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Abstract—Trace analysis allows software engineers to gain
insights into the behavior of the systems they maintain, and thus
serves as an essential tool to aid in multiple tasks that require an
understanding of complex systems, including security analysis,
debugging and maintenance. However, the considerable size of
execution traces can hinder the effectiveness of trace analysis.
There exist techniques that extract higher level abstractions
from a lengthy trace by automatically segmenting a trace into a
number of cohesive segments, allowing software engineers to focus
only on the segments of interest. In this paper, we improve on
related work on segmenting traces of method calls by considering
three factors: method names, method calling relationship, and
method parameters. We show experimentally that this approach
is more effective for the purpose of dividing a trace in a manner
concordant with the underlying behavior of the program than
existing algorithms. We also examine the issue of key element
extraction from a trace, and again demonstrate experimentally
that traces segmented using our method can more readily be
subjected to this analysis.

Keywords: Trace Analysis, Trace Segmentation, Gestalt Psy-
chology, Program Comprehension.

I. INTRODUCTION

Execution traces are logs that record a program’s execution.
These traces form an essential basis for several types of program
analysis and software engineering tasks including debugging,
feature enhancement, and performance analysis. However, the
considerable size of execution traces quickly becomes an
obstacle to their use. For example, Hamou-Lhadj et al. [6]
and Cornelissen et al. [1] found that even running simple but
representative executions of basic programs generates extremely
large traces, up to millions of lines of events.

To reduce the size of traces, while keeping their main
content, several trace abstraction techniques have been proposed
(e.g., [2], [6]). These techniques operate in different ways. Some
focus on detecting and eliminating utilities and other low-level
events from a trace, and hence exposing its main content. Others
leverage visualization approaches to guide developers through
the trace exploration process.

Recently, a new family of trace abstraction approaches
has emerged. These techniques, known as trace segmentation
(see for example [8], [18], [20]), concentrate on the problem
of splitting the trace into smaller segments; each represents
an execution phase of a system. For example, the execution
of a program naturally begins with a start-up phase during

which the program components are loaded and initialized. Each
subsequent action demanded by the user, such as opening a
file or activating a functionality of the program, consists of
another distinct phase. Each segment may consist of several
thousand trace events, but for program comprehension purposes,
it is useful to treat it as a single atomic phase. A tool that
supports trace segmentation can highlight these segments to
allow analyst explore their content without necessarily worrying
about the other parts of the trace.

Automatic identification of trace segments is not an easy
task. The problem is that there is just so much variation in the
trace that makes the detection of cohesive blocks a complex
problem [8], [18], [20]. To address this, Pirzadeh and Hamou-
Lhadj [18], [19] proposed a novel trace segmentation framework
based on Gestalt laws of perception, which describe how people
group similar items visually based on their perception. Gestalt
psychology models the processes that occur in the brain when
we see a scene, and how our perceptual systems follow certain
grouping principles (e.g., good continuation, proximity, and
similarity properties of the elements) [11] to integrate the scene
elements (i.e., objects and regions) as a whole and not just as
points and lines. In subsequent work [18], [20], the authors
modeled these processes in the context of trace segmentation,
more particularly they proposed two gravitational schemes
based on Gestalt laws of good continuation and similarity
to detect cohesive methods in a trace of method calls. Once
the segments are identified, they proposed to use information
retrieval techniques to extract key elements from trace segments,
constructing high-level summaries from large and complex
traces that can be used for trace exploration, recovery of system
documentation, etc.

Their proposed trace segmentation approach groups methods
into cohesive groups by looking at two factors: method names,
and the calling relationship. In this paper, we improve their
approach by introducing a new factor: method parameters. In
other words, two methods are thought to be in the same program
segment if they manipulate the same values or objects, or if
the return value of one method is then used as the parameter of
another method. We call our approach TRIADE, a three-factor
trace segmentation method.

In addition, for the problem of key trace element extraction,
we compare two alternative algorithms, the one that uses
information retrieval metrics, more particularly TF-IDF (Term
Frequency and Inverse Document Frequency) [7], based on



the work of Pirzadeh et al. [18], [20], and the use of the
Helmholtz principle [3], a principle in psychology that explains
how humans can identify patterns that diverge from randomness.

