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ABSTRACT 

Bug fixing is a major activity in software development and 

maintenance. Developers use information reported in bug 

reports to identify bug causes and to provide a fix. Previous 

studies have shown that bug report fields are often 

reassigned to different development teams after the report 

is sent to developers. This can introduce considerable time 

delays in the bug handling process. To overcome this issue, 

there exist numerous methods to automatically predict bug 

report fields by examining historical data. In this paper, we 

combine a neural network based model with stack traces to 

predict bug report fields. When applied to bug reports of 

the Eclipse repository, we found that our approach achieves 

improvement of about 73% in product prediction accuracy, 

and 85% in component prediction accuracy over the well-

known K-nearest neighbors (KNN) algorithm. The results 

of this preliminary study suggest that neural networks 

provide a robust alternative to traditional classification 

techniques. 
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1 INTRODUCTION 

Bug fixing is known to be a time-consuming and costly 

task [1]. When a system crashes, users can report the bug 

by entering a bug description, attaching a stack trace, 

indicating the severity of the bug, the platform, the faulty 

product and component, etc. Developers can then use this 

information to provide a fix [3]. 

Xia et al. [14] have shown that 80% of bug reports have 

their fields reassigned several times after a bug report has 

already been sent to developers. They have also shown that 

bug reports with field reassignment have significantly 

longer fixing time than those with no reassigned fields. 

These fields are used by triagers to route the bug reports to 

appropriate development teams. Incorrect assignment of 

these fields can significantly delay the processing time of 

bug reports, which in turn affects the productivity of 

developers [2]. 

There exist several techniques to predict the likelihood 

that a particular bug report field gets reassigned, among 

which the most recent one is the study proposed by Xie et 

al. [15]. The authors rely on traditional machine learning 

algorithms, such as the K-Nearest Neighbors (KNN), to 

predict whether a bug report field would most likely be 

reassigned. Their approach achieves an average F-measure 

of approximately 63% and 73% when predicting the 

reassignment of component and product fields, 

respectively. 

In this short paper, we propose a neural network 

learning algorithm, used in deep learning, to predict not 

only whether a specific bug report field gets reassigned, but 

also its new value. This is achieved by combining a neural 

network-based model for classification purpose with stack 

traces as features. The choice of stack traces is motivated 

by our previous work [7, 8], in which we showed that stack 

traces are excellent features for predicting bug severity [7] 

and duplicate bug reports [8].  

In this study, we only focus on product and component 

fields, which tend to be the most often reassigned fields [4, 

5, 16, 17]. When applied to bug reports of the Eclipse 

repository, our approach outperforms the use of KNN by an 

average of 73% and 85% for predicting product and 

component fields, respectively. 

2 GOALS AND POTENTIALS 

The main goal of this paper is to study the feasibility of 

combining neural networks with stack traces to predict 

component and product fields of bug reports. Many 

different neural network architectures have been developed 

throughout the years. One of the common tasks in 

designing such architectures is to select proper initial 

network weights and a suitable training algorithm. There 

exist many studies that leverage neural networks to help 

with software engineering tasks. To the best of our 

knowledge, this is the first attempt that a neural network 



  

 

 

learning-based model combined with stack traces are used 

to address the problem of predicting bug report fields. Our 

preliminary results show that this approach holds real 

potential in building powerful techniques for predicting 

various aspects of bug reports, and hence improving the 

productivity of triagers and development teams. Software 

engineering researchers and practitioners can exploit these 

results to further explore the potential of machine learning 

techniques as they are adaptable, have learning capabilities 

and non-parametric. 

 
Figure 1: Proposed approach 

3 APPROACH 

Figure 1 shows the proposed approach, which consists of 

training and testing phases. The model is trained using 

stack traces embedded in historical bug reports. The 

resulting model is then used to predict fields of new bug 

reports. It should be noted that other features such as bug 

report descriptions can also be used. We chose stack traces 

because they tend to be more formal than bug report 

descriptions. Similar studies have shown that stack traces 

provide better accuracy than descriptions [6]. The 

following subsections describe in more detail the proposed 

approach. 

3.1 Building Feature Vectors from Stack Traces 

In our method, each bug report stack trace is mapped to a 

feature vector. The input feature vector is then weighed 

using term frequency-inverse document frequency (TF-

IDF).  

Let T = f1,f2, … . . , fL  be a stack trace of function calls 

f1,to fL, T of length L. The stack trace T is generated by a 

bug in a software system from a unique alphabet  of size 

m = || function names in the system. Let the collection of 

K stack traces that are extracted from the bug tracking 

system and then provided for designing the product and 

component prediction system be denoted by 𝛤 =

T1,T2, … . . , TK. 

