

On the Use of API Calls for Detecting Repackaged

Malware Apps: Challenges and Ideas

Kobra Khanmohammadi
Department of Electrical and Computer

Engineering

Concordia University
Montréal, QC, Canada

k_khanm@encs.concordia.ca

Raphaël Khoury

Dep. of Computer Science

and Mathematics

Université du Québec à Chicoutimi

Chicoutimi, QC, Canada

raphael.khoury@uqac.ca

Abdelwahab Hamou-Lhadj

Department of Electrical and Computer

Engineering

Concordia University

Montréal, QC, Canada

abdelw@ece.concordia.ca

Abstract—Traces of API calls from mobile applications are

a very valuable source of information for multiples security

analyses including the detection of malware and repackaged

apps. Although API call traces are widely, extracting and using

API call traces for the detection of repackaged apps remains a

challenging task. In this paper, we briefly review (a) the

challenges associated with using API calls and (b) the limitations

of malware detection approaches that rely on API calls.

Keywords—API Call Traces, Mobile Application Reliability

and Security, Malware Detection.

I. INTRODUCTION

A common practice in security analysis of Android mobile
applications (apps) is to extract app’s attributes such as
opcodes, API calls, images, resources, or user interface graphs
and study them to understand how the app behaves with the
objective of detecting malware and other undesirable
behaviors. Among these features, API call traces have shown
to be the most reliable, given that it is often difficult for an
attacker to manipulate them [1].

Generating API call traces from an Android app is a
challenging problem. In a normal situation, a simple static
analysis of the app source code would suffice, but, obfuscation
makes static analysis almost impossible [3, 4]. Dynamic
analysis can be used to overcome obfuscation. This technique
consists in executing the app with various inputs and recording
the trace of API calls. Approaches based on dynamic analysis
(e.g., [5][16]), however, cannot guarantee full code coverage
due to incomplete input. In addition, there exist malware
families that hinder dynamic analysis by using techniques
such as emulator detection or by adding logical bombs,
triggered upon the satisfaction of specific time conditions
[15]. Limited work has been carried out using hybrid
approaches [6].

The main goal of this abstract is to discuss the challenges
of using API call traces for detecting repackaged Android
apps.

II. DIFFICULTIES IN GENERATING API CALL TRACES

Many obstacles hinder the generation of API call traces
from Android apps including reflection call, dynamic loading,
and emulator detection.

A. Reflection Calls

Reflection is a functionality that allows developers to
identify a method for calling at run-time. It is used in
legitimate apps mostly for the purpose of implementing
generic functionalities, maintaining backward compatibility,

1https://developer.android.com/reference/dalvik/system/package-summary

hiding the main functionalities, or accessing the internal APIs
reserved only for system apps [7]. The use of reflection calls
in malware makes the extraction of API call traces challenging
[4]. In a recent study, Li et al. [7] proposed a static analysis
method to identify the methods called by reflection calls in an
app. It searches an app for the most common patterns of
reflection calls and identifies the reflective method names.
Reflection calls remain a barrier to code analysis if the name
of the called method is encrypted.

B. Dynamic Loading

Another functionality available to Android app developers
is the use of the package DexClassLoader1 to load a library at
run-time and then call those library methods through
reflection calls at run-time. The loaded library may not be
present in the apk file and is loaded from an external source in
the network. Dynamic analysis approaches are largely able to
load those parts of the code while the app is executing and
study them. The evaluation of these approaches would require
a dataset that contains malware samples for which the target
network location is still available. By studying the AndroZoo
dataset [8], we found that in most of the samples that use
dynamic loading, the network address is not available any
more. Providing adequate samples in datasets such as
DroidBench2 would be helpful.

C. Emulator Detection

Some malware samples use emulator detection systems to
evade monitoring of code using an emulator [15]. Emulator
detection systems examine a selected set of features of the
underlying device at run-time to ensure that the app is running
in a real device and adapt the execution accordingly.
Researchers need to simulate the real device’s state in a virtual
environment to combat such malware. An alternative solution,
suggested by some researchers, is to identify those parts of the
code that perform emulator detection [15].

III. LIMITATIONS OF EXISTING MALWARE DETECTION

APPROACHES USING API CALLS

A. Curse of using machine learning approaches

Machine learning algorithms are widely used to
differentiate malware and benign apps. The algorithms learn
the distinctive behavior of malicious operations through the
set of features extracted from benign and malware apps. The
main advantage of using a machine learning approach is that
the detection algorithm does not require predefined malware
signatures. API call frequency, API call graphs, and API call

2 https://github.com/secure-software-engineering/DroidBench

sequences have all been used extensively as a feature set for
machine learning algorithms (e.g., [1]). The disadvantage of
using machine learning is a high risk of false negatives. The
challenge of how to set the proper thresholds between
malware or benign apps remains also an open question.
Another issue relates to the fact that even after an app is found
to be a malware it is not clear what malicious operations the
app contains. We need machine learning based solutions that
do not only flag malicious behavior but also provide guidance
to security analysts on how to identify the underlying causes.

B. Evaluation of malware detection approaches

It is a common practice to evaluate a malware detection
approach using a dataset of benign and malware apps. Several
different datasets have been employed for this purpose.
Comparing the results of techniques tested on different
datasets is not straightforward. AndroZoo [8], a large dataset
of benign and malware apps, has been publicly available since
2015, and has been used by multiple researchers. It would be
good to have a dataset of API calls that characterise the
malicious code embedded in AndroZoo malicious apps. Such
dataset would not only help researchers compare their results
consistently, but also save them time analyzing malware apps
to find out the associated API calls.