In short, the contributions of this paper are as follows:

- An improved method call trace segmentation process that
leverages method parameters and return values in addition to
method names and method calling relationship.

- A comparison between the use of the Helmholtz principle
and TF–IDF for the problem of key trace element extraction.

We evaluated our work on traces of two open source Java
systems. The results show that the use of method parameters,
in addition to method names and method calling relationship,
improves the accuracy of the segmentation process. We also
show that the Helmholtz principle yields better results than
TF-IDF.

The remainder of this paper is organized as follows: in
Section II, we describe our 3-factor segmentation method and
we outline the two key element extraction algorithms that
we wish to compare. Section III provides an experimental
comparison of this segmentation method with an existing one.
Section IV presents an overview of related works. Concluding
remarks are given in Section V.

II. TRIADE: THE 3-FACTOR TRACE SEGMENTATION
METHOD

Taken together, trace segmentation and key element extrac-
tion can work in tandem to provide an effective method to
infer a program’s behavior from a trace. This is done through
the following four-step process:

1) First, the trace is divided into its constituting segments
using a trace segmentation algorithm, with each
segment corresponding to a higher-level execution
phase.

2) Second, we apply a key element extraction algorithm
to each segment. This results in the creation of a
summary of each trace segment, containing its most
distinctive method calls.

3) In the third phase, the summaries are pruned of
utility methods using an algorithmic process. Utility
methods are short generic methods whose presence
in a summary is not informative from the perspective
of system maintainers who seek to understand the
underlying behavior of the trace.

4) Finally, the size of the summary is further minimized
by taking only the top method names (using a
threshold that can be defined by a software maintainer),
as ranked by the key element extraction algorithm.

At the end of this process, an intractably large trace is
reduced to a series of a handful of short summaries, each of
which consists of a small number methods. It is then a simple
matter for a system maintainer to consult the documentation
of the underlying program and understand the behavior of the
program during each execution phase.

A. Trace Segmentation

The trace segmentation process proposed by Pirzadeh et al.
[18], [20] operates in two steps namely phase detection and

phase boundary identification. In the first step, trace elements
are grouped into candidate phases using gravitational schemes
that rely on the principles of similarity and good continuation.
In the second step, the boundary of each phase is identified
using a k-means clustering algorithm [16].

B. Step 1: Phase detection

To detect candidate phases using a gravitational scheme,
each element of the trace is first assigned a position on an axis.
Initially, positions are assigned sequentially, with each element
equidistant from its predecessor and its successor, such that
each element’s position corresponds to its index in the trace
(Figure 1). Elements that are deemed “similar” based on some
criteria are then slid along this axis, as if they were pulled by
gravitational forces resulting in the formation of dense clusters
of similar elements.

Figure 1: Schematic view of a trace before the beginning of
the segmentation process.

The elements of the trace were then repositioned based on
a similarity scheme, where syntactically identical element, (i.e.
multiples calls to the same method) are brought closer together
(Figure 2). Second, a repositioning based on a continuity scheme
is applied to the vector resulting from this initial repositioning
(Figure 3). The continuity scheme reduces the distance between
two method calls according to their nesting levels: calls with a
higher nesting level are repositioned closer to the methods that
have called them.

Figure 2: An example of applying the similarity scheme to a
trace.

In this paper, we propose to add method parameters and
return values as another criterion for bringing related methods
closer. In other words, we also segment traces according to a
parameter scheme (schematized in Figure 4). Two method calls
are considered similar, and consequently repositioned in closer
positions, if they share the same parameters or return values, or
if one method’s return value is used as parameter for the other.
This is based on the intuition that if two methods manipulate
the same objects or if a method takes as input an object or
value returned by another method, then these two methods are
likely to be part of the same execution phase. We found that
the use of parameters provides substantial improvement to the
effectiveness of the segmentation algorithm.



The fact that the segmentation process is now based on three
factors also opens up the possibility of assigning a weight to
each of three segmentation schemes (similarity, continuity, and
parameters). This skews the analysis to assign more importance
to the factor captured by this scheme. The choice of this value
can be determined through a combination of code analysis and
experimentation. In practice, a user may make an educated
guess about which of the three factors under consideration is
likely to be more determinant. For example, a compiler may
apply multiple successive transformations to the same objects.
As a result, parameters values would be a poor indicator of
execution phase since the same object handler would appear as
a parameter to methods occurring in different execution phases.
Conversely, for a recursive program, similarity and continuity
will carry more meaningful information.

