nodes of the graph. In
addition, Reiss et al. used only exact matches when comparing sequences of calls, whereas
in this study, we believe that exact matching is not reflective of the trace size because of
the number of repetitions in typical traces. As we did with the raw size metrics, we
therefore propose using two matching criteria when building the graph, namely, ignoring
the number of repetitions (cr) and treating the called routines as a set (set). In this category,
we are interested in investigating the following questions:

Q3a: How many comprehension units exist in a trace using different matching criteria
when comparing sequences of calls?

Q3b: What is the ratio of the number of comprehension units to the size of trace?

We suggest that metrics based on comprehension units will give a more realistic
indication than call volume of the complexity of a trace.

Number of comprehension units [Scusim]: This family of metrics represents the number
of comprehension units (i.e., distinct subtrees) of a trace. The number may vary depending
on the way similarity among the subtrees is computed. The subscript ‘sim’ is used to refer
to the similarity function used, which can be ‘exact’, ‘cr’, ‘set’ or some other function.

Considering exact matches only will result in a maximum number of comprehension
units, Scuexact. For example, consider the tree of Figure 2; the two subtrees rooted at ‘B’
differ because the number of contiguous repetitions of their subtrees differs.

If the number of contiguous repetitions is ignored when comparing two subtrees we use
the subscript cr, and the resulting metric is Scucr, which will always be equal to or less than
Scuexact. We define Scu (unsubscripted) to mean Scucr, since in our experience, Scucr is a
more useful basic measure of comprehension units than Scuexact.

We can also compute Scuset which compares the set of subtrees, ignoring all repetition
(contiguous or not) and also ignoring order. Intuitively, it appears that Scuset � Scucr �
Scuexact, since, when computing Scuset, we not only ignore the number of repetitions when
comparing sequences of calls but also ignore the order of calls. We did not attempt to prove

 10

that Scuset � Scucr � Scuexact since we do not think that this is important in this study. What
is important is that further metrics (with other subscripts) can be computed by further
varying the matching criteria. For example, we can compare two sequences of calls up to a
certain depth, or by ignoring specific routines, etc. A discussion on how various matching
criteria can be used to reduce the size of traces (by generating more patterns) can be found
in [17, 18]. Most of these criteria require some sort of knowledge of the system under
study. For example, the depth-limiting criterion assumes that the analyst has some
understanding of the structure of the studied system. In this paper, we did not assume any
knowledge of the system and hence did not attempt to compute these criteria.

Graph to tree ratio [Rgtsim]: This family of metrics measures the ratio of the number of
nodes of the ordered directed acyclic graph to the number of nodes of the trace. We expect
to find a very low ratio since the acyclic graph factors out repetitions. More formally, let us
consider:

� Scr = The size of a trace T after removing contiguous repetitions.

� Scucr = The size of the resulting graph after transforming T to a graph.

Then: Rgtcr = Scucr/Scr.

Using another similarity function, we can also have Rgtset = Scuset/Sset.

If Rgtsim is very low then this suggests that even a huge original trace might be
relatively easy to understand.

3.4. Pattern-Related Metrics
This category of metrics is concerned with measuring the number of patterns that exist

in a trace. We define a trace pattern as a comprehension unit that is repeated in a trace non-
contiguously. Trace patterns are used by several trace analysis tools as means to uncover
key domain concepts from the trace. The assumption is that the same sequence of calls that
appear in various places of a trace might encapsulate some knowledge about the system
(such as a particular aspect of an algorithm, etc.) that is worth investigating further. More
about trace patterns and how they are used is presented by Jerding et al. in [3], and Systä et
al. [19]. In this category of metrics, we, therefore, investigate the following questions:

Q4a: How many patterns exist in a trace using different matching criteria to compute
the patterns?

Q4b: What is the ratio of the number of patterns to the number of comprehension units?

We present the following metrics:

Number of trace patterns [Npttsim]: This metric simply computes the number of trace
patterns that are contained in a trace, given ‘sim’ as the similarity function (as before, if it
is omitted, we assume cr). If Nptt is small this suggests that the complexity of the trace will
be high.

Ratio of the number of patterns to the number of comprehension units [Rpcu]: This
metric computes the ratio of the number of patterns to the number of comprehension units.
In other words, we want to assess the percentage of comprehension units that are also

 11

patterns. We will compute Rpcu for both matching criteria (i.e., cr and set). We therefore
have two metrics:

• The ratio of the number of patterns to the number of comprehension units using the
“ignore repetitions” matching criterion: Rpcucr = Npttcr/Scucr

• The ratio of the number of patterns to the number of comprehension units using the

“ignore repetitions and ignore order” matching criterion: Rpcuset = Npttset/Scuset

3.5. Discussion

This section discusses the necessity and sufficiency of the four families of metrics
presented in this paper. In general, the metric families are necessary since they each tell a
different story about a trace: Leaving one or other family out would leave gaps. On the
other hand, sufficiency of a metric is normally evaluated on the basis of whether the metric
captures an underlying concept (in cases where the metric is a surrogate for an underlying
concept). The metrics described here are generally very direct measures, as opposed to
surrogates, so sufficiency is less of an issue.

The call volume metrics can be used to indicate the complexity of a trace by simply
looking at its length (i.e., the number of calls). These metrics also take into account the
length of the trace after removing contiguous repetition (Scr) as well as ignoring the order
of calls (Sset). The advantage of these metrics is that they do not require extensive
processing. Their limitation is that they do not consider the non-contiguous repetitions that
occur in a trace. In other words, two identical subtrees that occur in a non-contiguous way
will be counted twice. To address this issue, we presented the comprehension unit metrics
(Scu, Rgt), which measure the content of a trace by factoring out all kinds of repetitions
whether they are contiguous or not. We believe that these metrics are a better indicator of
the work required to explore and understand the content of a trace since software engineers
do not need to understand the same comprehension unit twice.

