
1 

 

Automatic Prediction of the Severity of Bugs Using Stack Traces 

and Categorical Features 

 
Korosh Koochekian Sabor1, Mohammad Hamdaqa2, Abdelwahab Hamou-Lhadj1 

1Department of Electrical and Computer Engineering 

Concordia University, Montréal, QC, Canada  

{k_kooche, abdelw}@ece.concordia.ca 
2School of Computer Science 

Reykjavik University, Iceland 

mhamdaqa@ru.is 

 

Abstract 

Context: The severity of a bug is often used as an indicator of the impact of a bug on system functionality. 

It is often used by developers to prioritize bugs which need to be fixed sooner than others. The problem is 

that, for various reasons, bug report submitters often enter an incorrect severity level, delaying the bug 

resolution process. Techniques that can automatically predict the severity of a bug may significantly reduce 

the bug triaging overhead. In our previous work, we showed that the stack traces can be used for predicting 

the severity of a bug with a reasonable accuracy.  

Objective: In this study, we expand our previous work by proposing an approach for predicting the 

severity of a bug by combining bug report categorical features and stack traces. We focus on three 

categorical features, namely, the faulty product, faulty component, and operating system. A software 

system is composed of many products; each has a set of components. Components interact with each to 

provide the functionality of the product. The operating system field refers to the operating system on which 

the software was running on during the crash. 

Method: The proposed approach uses a linear combination of stack trace and categorical features similarity 

to predict the severity of bug reports. We adopt a cost sensitive K Nearest Neighbor approach to overcome 

the unbalance label distribution problem and improve the classifier accuracy. 

Results: Our experiments on bug reports of the Eclipse project submitted between 2001 and 2015 and 

Gnome submitted between 1999 and 2015 show that the use of categorical features improves the prediction 

accuracy of an approach that uses stack traces alone by 5% to 20%. 

Conclusion: The accuracy of predicting the severity of bugs is higher when combining stack traces and the 

three categorical features: product, component, and operating system.  



2 

 

Keywords— Bug Severity; Stack Traces; Machine Learning; Mining Software Repositories; Software 

Maintenance;  

1. Introduction 

Software defects that go undetected during the verification phases often cause system crashes and other 

undesirable behaviors. When a crash occurs, users have the option to report the crash using bug tracking 

systems such as Windows Error Reporting tool1, Mozilla crash reporting system2, and Ubuntu’s Apport 

crash reporting tool3. The main objective of these systems is to enable end users to submit crash/bug 

reports, where they can report various information about a bug including a textual description, the stack 

trace associated with the bug, and other categorical features such as the perceived severity of the bug and 

its operating environment (e.g., product, component and operating system).  

After a bug report is submitted, a team of triagers examine each report in order to redirect the ones 

requiring fixes to the developers of the system. For software systems with a large client base like Eclipse, 

triaging tends to be a tedious and time-consuming task. This is due to the large number of reports received 

[DMJ11]. Triagers usually prioritize the bug reports using typically the reported bug severity. A bug 

severity is defined as a measure of how a defect affects the normal functionality of the system [LDSV11, 

YHKC12].  

Despite the existence of guidelines on how to determine the severity level of a bug, studies have shown that 

users often specify the severity level incorrectly, mainly because they lack expertise in the system domain 

[ZCYLL16, MHNSL15]. An inaccurate severity level may cause delays in processing bug reports as shown 

by Zhang et al. [ZCYLL16]. Triagers often have to review bug reports in order to determine the right 

severity level, a task that is usually achieved manually, hindering productivity and slowing down the bug 

resolution process [YHKC12, TLS12, YZL14, ZYLC15]. 

To address this issue, several methods [LDSV11, AADPKG08, MM08] have been proposed to predict the 

correct severity level of a bug. These techniques treat the problem as a classification problem, by learning 

from historical bug reports in order to predict the severity levels of the incoming ones. These studies 

mainly use words in bug report descriptions as the main features for classification. In our previous work 

[SHH16], we showed that using the information in stack traces, which are attached to bug reports, the 

severity of a bug could be predicted more accurately compared to using bug report descriptions. 

                                                      

1http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440.aspx 
2http://crash-stats.mozilla.com 
3https://wiki.ubuntu.com/Apport 



3 

 

In this study, we improve our previous work by adding categorical information of bug reports. Categorical 

information of a bug report provides information about the environment in which the bug has been 

discovered. Such information is important when assigning the bug severity, particularly for system and 

integration bugs, which are the most difficult ones to identify at development time [MM08]. For this 

reason, in this work, we extend our previous work by proposing a severity prediction approach that uses the 

combination of stack traces and categorical features of bug reports. We focus on three categorical features, 

namely the faulty product, component, and operating system.  

To the best of our knowledge, this is the first time that stack traces with categorical features are used to 

predict the severity of bugs. We evaluate our approach on 11,825 and 153,343 bug reports from Eclipse and 

Gnome bug repositories. We show that by combining stack traces and categorical features, the prediction 

accuracy of our previous approach that uses solely stack traces can be improved by 5% for Eclipse and 

20% for Gnome. 

Several original contributions to the literature emerge from our research.  

• Devising a new approach for predicting the severity of bugs that combines stack traces and bug report 

categorical features. 

• Comparing the results of the new approach to the state of the art in this field.  