Figure 3: An example of applying continuity scheme to a trace.

C. Step 2: Phase Boundary Identification

After the repositioning schemes (similarity, continuity, and
parameters) has been applied, each method’s position has been
altered to increase its proximity to other methods sharing the
same name, the same parameters, as well as to those that are
part of the same nesting hierarchy. We then apply the k-means
clustering algorithm to identify the most apt locations for the
beginning and end of phases. K-means [13] is a widely used
clustering algorithm that allows n observations to be grouped
into k clusters, in such a way as to minimize the variance inside
each cluster. In our case, the observations are the methods calls,
positioned in a vector space and the clusters will correspond
to segments.

While k-means has been shown effective at this task in
previous research, it does have a drawback: the expected number
of clusters has to be specified manually by the user. Several

algorithmic methods have been proposed to select the correct
number of clusters in an automated manner. Pirzadeh et al. [20]
surveyed these alternatives and suggested their own solution,
namely to generate multiple alternative partitions, with different
values of k, and compare them using a Bayesian Information
Criterion [16] to determine which value is more likely to be
accurate. In Section 6, we will suggest a method by which
trace segmentation and key element extraction can work in
tandem to identify the correct number of phases.

D. Key Trace Elements Extraction

As discussed above, the purpose of key element extraction
is to generate a ‘summary’ that highlights the most salient
aspects of the trace. This is often necessary since even after
the trace has been segmented into its constituent phases, each
segment is still too long to be analyzed and understood by a
programmer. In this section, we present two techniques that
can be used to accomplish this task. Both techniques have their
origin in natural language processing and Gestalt psychology,
and have since been adapted to the problem of trace analysis.

1) TF-IDF: TF-IDF [7] is a technique that has its origin in
the processing of natural language texts. It provides a measure
of the importance of a word in a given document, when that
document is placed in the context of a more general corpus
of texts, containing several documents. While several variants
have been proposed, the main idea is to assign a score to each
word in a document. This score increases as the number of
occurrences of that word rises in the document, but decreases
if the word occurs frequently in the other texts of the corpus.
As a result, frequently occurring words, such as ‘the’ or ‘and’
exhibit a low score, since they are common throughout the
corpus. On the other hand, words that occur frequently in a
given text, but are rare in the remainder of the corpus, would
exhibit a high TF-IDF score. These words are likely to be the
most meaningful ones in the document under consideration.

Pirzadeh et al. [20] showed that this technique can be used
effectively to extract key elements from segmented execution
trace. The method treats each method call as a word, and treats
each segments as documents. Thus, TF-IDF will filter out
method names that occur frequently throughout the execution
trace, and assign high weights to method calls that are frequent
in a given segment, but are otherwise rare in the remainder of
the trace.

2) Helmholtz: Dadachev et al. [3] proposed an alternative
key element extraction algorithm, and Lei et al. [8] provide
a detailed algorithmic procedure to apply this method to the
problem of extracting key elements from execution traces. Their
method draws upon the Helmholtz principle [12], a principle of
psychology that states that humans more readily detect patterns
when they diverge from randomness. In regard to the analysis
of function calls in a trace, we designate as a meaningful event
any function call that occurs in a given phase at a rate that
exhibits a large deviation from randomness, as compared with
its rate of occurrence in the entire trace.

Consider a trace T that is partitioned into P phases (T1,
T2, . . ., TP), using the method given in stage 1. Let M be a
function call that is present in one or more of these P phases.
Assume that the method call M appears a total of K times in



Figure 4: An example of parameter scheme.

all P phases. These occurrences of M are collected in a set
SM = {M1,M2, ...,MK}.

Now consider the possibility that the function call M occurs
n times in some phase TP. A probabilistic analysis can assign
a likelihood to whether the number of occurrences of M in T P
is either an unexpected or expected event. The key elements
of the segment are those for which this probability is greater
than a threshold.

