Challenges and Requirements for an Effective Trace Exploration Tool

Abdelwahab Hamou-Lhadj
University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada
ahamou@site.uottawa.ca

Abstract

Building  efficient tools for the analysis and
exploration of large execution traces can be a very
challenging task. Our experience with building a tool
called SEAT (Software Exploration and Analysis Tool)
shows that there is a need to address several key research
questions in order to overcome these challenges. SEAT is
intended to integrate several filtering techniques to tackle
the size explosion problem that make traces hard to
understand. However, the incorporation of these
techniques into one efficient tool raises many issues. This
paper focuses on these issues and underlies future
research directions to advance the area of dynamic
analysis of large software systems.

1. Introduction

Dynamic analysis is crucial for understanding the
behaviour of a large system. Understanding an object-
oriented system, for example, can be very hard if one
relies only on the source code and static analysis.
Polymorphism and dynamic binding, in particular, tend to
obscure the relationships between the system artefacts.

Dynamic information is typically represented using
execution traces. Although, there are different kinds of
traces, this paper focuses on traces of routine (or method)
calls. We use the term routine to refer to a function, a
procedure, or a method in a class.

Most of the existing tools for analysing large execution
traces of routine calls [4, 5, 13, 14, 20, 21] rely on
specific visualization schemes to overcome the size
explosion problem. They implement a set of techniques to
facilitate the exploration of the trace content. These
techniques include searching for specific components;
hiding some interactions and so on. However, it is totally
up to the user to combine them to get the desired

* This research is sponsored by NSERC, NCIT and QNX Software Systems

Timothy C. Lethbridge
University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada
tel@site.uottawa.ca

Lianjiang Fu
University of Ottawa
800 King Edward Avenue
Ottawa, Ontario, Canada
lfu@site.uottawa.ca

understanding of the behaviour that is represented by the
trace. We call these capabilities: Trace Exploration
Techniques.

Our experience with analysing traces shows that they
can contain thousands of calls even if they are generated
from a small system. Such traces require advanced
mechanisms for understanding them besides simple
exploration.

Consider, for example, asking a designer to draw a
sequence diagram that corresponds to a particular
scenario and to compare the result with an execution trace
that is generated from the system that implements this
scenario. We will almost always see a surprising
difference between the two representations in terms of the
number of interactions that appear.

The research we are currently conducting at the
University of Ottawa, with the collaboration of QNX
Software Systems, is based on a different approach than
simple trace exploration. We are more interested in
discovering what can be removed from an execution trace
to extract moderately sized high-level representations
close to the sequence diagrams a designer would create.
We call this process trace compression. The reader should
not, however, confuse this notion of compression with
standard data compression algorithms: The latter are
purely concerned with saving space, and produce output
that is unintelligible until uncompressed. Trace
compression, while coincidentally saving space, has the
goal of improving the intelligibility of its output.

In our previous work, we have presented several
techniques [9, 10] that aim at achieving trace
compression. However, we only experimented with them
to assess the quantitative gain they attain.

Currently, we are working on assessing the qualitative
aspects of these techniques. We would like to answer the
following questions:



= Which compression techniques would be useful to
software engineers to gain a rapid understanding of
any given scenario?

= Which compression techniques can extract the most
accurate high-level representations?

= If more than one technique is needed, how can we
combine them to best achieve the desired goal?

For this purpose, we are prototyping a tool called
SEAT (Software Exploration and Analysis Tool) that will
be used for the experiments. However, during the analysis
and design of SEAT, we have uncovered a number of
requirements that raise very interesting research
challenges.

This paper presents these challenges that need to be
addressed in order to build an effective tool for dynamic
analysis of large software systems.

The rest of this paper is organized as follows: We
introduce SEAT in Section 2. In Section 3, we describe in
more detail the features we would like to integrate in
SEAT and the challenges that are derived from them.
Finally, we present our conclusions and future directions.

2. Introduction to SEAT

SEAT is a prototype tool for exploring large execution
traces. Figure 1 shows the overall flow of information
using SEAT. The tool takes traces of routine calls
represented in CTF (Compact Trace Format) [11] as an
input and displays them using visualization techniques in
a tree-like control window. To help the user extract useful
information, SEAT implements several trace compression
techniques. Some of these require the presence of the
source code.

