
An Approach for Predicting Bug Report Fields Using a Neural

Network Learning Model

Korosh Koochekian Sabor, Mathieu Nayrolles, Abdelaziz Trabelsi, Abdelwahab Hamou-Lhadj

Department of Electrical and Computer Engineering

Concordia University, Montreal, QC, Canada

{k_kooche, m_nayrol, trabelsi, abdelw}@ece.concordia.ca

ABSTRACT

Bug fixing is a major activity in software development and

maintenance. Developers use information reported in bug

reports to identify bug causes and to provide a fix. Previous

studies have shown that bug report fields are often

reassigned to different development teams after the report

is sent to developers. This can introduce considerable time

delays in the bug handling process. To overcome this issue,

there exist numerous methods to automatically predict bug

report fields by examining historical data. In this paper, we

combine a neural network based model with stack traces to

predict bug report fields. When applied to bug reports of

the Eclipse repository, we found that our approach achieves

improvement of about 73% in product prediction accuracy,

and 85% in component prediction accuracy over the well-

known K-nearest neighbors (KNN) algorithm. The results

of this preliminary study suggest that neural networks

provide a robust alternative to traditional classification

techniques.

KEYWORDS

Neural Networks, Stack Traces, Software Bug Reports, Mining

Software Repositories, Software Maintenance;

1 INTRODUCTION

Bug fixing is known to be a time-consuming and costly

task [1]. When a system crashes, users can report the bug

by entering a bug description, attaching a stack trace,

indicating the severity of the bug, the platform, the faulty

product and component, etc. Developers can then use this

information to provide a fix [3].

Xia et al. [14] have shown that 80% of bug reports have

their fields reassigned several times after a bug report has

already been sent to developers. They have also shown that

bug reports with field reassignment have significantly

longer fixing time than those with no reassigned fields.

These fields are used by triagers to route the bug reports to

appropriate development teams. Incorrect assignment of

these fields can significantly delay the processing time of

bug reports, which in turn affects the productivity of

developers [2].

There exist several techniques to predict the likelihood

that a particular bug report field gets reassigned, among

which the most recent one is the study proposed by Xie et

al. [15]. The authors rely on traditional machine learning

algorithms, such as the K-Nearest Neighbors (KNN), to

predict whether a bug report field would most likely be

reassigned. Their approach achieves an average F-measure

of approximately 63% and 73% when predicting the

reassignment of component and product fields,

respectively.

In this short paper, we propose a neural network

learning algorithm, used in deep learning, to predict not

only whether a specific bug report field gets reassigned, but

also its new value. This is achieved by combining a neural

network-based model for classification purpose with stack

traces as features. The choice of stack traces is motivated

by our previous work [7, 8], in which we showed that stack

traces are excellent features for predicting bug severity [7]

and duplicate bug reports [8].

In this study, we only focus on product and component

fields, which tend to be the most often reassigned fields [4,

5, 16, 17]. When applied to bug reports of the Eclipse

repository, our approach outperforms the use of KNN by an

average of 73% and 85% for predicting product and

component fields, respectively.

2 GOALS AND POTENTIALS

The main goal of this paper is to study the feasibility of

combining neural networks with stack traces to predict

component and product fields of bug reports. Many

different neural network architectures have been developed

throughout the years. One of the common tasks in

designing such architectures is to select proper initial

network weights and a suitable training algorithm. There

exist many studies that leverage neural networks to help

with software engineering tasks. To the best of our

knowledge, this is the first attempt that a neural network

learning-based model combined with stack traces are used

to address the problem of predicting bug report fields. Our

preliminary results show that this approach holds real

potential in building powerful techniques for predicting

various aspects of bug reports, and hence improving the

productivity of triagers and development teams. Software

engineering researchers and practitioners can exploit these

results to further explore the potential of machine learning

techniques as they are adaptable, have learning capabilities

and non-parametric.

Figure 1: Proposed approach

3 APPROACH

Figure 1 shows the proposed approach, which consists of

training and testing phases. The model is trained using

stack traces embedded in historical bug reports. The

resulting model is then used to predict fields of new bug

reports. It should be noted that other features such as bug

report descriptions can also be used. We chose stack traces

because they tend to be more formal than bug report

descriptions. Similar studies have shown that stack traces

provide better accuracy than descriptions [6]. The

following subsections describe in more detail the proposed

approach.