E. Utility Elimination and Summary Minimization

Previous research [17] shows that system analysis is often
encumbered when the data set being analyzed contains too
many utilities: short methods that provide a generic service to
multiple clients. The same utilities could be called throughout
the execution of a program, and the computations they perform
tend to be abstract. As a consequence, no information about
the program’s behavior could be gleaned from their presence
in a trace-segment summary.

Hamou-Lhadj and Lethbridge [17] studied extensively the
problem of utilities in traces. They defined utilities as methods
that are called from multiples distinct call sites, providing an
algorithmic basis for detecting utilities, and removing them from
the summaries, since their presence represents unwanted noise
in a process aimed at understanding the underlying behavior
of an execution trace.

We experimentally set at 20 the threshold of distinct call
sites after which a method is designated as a utility and elided
from the summary. In our subsequent experiments, only a
very small number of methods (much less than 1%) met this
threshold, and the final summaries still contain numerous utility
method calls. However, even this small number was sufficient
to improve the quality of our results to the point where the
behavior of each segment can always be gleaned from the
segment’s summary.

As a final step, any summary comprising more that 10
methods is reduced in size by selecting only the top ten methods
(using the ranking created by the TF-IDF and Helmholtz
algorithms), and deleting all the others. This step ensures that
the summary always has a size that is tractable to a manual
human analysis. In those cases where the summary consists of
less than 10 methods, this step is skipped entirely. It is a simple
task to examine the documentation of 10 or fewer methods
in order to have an idea of the segment’s underlying behavior
from them.

III. EXPERIMENTAL RESULTS

We evaluated the effectiveness of our approach by generat-
ing traces from open source Java programs. While we performed
multiples tests with a wide variety of programs, we selected
two representative experiments to present here out of space
considerations. The programs we selected are JHotDraw1 and
ArgoUML2. We used AspectJ [10] to generate execution traces
from these programs, containing 3 or 4 distinct user-actions
respectively. Each line of the trace consists in a single method
call or method return, and indicates the method’s name, the
type and value of each of the method’s parameters, its nesting
level, and the type and value returned by the method. Values of
literals, string and elementary types are provided explicitly, but
those of objects are provided by references. The traces range
in length from 17 000 lines to 143 298 lines.

We segmented each trace using both Pirzadeh’s 2-factor
approach (similarity and continuation) as well as the TRIADE
approach described earlier (which uses parameters a third
factor). We then generated summaries of each segment using
both TF-IDF and Helmholtz. Thus, for each segment we
generated three of four summaries (depending on the number of
user actions used to exercise the system and generate the traces).
We performed utility elimination in the manner described in
the previous section, and whenever a summary comprised
than 10 methods, we elided it by considering only the top
10 highest ranked methods. A different number can be used.
We decided to go with 10 top methods after analyzing the
content of the extracted summaries. In practice, we expect
software maintainers to try different thresholds until reasonably
well-defined summaries are obtained.

As can be seen in this section, we posit that our approach
always generates a summary from which the behavior of the
underlying segment can be determined accurately, by simply
examining the methods present in the summary and consulting
the program’s documentation to disregard any method that
consists of a utility or is insufficiently specific to the program’s
behavior. We refer to the method whose presence in a summary
contributes to the understanding of the underlying behavior of
the program as a behavior-specific method.

As mentioned above, each segment summary also contains
multiple utility methods calls. In fact, the utility method calls
often outnumber the behavior-specific method calls(i.e, method

1http://www.jhotdraw.org
2http://argouml.tigris.org/



calls that implement key functionality). However, this is not
a hindrance to the trace comprehension process. The reason
is that utility method calls can simply be ignored. As long
as all behavior-specific method calls present in a summary
cluster around a single higher-level process, the underlying
behavior of the trace could be gleaned with ease. The analysis
only fails in two cases: when every method in the summary
is a utility, or if the summary erroneously contains behavior-
specific methods unrelated to its actual behavior (i.e. methods
related to the behavior present in another, usually adjacent trace
segment). We refer to such cases as misassigned methods. As
will be shown in this section, these cases only occurred in
our experiment when using the 2-factor approach proposed by
Pirzadeh et al.