Traces of
Routine Calls -
(CTF)

Instrumented
Source Code

Compression

Technigues Source Code

Visualization
Techniques

Figure 1. SEAT Data Flow

The dashed lines refer to one possible way for
generating traces of routine calls, which is based on
source code instrumentation. In practice, there are other
techniques that can achieve the same goal. For example,

one can instrument the execution environment in which
the system runs (e.g. the Java Virtual Machine). This
technique has the advantage of not modifying the source
code. It is also possible to run the system under the
control of a debugger, in which case breakpoints are set at
strategic locations to generate events of interest. This last
technique has shown to considerably slow down the
execution of the system.

A snapshot of SEAT’s graphical user interface is
shown in Figure 2; it consists of three views: the
exploration view; the trace view and the source code
view. The interaction between these views is based on the
twin-hierarchy user interface technique that was used in a
tool called TkSee [26]. Figure 3 illustrates these
interactions.

£ Trace Analyzer - Attribute.java - Ecipse Platform i [ 5]
Fle Edt Souce Refactor Vavigate Serch Proect Run CompressTrace SeachTrace MiewTrace Window Hep

Is-onslals-%-%- s ecBRkesa|ca-o-[E8E

5| ) Trece Exphraton - x| x\

(3| Ettesteaselanpleyeh.cf * my_nominal values.addElement ["fizst"); <br> B
’— i\ demolwekaliraced.ctf * my_nominal values.addElement ("second”) ; <hr>

% * ny_nowinal_values.addE Lement [ "thir <hr><br: 5

* // Coeate nominal attribuse "position” chrs
 hetribute position = new ttribuse(Mposition”, my nowinal values) ;s
«

Exploration

Lo dbry
* </code><p>

i Eibe Frank (eibefies.vaikato.ac.nz)
§Revision: 1.5.2.1 §

Ts Tree View Y M
& man
X <> Trace
£ evaliatebiods]

setOption3]
§<m> /** Constant set for numeric attributes. */

& 1] numdributes public final static int NUYERIC = 0;
K setClassindsx
B [PL] nundtrbutes

2]

&
public class Atribute implements Copyable, Serializable

- /%% Constant set for nominal attributes. /
o public final static int NOWINAL = 1;
& P1] umtrbutes
it

[PE] rumlnstances
<init>

Source Code

/*+ Congtant set fcr mmeric attributes. #/
public final static int NUHERIC = O:

7S] nunlnstances
1PS] insance
1P1s] aid /** Constant set fcr nomiral attributes. ¥/

{Pé]]w;adﬂte public final static int NOHINAL = 1;
P19]

[Fe] inckance
[p19] add /%% (onstant set fcr nomiral attributes. */
[Fe] inckance public final static int NGHINAL = 1;

[P1] add

[Pe] instance &
-0 [p19] afd & ﬂ’“ R L e s e e ;|J

wrtabe  fmert [rex

Figure 2. SEAT GUI

The analyst uses the exploration view to start a new
exploration or navigate through the previous ones. Each
exploration consists of analysing a particular trace which
will be viewed as a tree structure using the trace view. At
any time, the analyst can map the trace components to the
source code (if it is available) to get more details

<<view>>
Exploration
updates
<<view>> updates <<view>>
Trace SourceCode

Figure 3. Interaction between SEAT views



Using SEAT, an analyst can compress the traces to the
level where he or she can understand important aspects of
their structure. This is done by applying several
compression algorithms such as repetition removal,
ignoring order of calls etc. The next section explains
SEAT’s actual and intended capabilities, along with the
challenges in implementing them.

3. Challenges in building SEAT

In this section, we present the features that need to be
integrated with SEAT and the challenges in building them
with respect to three mains aspects, which we list here and
explain in more details in what follows:

= Integrating different compression techniques
= Input/output mechanisms

= User interface design and usability issues

3.1 Compression Techniques

The aim of the compression techniques is to hide
implementation details to reveal the main behavioural
properties of the system. There are basically three types of
compression techniques. Some of them are already
implemented in SEAT and others represent significant
challenges. There will be the ones that we will focus on in
this subsection.