3.1 Building Feature Vectors from Stack Traces

In our method, each bug report stack trace is mapped to a

feature vector. The input feature vector is then weighed

using term frequency-inverse document frequency (TF-

IDF).

Let T = f1,f2, … . . , fL be a stack trace of function calls

f1,to fL, T of length L. The stack trace T is generated by a

bug in a software system from a unique alphabet  of size

m = || function names in the system. Let the collection of

K stack traces that are extracted from the bug tracking

system and then provided for designing the product and

component prediction system be denoted by 𝛤 =

T1,T2, … . . , TK.

To determine the term frequency, each stack trace T

is mapped into a vector of size m functions, 𝑇 → ∅(𝑇)𝑜𝜖Σ,

where each function name 𝑓𝑖  in the vector is either one

(appeared in the stack trace) or zero (did not appear in the

stack trace). The term vector can then be weighed by the

term frequency (tf):

𝜙𝑡𝑓(𝑓, 𝑇) = 𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚 (1)

In Equation (1), freq(fi) is the number of times the function

𝑓𝑖 appears in 𝑇, divided by the total number of functions in

the stack trace (L).

It should be noted that not all functions have the same

weight when comparing stack traces. Functions that appear

rarely in stack traces must be given more weight. To give

more weight to functions that rarely appear in stack traces,

the IDF is used. The IDF increases the weight of rare

functions while decreasing weight of popular functions.

The term vector weighed by the TF-IDF is therefore given

by:

𝜙𝑡𝑓.𝑖𝑑𝑓(𝑓, 𝑇, 𝛤) =
Κ

𝑑𝑓(𝑓𝑖)
𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚 (2)

where the document frequency 𝑑𝑓(𝑓𝑖) is the number of

stack traces 𝑇𝑘in the collection of 𝛤 of size K that contains

function name 𝑓𝑖 . Thus, TF-IDF gives higher weight to

functions that appear more in a particular stack trace T ,

while appearing less in other stack traces of the collection

𝛤.

In an ideal scenario, the distribution of labels in the

training set would be balanced (there is a similar number of

samples for each label). Unfortunately, this scenario is not

suitable for large systems. Since some products or

components have fewer bug reports in the bug tracking

system, the distribution of labels tends to be unbalanced. In

this situation, any classifier, including neural networks,

would be biased toward the majority class labels. Various

techniques were developed to address the unbalanced

dataset distribution issue. These approaches range from

oversampling minority class labels, undersampling majority

class label, to using cost-sensitive classifier [15].

In this paper, we used the random oversampling method

to overcome the unbalance label distribution problem. This

method randomly selects instances from minority class

labels and adds copies of those instances to the dataset until

an equal number of instances of each class label is reached

in the dataset.

In practice, if the inputs are normalized, the neural

network will be trained more efficiently. If the magnitude is

considerably different from one input to another, then their

influence will negatively affect the trained network. We use

the min-max normalization to normalize the input data. We

use min-max as a linear transformation technique from a

range of values between [𝑀𝑖𝑛𝐴, 𝑀𝑎𝑥𝐴] to a range of values

between [0, 1]. Considering a value V in [𝑀𝑖𝑛𝐴, 𝑀𝑎𝑥𝐴].

The normalization is performed using the following

equation [10].

𝑁𝑜𝑟𝑚𝑎𝑙𝑧𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑉−𝑀𝑖𝑛𝐴

𝑀𝑎𝑥𝐴−𝑀𝑖𝑛𝐴
 (3)

3.2 Training Phase

We use a three-layer model for the neural network. This

network has been shown to learn any nonlinear function

that is inherent between the inputs and outputs. Our model

consists of three layers: an input layer, a hidden layer, and

an output layer. The input to the neural network, for each

bug report, is the feature vector weighted using TF-IDF

corresponding to the stack trace of that bug report. The

output is the faulty product or component depending on the

objective of the prediction.

We used Theano
1
 library to create and train our three-

layer neural network. The number of nodes in the input

layer corresponds to the number of distinct functions and

the number of nodes in the output layer corresponds to the

number of labels, e.g., products or components. The

neurons in the input layer carry out no calculation, but only

store the feature vector values. The output value of each

node is the probability of the input instances belonging to

that label.

Before training a neural network, many parameters

(known as hyperparameters) should be properly initialized.