We also found that the 3-factor approach consistently
outperforms the 2-factor approach presented by Pirzadeh et al.
[18], [20] in the following two ways: more of the 10 methods
present in the summaries are behavior-specific rather than
utilities, and furthermore, in our test sets, the 3-factor approach
never misassigned a behavior-specific method in the wrong
segment, which happened occasionally when using the 2-factor
approach.

Finally, our results indicate that by the same metrics,
the Helmholtz method of summarization outperforms TF-IDF,
regardless of the method used to perform trace segmentation.
The remainder of this section details our results.

A. JHotDraw

JHotDraw is an open source Java program for creating
graphics. We generated a trace of JHotDraw using a 4 phase
scenario (Launch JHotDraw, draw a line, draw a Rectangle and
close JHotDraw).

a) Phase 1: The first phase consists in the initialization
of the JHotDraw GUI (menus, toolbar, status bar, and main
panes). Figure I presents a detailed listing of the methods
present in each summary. It lists every method that appears in
at least one summary, and indicates which summaries contain
it on the right. Behavior-specific methods are in bold and
red. We omitted the detailed summaries of the other phases
out of space consideration. Several methods are from the
org.jhotdraw.draw.actionpackage and deal with the
creation of the GUI and their presence in the summary makes
underlying behavior of the trace immediately obvious. These
include the following:

org.jhotdraw.draw.action.JPopupButton.add
org.jhotdraw.draw.action.

PaletteMenuItemUI.installDefaults
org.jhotdraw.draw.action.JPopupButton.add
org.jhotdraw.draw.action.JPopupButton.updateFont

Using the 3-factor method, the first 3 of these methods
appear in both summaries of the first segment, and the latter 2
appear in the Helmholtz summary only. Every other method
present in the summary is a utility and can be discarded as
such by an analyst. Hence the underlying behavior of the trace-
segment is immediately obvious after only a cursory reading
of the documentation.

Several of these methods seem to share common parameter
values with each other, as well as with other method calls

related to the initialization of the GUI. It follows that when
segmenting using the 3-factor method, these methods form a
tight cluster and correctly appear in the TF-IDF and Helmholtz
summaries of phase 1. However, it is interesting to note that
the *.installDefaults method mentioned above does not
share a parameter or return value with other phase 1 methods.
The benefits of including parameters in the segmentation
process thus extend to other methods, since the gravitational
pull between two methods will have the effect of compressing
together all intervening methods.

However, when segmentation is performed using the 2-factor
approach, not a single one of the ten methods present in the
Helmholtz summary is related to the underlying behavior of the
trace (start-up and initialization of the GUI) while the TF-IDF
summary contains only 2 such methods. The 2-factor Helmholtz
summary also contains 2 misassigned methods, namely methods
used by JHotDraw to draw a line on the screen. These methods
should actually be in the summary of the subsequent phase.

b) phase 2: The second phase deals with the drawing
of a single line. Most of the relevant methods are present
in the classes: org.jhotdraw.geom.BezierPath and
org.jhotdraw.draw.BezierFigure. In this case, the
summaries generated using Helmholtz was particularly infor-
mative, and contained the following behavior-specific methods
(and several others from the same class):

org.jhotdraw.draw.BezierFigure.basicSetEndPoint
org.jhotdraw.draw.BezierFigure.basicSetStartPoint
org.jhotdraw.draw.BezierFigure.basicSetBounds
org.jhotdraw.draw.BezierFigure.basicSetPoint

Several of these methods were absent from the TF-IDF
summaries. This illustrates the effectiveness of the Helmholtz
algorithm against the TF-IDF algorithm. In total, 8 of the
10 methods present in the 3-factor Helmholtz summary are
behavior-specific, while the comparable figure is only 4 for the
2-factor Helmholtz summary. Uniquely in all the experiments
performed, the 2-factor TF-IDF summary outperformed the
3-factor TF-IDF summary.