= Techniques based on pattern matching

= Techniques based on automatic detection of utility
routines

= Techniques based on automatic detection of abstract
operations

Pattern matching:

Pattern matching techniques are probably the most
common techniques for overcoming the overwhelming
size of traces. The idea consists of grouping similar
sequences of events in the form of execution patterns
(also called behavioural patterns). To compute similarity,
several matching criteria have been used such as ignoring
the order of calls, ignoring the number of repetitions,
comparing two sequences of calls up to a certain depth
and so on. A more detailed list of pattern matching criteria
is described by De Pauw et al. in [5]. Implementing these
criteria should not be an issue and most of them are
supported by SEAT.

However, these techniques can only reduce the size of
a trace if its subtrees satisfy the given matching criteria.
This excludes subtrees that still exhibit signs of similarity
but they do not fall into any matching scheme. For this

purpose, we decided to augment this concept by
integrating similarity metrics. Examples of these metrics
include edit distance [22] and MoJo [24]. In fact, we want
the tool to be flexible enough to be able to handle any
metric. However, this new feature represents several
challenges. One of the main challenges is to find the
appropriate threshold for similarity.

To help the engineers to find an adequate threshold, an
effective tool should be able to compute in advance an
interval of which one bound indicates high similarity or
even identity, while the other bound indicates very low
similarity or complete dissimilarity. To illustrate this
concept, let consider the following scenario: the user
selects a subtree (e.g. by selecting its root) and requests
from the system to show similar subtrees according to a
chosen similarity metric. The result will be an interval,
displayed in a usable way to the user, which he or she can
dynamically adjust until the similarity value results in an
appropriate amount of trace detail being displayed.

However, this technique may require extensive
computation, since the space of the subtrees that need to
be compared is very large. This problem gets worse if one
considers the amount of disk access it might involve to
retrieve parts of the trace.

One possible solution is to reduce the search space by
considering only the subtrees that are initiated by the
same routine. The motivation behind this is based on the
observation that patterns are generally used to discover
high-level domain concepts [13]. These concepts are
usually triggered by the same routine. The tree structure
that is derived from this routine may differ due to
exceptional behaviours that occur during the execution of
the scenario. However, this does not solve completely the
problem and further research is needed.

Detecting utilities:

Many software systems use utilities that help the
implementation of the system’s functionality. A utility
could be a routine, a class or even a subsystem. In a recent
study conducted by Zayour [23] involving a large real
world procedural telecommunication system, the author
showed that not all of the procedures have the same
degree of importance. Some procedures can be simple
utilities (e.g. sorting an array) and removing them would
not in most cases affect the comprehension process.

However, as the system documentation becomes
obsolete, utilities go undetected and become mixed with
the main system functionality. Therefore, there is a need
to automatically detect them. As we are not aware of any
tool that incorporates this capability, we started working
on a metric for detecting utilities. This metric is based on



statistical data that needs to be extracted using the source
code as well the execution traces. An example of such
information includes routine call fan-in and fan-out,
extracted from a static call graph. Other properties can be
extracted from traces; examples include the number of
occurrences of the routine in the trace, its position
(whether it is a leaf or not), and the number of different
parents a routine has (its dynamic fan-in). The rationale
behind this is that something that is called from a lot of
places is likely to be a utility, whereas something that
itself makes many calls to other components is likely to be
too complex and highly coupled to be considered a utility

Combining static and dynamic information is probably
the best way to detect utilities. However, the extraction of
such properties can be very expensive and sometimes
impossible, which poses a real challenge for
implementing an efficient algorithm for detecting utilities.
Indeed, building an accurate static call graph for object-
oriented systems is a hard task [8] due to the need for
static resolution of polymorphic calls or the use of
function pointers. On the other hand, relying only on
dynamic information can be insufficient due to its
incompleteness.

Detecting abstract operations:

One of the main activities in reverse engineering
consists of extracting high-level views by abstracting out
low-level implementation details. SEAT adheres to this
principle by working towards extracting sequence
diagrams (or other similar representations) from execution
traces.