The accuracy of a neural network learning-based model is

closely related to the proper initialization of those

parameters. Throughout the training phase, we use Relu

[11] as an activation function. Since our problem is a

multiclass classification problem and we have multiple

output nodes, we use softmax [18] so that the output

probability of each node of the output layer is between zero

and one. The cross-entropy [18] is used as the cost

function to measure the difference between distribution

pairs. Using a backpropagation technique, which relies on a

gradient descent based on cross-entropy, the weights of the

neurons are updated, and the network is trained. For each

neuron, the bias value is set to zero. Assume that there are

𝑝 input-output pairs, 𝑠𝑝 , 𝑡𝑝 , available for training the

network. After presentation of a pair of input-outputs, the

weights for the interconnections are changed in proportion

to the gradient of the error between the prediction and

actual values according to the following relationship:

 ∆𝑝𝑤𝑗𝑖 = 𝜂𝛿𝑝𝑗𝛰𝑝𝑖 (4)

where 𝛿𝑝𝑗 for the input to hidden neurons, is defined as:

1http://deeplearning.net/software/theano

𝛿𝑝𝑗 = 𝛰𝑝𝑗(1 − 𝛰𝑝𝑗) ∑ 𝛿𝑝𝑘𝑤𝑘𝑗𝑘 (5)

and, for the hidden to output neurons, it is defined as:

 𝛿𝑝𝑗 = (𝑡𝑝𝑗 − 𝛰𝑝𝑗)𝛰𝑝𝑗(1 − 𝛰𝑝𝑗) (6)

In Equation (4), 𝜂 is a parameter that is decreased as the

training proceeds.

It is well-known that the initial weights of neurons in a

neural network are the most important factors that affect its

performance [11]. Previous studies have shown that

initializing the weights from a Gaussian distribution with

zero mean and a small variance yields good accuracy [11].

In our model, we used a Gaussian distribution with zero

mean and a standard deviation of 0.01. Another important

hyperparameter is the learning rate. For a neural network to

converge to an optimal solution, the learning rate should be

carefully tuned to avoid the problem of overshooting. To

satisfy this requirement, we tested our model with different

learning rates and found that 0.01 provides the best results.

An epoch is defined as a single presentation of each

training dataset to the network. After the cross-entropy

calculation for all instances is performed, the

backpropagation network is run to optimize the weights.

However, the number of epochs is considered a critical

factor in training a neural network. If the network is trained

too many times, then it learns the noise when exposed to

sample inputs and outputs from the training dataset. This is

referred in the literature to as the overfitting problem. On

the other hand, if the number of epochs is too low, the

model is considered under fitted. To avoid overfitting or

underfitting, various regularization techniques have been

introduced [19]. In this paper, we used the early stopping

technique. After each epoch, the error of the model is

measured using a validation dataset separate from the

training dataset, if the error rate increases after a certain

number of epochs, the learning process is stopped. Then,

the resulting model is tested against a testing dataset.

3.3 Testing Phase

The K-fold cross-validation [14] is used in this work to

assess the performance of our model. The dataset is divided

into K roughly equal partitions. Each time, the model is

trained using k-1 partitions, and then it is tested using the

remaining partition. However, since each bug in the bug

repository is reported at a specific time, we need to make

sure that a new bug report is tested against those reported

earlier. We achieve this by following a similar

experimental setting (called longitudinal data setup)

introduced by Tamrawi et al. and Bhattacharya et al. [12,

13]. First, the bug reports are sorted based on their creation

date. Then, the dataset is split into 10 non-overlapping

equal size folds. We train the network on the first fold, we

apply the early stopping technique using the second fold,

and then we test it on the third fold. In the second round,

we train the neural network on the first and second fold,

then we use the third fold as the validation dataset, and the

fourth fold as the test dataset. In the last step, we train the

network on the fold one to eight by using the ninth fold for

validation, and the last fold as the test dataset.

4 EVALUATION

In this section, we show the effectiveness of our approach

in predicting the product and component fields of a bug

report.

We compare the performance of our approach to a

traditional classification technique, namely the KNN. There

exist several classification techniques proposed in the

literature with various degrees of success. Among them, the

KNN was chosen in this work due to its use in very recent

studies that deal with the same problem of predicting bug

fields reassignment [14]. The KNN is a lazy learning

algorithm, based on choosing the K-nearest instances to

each instance in the testing dataset. Then the label of the

instance in the test dataset is selected using a majority

voting algorithm. We train and validate KNN models using

the exact process that we followed for training our neural

network-based model.