To determine the term frequency, each stack trace T 

is mapped into a vector of size m functions, 𝑇 → ∅(𝑇)𝑜𝜖Σ, 

where each function name 𝑓𝑖   in the vector is either one 

(appeared in the stack trace) or zero (did not appear in the 

stack trace). The term vector can then be weighed by the 

term frequency (tf): 

𝜙𝑡𝑓(𝑓, 𝑇) = 𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚         (1) 

In Equation (1), freq(fi) is the number of times the function 

𝑓𝑖  appears in 𝑇, divided by the total number of functions in 

the stack trace (L). 

It should be noted that not all functions have the same 

weight when comparing stack traces. Functions that appear 

rarely in stack traces must be given more weight. To give 

more weight to functions that rarely appear in stack traces, 

the IDF is used. The IDF increases the weight of rare 

functions while decreasing weight of popular functions. 

The term vector weighed by the TF-IDF is therefore given 

by: 

𝜙𝑡𝑓.𝑖𝑑𝑓(𝑓, 𝑇, 𝛤) =
Κ

𝑑𝑓(𝑓𝑖)
𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚        (2) 

where the document frequency 𝑑𝑓(𝑓𝑖)  is the number of 

stack traces 𝑇𝑘in the collection of 𝛤 of size K that contains 

function name 𝑓𝑖 . Thus, TF-IDF gives higher weight to 

functions that appear more in a particular stack trace T , 

while appearing less in other stack traces of the collection 

𝛤. 

In an ideal scenario, the distribution of labels in the 

training set would be balanced (there is a similar number of 

samples for each label). Unfortunately, this scenario is not 

suitable for large systems. Since some products or 

components have fewer bug reports in the bug tracking 

system, the distribution of labels tends to be unbalanced. In 

this situation, any classifier, including neural networks, 

would be biased toward the majority class labels. Various 

techniques were developed to address the unbalanced 

dataset distribution issue. These approaches range from 

oversampling minority class labels, undersampling majority 

class label, to using cost-sensitive classifier [15].  

In this paper, we used the random oversampling method 

to overcome the unbalance label distribution problem. This 

method randomly selects instances from minority class 

labels and adds copies of those instances to the dataset until 

an equal number of instances of each class label is reached 

in the dataset.  

In practice, if the inputs are normalized, the neural 

network will be trained more efficiently. If the magnitude is 

considerably different from one input to another, then their 

influence will negatively affect the trained network. We use 

the min-max normalization to normalize the input data. We 

use min-max as a linear transformation technique from a 

range of values between [𝑀𝑖𝑛𝐴, 𝑀𝑎𝑥𝐴] to a range of values 

between [0, 1]. Considering a value V in [𝑀𝑖𝑛𝐴, 𝑀𝑎𝑥𝐴]. 



  

 

  

The normalization is performed using the following 

equation [10].   

𝑁𝑜𝑟𝑚𝑎𝑙𝑧𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑉−𝑀𝑖𝑛𝐴

𝑀𝑎𝑥𝐴−𝑀𝑖𝑛𝐴
                       (3) 

3.2 Training Phase 

We use a three-layer model for the neural network. This 

network has been shown to learn any nonlinear function 

that is inherent between the inputs and outputs. Our model 

consists of three layers:  an input layer, a hidden layer, and 

an output layer. The input to the neural network, for each 

bug report, is the feature vector weighted using TF-IDF 

corresponding to the stack trace of that bug report. The 

output is the faulty product or component depending on the 

objective of the prediction.  

We used Theano
1
 library to create and train our three-

layer neural network. The number of nodes in the input 

layer corresponds to the number of distinct functions and 

the number of nodes in the output layer corresponds to the 

number of labels, e.g., products or components. The 

neurons in the input layer carry out no calculation, but only 

store the feature vector values. The output value of each 

node is the probability of the input instances belonging to 

that label.  

Before training a neural network, many parameters 

(known as hyperparameters) should be properly initialized. 

The accuracy of a neural network learning-based model is 

closely related to the proper initialization of those 

parameters. Throughout the training phase, we use Relu 

[11] as an activation function. Since our problem is a 

multiclass classification problem and we have multiple 

output nodes, we use softmax [18] so that the output 

probability of each node of the output layer is between zero 

and one.  The cross-entropy [18] is used as the cost 

function to measure the difference between distribution 

pairs. Using a backpropagation technique, which relies on a 

gradient descent based on cross-entropy, the weights of the 

neurons are updated, and the network is trained. For each 

neuron, the bias value is set to zero. Assume that there are 

𝑝  input-output pairs, 𝑠𝑝 , 𝑡𝑝 , available for training the 

network. After presentation of a pair of input-outputs, the 

weights for the interconnections are changed in proportion 

to the gradient of the error between the prediction and 

actual values according to the following relationship: 