One of the key techniques that we use for this purpose
is the automatic detection of abstract operations. We
define an abstract operation as an operation that can be
implemented in different ways depending on the context
where it is defined. Polymorphism is a typical way for
implementing abstract operations. Given the possibility to
detect abstract operations, the analyst can reduce the size
of the trace by hiding its implementation details. In [10],
we showed that this technique can result in a significant
reduction of the trace size.

However, if the concept of generalization is used as an
implementation convenience rather than for representing
abstract operations, which tends to be very common in
practice, this can affect tremendously the results of the
analysis. In addition to this, we want to make the
technique applicable to procedural software systems as
well. For these reasons, we started investigating other
alternatives. By exploring the execution traces of several
systems, we noticed that the routines that implement
abstract operations tend to have similar names. For
example, the following three routines are found in traces

of a drawing editor, called XFig (a procedural system
under UNIX): init spline drawing, init ellipse drawing
and init circle drawing. According to their names, it is
obvious that these routines are initializing drawing
parameters for each of the mentioned shapes. The
information about the fact that the “init” operation is
applied to three different shapes can be very valuable to
the user who is only concerned with what the system is
doing instead if how it does it. Therefore, we decided to
consider using naming conventions in addition to
polymorphism (where it applies) to automatic detection of
potential abstract operations

However, naming conventions come with a set of
challenges. Sneed showed that software engineers do not
necessary follow the naming conventions [18]. On the
other hand some other researchers who have used naming
conventions for other types of research such as recovering
the system architecture using file names showed very
promising results [1, 2, 3]. An efficient tool should
consider these different parameters and assess the validity
of naming conventions. In [2], Anquetil and Lethbridge
presented a framework for assessing the relevance of a
naming convention that can be used for this purpose.

3.2 SEAT Input/Output Mechanisms

Tools need to be able to efficiently input and output
data in order to be adopted. SEAT uses a metamodel
called CTF [11] for representing traces. The key idea
behind CTF is that any rooted ordered labelled tree can be
transformed into an acyclic ordered directed graph by
representing identical subtrees only once [11], a technique
that was first introduced by Downey et al. in [6] to
develop efficient tools that work on tree structures. An
efficient algorithm that does the transformation is
presented in [7]. Our preliminary results show that this
technique can achieve very high compression ratios [9].
However, when using CTF we encountered some
interesting issues which we will discuss next.

Saving the data and the transformation rules:

We refer to data transformation as the process of
taking input data in a certain format, applying to it a set of
transformation rules and outputting a new set of data in
the same format but with a different content. In the
context of trace compression, the transformation rules are
the compression techniques. Although, CTF is capable of
supporting the trace that results after an original trace has
undergone several compression schemes, it is not
designed to save the transformation rules. That is, any tool
that reads CTF can read the resulting trace but cannot
retrieve the original. This is because the generic form of
CTF places an obstacle to representing what is specific to



SEAT. This problem leads to interesting research
questions with regards to metamodelling and exchange
formats, which consist of the following:

= How can we make an exchange format general
enough for the purpose it is designed for and specific
enough to carry specific information?

= A metamodel represents the structure of the data that
is manipulated; if this structure turns out to be
dynamic, how can we represent it?

One solution to this problem is to agree on a set of
operations that can be performed on a trace and design a
more general metamodel for representing all the needed
data. Assuming that the agreement takes place, this
approach has the obvious drawback that new techniques
will always require reviewing the metamodel.

Another approach is to have two metamodels. The first
one will represent general information about traces of
routine calls, which will be CTF as it is now. The second
will be specific to SEAT and will be used to save the
transformation rules. The disadvantage of this approach is
that it prevents the tools from further integration and
sharing features.

Supporting a variety of sources and destinations:

Considering the possible environments in which the
user may use a reverse engineering tool, a variety of I/O
sources and destinations need to be supported besides
basic disk files. A very popular scenario is that the data
comes from a stream, such as TCP/IP connection over a
network. This allows dynamic analysis of executable
programs: The program under study transmits the stream
to the trace analysis tool, and the trace is never saved to
disk. Another possible I/O exchange is using shared
memory where the analysis tool reads data directly from
memory to which the program under study writes.
Supporting all these data sources and destinations adds a
lot of flexibility to the analysis tool and can help the tool’s
adoptability, but represents a challenge for tool builders.
In addition to this, an efficient tool should be flexible
enough to read other file formats and allow converters to
be plugged-in easily.

