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Abstract—Traces of API calls from mobile applications are 

a very valuable source of information for multiples security 

analyses including the detection of malware and repackaged 

apps. Although API call traces are widely, extracting and using 

API call traces for the detection of repackaged apps remains a 

challenging task. In this paper, we briefly review (a) the 

challenges associated with using API calls and (b) the limitations 

of malware detection approaches that rely on API calls.  
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I. INTRODUCTION 

A common practice in security analysis of Android mobile 
applications (apps) is to extract app’s attributes such as 
opcodes, API calls, images, resources, or user interface graphs 
and study them to understand how the app behaves with the 
objective of detecting malware and other undesirable 
behaviors. Among these features, API call traces have shown 
to be the most reliable, given that it is often difficult for an 
attacker to manipulate them [1].  

Generating API call traces from an Android app is a 
challenging problem. In a normal situation, a simple static 
analysis of the app source code would suffice, but, obfuscation 
makes static analysis almost impossible [3, 4]. Dynamic 
analysis can be used to overcome obfuscation. This technique 
consists in executing the app with various inputs and recording 
the trace of API calls. Approaches based on dynamic analysis 
(e.g., [5][16]), however, cannot guarantee full code coverage 
due to incomplete input. In addition, there exist malware 
families that hinder dynamic analysis by using techniques 
such as emulator detection or by adding logical bombs, 
triggered upon the satisfaction of specific time conditions 
[15]. Limited work has been carried out using hybrid 
approaches [6]. 

The main goal of this abstract is to discuss the challenges 
of using API call traces for detecting repackaged Android 
apps.  

II. DIFFICULTIES IN GENERATING API CALL TRACES 

Many obstacles hinder the generation of API call traces 
from Android apps including reflection call, dynamic loading, 
and emulator detection. 

A. Reflection Calls 

Reflection is a functionality that allows developers to 
identify a method for calling at run-time. It is used in 
legitimate apps mostly for the purpose of implementing 
generic functionalities, maintaining backward compatibility, 

                                                           
1https://developer.android.com/reference/dalvik/system/package-summary 

hiding the main functionalities, or accessing the internal APIs 
reserved only for system apps [7]. The use of reflection calls 
in malware makes the extraction of API call traces challenging 
[4]. In a recent study, Li et al. [7] proposed a static analysis 
method to identify the methods called by reflection calls in an 
app. It searches an app for the most common patterns of 
reflection calls and identifies the reflective method names.  
Reflection calls remain a barrier to code analysis if the name 
of the called method is encrypted.  

B. Dynamic Loading 

Another functionality available to Android app developers 
is the use of the package DexClassLoader1 to load a library at 
run-time and then call those library methods through 
reflection calls at run-time. The loaded library may not be 
present in the apk file and is loaded from an external source in 
the network. Dynamic analysis approaches are largely able to 
load those parts of the code while the app is executing and 
study them. The evaluation of these approaches would require 
a dataset that contains malware samples for which the target 
network location is still available. By studying the AndroZoo 
dataset [8], we found that in most of the samples that use 
dynamic loading, the network address is not available any 
more. Providing adequate samples in datasets such as 
DroidBench2  would be helpful.  

C. Emulator Detection 

Some malware samples use emulator detection systems to 
evade monitoring of code using an emulator [15]. Emulator 
detection systems examine a selected set of features of the 
underlying device at run-time to ensure that the app is running 
in a real device and adapt the execution accordingly. 
Researchers need to simulate the real device’s state in a virtual 
environment to combat such malware. An alternative solution, 
suggested by some researchers, is to identify those parts of the 
code that perform emulator detection [15]. 

III. LIMITATIONS OF EXISTING MALWARE DETECTION 

APPROACHES USING API CALLS 

A. Curse of using machine learning approaches 

Machine learning algorithms are widely used to 
differentiate malware and benign apps. The algorithms learn 
the distinctive behavior of malicious operations through the 
set of features extracted from benign and malware apps. The 
main advantage of using a machine learning approach is that 
the detection algorithm does not require predefined malware 
signatures.  API call frequency, API call graphs, and API call 

2 https://github.com/secure-software-engineering/DroidBench 



sequences have all been used extensively as a feature set for 
machine learning algorithms (e.g., [1]).  The disadvantage of 
using machine learning is a high risk of false negatives. The 
challenge of how to set the proper thresholds between 
malware or benign apps remains also an open question. 
Another issue relates to the fact that even after an app is found 
to be a malware it is not clear what malicious operations the 
app contains. We need machine learning based solutions that 
do not only flag malicious behavior but also provide guidance 
to security analysts on how to identify the underlying causes.  

B. Evaluation of malware detection approaches 

It is a common practice to evaluate a malware detection 
approach using a dataset of benign and malware apps. Several 
different datasets have been employed for this purpose. 
Comparing the results of techniques tested on different 
datasets is not straightforward. AndroZoo [8], a large dataset 
of benign and malware apps, has been publicly available since 
2015, and has been used by multiple researchers. It would be 
good to have a dataset of API calls that characterise the 
malicious code embedded in AndroZoo malicious apps. Such 
dataset would not only help researchers compare their results 
consistently, but also save them time analyzing malware apps 
to find out the associated API calls.  

C. Adware detection 

In our empirical study on repackaged apps [2], we showed 
that a large number of malware apps are adware. We also 
showed that they exhibit a pattern of API calls that is very 
similar to those of the original benign apps, and furthermore 
that they employ the same ad libraries as benign apps. Because 
of these similarities, detecting adware using API calls is more 
difficult than detecting other categories of malware. Studying 
adware and proposing detection approaches targeted 
specifically to this category of malware is an important goal 
of future research since the presence of adware does not only 
affect users and developers, but also ad companies.  

D. Protectinng apps against cloning 

Several studies propose ways to protect apps against 
repackaging by checking whether the code has changed during 
execution (e.g., [11] [12]). The common approach is to record 
features such as API calls of each app and check them while 
the app is executing to detect tampering. Other studies (e.g., 
[13]) use watermarking and defer the responsibility for 
detecting malicious behavior to end users.  the end user to 
detect if the original app is manipulated. These approaches 
may not be practical because they either require changes to the 
DVM or rely on end users with limited knowledge in this area. 
Since most malware embedded in repackaged apps is adware 
as we showed in [2], we propose to work towards approaches 
that involve ad companies in the authentication of apps. Ad 
companies can provide an SDK for developers to query 
advertisements. They can also record the developers’ identity 
for payment purposes. Additional studies are needed to assess 
the applicability of authenticating apps by ad companies. 

E. Difficulties in using app similarity 

Many studies (e.g., [14]) use API call traces to detect 
repackaged apps. These studies assume that a repackaged app 
keeps the same appearance as the original one in order to offer 
the same experience to users. Besides the computational 
overhead of these approaches, the main constraint is that they 
require pair-wise comparison between two apps to detect a 
repackaged app. A practical application of this approach 
would require a large repository of apps, which may cause 

scalability problems if API calls are the main features used for 
malware detection. This is because of the high computational 
time associated with generating and managing large API call 
traces. We need to work towards ways to reduce the size of 
API traces using trace abstraction, filtering and simplification 
techniques such as the ones that have extensively studied in 
traditional software systems (see [18] for examples). 
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