4.1 Evaluation Metrics

To evaluate the performance of our approach, we measure

the precision, recall, and F-measure [14] obtained from the

prediction process of product and component fields.

Precision is defined as the ratio of the number of bugs for

which we correctly predicted their product field 𝑃𝐿 or

component field 𝐶𝐿 (True Positives) to the total number of

bugs predicted to have product field 𝑃𝐿 or component field

𝐶𝐿 (True Positives + False Positives), and is calculated as

follows [14]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝐿) =
𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑝𝐿

𝑜𝑓 𝑏𝑢𝑔𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙 𝑝𝐿
 (7)

Recall is defined as the ratio of the number of bugs for

which we correctly predicted their product field 𝑃𝐿 or

component field 𝐶𝐿 (TP) to the total number of bugs that

actually have the product label 𝑃𝐿 or component label

𝐶𝐿[14], and is computed as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑃𝐿) =
𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿

𝑜𝑓 𝑏𝑢𝑔𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 ℎ𝑎𝑣𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿
 (8)

F-measure is the harmonic mean of precision and recall,

and is defined as follows [14]:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑝𝐿) =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (9)

We compute the improvement of one approach over the

other using Equation (2), which is used in [14]). In this

equation, 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐾𝑁𝑁 and 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑁

correspond to the F-measure of KNN and our neural

network models respectively.

Improvement =
𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑁 − 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐾𝑁𝑁

𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐾𝑁𝑁
 (10)

4.2 Dataset

We use Eclipse bug reports between January 2009 and

March 2015 to test our approach. They were automatically

downloaded from the Eclipse bug repository. In the Eclipse

repository, stack traces are embedded in bug report

descriptions. To extract the content of the stack traces in

Eclipse, we used the regular expression presented by Lerch

et al. [9]. We have a total number of 199,500 bug reports

out of which 18,906 bug reports have one or more stack

traces. This accounts for around 10% of the total bug

reports.

The extracted stack traces are preprocessed to remove

noise in the data such as native methods that are used when

a call to the Java library is performed. There are also lines

in the stack traces that are labelled as ‘unknown source’.

This may have been caused by the way debugging

parameters were set.

4.3 Results

The results of predicting the product field using our neural

network learning-based model and the KNN algorithm are

shown in Table 1. In average, using our proposed model,

we outperformed KNN by 73% in average when predicting

the product field. For all products, we obtained higher F-

measure using the proposed neural network model

compared to the KNN-based model.

For the component field, we have run the proposed

neural network learning approach and the KNN method to

predict the components of each product separately. Due to

space limitation, the precision, recall, and F-measure

obtained for each product component cannot be shown.

Instead, we show an average value. If we consider

precision of the first component of a given product as

𝑃𝐶1 and the precision of the n
th

 component as 𝑃𝐶𝑛 , the

average precision is calculated using the following

equation. We apply the same method for measuring the

average recall. The F-measure is computed based on the

obtained precision and recall.

Average precision =
𝑃𝐶1+ 𝑃𝐶2+⋯.+𝑃𝐶𝑛

𝑛
 (11)

Based on Table 2, the proposed neural network model

outperforms KNN by about 85% in average for all the

components.

Table 1: Product prediction accuracy

Product

K-Nearest

Neighbor

Neural

Network
Improvement

F-Measure F-Measure

 Platform 22.15% 64.31% 190%

JDT 52.1% 60.27% 15.53%

PDE 31.11% 54.47% 75.09%

Equinox 31.50% 53.33% 69.27%

E4 18.27% 20.93% 14.15%

AVERAGE 31% 51% 73%

Table 2: Component prediction accuracy

Product

K-Nearest

Neighbor

Neural

Network
Improvement

F-Measure F-Measure

 Platform 12.91% 27.55% 113%

JDT 18.63% 55.39% 15.53%

PDE 29.31% 48.22% 64.50%

Equinox 14.13% 26.34% 86.45%

E4 19.22% 48% 148%

AVERAGE 19% 41% 85.50%

5 THREATS TO VALIDITY

In Eclipse, stack traces are manually copied by the users in

the bug report description. Users may copy and paste

partial stack traces inside the description. However, partial

stack traces may affect the performance of our approach.

Furthermore, our regular expression may have missed some

of our functions when extracting stack traces.

The ratio of the number of bug reports having stack

traces to the total number of bug reports in Eclipse

repository is only 10%. We believe that the proposed neural

network model can easily be extended to cover larger bug

repositories. This is an important point to claim the

generalization of our results.