I/O Performance:

Performance of I/O is critical to the success of a trace
analysis tool, since user will tend to be intolerant of
systems with a poor response time. Since traces are very
large, performance will always be a concern so that ever
larger traces can be handled.

One of the performance issues relates to input and
output of trace data. Although, the CTF metamodel is

independent of any syntactic form, the tendency in the last
few years converges towards using GXL [12] as a
standard syntax for reverse engineering tools. The idea is
that if all the tools can utilize GXL as a general format for
their inputs and outputs, more interactions between them
can be achieved.

However, a general XML format, such as GXL, often
requires more processing than a tuned special format.
XML will ultimately be parsed and processed to create an
internal model. Performance of parsing XML poses an
obstacle, especially for large data set. One study related to
the performance of XML parsing showed that XML
loading is 26 times slower than flat file with delimited
format [16]. The situation is worsened with a DTD or
schema validation. Therefore, compromise between
generalization and efficiency needs to be decided.

3.3 User Interface Design Challenges

The final set of challenges we will explore relate to
how to design a usable trace analysis tool.

I/O constraints on the user interface

As discussed earlier, trace data can be formidably
large, so loading and manipulating it in memory can take
excessive time unless some careful design choices are
made.

Most user interface elements for displaying large
amounts of information build a complete representation of
the display in memory, and then make sections of it
visible as the user scrolls using the scrollbar (or pages up
and down). Standard list widgets in languages like Java
work this way. Unfortunately, for the trace browsing tools
we are creating, such a design is not workable. To start
with, there can be just too many trace nodes to quickly
create a list widget that the user can scroll. Secondly,
when the user changes the parameters of any of the
compression mechanisms discussed in Section 3.1, the
entire display will need to be re-created, despite the fact
that only a tiny fraction will be visible.

What is needed, therefore, is a new type of browsing
widget that will generate the display for only that part of
the trace that can currently be viewed. When the user
scrolls or uses page up/down keys, a new part of the
display must be quickly generated.

Our current solution in SEAT is to create a widget with
a tree—like data structure representing what is visible (i.e.
the real, not the virtual display), plus a small amount of
additional context. This structure has links to the model
data (our internal representation of CTF). When scrolling
occurs in the widget, when the user ‘opens’ a subtree, or
when parameters of the compression algorithms are



changed, some or all of this tree structure is regenerated.
The objective is to give the user the impression he or she
is navigating in a normal tree browser widget.

Because the compression techniques discussed earlier
can easily filter out many nodes or even the whole
currently-visible subtree, it is necessary to keep track of
the ‘most recent’ nodes visible to the user. The widget
also needs to support long scroll jumps (e.g. using the
scrollbar), always quickly extracting data from model.

Rendering compressed nodes

Displaying the result of applying several compression
schemes on the same subtree raises interesting usability
issues. For example, suppose the user selects a subtree
(e.g. by selecting its root) and then decides to hide the
utilities it contains, ignore the order of calls of its subtrees
and hide implementation details of its abstract operations.
An efficient tool should be able to visually render the
subtree to indicate these transformations. This typically
involves the use of color-coding techniques or icons.
However, considering the number of compression
techniques and the way they can be combined, the choice
of appropriate rendering techniques can represent a real
challenge.

Another issue related to the problem discussed above
is with regards to restoring the trace’s original state.
Imagine a user who first hides the implementation details
of all abstract operations and then requests to hide all
utilities. Some of the utilities were already hidden because
they were among the implementation details of the
abstract operations. The problem occurs when the user
decides to restore all utilities without restoring the
abstract operation details. It is obvious that some utilities
stay hidden, which might very misleading to the user.

The reader can certainly imagine several other
scenarios like this one. The overlapping nature of the
compression techniques poses a real challenge for
developing usable and efficient rendering techniques to
keep the user informed of what is happening.