                      ∆𝑝𝑤𝑗𝑖 = 𝜂𝛿𝑝𝑗𝛰𝑝𝑖                 (4) 

where 𝛿𝑝𝑗 for the input to hidden neurons, is defined as: 

                                                                 
1http://deeplearning.net/software/theano 

𝛿𝑝𝑗 = 𝛰𝑝𝑗(1 − 𝛰𝑝𝑗) ∑ 𝛿𝑝𝑘𝑤𝑘𝑗𝑘             (5) 

and, for the hidden to output neurons, it is defined as: 

                 𝛿𝑝𝑗 = (𝑡𝑝𝑗 − 𝛰𝑝𝑗)𝛰𝑝𝑗(1 − 𝛰𝑝𝑗)         (6) 

In Equation (4), 𝜂 is a parameter that is decreased as the 

training proceeds. 

It is well-known that the initial weights of neurons in a 

neural network are the most important factors that affect its 

performance [11]. Previous studies have shown that 

initializing the weights from a Gaussian distribution with 

zero mean and a small variance yields good accuracy [11]. 

In our model, we used a Gaussian distribution with zero 

mean and a standard deviation of 0.01. Another important 

hyperparameter is the learning rate. For a neural network to 

converge to an optimal solution, the learning rate should be 

carefully tuned to avoid the problem of overshooting. To 

satisfy this requirement, we tested our model with different 

learning rates and found that 0.01 provides the best results. 

An epoch is defined as a single presentation of each 

training dataset to the network. After the cross-entropy 

calculation for all instances is performed, the 

backpropagation network is run to optimize the weights. 

However, the number of epochs is considered a critical 

factor in training a neural network. If the network is trained 

too many times, then it learns the noise when exposed to 

sample inputs and outputs from the training dataset. This is 

referred in the literature to as the overfitting problem. On 

the other hand, if the number of epochs is too low, the 

model is considered under fitted. To avoid overfitting or 

underfitting, various regularization techniques have been 

introduced [19]. In this paper, we used the early stopping 

technique. After each epoch, the error of the model is 

measured using a validation dataset separate from the 

training dataset, if the error rate increases after a certain 

number of epochs, the learning process is stopped. Then, 

the resulting model is tested against a testing dataset. 

3.3 Testing Phase 

The K-fold cross-validation [14] is used in this work to 

assess the performance of our model. The dataset is divided 

into K roughly equal partitions. Each time, the model is 

trained using k-1 partitions, and then it is tested using the 

remaining partition. However, since each bug in the bug 

repository is reported at a specific time, we need to make 

sure that a new bug report is tested against those reported 

earlier. We achieve this by following a similar 

experimental setting (called longitudinal data setup) 

introduced by Tamrawi et al. and Bhattacharya et al. [12, 

13]. First, the bug reports are sorted based on their creation 

date. Then, the dataset is split into 10 non-overlapping 



  

 

 

equal size folds. We train the network on the first fold, we 

apply the early stopping technique using the second fold, 

and then we test it on the third fold. In the second round, 

we train the neural network on the first and second fold, 

then we use the third fold as the validation dataset, and the 

fourth fold as the test dataset. In the last step, we train the 

network on the fold one to eight by using the ninth fold for 

validation, and the last fold as the test dataset. 

4 EVALUATION 

In this section, we show the effectiveness of our approach 

in predicting the product and component fields of a bug 

report. 

We compare the performance of our approach to a 

traditional classification technique, namely the KNN. There 

exist several classification techniques proposed in the 

literature with various degrees of success. Among them, the 

KNN was chosen in this work due to its use in very recent 

studies that deal with the same problem of predicting bug 

fields reassignment [14]. The KNN is a lazy learning 

algorithm, based on choosing the K-nearest instances to 

each instance in the testing dataset. Then the label of the 

instance in the test dataset is selected using a majority 

voting algorithm. We train and validate KNN models using 

the exact process that we followed for training our neural 

network-based model. 

4.1 Evaluation Metrics 

To evaluate the performance of our approach, we measure 

the precision, recall, and F-measure [14] obtained from the 

prediction process of product and component fields. 