We presented the component volume metrics to assess the number of the system’s
components invoked in a trace. These metrics are necessary given that software engineers
will most likely need to map the content of a trace to the source code in order to get more
information. Knowing that a trace, or part of trace, crosscuts several system components is
an indicator that this mapping might be complex to perform. These metrics can be used
independently from the other metrics presented in this paper.

Finally, trace pattern metrics are necessary in order to evaluate the number of patterns
in a trace. As shown by Jerding et al. [4], software engineers often rely on exploring trace
patterns so as to uncover the core behaviour embedded in a trace. These metrics can be
used in combination with the comprehension unit metrics so as to compute the ratio of the
number of patterns to the number of comprehension units. This ratio can be used to assess
the extent to which a trace performs repetitive work.

 12

4. Case Studies
4.1. Target Systems

We analyzed the execution traces of four Java software systems: Checkstyle2 (ver. 3.3),
Toad3 (ver. 2.0), Weka4 (ver. 3.0), and JHotDraw5 (ver. 5.1). Checkstyle is a development
tool to help programmers write Java code that adheres to a coding standard. This is very
useful to projects that want to enforce a coding standard. The tool allows programmers to
create XML-based files to represent almost any coding standard. Toad is an IBM tool that
includes a large variety of static analysis tools for monitoring, analyzing and understanding
Java programs. Although these tools can be run as standalone tools, they can provide a
much greater understanding of a Java application if they are used together. Weka is a
collection of machine learning algorithms for data mining tasks. Weka contains tools for
data pre-processing, classification, regression, clustering, and generating association rules.
JHotDraw is a Java framework for creating drawing editors. It provides support for the
creation of various types of geometric shapes ranging from simple shapes such as points,
circles and lines to complex graphics. JHotDraw also supports advanced features for
editing and manipulating shapes.

Table 2. Characteristics of the target systems

 Packages Concrete Classes Non-private Methods KLOC
Checkstyle 43 671 5827 258
Toad 68 885 5082 203
Weka 10 147 1642 95
JHotDraw 11 161 1918 189

Table 2 summarizes certain static characteristics of the target systems relevant to

computing the proposed trace metrics. For simplicity, we deliberately ignore the number of
private methods (including private constructors) both in the table and in the traces: they are
used to implement behaviour that will be localized within a class, so tracing them would
provide minimal value in terms of comprehending the system, when compared to the added
cost of a much larger trace. Abstract methods are also excluded since they have no
presence at run time. Finally, the number of classes does not include abstract classes for the
same reason.

4.2. Generating the Traces
We used our own instrumentation tool based on BIT (Bytecode Instrumentation

Toolkit) [20] to insert probes at the entry and exit points of each system’s non-private
methods. Constructors are treated in the same way as regular methods. Traces are generated
as the system runs, and are saved in text files. Except for JHotDraw, all other target
systems can be invoked using both a graphical user interface and the command line. We

2 http://checkstyle.sourceforge.net
3 http://www.cs.waikato.ac.nz/ml/weka
4 http://alphaworks.ibm.com/tech/toad
5 http://www.jhotdraw.org

 13

favoured the command line approach over the GUI to avoid encumbering the traces with
GUI components. We generated traces from the target systems by exercising the features
described in Tables 3, 4, 5, and 6. Except for JHotDraw, where the selected features
involve drawing and editing shapes, for all the other systems, we used the examples that
come with the tools as input data.

We chose to exercise the systems using software features since it is well known that
programmers often adopt an as-needed strategy when comprehending a large system and in
which case they tend only to comprehend these portions of the program that are relevant
the affected feature [21]. In other words, we wanted to examine traces that are similar to
the ones programmers will most likely generate for their needs, i.e., based on software
features. We deliberately chose features, by carefully examining the documentation of each
system, that cover different aspects of the system and that are not slight variations of each
other. For the Weka system, for example, we exercised the system using various types of
machine learning algorithms including classification, association, and clustering
algorithms. This would allow us to better interpret the results by generating traces that
cover different components of the system.. A trace file contains the following information:

� Thread name,
� Full class name (e.g., weka.core.Instance),
� Method name, and
� A nesting level that maintains the order of calls.

We noticed that all the tools use only one thread, so we ignored the thread information.

Table 3. Checkstyle Features

Trace Description
C-T1 Checks that each java file has a package.html.
C-T2 Checks that there are no import statements that use the .* notation.
C-T3 Restricts the number of executable statements to a specified limit.
C-T4 Checks for the use of whitespace.
C-T5 Checks that the order of modifiers conforms to the Java Language specification.
C-T6 Checks for empty blocks.
C-T7 Checks whether array initialization contains a trailing comma.
C-T8 Checks visibility of class members.
C-T9 Checks if the code contains duplicate portions of code.
C-T10 Restrict the number of &&, || and ^ in an expression.

Table 4. Toad Features

Trace Description
T-T1 Generates several statistics about the analyzed components.
T-T2 Detects and provides reports on uses of Java features, like native code interaction and dynamic

reflection invocations, etc.
T-T3 Generates statistics in html format about unreachable classes and methods, etc.
T-T4 Specifies bytecode transformations that can be used to generate compressed version of the

bytecode files.
T-T5 Generates the inheritance hierarchy graph of the analyzed components.
T-T6 Generates the call graph using rapid type analysis of the analyzed component.
T-T7 Generates an html file that contains dependency relationships among class files.