We currently do not have complete solutions to this
class of problems. We will be experimenting with a
variety of alternatives using SEAT.

Integration with development environments such as
Eclipse

One factor that can significantly increase usability is
integrating the trace browsing facilities with a standard
integrated development environment. This allows
software engineers who are doing maintenance to discover
information using the trace browsing tool, and

immediately edit the code based on the information they
have found.

We have chosen to incorporate our tool into the
Eclipse environment. Eclipse is a universal platform that
can be extended by plugins [25]. It provides a framework
for UI level integration and a large number of APIs to
enable tools to work together. There has been much effort
to improve the usability and accessibility of Eclipse’s
interface, and a set of guidelines are being developed for
its developers. We discovered that, making a tool
seamlessly integrate with other components of the
platform so the user can have a common look and feel is a
demanding task. We had to call upon an Eclipse expert to
criticise our earlier UI designs; this allowed us to adjust
some of the decisions we made so our tool would feel
more Eclipse-like. There were some situations, however,
where some decisions we made to specifically help those
browsing traces, contradicted the advice we received
about Eclipse integration. One example of this was ideas
we had for setting up control panels to change the
parameters of the compression algorithms.

4. Related Work

There are several other tools that developers can use to
explore traces. These tools barely support trace
compression as described in this paper. In this section we
describe a few of these.

ISVis is a visualization tool that supports analysis of
execution traces of object-oriented systems [13, 14].
ISVis is based on the idea, also incorporated into SEAT,
that large execution traces are made of recurring patterns
and that visualizing these patterns is useful for reverse
engineering. The execution trace is visualized using two
kinds of diagrams: the information mural and message
sequence charts. The two diagrams are connected and
presented on one view called the scenario view. The
information mural uses visualization techniques to create
a miniature representation of the entire trace that can
easily show repeated sequences of events. Message
sequence charts are used to display the detailed content of
the trace.

To deal with the size explosion problem, ISVis uses an
algorithm that detects patterns of identical sequences of
calls [14]. Given a pattern, the user can search in the trace
for an exact match, an interleaved match, a contained
exact match (components in the scenario that contain the
components in the pattern) and a contained interleaved
match. The authors do not really motivate why these
criteria are useful to understanding the trace. Additionally,
the user can use wildcards to formulate more general
search queries. The tool does not provide any guidance
regarding which kinds of queries might lead to important



interactions. Another important feature of ISVis is that
trace events can be abstracted out using the containment
relationship. For example, a user can decide to hide the
classes that belong to the same subsystem and only show
the interaction between this subsystem and the other
components of the trace.

De Pauw et al. introduce a variation of UML sequence
diagrams called the execution pattern view [5]. This view
lets the user browse the program execution, which
consists mainly of traces of method calls, at various levels
of detail. To overcome the size problem, similar
sequences of events are shown as instances of the same
pattern. However, the authors introduce many useful
pattern matching criteria that can be used to decide when
two sequences of events can be considered equivalent.
Most of these criteria are supported by SEAT. These
capabilities give the users more support in browsing
traces as opposed to ISVis.

Richner and Ducasse present a tool, called
Collaboration Browser that is wused to extract
collaboration patterns from traces of method calls [17]. A
collaboration pattern consists of a repeated sequence of
method calls. The matching criteria used in their approach
are almost the same as those used by De Pauw et al. [5].
Additionally, Collaboration Browser provides a query
mechanism that allows the user to search for interesting
collaborations.

Systd presents a reverse engineering environment
based on dynamic analysis to extract state machines from
object-oriented systems [19, 20, 21]. Her approach is
based on the use of SCED [15], a software engineering
tool that permits representing execution traces in the form
of scenario diagrams — Scenario diagrams are similar in
semantics to UML sequence diagrams. SCED has also the
ability to extract state machines from scenario diagrams.
Systé deals with the size explosion problem the same way
as the other tools presented so far do, i.e. detecting
patterns of repeated sequences of events. However,
Systd’s approach considers exact matches only, which
limits her approach to small execution traces only.