Precision is defined as the ratio of the number of bugs for 

which we correctly predicted their product field 𝑃𝐿   or 

component field 𝐶𝐿 (True Positives) to the total number of 

bugs predicted to have product field 𝑃𝐿   or component field 

𝐶𝐿 (True Positives + False Positives), and is calculated as 

follows [14]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝐿) =
# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑝𝐿

# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑙𝑎𝑏𝑒𝑙 𝑝𝐿
   (7) 

Recall is defined as the ratio of the number of bugs for 

which we correctly predicted their product field 𝑃𝐿   or 

component field 𝐶𝐿  (TP) to the total number of bugs that 

actually have the product label 𝑃𝐿   or component label 

𝐶𝐿[14], and is computed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑃𝐿)   =
# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿

# 𝑜𝑓 𝑏𝑢𝑔𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 ℎ𝑎𝑣𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 𝑃𝐿
     (8) 

F-measure is the harmonic mean of precision and recall, 

and is defined as follows [14]: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑝𝐿)   =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (9) 

We compute the improvement of one approach over the 

other using Equation (2), which is used in [14]). In this 

equation, 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐾𝑁𝑁  and 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑁 

correspond to the F-measure of KNN and our neural 

network models respectively. 

Improvement =  
𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑁 − 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐾𝑁𝑁

𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐾𝑁𝑁
        (10)  

4.2 Dataset 

We use Eclipse bug reports between January 2009 and 

March 2015 to test our approach. They were automatically 

downloaded from the Eclipse bug repository. In the Eclipse 

repository, stack traces are embedded in bug report 

descriptions. To extract the content of the stack traces in 

Eclipse, we used the regular expression presented by Lerch 

et al. [9]. We have a total number of 199,500 bug reports 

out of which 18,906 bug reports have one or more stack 

traces. This accounts for around 10% of the total bug 

reports. 

The extracted stack traces are preprocessed to remove 

noise in the data such as native methods that are used when 

a call to the Java library is performed. There are also lines 

in the stack traces that are labelled as ‘unknown source’. 

This may have been caused by the way debugging 

parameters were set. 

4.3 Results 

The results of predicting the product field using our neural 

network learning-based model and the KNN algorithm are 

shown in Table 1. In average, using our proposed model, 

we outperformed KNN by 73% in average when predicting 

the product field. For all products, we obtained higher F-

measure using the proposed neural network model 

compared to the KNN-based model. 

For the component field, we have run the proposed 

neural network learning approach and the KNN method to 

predict the components of each product separately. Due to 

space limitation, the precision, recall, and F-measure 

obtained for each product component cannot be shown. 

Instead, we show an average value. If we consider 

precision of the first component of a given product as 

𝑃𝐶1 and the precision of the n
th

 component as 𝑃𝐶𝑛 , the 

average precision is calculated using the following 

equation. We apply the same method for measuring the 

average recall. The F-measure is computed based on the 

obtained precision and recall. 

Average precision =  
𝑃𝐶1+ 𝑃𝐶2+⋯.+𝑃𝐶𝑛

𝑛
            (11) 

Based on Table 2, the proposed neural network model 

outperforms KNN by about 85% in average for all the 

components. 



  

 

  

Table 1: Product prediction accuracy  

Product 

K-Nearest 

Neighbor 

Neural 

Network 
Improvement 

F-Measure F-Measure 

 Platform 22.15% 64.31% 190% 

JDT 52.1% 60.27% 15.53% 

PDE 31.11% 54.47% 75.09% 

Equinox 31.50% 53.33% 69.27% 

E4 18.27% 20.93% 14.15% 

AVERAGE 31% 51% 73% 

Table 2: Component prediction accuracy 

Product 

K-Nearest 

Neighbor 

Neural 

Network 
Improvement 

F-Measure F-Measure 

 Platform 12.91% 27.55% 113% 

JDT 18.63% 55.39% 15.53% 

PDE 29.31% 48.22% 64.50% 

Equinox 14.13% 26.34% 86.45% 

E4 19.22% 48% 148% 

AVERAGE 19% 41% 85.50% 

5  THREATS TO VALIDITY 

In Eclipse, stack traces are manually copied by the users in 

the bug report description. Users may copy and paste 

partial stack traces inside the description. However, partial 

stack traces may affect the performance of our approach. 

Furthermore, our regular expression may have missed some 

of our functions when extracting stack traces.  

The ratio of the number of bug reports having stack 

traces to the total number of bug reports in Eclipse 

repository is only 10%. We believe that the proposed neural 

network model can easily be extended to cover larger bug 

repositories. This is an important point to claim the 

generalization of our results.  

6 CONCLUSION AND FUTURE WORK 

In this paper, we studied the feasibility of incorporating 

neural network learning into the process of predicting the 

faulty component or product field of a bug report. Our 

results show that a neural network combined with stack 

traces yield superior accuracy compared to the existing 

KNN algorithm. 

Over the past decade, long short term memory, which is 

a variant of recurrent neural networks (RNN), has been 

shown to be very effective in capturing dependencies in an 

input sequence. Efforts are currently under way to explore 

the potential of this network in predicting bug report fields 

when incorporated in a deep learning-based model.     
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