 14

Table 5. Weka Features

Trace Description
W-T1 Cobweb Clustering feature.
W-T2 EM Clustering feature.
W-T3 IBk Classification feature.
W-T4 OneR Classification feature.
W-T5 Decision Table Classification feature.
W-T6 J48 (C4.5) Classification feature.
W-T7 SMO Classification feature.
W-T8 Naïve Bayes Classification feature.
W-T9 ZeroR Classification feature.
W-T10 Decision Stump Classification feature.
W-T11 Linear Regression Classification feature.
W-T12 M5Prime Classification feature.
W-T13 Apriori Association feature.

Tabel 6. JHotDraw Features

Trace Description
J-T1 Drawing circles, lines, and rectangles.
J-T2 Drawing polygons, rounded rectangles, and ellipses.
J-T3 Drawing shapes and adding connectors.

J-T4
Drawing shapes, adding text, simple editing operations such as changing
colors.

J-T5
Drawing and editing of shapes: changing the shape size and moving and
rotating shapes.

4.3. Analysing the Results of Applying the Metrics

The metrics presented in this paper have been implemented as a standalone application
that will be integrated with our trace analysis tool, called SEAT (Software Exploration and
Analysis Tool) [22]. The new version of the tool will be made available for download after
the integration is completed. The collection of metrics resulted in a large set of data that we
present in Appendix A. To help interpret and analyze the results, we show in Table 7 the
average value of each metric.

The Call Volume Metrics:

As shown in Table 7, the number of calls invoked in traces of all systems is large as
expected, in a range of hundreds of thousands of calls. Since we need at least two events to
collect each call (the entry and exit of the traced routine), the size of some of the traces
used in this case study goes beyond millions of events. This is particularly the case of
JHotDraw where the average size of its traces approximates 1.35 million events (675974
calls). The removal of contiguous repetitions was expected to reduce significantly the size
of raw traces, which was also confirmed by this case study. The collapse ratio of removing
contiguous repetitions (Rcr) varies from one system to another, 5% (Toad), 13% (Weka),
7% (JHotDraw), and 46% (Checkstyle). However, the resulting traces of all four systems
continue to contain thousands of calls, which is still high for the users of trace analysis
tools. Therefore, simply removing repetition is a necessary trace compaction technique but
far from sufficient.

 15

The table shows that collapsing the traces by treating sequences of calls as a set (i.e.,
ignoring the repetitions and the order of calls) results is a considerably smaller traces,
especially for Weka, JHotDraw, and Toad systems, where the average size (Sset) of the
resulting traces is 2476 for Weka (which represents 2% of the original size), 11005 for
JHotDraw (2% of the original size), and 5929 for Toad (3% of the original trace). Although
this technique leads to excellent results, we consider it extreme since it goes against the
definition of a trace of routine calls itself where the sequence and the order of calls is an
important feature. In addition, it is difficult, without further studies, to assess which
maintenance task can truly benefit from such extreme compaction scheme. For example, if
the maintenance task at hand is fixing defects then ignoring the order of calls may hinder
proper understanding of the code. On the other hard, we hypothesize that this technique can
be valuable for maintenance tasks that require abstracting out the content of a trace at a
very high-level where an analyst only needs to understand the main computations reflected
in the trace. We, therefore, recommend that the ability to select different matching criteria
be supported by a trace analysis tool.

Table 7. The average result of applying the metrics to the traces of the target
systems

Metrics Checkstyle Toad Weka JHotDraw

Full Size (S) 74615 220409 145985 675974

Size after removing contiguous repetitions (Scr) 33293 10763 16147 48367
Size after removing contiguous repetitions, treating calls as
a set (Sset) 27749 5929 2476 11005

Collapse ratio after removing contiguous repetitions (Rcr) 46% 5% 13% 7%
Collapse ratio after removing contiguous repetitions, treating
calls as a set (Rset) 39% 3% 2% 2%

Number of packages (Np) 13 20 3 7
Ratio of number of trace packages to the number of system
packages (Rpsp) 31% 29% 28% 64%

Number of classes (Nc) 111 173 14 125
Ratio of number of trace classes to the number of system
classes (Rcsc) 16% 20% 10% 78%

Number of methods (Nm) 550 610 122 572
Ratio of number of trace methods to the number of system
methods (Rmsm) 9% 12% 7% 30%

Number of comprehension units, using the ignore repetition
criterion (Scucr)

1103 826 186 1208

Number of comprehension units, treating calls as a set
Scuset

1099 816 147 1155

Graph to tree ratio, using ignore repetitions criterion (Rgtcr) 8% 8% 3% 3%

Graph to tree ratio, treating calls as a set (Rgtset) 10% 14% 17% 12%

Number of trace patterns (Npttcr) 177 204 52 269

Number of trace patterns, treating calls as a set (Npttset) 174 167 35 187
Ratio of the number of patterns to the number of
comprehension units (Rpcucr)

15% 25% 26% 22%

Ratio of the number of patterns to the number of
comprehension units, treating calls as a set (Rpcuset)

15% 20% 22% 16%

 16

The Component Volume Metrics:

Our analysis shows that the number of distinct packages invoked in all traces is
consistent across Weka, Toad, and Checkstyle systems from which we generated relatively
small to medium-sized traces, between 28% and 31% of the system packages. However,
the number of packages invoked in traces of JHotDraw counts for 64% of the total number
of packages. Most of these packages implement graphical user interface capabilities, which
are invoked in all features of JHotDraw. We conducted further analysis to understand the
package frequency distribution in traces of all target systems. We did not attempt to
replicate this analysis using classes and methods for simplicity reasons.