c) phase 3: The results for phase 3 mirror those of
phase 2. The third phase is concerned with the drawing of a
rectangle. Once again, the summary generated using Helmholtz
to summarize the 3-factor trace yields a summary from which
the higher-level behavior of the program is immediately evident.
In this case, the summary contains the following methods, which
are highly specific to the task at hand:

org.jhotdraw.draw.RectangleFigure.basicSetBounds
org.jhotdraw.draw.RectangleFigure.getFigureDrawBounds
org.jhotdraw.draw.RectangleFigure.drawFill
org.jhotdraw.draw.RectangleFigure.drawStroke
org.jhotdraw.draw.AbstractHandle.drawRectangle

Most of these methods, however, are only present in the
summary generated using Helmholtz, and only when the trace
is generated using the 3-factor approach.More particularly, each
of the two summaries generated from the 2-factor method only
contains a single behavior-relevant method. As a consequence,
the behavior of the program becomes difficult to understand.
In total, 5 of the 10 methods present in the 3-factor Helmholtz
summary, and 3 of the 10 methods present in the 3-factor
TF-IDF summary are behavior-specific, and are related to the



Table I: Detailed results for phase 1 of JHotDraw

Method Name 3-factors 3-factors 2-factors 2-factors
Helmholtz TF-IDF Helmholt TF-IDF

org.jhotdraw.draw.action.ToolBarButtonFactory$7.compare x x x
org.jhotdraw.draw.action.AbstractSelectedAction.setEditor x x x
org.jhotdraw.draw.action.JPopupButton.add x x x
org.jhotdraw.draw.action.JPopupButton.getColumnCount x x x
org.jhotdraw.draw.action.PaletteMenuItemUI.installDefaults x x
org.jhotdraw.draw.action.Colors.shadow x x
org.jhotdraw.util.ResourceBundleUtil.configureAction x x
org.jhotdraw.draw.action.JPopupButton.updateFont x
org.jhotdraw.util.ResourceBundleUtil.getLAFBundle x x
org.jhotdraw.util.ResourceBundleUtil.configureToolBarButton x
org.jhotdraw.draw.action.AbstractSelectedAction$EventHandler.propertyChange x x x
org.jhotdraw.draw.DefaultDrawingView.getSelectionCount x
org.jhotdraw.draw.action.AbstractSelectedAction.access$0 x x
org.jhotdraw.app.action.AbstractApplicationAction.updateApplicationEnabled x
org.jhotdraw.app.action.RedoAction.updateProject x
org.jhotdraw.util.ResourceBundleUtil.getImageIcon x
org.jhotdraw.draw.action.ToolBarButtonFactory.addToolTo x
org.jhotdraw.app.action.UndoAction.updateProject x
org.jhotdraw.draw.ArrowTip.getDecoratorPath x
org.jhotdraw.geom.BezierPath$Node.getControlPoint x
org.jhotdraw.app.action.AbstractApplicationAction.createApplicationListener x
org.jhotdraw.beans.AbstractBean.addPropertyChangeListener x
org.jhotdraw.draw.DefaultDrawingView.addFigureSelectionListener x
org.jhotdraw.draw.action.JPopupButton.getPopupMenu x

behavior of the underlying trace segment. By contrast, the
2-factor Helmholtz and TF-IDF summaries contain a single
behavior-specific method each. They also contain methods that
seem to belong to the previous segment.

From the program’s documentation, it is easy to see the
reason why the results of the 3-factor approach are so much
better than those of the 2-factor approach. Indeed, several of
the methods used to draw a figure manipulate the figure’s
coordinates. The presence of these values as parameters and
return values yields a tight grouping between the methods that
manipulate the same object.

d) phase 4: The final phase presents even starker results.
In this phase, the program backups the project properties (the
size and position of the drawn shapes) in the project properties
file. It then saves the project if requested to do so by the
user, and shuts down. The backup process involves methods
that manipulate XML objects, since this is the format used to
record the information. The presence of methods that write
XML objects, such as the following, is thus a clear indicator
of the behavior of the segment.

The Helmholtz summary of the 3-factor segment performs
particularly well in this respect, and 7 of the 10 methods present
in this summary are related to the underlying behavior, making
it extremely easy for a system engineer to glean understanding
from the trace. Only 2 phase relevant methods appear in the
3-factor summary generated with TF-IDF and neither one of the
two summaries generated from the 2-factor approach contain
any behavior-relevant methods. Worse than this, several methods
related to the behavior of the preceding execution phase, such
as methods related to drawing a rectangle, are present in the

2-factor summaries of this phase, which may lead a user to
inaccurate conclusions about the program’s behavior during
this segment.