C. Adware detection

In our empirical study on repackaged apps [2], we showed
that a large number of malware apps are adware. We also
showed that they exhibit a pattern of API calls that is very
similar to those of the original benign apps, and furthermore
that they employ the same ad libraries as benign apps. Because
of these similarities, detecting adware using API calls is more
difficult than detecting other categories of malware. Studying
adware and proposing detection approaches targeted
specifically to this category of malware is an important goal
of future research since the presence of adware does not only
affect users and developers, but also ad companies.

D. Protectinng apps against cloning

Several studies propose ways to protect apps against
repackaging by checking whether the code has changed during
execution (e.g., [11] [12]). The common approach is to record
features such as API calls of each app and check them while
the app is executing to detect tampering. Other studies (e.g.,
[13]) use watermarking and defer the responsibility for
detecting malicious behavior to end users. the end user to
detect if the original app is manipulated. These approaches
may not be practical because they either require changes to the
DVM or rely on end users with limited knowledge in this area.
Since most malware embedded in repackaged apps is adware
as we showed in [2], we propose to work towards approaches
that involve ad companies in the authentication of apps. Ad
companies can provide an SDK for developers to query
advertisements. They can also record the developers’ identity
for payment purposes. Additional studies are needed to assess
the applicability of authenticating apps by ad companies.

E. Difficulties in using app similarity

Many studies (e.g., [14]) use API call traces to detect
repackaged apps. These studies assume that a repackaged app
keeps the same appearance as the original one in order to offer
the same experience to users. Besides the computational
overhead of these approaches, the main constraint is that they
require pair-wise comparison between two apps to detect a
repackaged app. A practical application of this approach
would require a large repository of apps, which may cause

scalability problems if API calls are the main features used for
malware detection. This is because of the high computational
time associated with generating and managing large API call
traces. We need to work towards ways to reduce the size of
API traces using trace abstraction, filtering and simplification
techniques such as the ones that have extensively studied in
traditional software systems (see [18] for examples).

REFERENCES

[1] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. E. Cristofaro, G. Ross,

and G. Stringhini, “MaMaDroid : Detecting Android Malware by
Building Markov Chains of Behavioral Models,” ACM Transactions

on Privacy and Security, vol. 22, no. 2, 2019.

[2] K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, R. Khoury,
“Empirical Study of Android Repackaged Apps,” Springer Journal on

Empirical Software Engineering, pp 1-43, 2019.

[3] Q. Guan, H. Huang, W. Luo, and S. Zhu, “Semantics-based
repackaging detection for mobile apps,” in Proc. of the Symposium on

Engineering Secure Software and Systems, pp 89-105. 2016.

[4] M. Hammad, J. Garcia, and S. Malek, “A Large-Scale Empirical Study
on the Effects of Code Obfuscations on Android Apps and Anti-

Malware Products,” in Proc. of the 40th International Conference on

Software Engineering, pp 421–431, 2018.
[5] A. Aldini, F. Martinelli, A. Saracino, and D. Sgandurra, “Detection of

repackaged mobile applications through a collaborative approach,”

Wiley Journal on Concurrency and Computation: Practice &
Experience, vol.27, no.11, pp 2818–2838, 2015.

[6] M. Y. Wong and D. Lie, “IntelliDroid : A Targeted Input Generator for

the Dynamic Analysis of Android Malware,” in Proc. of the Network
and Distributed System Security Symposium, vol. 16, 2016.

[7] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “DroidRA : Taming

Reflection to Support Whole-Program Analysis of Android Apps,” in
Proc. of the 25th International Symposium on Software Testing and

Analysis, pp 318–329, 2016.

[8] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
Collecting Millions of Android Apps for the Research Community,” in

Proc. of Mining Software Repositories Conf., pp. 468–471, 2016.

[9] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing
Android Apps,” in Proc. of the 46th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, pp 550–561, 2016.

[10] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient Decentralized
Android Application Repackaging Detection Using Logic Bombs,” in

Proc. of the International Symposium on Code Generation and

Optimization, pp 50–61, 2018.
[11] W. Zhou, X. Zhang, and X. Jiang, "AppInk: watermarking android apps

for repackaging deterrence," in Proc. of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security,

pp 1-12, 2013.

[12] C. Ren, K. Chen, and P. Liu, "Droidmarking: Resilient software
watermarking for impeding android application repackaging," in Proc.

of the 29th ACM/IEEE International Conference on Automated

Software Engineering, pp 635-646, 2014.
[13] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient Decentralized

Android Application Repackaging Detection Using Logic Bombs,” in

Proc. of the International Symposium on Code Generation and
Optimization, pp. 50–61, 2018.

[14] S. Jiao, Y. Cheng, L. Ying, P. Su, and D. Feng, “A rapid and scalable

method for android application repackaging detection,” in Proc. of the
International Conference on Information Security Practice and

Experience, pp 349-364. 2015.

[15] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark Hazard:
Learning-based, Large-Scale Discovery of Hidden Sensitive

Operations in Android Apps,” in Proc. of the Network and Distributed

System Security Symposium, 2017.
[16] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:

Behavior-Based Malware Detection System for Android,” in Proc. of

the 1st ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, pp 15–26, 2011.

[17] K. Khanmohammadi, A. Hamou-Lhadj, "HyDroid: A Hybrid

Approach for Generating API Call Traces from Obfuscated Android
Applications for Mobile Security," in Proc. of the International

Conference on Software Quality, Reliability and Security (QRS), pp

168-175, 2017.
[18] A. Hamou-Lhadj, “Techniques to simplify the analysis of execution

traces for program comprehension,” Ph.D. Dissertaiton, University of

Ottawa, 2015.