The results of this analysis, reported in Appendix B, show that in each system there are
one or two packages which are responsible of more than 60% and sometimes 80% of the
set of calls invoked in a trace (we use the number of calls after removing contiguous
repetitions, Scr). For example, the package ‘antlr’ constitutes almost 84% of all total
invocations of Checkstyle traces. ‘antlr’ stands for ANother Tool for Language
Recognition6 and is a utility library that provides a framework for constructing recognizers,
compilers, and translators from grammatical descriptions of various programming
languages such as Java. It is used by Checkstyle to build a representation of the Java
systems that need to be processed. It is more a utility library than a package that performs
actual checks for design compliance, which is the main functionality of Checkstyle.
Similarly, the packages ‘com.ibm.toad.cfparse’ and ‘com.ibm.toad.utils’ contribute to more
than 63% of the size of Toad traces (Scr). The cfparse package stands for Class File Parser
and is used by all Toad features to parse Java class files. The package com.ibm.toad.utils as
indicated by its name groups system-scope utilities used by the various components of
Toad. These two packages are clearly low-level implementation details that encumber the
content of traces. The package ‘weka.core’ of the Weka system generates almost 87% of
total invocations. This package implements general purpose operations for manipulating
datasets used in the implementation of the various data mining algorithms of Weka.
Finally, the packages CH.ifa.draw.standard and CH.ifa.draw.util of the JHotDraw system
are responsible of 80% of the total number of calls invoked in JHotDraw traces. These
packages contain standard data structures and utility functions such as trees (implemented
in the CH.ifa.draw.standard.QuadTree class), enumerations (class
CH.ifa.draw.standard.FigureEnumerator), geometric operations (class
CH.ifa.draw.util.Geom), etc.

These results indicate that abstraction techniques based on the removal of utility
components can be an excellent way to reduce significantly the size of traces. It is expected
that a tool that supports these techniques should allow enough flexibility to the users to
determine a threshold above which a component is considered as a utility, since what
constitutes a utility for a software engineer may be an important component for someone
else depending on the user’s experience of the system and the software maintenance at
hand.

The challenge with utility detection techniques is that, as the system undergoes several
maintenance cycles, it becomes hard to distinguish the utility components from non-

6 http://www.antlr.org

 17

utilities. There is normally no program language syntax to designate a utility, and they may
or may not be given names that make it clear they are intended to be utilities. An effective
tool should therefore support the automatic (or semi-automatic) detection of utilities. An
example of a utility detection approach is the one we proposed in our previous work [23],
and where we showed how fan-in analysis can be employed to detect utility routines. We
argued that a utility component is a component that is used by many other components of
the system and therefore it is expected to have a high fan-in. Based on that, we devised a
utilityhood metric that ranks routines according to their fan-in value. Although the
approach showed promising results, it needs to be fine tuned to detect utility routines
defined at the package levels and not only at the system scope. The metric also suffers from
the drawback that it requires an entire static call graph of the system under study.

Comprehension Units Metrics

Table 7 shows the average number of comprehension units (Scucr) and the ratio
achieved by transforming traces into acyclic graphs (Rgtcr), which varies from 3% to 8%
(i.e., a reduction of 97% to 92% of the size of a trace). These results demonstrate the
effectiveness of transforming the traces into ordered directed acyclic graphs, which
confirms the fact that a trace analysis tool should never save traces as tree structures. It
should be emphasized that if the exact match is used then this transformation is lossless,
i.e., the reverse transformation will result in the initial tree.

As expected, Scuset, the average number of comprehension units in all traces treating
the called routines as a set (i.e., ignoring the repetitions and the order of calls) is less than
the number of comprehension units resulting from simply ignoring the number of
repetitions (Scurc). However, the difference is not large, except for in the case of Weka
where the average number of comprehension units treating the called routines as a set is
Scuset = 147 compared to Scurc = 186 (a ratio of 31%). For all other systems, the ratio of
Scuset to Scurc is less than 10%.

We analyzed sample traces of the target systems to understand the reasons behind this
discrepancy, we found that Weka uses a small set of methods belonging to the core utility
package (e.g., weka.core.Instances.numAttributes, weka.core.Instances.instance) to do most
of the work related to the handling of data used by the traced machine learning algorithm.
As a result, these methods appear extensively in all levels of the trace and the order in
which they are called varies considerably. This does not appear to be the case of
Checkstyle, Toad, and JHotDraw which use a very large set of methods for the handling of
the various aspects of the traced computations, reducing the chances of having always the
same methods repeated everywhere.

Another observation regarding the results of the comprehension unit volume metrics is
that the number of distinct methods (Nm) invoked in the traces of all four systems is
significantly smaller than the number of comprehension units contained in these traces
even after applying two matching criteria (i.e., cr and set). This means that many subtrees
still exhibit a certain degree of similarity. If each routine has generated the same sequence
of calls whenever it is called then the number of comprehension units will be equal to the
number of distinct routines invoked in the trace, since a comprehension unit consists of a
distinct subtree of a trace. To further reduce the number of comprehension units, we need
to investigate additional matching criteria by varying the ‘sim’ function. Based on the
results of the component volume metrics shown in the previous section, that clearly show

 18

that utility routines are the reason behind having large traces, it may be useful to compare
subtrees by ignoring the utility components they contain when computing the number
comprehension units. In our previous study on exploring the concept of utilities, we have
concluded that utilities are the components that are called from different places within a
system, as such, they tend to appear just about anywhere in a trace [23], depending on
whether the calling routine needs to perform utility work or not. As a result, many
sequences of calls triggered by the same routine may differ simply due to the presence or
absence of utility routines.

Finally, it should be noted that using a variety of matching criteria comes with a very
challenging set of research questions. One of the issues is that it is difficult to predict how
these criteria should be combined. Another problem is that it is not really clear how various
combinations can help with specific maintenance tasks such as debugging, adding a new
feature, etc.