B. ArgoUML

As a second example, we generated a trace of a 4 phase
scenario using ArgoUML, a diagramming application written in
Java. The phases consist in launching ArgoUML drawing a use
case diagram, drawing a class diagram and closing ArgoUML.

a) Phase 1: The first phase consists in launching the
application, and in the initialization of the ArgoUML GUI
(menus, toolbar, status bar, and main panes). The results
obtained in this phase are distinct from our other results
in that there was minimal overlap between the methods
found to be most significative in the 2-factor and 3-factor
approach summaries, with only 3 methods appearing in both
a 2-factor and a 3-factor summaries. Furthermore, the two
summaries generated using from the 2-factor approach were
also completely distinct, which breeds a suspicion about the
accuracy of the summaries generated.

The two summaries generated using the 3-factor approach,
however, are largely similar, sharing 7 methods. Both of these
summaries contain two distinctive methods from which the
underlying behavior (application start-up) of the trace can be
gleaned almost immediately:

org.argouml.application.Main$1.i18nmessageFormat
org.argouml.application.helpers.ApplicationVersion.

getStableVersion



The packages org.argouml.application and
org.argouml.application. helpers contain
the main class and starting point of the ArgoUML
application and provides "helper" classes that make
available basic functionality for the application respectively.
The method getStableVersion receives the version of
the application at initialisation time. Likewise, the method
i18nmessageFormat provides proper translation to text
strings that must be customized to the user’s language—a
task performed at startup. Every other method present in all
four summary seems to be a utility, except for a misassigned
behavior-specific method wrongly placed in the 2-factor
Helmholtz summary.

b) Phase 2: The second phase consists in drawing
a use case diagram. In this case, our experiment provided
evidence of the superior effectiveness of Helmholtz over
TF-IDF. As mentioned earlier, each of the summaries was
narrowed to 10 methods, by considering only the most relevant
entries. From those, the 3-factor Helmholtz summary contains 2
methods from the packages org.argouml.uml.diagram.
use_case.ui. These two methods suffice to understand the
underlying behavior of the trace since none of the other methods
present in the summaries are behavior-specific, and can thus be
ignored when trying to glean the behavior of the program from
its execution trace. As their names indicate, these packages con-
tain the classes that implement a UML Use Case diagram using
the UCI Graph Editing Framework (GEF). Neither of the two
TD-IDF summary contained any behavior-specific method. The
2-factor Helmholtz summary did contain a single method from
org.argouml.uml.diagram.use_case.ui. However,
it also contained a misassigned behavior-specific method, which
actually refers to the behavior of the subsequent program phase.
As a result, a determination of the behavior of the underlying
trace would be next to impossible with any analysis other than
the 3-factor approach proposed in this paper.

c) Phase 3: The third phase consists in drawing a class
diagram. As can be shown, the results of the summaries’s
analysis in this phase emphasize the effectiveness of the 3-
factor approach over the 2-factor approach.

Every single method present in the Helmholtz summary of
the 3-factor approach is relevant to understanding the underlying
behavior of the trace segment. Likewise, all but 1 of the
10 methods present in the TF-ITF summary are similarly
meaningful. Some examples of methods present in one or
both of these two summaries include:

org.argouml.uml.diagram.static_structure.
ui.FigClassifierBox.updateListeners

org.argouml.uml.diagram.static_structure.
ui.FigClassifierBox.updateCompartment

org.argouml.uml.diagram.static_structure.
ui.FigClass.updateNameText

These methods belong to the package
org.argouml.uml.diagram.
static_structure.ui which in turn contains classes that
implement a class diagram. Also present are several methods
from the package org.argouml.uml. diagram.ui.* .
This package provides various support for diagrams: actions,
GEF Figs, Go rules, Property Panels for diagrams, GEF
Selection support, etc.