DynaSee is another reverse engineering tool that
supports the analysis of traces of procedure calls of
procedural software systems [23]. Besides the ability to
detect patterns of procedure calls, the author noticed that
not all procedures are equally important to the software
engineer. Procedures at high level of the call tree are
closer to application concepts, and those at bottom are
implementation concepts. He used heuristics such as the
number of occurrences, fan-in and fan-out to design a
weighting function to rank procedure calls. Procedures
with low weight are considered utilities and can be
removed from the trace.

Some other tools such as Jinsight [4] provide many
views to simplify the analysis of execution traces of object
oriented systems. However, these tools are tuned to detect
performance problems such as memory leaks and resource
allocation. We do not think that they are useful to
program comprehension.

Conclusions and Future Directions

In this paper, we presented several challenges that we
have encountered while building a tool named SEAT
(Software Exploration and Analysis Tool). The objective
of SEAT is to help software engineers efficiently explore
large execution traces.

Unlike other tools that are based on trace exploration
techniques such as browsing the trace and searching for
particular components, SEAT is based on the idea that in
order to exhibit the main interactions that exist in the
trace, we need to investigate what can be removed from it
without affecting its overall content. We refer to such a
process as trace compression. This paper discuses the
main trace compression techniques and the challenges
they represent in integrating them into one tool.

To overcome these challenges, the following key
research questions need to be addressed:

1. The support of different similarity metrics to reduce
the trace size by grouping similar subtrees together

2. Automatic detection of utilities by combining static
and dynamic information such as static call graphs
and execution traces.

3. Detecting abstract operations using the system
naming conventions

4. Defining a metamodel to represent the data and the
transformation rules that it undergoes to promote
interoperability between tools

5. Supporting a variety of sources and destinations of
data such as TCP/IP based input/output.

6. Supporting different data formats

7. Improving input/output performance to reduce the
user response time while manipulating large traces.

8. Developing efficient rendering techniques for
visualizing the result of various transformations of
the trace components

9. Integrating SEAT with existing platforms such as
Eclipse to have a uniform look and feel of the user
interface

Some of these challenges require further research in
the area of dynamic analysis. Taken together, the above



items are both research challenges, as well as
requirements for an effective trace exploration tool.

We are currently working with QNX software
engineers to validate our techniques using SEAT as a
testbed to explore various solutions to the above
challenges. The main objective is to find answers to the
questions that were asked in the Introduction Section of
this paper.

References

[1] N. Anquetil, and T. C. Lethbridge, "Recovering
Software Architecture from the Names of Source
Files", Journal of Software Maintenance: Research
and Practice, 11, pp. 201-221.

[2] N. Anquetil, and T. C. Lethbridge, "Assessing the
Relevance of Identifier Names in a Legacy Software
System", CASCON, Toronto Canada, 1998, pp 213-
222

[3] N. Anquetil, and T. Lethbridge, "Extracting Concepts
from File Names; a New File Clustering Criterion",

International Conference on Software Engineering,
Japan, 1998, pp 84-93

[4] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J.
M. Vlissides, J. Yang, “Visualizing the Execution of
Java Programs”, Lecture Notes In Computer Science,

Revised Lectures on Software Visualization, 2001,
pp. 151-162

[5] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
“Execution Patterns in Object-Oriented
Visualization", In Proc. of the 4™ USENIX
Conference on Object-Oriented Technologies and
Systems, COOTS, Santa Fe, NM, April 1998, pp.
219-234

[6] J.P. Downey, R. Sethi and R.E. Tarjan, “Variations
on the Common Subexpression Problem”, Journal of
the ACM. 27(4), October 1980, pp. 758-771

[7]1 P. Flajolet, P. Sipala, J.—M. Steyaert, “Analytic
Variations on the Common Subexpression Problem”,
In Proc. Automata, Languages, and Programming,

volume 443 of Lecture Notes in Computer Science,
Springer-Verlag, 1990, pp. 220-234

[8] D. Grove, G. DeFouw, J. Dean, and C. Chambers,
“Call Graph Construction in Object-Oriented
Languages”, In Proc. of the 12" ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Atlanta,
Georgia, United States, 1997, pp. 108-124