Patterns Related Metrics

We noticed that many of the comprehension units of the analyzed traces are repeated
non-contiguously, which qualify them as trace patterns. The average number of patterns
using both matching criteria (i.e., cr and set) is very small compared to the number of
comprehension units. For example, the use of the “ignore number of repetitions” criterion
resulted in 177 patterns on average for Checkstyle, which represents 15% of the number of
comprehension units. Toad traces contain on average 204 (25% of the number of
comprehension units), Weka traces contain on average 52 patterns (26% of the number of
comprehension units), and finally JHotDraw traces contain on average 269 patterns (22%
of the number of comprehension units). This means that this technique alone can be
ineffective for rapid understanding of the content of a trace, since a large number of
comprehension units (which do not belong to any patterns) are left to be explored. For
example, knowing that only 15% of Checkstyle’s comprehension units are patterns means
that the analyst will still need to deal with the remaining 85% comprehension units. In this
context, an effective trace analysis tool must rely on trace abstraction strategies other than
pattern detection techniques. As discussed earlier, initially removing utilities may be a
good strategy to enable further grouping of similar sequences of calls into patterns. We,
therefore, suggest that a combination of utility removal techniques and pattern detection
would be needed for effective abstraction of trace content.

5. Conclusion and Future Direction

In this paper, we developed a family of complexity metrics for the analysis of large
execution traces of method calls. The metrics fall into four categories: 1) those that
measure the number, or volume, of calls, taking into account various abstractions such as
removing duplicates and sequence information; 2) those that measure the number of
various types of components a program run interacted with; 3) those that measure
comprehension units, which are distinct subtrees in the call graph, and 4) those related to
trace patterns, which are comprehension units duplicates of which appear in non-
contiguous parts of a trace.

Tools for program comprehension, as well as for other maintenance tasks, can use the
metrics in an automatic or semi-automatic way to:

 19

• Guide the generation of traces that have a desired level of complexity – if the metrics
show a trace is too complex or too simple, the system’s input can be adjusted.

• Measure the complexity of various parts of a trace in order to guide the user to examine
the most complex parts of a trace.

• Enable decisions about at what level of abstraction various parts of a trace should be
displayed, as well as what should be hidden and what should be shown.

• Help estimate the complexity of a maintenance task, under the assumption that more
complex traces will require longer to understand and possibly longer to fix correctly.

In addition, researchers and tool builders can use the metrics to investigate further
techniques for reducing the complexity of traces and for understanding the nature of
software in general.

To demonstrate the usefulness of the metrics, we presented case studies where we
analysed traces of four different Java systems. By usefulness, we mean measuring various
aspects of a trace in such a way that the resulting measurements can serve the above
objectives. A further analysis of usefulness would be to observe and measure their use by
software engineers in practice; we leave this to future work.

One of our metrics, Rcr, shows that when we remove contiguous repetitions, the size of
the trace is reduced to between 5% and 46% of the original size. However, the resulting
traces continue to have thousands of calls, which makes this basic type of collapsing
necessary but not sufficient. A considerably better collapse ratio is reached (39% average
collapse ratio for Checkstyle, 3% for Toad, 2% for Weka, and 2% for JHotDraw) when
treating the called routines as a set (i.e., ignoring the repetitions and the order of calls).

In our case studies, the traces crosscut up to 30% of a system’s packages, 22% of a
system’s classes and 14% of a system’s methods for Checkstyle, Toad, and Weka from
which we generated small to medium sized traces. On the other hand, traces of JHotDraw,
which are considerably larger than traces of the other systems crosscut 65% of the number
of the system’s packages, 78% of the system’s classes, and 30% of the system’s methods.
In all examined systems there are one or two packages that are the most responsible of the
lengthy size of traces. Knowing this information will allow tools to adjust the amount of
information displayed by either hiding the invocations made to these packages or using
other visualization techniques.

In addition, the number of comprehension units, Scucr, in all studied traces is
considerably smaller than the initial size of traces, S. This strengthens the assertion that
traces should best be represented as ordered DAGs to allow tools to scale up to handle
large traces. This is consistent with the results of the study conducted by Larus et al. [24].
When we applied the set matching criterion, we obtained two different results. For
Checkstyle and Toad, the number of comprehension units Scuset is only slightly smaller
than Scucr, whereas for Weka, we observed that Scuset is 31% less than Scucr. Taking a
deeper look at the trace content of all systems, we found that unlike Checkstyle and Toad,
Weka relies on a very small set of methods that belong to the core utility package to do
most of the work related to data processing; this is an important aspect of Weka since it is a
machine learning system. As a result, these methods appear almost everywhere in the
traces, which explains why when treating the called routines as a set, we obtain reduction in
the number of comprehension units.

 20

Our case studies also showed that the number of comprehension units in our traces,
using both matching criteria, Scucr and Scuset, is higher than the number of distinct methods
invoked, Nm. This means that there are still opportunities for further reduction of the size
of the trace using other matching criteria. This degree of variability can be measured using
Nm/Scu, which converges to zero if the variability is high. It equals one if there is no
variability, i.e., Nm = Scu.

Another finding of this paper is that the number of patterns in all traces can be
relatively high (some traces have over 250 patterns). In addition, the number of patterns is
significantly smaller than the number of comprehension units using both matching criteria,
i.e., cr and sim. This is a reason of concern for tools that rely exclusively on pattern
detection algorithms since an analyst will need to understand the comprehension units that
do not belong to any pattern. Clearly, pattern detection techniques alone are not sufficient
for reducing the size of traces, unless advanced matching criteria are used. In this paper, we
proposed using the removal of utilities as a matching criterion to further group similar calls
into patterns. As future work, we will implement the above metrics in our trace analysis
tool, called SEAT (Software Exploration and Analysis Tool) [22] and investigate how they
can be used by software engineers to effectively explore the content of large traces. We
will also investigate new trace abstraction techniques, especially the ones based on
removing utility components as discussed in the paper.