The TF-IDF summary of the 2-factor approach also per-
forms well, with 9 out 10 methods present in the summary
being from one of the two packages mentioned above. However,
only 1 of the 10 methods present in the Helmholtz 2-factor
summary is behavior-specific.

d) Phase 4: In the fourth phase, the program saves the
project setting (called persisting) and shuts down. Once again,
multiple methods that make the behavior of the trace segment
evident are present in the summaries. In particular, the three
following methods,

org.argouml.persistence.UmlFilePersister.hasAnIcon
org.argouml.persistence.PgmlUtility.getEnclosingId
org.argouml.persistence.AbstractFilePersister.

getExtension

The package org.argouml.persistence contains
support for saving projects to media. Using our 3-factor method,
these methods correctly appear in the summary generated using
both Helmholtz and TF-IDF. Neither one of the two 2-factor
summaries contains any method from this package, or any
other method which could be used to understand the underlying
behavior of the trace.

IV. RELATED WORK

A survey of studies that aim to identify the most important
elements of a trace is presented in Dit et al. [4]. However, most
of the techniques reported lack a mechanism to segment the
trace into execution phases, and to extract key elements from
each phase.

Our research is closely related to that of Pirzadeh et al. [20].
These authors proposed an approach in which they divided a
trace into a set of segments that correspond to the main actions
done by the user, by relying upon method names as well as
on the nesting depth of methods to form a set of dense groups
of trace elements. One of the contributions of this paper is
to extend the algorithm of Pirzadeh to a 3-factor rather than
2-factor algorithm, yielding a higher precision.

There exists other trace segmentation approaches. Watanabe
et al. [22] proposed an approach based on the nature of object-
oriented programming. They use LRU cache to detect the
beginning and end of phases. A change in the frequency of the
cache update that means that a phase transition is occurring.
In [9], Kuhn et al. introduce an approach derived from signal
processing, representing entire traces as signals in time. They
visualized traces as time plots, and then presented a technique
for summarization.

Medini et al. [15] proposed a concept location technique that
relies on trace segments. Their approach splits execution traces
into segments using conceptual cohesion and coupling measured
by comparing the body of methods using the cosine measure.
The trace segmentation approach presented by the authors
is reformulated as a dynamic programming problem. While
they used static analysis, which makes their approach a heavy
weight one, we use dynamic analysis to automatically generate
distinct execution phases from execution traces. Also, a user
needs to define various thresholds to decide on how to prune
the execution trace before applying the dynamic programming
algorithm. Medini et al. [14], [15] proposed SCAN (Segment
Concept AssigNer) an approach to assign labels to sequences



Table II: Summary of results.

3-factor 2-factor
Helmhotlz TF-IDF Helmhotlz TF-IDF

S A M S A M S A M S A M
JHotdraw phase 1 10 5 0 10 3 0 9 0 2 10 0 0
JHotdraw phase 2 10 8 0 10 1 0 10 9 0 10 5 0
JHotdraw phase 3 10 5 0 10 3 0 10 1 1 10 1 2
JHotdraw phase 4 10 7 0 10 2 0 10 0 1 10 0 2
ArgoUML phase 1 10 2 0 10 2 0 10 0 1 10 0 0
ArgoUML phase 2 10 2 0 10 0 0 10 1 1 10 0 1
ArgoUML phase 3 10 10 0 10 9 0 10 1 0 10 9 0
ArgoUML phase 4 10 3 0 10 2 0 3 0 0 10 0 0

of methods in execution traces and to identify relations among
execution traces segments. SCAN can be easily adapted to
TraceSegmenter to label and relate the extracted phases.

Poshyvanyk et al. [21] introduced a technique based on
information-retrieval for feature location using PROMESIR.
Greevy et al. [5] introduced a feature-driven approach to trace
segmentation. They extracted execution traces to achieve a
mapping between features and classes and then analyzed the
changes of roles of the classes while the features of system
evolve.

V. CONCLUSION

In this study, we proposed a techniques that use three
factors for segmenting large execution trace, based on the trace
segmentation process presented by Pirzadeh et Hamou-Lhadj
[18], into its constituent execution phases, and extracted from
each phase a summary of human-tractable size composed of its
key events. We show that using method parameters improves
the segmentation process, and the summaries produced contain
more behavior-relevant methods and fewer misplaced methods,
regardless of the method used to perform key element extraction.
We further compare two key element extraction algorithms and
show that Helmholtz typically outperforms TF-IDF.
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