6 CONCLUSION AND FUTURE WORK

In this paper, we studied the feasibility of incorporating

neural network learning into the process of predicting the

faulty component or product field of a bug report. Our

results show that a neural network combined with stack

traces yield superior accuracy compared to the existing

KNN algorithm.

Over the past decade, long short term memory, which is

a variant of recurrent neural networks (RNN), has been

shown to be very effective in capturing dependencies in an

input sequence. Efforts are currently under way to explore

the potential of this network in predicting bug report fields

when incorporated in a deep learning-based model.

REFERENCES

[1] M. Newman, “Software errors cost us economy $59.5 billion

annually,” NIST Assesses Technical Needs of Industry to Improve

Software-Testing, 2002.

[2] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,” In
Proc. of the 2Nd International Workshop on Recommendation Systems

for Software Engineering, 2010, pp. 52–56.

[3] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T.

Zimmermann, “What makes a good bug report?” In Proc. of the 16th

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2008, pp. 308–318.

[4] A. Lamkanfi and S. Demeyer, “Predicting reassignments of bug reports
an exploratory investigation,” In Proc. of the 17th European Conference

on Software Maintenance and Reengineering, 2013, pp. 327–330.

[5] A. Sureka, “Learning to classify bug reports into components” In Proc. of

the 50th International Conference on Objects, Models, Components,

Patterns, 2012, pp. 288–303.

[6] K .K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic prediction
of the severity of bugs using stack traces,” In Proc. of the 26th Annual

International Conference on Computer Science and Software

Engineering (CASCON '16), 2016, pp. 96-105.

[7] Korosh K. Sabor, A. Hamou-Lhadj, A. Larsson, "DURFEX: A Feature

Extraction Technique for Efficient Detection of Duplicate Bug Report,"

In Proc. of the IEEE International Conference on Software Quality,

Reliability and Security (QRS’17), 2017, pp. 240-250.

[8] N. Ebrahimi, Md. S. Islam, A. Hamou-Lhadj, M. Hamdaqa, "An

Effective Method for Detecting Duplicate Crash Reports Using Crash

Traces and Hidden Markov Models," In Proc. of the IBM 26th Annual

International Conference on Computer Science and Software

Engineering (CASCON’16), 2016, pp. 75-84.

[9] J. Lerch and M. Mezini, "Finding duplicates of your yet unwritten bug
report," In Proc. of the 17th European Conference on Software

Maintenance and Reengineering, 2013, pp. 69–78.

[10] C. Saranya, G. Manikandan, “A Study on Normalization Techniques for

Privacy Preserving Data Mining,” International Journal of Engineering

and Technology, pp 14-18.

[11] S. Krishna Kumar, “On weight initialization in deep neural networks”,

arXiv:1704.08863. Available online: https://arxiv.org/abs/1704.08863

[12] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy

set and cache-based approach for bug triaging,” In Proc. of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering, 2011, pp. 365–375.

[13] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and

multi-feature tossing graphs to improve bug triaging,” In Proc. of the
International Conference on Software Maintenance, 2010, pp. 1–10.

[14] X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated bug report field

reassignment and refinement prediction,” In IEEE Transactions on

Reliability, 65(3), 2016, pp. 1094–1113.

[15] J. Zhang and I. Mani, “KNN Approach to Unbalanced Data Distributions:

A Case Study Involving Information Extraction,” In Proc. of the
International Conference Machine Learning, Workshop on Learning

from Imbalanced Data Sets, 2003.

[16] J. Xie, M. Zhou and A. Mockus, "Impact of Triage: A Study of Mozilla

and Gnome," In Proc. of the International Symposium on Empirical

Software Engineering and Measurement, 2013, pp. 247-250.

[17] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “ “Not my
bug!” and other reasons for software bug report reassignments,” In Proc.

of the Computer Supported Cooperative Work, 2011, pp. 395–404.

[18] Z. Feng, Z. Sun and L. Jin, "Learning deep neural network using max-

margin minimum classification error," In Proc. of IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016,

pp. 2677-2681.

[19] Y. Shao, G. N. Taff and S. J. Walsh, "Comparison of Early Stopping
Criteria for Neural-Network-Based Subpixel Classification," In IEEE

Geoscience and Remote Sensing Letters, 8(1), 2011, pp. 113-11.