6. References

[1]. Hamou-Lhadj and T. Lethbridge, “A Survey of Trace Exploration Tools and
Techniques”, In Proc. of the 14th IBM Conference of the Centre for Advanced Studies
on Collaborative Research, pp. 42-55, 2004.

[2]. T. Systä, “Dynamic Reverse Engineering of Java Software”, In Proc. of the ECOOP
Workshop on Experiences in Object-Oriented Reengineering, pp. 174-175, 1999.

[3]. D. Jerding, and S. Rugaber, "Using Visualization for Architecture Localization and
Extraction", In Proc. of the 4th Working Conference on Reverse Engineering, pp.
219-234, 1997.

[4]. D. Jerding, J. Stasko, and T. Ball, “Visualizing Interactions in Program Executions”,
In Proc. of the 19th International Conference on Software Engineering, pp. 360-370,
1997.

[5]. W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, J. Yang, “Visualizing
the Execution of Java Programs”, In Proc. of the International Seminar on Software
Visualization, pp. 151-162, 2002.

[6]. T. Richner, and S. Ducasse, “Using Dynamic Information for the Iterative Recovery
of Collaborations and Roles”, In Proc. of the 18th International Conference on
Software Maintenance, pp. 34-43, 2002.

[7]. J. P. Downey, R. Sethi and R.E. Tarjan, “Variations on the Common Subexpression
Problem”, Journal of the ACM, 27(4), pp. 758-771, 1980.

[8]. P. Flajolet, P. Sipala, and J-M. Steyaert, “Analytic Variations on the Common
Subexpression Problem”, In Proc. of the 7th International Colloquium on Automata,
Languages and Programming, pp. 220-234, 1990.

 21

[9]. S. P. Reiss, M. Renieris, “Encoding program executions”, In Proc. of the 23rd
International Conference on Software Engineering, pp. 221-230, 2001.

[10]. S. Ducasse, M. Lanza, R. Bertuli, "High-level Polymetrics Views of Condensed Run-
time Information", In Proc. of the 8th European Conference on Software
Maintenance and Reengineering, pp. 309 – 318, 2004.

[11]. M. Lanza and S. Ducasse, "Polymetric Views — A Lightweight Visual Approach to
Reverse Engineering", IEEE Transactions on Software Engineering, 29(9), pp. 782–
795, 2003.

[12]. O. Greevy, S. Ducasse "Analyzing Software Evolution through Feature Views",
Journal of Software Maintenance and Evolution: Research and Practice, 18(6), pp.
425-456, 2007.

[13]. B. Dufour, K. Driesen, L. Hendren and C. Verbrugge, "Dynamic Metrics for Java", In
Proc. of the 18th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 149 – 168, 2003.

[14]. V. Basili, G. Caldiera, and H.D. Rombach, “Goal Question Metric Approach”,
Encyclopedia of Software Engineering, John Wiley & Sons, Inc., pp. 528-532, 1994.

[15]. T. Eisenbarth, R. Koschke, and D. Simon, “Locating Features in Source Code”, IEEE
Transactions on Software Engineering, 29(3), pp. 210 – 224, 2003.

[16]. M. L. Hutcheson, "Software Testing Fundamentals: Methods and Metrics", Wiley,
2003.

[17]. W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman, “Execution Patterns in Object-
Oriented Visualization”, In Proc. of the 4th USENIX Conference on Object-Oriented
Technologies and Systems, pp. 219-234, 1998.

[18]. A. Hamou-Lhadj, and T. Lethbridge, “An Efficient Algorithm for Detecting Patterns
in Traces of Procedure Calls”, In Proc. of the 1st ICSE International Workshop on
Dynamic Analysis, pp. 33-36, 2003.

[19]. T. Systä, K. Koskimies, and H. Müller, “Shimba – An Environment for Reverse
Engineering Java Software Systems”, Software Practice & Experience, 31 (4), pp.
371-394, 2001.

[20]. H. B. Lee, B. G. Zorn, “BIT: A tool for Instrumenting Java Bytecodes”, In Proc. of
the USENIX Symposium on Internet Technologies and Systems, pp. 73-82, 1997.

[21]. N. Wilde , M. Buckellew, H. Page , V. Rajlich , L. Pounds, “A comparison of
methods for locating features in legacy software”, Journal of Systems and Software,
65(2), pp.105-114, 2003.

[22]. A. Hamou-Lhadj, and T. Lethbridge, and L. Fu, “SEAT: A Usable Trace Analysis
Tool”, In Proc. of the International Workshop on Program Comprehension, pp. 157-
160, 2005.

[23]. A. Hamou-Lhadj, and T. Lethbridge, "Summarizing the Content of Large Traces to
Facilitate the Understanding of the Behaviour of a Software System", In Proc. of the
International Conference on Program Comprehension, pp. 181-190, 2006.

 22

[24]. J. R. Larus, “Whole program paths”, In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 259-269, 1999.