[9] A. Hamou-Lhadj, T. C. Lethbridge, “Compression
Techniques to Simplify the Analysis of Large
Execution Traces”, In Proc. of the 10" International
Workshop on Program Comprehension (IWPC),
Paris, 2002, pp. 159-168

[10]A. Hamou-Lhadj, and T. C. Lethbridge, “Techniques
for Reducing the Complexity of Object-Oriented
Execution Traces”, In Proc. of the 2" Annual
“DESIGNFEST” on Visualizing Software for
Understanding and Analysis, co-located with the
19th  International  Conference on  Software
Maintenance (ISCM), Amsterdam, The Netherlands,
2003, pp. 35-40

[11]A. Hamou-Lhadj, and T. Lethbridge, “A Metamodel
for Dynamic Information Generated from Object-
Oriented Systems”, Electronic Notes in Theoretical
Computer Science, from a paper presented at Ist
International Workshop on Meta-models and
Schemas for Reverse Engineering (ATEM), co-
located with The 10™ Working Conference on
Reverse Engineering (WCRE), Victoria, Canada,
2003

[12]R. C. Holt, A. Winter, and A. Schiirr, “GXL: Toward
a Standard Exchange Format”, In Proc. of the 7"
Working Conference on Reverse Engineering
(WCRE), Brisbane, Australia, November 2000, pp.
162-171

[13]D. Jerding, and S. Rugaber, "Using Visualization for
Architecture Localization and Extraction", In Proc.
of the 4" Working Conference on Reverse
Engineering, Amsterdam, Netherlands, October
1997, pp. 219-234

[14]D. Jerding, J. Stasko, and T. Ball, “Visualizing
Interactions in Program Executions”, In Proc. of the
19" International ~ Conference on  Software
Engineering (ICSE), Boston, Massachusetts, 1997,
pp. 360-370

[15]K. Koskimies, T. Ménnistd, T. Systd, and J. Tuomi,
“SCED: A Tool for Dynamic Modeling of Object
Systems”. University of Tampere, Dept. of Computer
Science, Report A-1996-4, 1996

[16]M. Nicola, and J. John, “XML parsing: a threat to
database performance”, In Proc. of the 12"
International Conference on Information and
Knowledge Management, New Orleans, November
2003, pp. 175 - 178

[17]T. Richner, and S. Ducasse, “Using Dynamic
Information for the Iterative Recovery of



Collaborations and Roles”, In Proc. of the 18"
International Conference on Software Maintenance
(ICSM), Montréal, Canada, 2002, pp. 34-43

[18]H. M. Sneed. “Object-oriented Cobol Re-cycling”, In
Proc. of the 3" Working Conference on Reverse
Engineering, Monterey, CA, November 1996, pp.
169-178.

[19]T. Systd. “Understanding the Behaviour of Java
Programs”, In Proc. of the 7" Working Conference
on Reverse Engineering (WCRE), Brisbane,
Australia, November 2000, pp. 214-223

[20]T. Systd, K. Koskimies, and H. Miiller, “Shimba — An
Environment for Reverse Engineering Java Software
Systems.”, Software Practice & Experience, Volume
31 Issue 4, 2001, pp. 371-394

[21]T. Systd, “Dynamic Reverse Engineering of Java
Software”, In Proc. of the ECOOP Workshop on
Experiences in Object-Oriented Reengineering,
Lisbon, 1999, pp. 174-175

[22]K. C. Tai, “The Tree-To-Tree Correction Problem”,
Journal of the ACM, 26(3), 1979, pp. 422-433

[23]1. Zayour, “Reverse Engineering: A Cognitive
Approach, a Case Study and a Tool”, Ph.D.
dissertation,  University of  Ottawa, 2002,
www.site.uottawa.ca/~tcl/gradtheses/izayour

[24]V. Tzerpos, and R. Holt, “MoJo: A Distance Metric
for Software Clustering”, In Proc. of the 6" Working
Conference on Reverse Engineering, Atlanta,
October 1999, pp. 187-193

[25] Eclipse: http://www.eclipse.com

[26] TkSee:
http://www.site.uottawa.ca/~tcl/kbre/options/intro.ht
ml