 23

Appendix A. Detailed Results of Applying the Metrics to Traces of the
Target Systems
Table A1. CheckStyle Statistics

Checkst
yle Call Volume Metrics Component Volume Metrics Comprehension Units and Patterns Metrics

Traces S Scr Sset Rcr Rset Np Rpsp Nc Rcsc Nm Rmsm Scucr Scuset Rgtcr Rgtset Npttcr Npttset Rpcu Rpcuset

C-T1 84040 37957 31906 45% 38% 14 33% 114 17% 590 10% 1261 1254 3% 4% 221 219 18% 17%

C-T2 81052 35969 30122 44% 37% 13 30% 109 16% 540 9% 1106 1103 3% 4% 176 174 16% 16%

C-T3 81639 36123 30460 44% 37% 13 30% 110 16% 561 10% 1153 1149 3% 4% 186 183 16% 16%

C-T4 84299 37062 31031 44% 37% 14 33% 117 17% 590 10% 1191 1182 3% 4% 194 188 16% 16%

C-T5 80393 35455 29813 44% 37% 13 30% 106 16% 547 9% 1098 1095 3% 4% 177 176 16% 16%

C-T6 81550 36087 30302 44% 37% 14 33% 113 17% 562 10% 1125 1121 3% 4% 178 178 16% 16%

C-T7 89085 41414 34393 46% 39% 14 33% 148 22% 700 12% 1455 1448 4% 4% 240 233 16% 16%

C-T8 83106 37163 31222 45% 38% 14 33% 114 17% 586 10% 1234 1229 3% 4% 206 203 17% 17%

C-T9 1013 618 488 61% 48% 9 21% 70 10% 276 5% 306 306 50% 63% 19 15 6% 5%

C-T10 79969 35083 29634 44% 37% 13 30% 105 16% 521 9% 1071 1068 3% 4% 168 168 16% 16%

Max 89085 41414 34393 61% 48% 14 33% 148 22% 700 12% 1455 1448 50% 63% 240 233 18% 17%

Min 1013 618 488 44% 37% 9 21% 70 10% 276 5% 306 306 3% 4% 19 15 6% 5%

Average 74615 33293 27749 46% 39% 13 31% 111 16% 550 9% 1103 1099 8% 10% 177 174 15% 15%

Table A2. Toad Statistics

Toad Call Volume Metrics Component Volume Metrics Comprehension Units and Patterns Metrics

Traces S Scr Sset Rcr Rset Np Rpsp Nc Rcsc Nm Rmsm Scucr Scuset Rgtcr Rgtset Npttcr Npttset Rpcu Rpcuset

T-T1 219507 10409 5724 5% 3% 20 29% 172 19% 615 12% 827 820 8% 14% 199 162 24% 20%

T-T2 218867 10141 5597 5% 3% 20 29% 169 19% 592 12% 794 787 8% 14% 193 153 24% 19%

T-T3 226026 13132 7142 6% 3% 20 29% 191 22% 704 14% 971 956 7% 13% 246 199 25% 21%

T-T4 220438 10811 5972 5% 3% 20 29% 177 20% 626 12% 835 828 8% 14% 206 170 25% 21%

T-T5 218681 10002 5547 5% 3% 20 29% 164 19% 558 11% 754 746 8% 13% 184 155 24% 21%

T-T6 219171 10394 5724 5% 3% 20 29% 170 19% 605 12% 816 809 8% 14% 204 168 25% 21%

T-T7 220170 10450 5797 5% 3% 20 29% 165 19% 568 11% 782 768 7% 13% 197 159 25% 21%

Max 226026 13132 7142 6% 3% 20 29% 191 22% 704 14% 971 956 8% 14% 246 199 25% 21%

Min 218681 10002 5547 5% 3% 20 29% 164 19% 558 11% 754 746 7% 13% 184 153 24% 19%

Average 220409 10763 5929 5% 3% 20 29% 173 20% 610 12% 826 816 8% 14% 204 167 25% 20%

Table A3. Weka Statistics

Weka Call Volume Metrics Component Volume Metrics Comprehension Units and Patterns Metrics

Trace S Scr Sset Rcr Rset Np Rpsp Nc Rcsc Nm Rmsm Scucr Scuset Rgtcr Rgtset Npttcr Npttset Rpcu Rpcuset

W-T1 193165 4081 1382 2% 1% 2 20% 10 7% 75 5% 89 89 2% 6% 23 21 26% 24%

W-T2 66645 6747 143 10% 0% 3 30% 10 7% 64 4% 66 66 1% 46% 10 7 15% 11%

W-T3 39049 7760 590 20% 2% 2 20% 12 8% 114 7% 177 121 2% 21% 28 23 16% 19%

W-T4 28139 4914 840 17% 3% 2 20% 10 7% 116 7% 159 125 4% 15% 41 30 26% 24%

W-T5 157382 26714 3116 17% 2% 3 30% 19 13% 188 11% 293 231 1% 7% 81 69 28% 30%

W-T6 97413 25722 12206 26% 13% 3 30% 23 16% 181 11% 340 272 1% 2% 97 75 29% 28%

W-T7 283980 21524 1348 8% 0% 3 30% 15 10% 131 8% 168 153 1% 11% 49 32 29% 21%

W-T8 37095 6700 525 18% 1% 3 30% 13 9% 114 7% 141 120 2% 23% 37 23 26% 19%

W-T9 12395 637 333 5% 3% 2 20% 10 7% 93 6% 96 95 15% 29% 21 17 22% 18%

W-T10 43681 6427 480 15% 1% 2 20% 10 7% 97 6% 118 103 2% 21% 31 23 26% 22%

 24

W-T11 403704 34447 1161 9% 0% 4 40% 16 11% 147 9% 220 171 1% 15% 55 32 25% 19%

W-T12 378344 54871 9678 15% 3% 5 50% 26 18% 194 12% 431 272 1% 3% 151 87 35% 32%

W-T13 156814 9368 386 6% 0% 2 20% 9 6% 72 4% 123 91 1% 24% 46 14 37% 15%

Max 403704 54871 12206 26% 13% 5 50% 26 18% 194 12% 431 272 15% 46% 151 87 37% 32%

Min 12395 637 143 2% 0% 2 20% 9 6% 64 4% 66 66 1% 2% 10 7 15% 11%

Average 145985 16147 2476 13% 2% 3 28% 14 10% 122 7% 186 147 3% 17% 52 35 26% 22%

Table A4. JHotDraw Statistics

JHotDraw Call Volume Metrics Component Volume Metrics Comprehension Units and Patterns Metrics
Trace S Scr Sset Rcr Rset Np Rpsp Nc Rcsc Nm Rmsm Scucr Scuset Rgtcr Rgtset Npttcr Npttset Rpcu Rpcuset

J-T1 693439 57794 7544 8% 1% 7 64% 118 73% 488 25% 1092 1035 2% 14% 235 141 22% 14%

J-T2 694912 38987 5517 6% 1% 7 64% 119 74% 506 26% 920 915 2% 17% 190 131 21% 14%

J-T3 692101 66210 16925 10% 2% 7 64% 127 79% 647 34% 1640 1548 2% 9% 376 263 23% 17%

J-T4 694419 53395 16634 8% 2% 7 64% 129 80% 659 34% 1416 1346 3% 8% 327 240 23% 18%

J-T5 605000 25451 8407 4% 1% 7 64% 134 83% 561 29% 973 933 4% 11% 217 159 22% 17%

Max 694912 66210 16925 10% 2% 7 64% 134 83% 659 34% 1640 1548 4% 17% 376 263 23% 18%

Min 605000 25451 5517 4% 1% 7 64% 118 73% 488 25% 920 915 2% 8% 190 131 21% 14%

Average 675974 48367 11005 7% 2% 7 64% 125 78% 572 30% 1208 1155 3% 12% 269 187 22% 16%

Appendix B. Analysis of the Package Frequency in all Traces of the

Target Systems

Table B1. The contribution of Checkstyle packages to the size of traces

Packages Number of invocations Percentage
com.puppycrawl.tools.checkstyle.checks.duplicates 11 0.00%

com.puppycrawl.tools.checkstyle.checks.metrics 32 0.01%

com.puppycrawl.tools.checkstyle.checks.javadoc 49 0.01%

com.puppycrawl.tools.checkstyle.checks.blocks 38 0.01%

com.puppycrawl.tools.checkstyle.checks.design 89 0.03%

com.puppycrawl.tools.checkstyle.checks.imports 90 0.03%

com.puppycrawl.tools.checkstyle.checks.whitespace 99 0.03%

com.puppycrawl.tools.checkstyle.checks.sizes 122 0.04%

com.puppycrawl.tools.checkstyle.checks 175 0.05%

Org.apache.commons.logging 325 0.10%

com.puppycrawl.tools.checkstyle.checks.coding 549 0.16%

Org.apache.commons.cli 640 0.19%

Org.apache.commons.beanutils.converters 941 0.28%

Org.apache.commons.logging.impl 1236 0.37%

Org.apache.commons.collections 1779 0.53%

Org.apache.regexp 3014 0.91%

Org.apache.commons.beanutils 4420 1.33%

antlr.collections.impl 4536 1.36%

com.puppycrawl.tools.checkstyle 6408 1.92%

com.puppycrawl.tools.checkstyle.grammars 11430 3.43%

com.puppycrawl.tools.checkstyle.api 19087 5.73%

Antlr 277861 83.46%

Total 332931 100%

 25

Table B2. The contribution of Toad packages to the size of traces

Packages Number of invocations Percentage
com.ibm.toad.jan.construction.builders.ehgbuilder 70 0.09%

com.ibm.toad.jan.lib 308 0.41%

com.ibm.toad.analyzer 536 0.71%

com.ibm.toad.jan.construction.builders.rgimpl 1061 1.41%

com.ibm.toad.cfparse.utils 1099 1.46%

com.ibm.toad.jan.lib.cgutils 1239 1.64%

com.ibm.toad.jan.lib.rgutils 1274 1.69%

com.ibm.toad.jan.jbc.utils 1309 1.74%

com.ibm.toad.jan.construction.builders.cgbuilder 1309 1.74%

com.ibm.toad.jan.construction.builders.cgbuilder.cgimpl 1333 1.77%

com.ibm.toad.jan.construction.builders.javainfoimpl 1386 1.84%

com.ibm.toad.jan.construction.builders.hgimpl 1383 1.84%

com.ibm.toad.jan.construction.builders 1589 2.11%

com.ibm.toad.jan.construction 1712 2.27%

com.ibm.toad.cfparse.attributes 2303 3.06%

com.ibm.toad.jan.lib.hgutils 2650 3.52%

com.ibm.toad.jan.coreapi 2915 3.87%

com.ibm.toad.utils 22816 30.28%

com.ibm.toad.cfparse 25501 33.85%

com.ibm.toad.jan.jbc 3546 4.71%

Total 75339 100%

Table B3. The contribution of Weka packages to the size of traces

Packages Number of invocations Percentage
weka.clusterers 463 0.22%

weka.estimators 1101 0.52%

weka.associations 1605 0.76%

weka.filters 3014 1.44%

weka.classifiers 6380 3.04%

weka.classifiers.j48 7256 3.46%

weka.classifiers.m5 8612 4.10%

weka.core 181481 86.46%

Total 209912 100%

Table B4. The contribution of JHotDraw packages to the size of traces

Packages Number of invocations Percentage
CH.ifa.draw.standard 167594 68%

CH.ifa.draw.util 29092 12%

CH.ifa.draw.figures 25001 10%

CH.ifa.draw.application 14198 6%

CH.ifa.draw.framework 6977 3%

CH.ifa.draw.contrib 2660 1%

CH.ifa.draw.samples.javadraw 2064 1%

Total 247586 100%

 26

Figure 1. The graph representation of a trace is a better way to spot the

number of distinct subtrees it contains

�

��

�

��

�

�

Figure 2. The two subtrees rooted at ‘B’ can be considered similar if the

number of repetitions of ‘C’ is ignored

 A

B

C

D
E

F

B

C
D

C D F

B

A

E