The remaining parts of this paper are organized as follows: Section 2, lists the main features of a bug 

report. Section 3 presents our severity prediction approach, followed by evaluation and experimental results 

in Section 4. The limitations and threats to validity are presented in Section 5. Section 6 presents the 

background and related work.  Finally, we conclude the paper in Section 7. 

2. Bug Report Features 

A bug report consists of a description, a stack trace (optional), and other categorical features.  

2.1. Bug Report Description 

A bug report description is entered by bug report submitters to explain the observed behaviour during the 

crash. A good description should provide enough information to guide a developer in understanding what 

user or tester has observed during the crash. Bug descriptions are written in natural language and can be 

quite verbose. An example of a well written description is "Download fails on Customer Report when user 

clicks on the downed button”. An example of an ineffective description is "Download does not work" as it 

does not provide details about when or how this failure occurs. The quality of a bug report description 



4 

 

depends on who is writing the description and hence it can be subjective. In addition, bug report 

descriptions are subject to the imprecision and ambiguity of natural language.  

2.2. Stack Traces 

A stack trace is a sequence of function calls that are in the memory stack when the crash occurs. An 

example of a stack trace is shown in Figure 1. This trace is taken from the Eclipse bug repository. It 

represents the stack trace of Bug 38601. The bug was caused by a failure of checking for a null pointer in 

the search for a method reference in the Eclipse. 

 

 

 

 

 

 

Bettenburg et al. showed that stack traces are considered to be very by developers in order to fix a bug 

[BJSWPZ08]. Nayrolles et al. showed that stack traces are not only useful for understanding a bug by also 

for bug reproduction [NHTL15][NHTL16]. Stack traces have also been used to detect duplicate bug reports 

in large bug report repositories [ETIHK19, EH15, EIHH16]. Currently in the Bugzilla bug tracking system, 

attaching a stack trace is not mandatory and not all bug reports have stack traces. Both Eclipse and Gnome 

use the Bugzilla bug tracking system, so there is no special section for stack traces and it is up to users to 

copy a stack trace into the bug report description field.  

2.3. Categorical Features 

In addition to the description of the bug and a stack trace, users must choose other categorical fields, which 

can further help developers to fix the bug. Categorical features of a bug include the product, component, 

version, operating system, severity of the bug, submitter’s name, etc. The triaging team reviews bug report 

categorical fields may decide to update them based on their experience and the information provided.  

In this study, we choose to use, in addition to stack traces, three categorical features to predict the severity 

of a bug: the product, the component, and the operating system. Severity of a bug is typically related to the 

product and component in which the bug occurs. Bugs that are discovered in core products and components 

should receive immediate attention to reduce system downtimes. These bugs may be categorized as highly 

5- org.eclipse.jdt.internal.corext.util.Strings.convertIntoLines() 

4- org.eclipse.jdt.internal.ui.text.java.hover.JavaSourceHover.getHoverInfo() 

3-  org.eclipse.jdt.internal.ui.text.java.hover.AbstractJavaEditorTextHover.getHoverInfo() 

2- org.eclipse.jdt.internal.ui.text.java.hover.JavaEditorTextHoverProxy.getHoverInfo() 

1- org.eclipse.jface.text.TextViewerHoverManager.run() 

Figure 1. The stack trace for bug 38601 from Eclipse bug repository  



5 

 

severe. It is therefore intuitive to select product and component fields when predicting the severity of bugs. 

We also decided to experiment with other categorical features such as the operating system, the software 

version, the submitter, etc. We proceeded using the forward selection approach presented by Ian et al 

[WFH11]. The idea is to add each feature one at the time and see the effect on accuracy. In this study, we 

found that, except for product, component, and operating system, the other features did not improve 

accuracy. For this reason, we settled on product, component, and operating system as our final set of 

categorical features.  

2.3.1. Levels of Bug Severity  

Severity can be manually assigned by a user and describes the level of the impact that a bug has on the 

system. The followings are the main severity levels of Eclipse Bugzilla1: 

o Blocker severity shows bugs that halt the development process. Blocking bugs are the bugs 

that do not have any work around.  

o Critical bugs are bugs that can cause loss of data or sever memory leaks.  

o Major bugs are the bugs that are seriously obstacle to work with the software system.  

o Normal bugs are chosen when the user is not sure about the bug or if the bug is related to 

documentation.  

o Minor bugs are the ones which are worth reporting but do not interfere with the 

functionality of the system.  

o Trivial bugs are cosmetic bugs such as typos in the java docs.  

There are also bug reports, which are marked as enhancements. These reports do not describe defects in the 

system but rather possible enhancements to the system such as adding new features or refactoring 

opportunities to improve system quality.  

3. The Proposed Approach 

In this paper, we propose a new bug severity prediction approach that uses stack traces and categorical 

features to predict the bug severity. We achieve this by calculating the similarity of each incoming bug 

report to all the previous bug reports in the bug tracking system. Similarity is calculated based on a linear 

combination of the similarity of the bug report stack traces and that of their categorical features, namely 

                                                      

1 https://wiki.eclipse.org 



6 

 

product, component and operating system. The severity of the bug is then chosen based on the severity of 

the K nearest neighbor (K nearest bug reports) to the incoming bug. Figure 4 shows the overall approach. 

 

Figure 4. Overall approach  

3.1 Extracting Features from Bug Reports 

In Bugzilla, users copy the stack trace of a bug inside the description of the bug report. To identify and 

extract these stack traces, we use the regular expression of Figure 2, from the work of Lerch et al. [LM13].  

Moreover, to extract stack traces form the Gnome bug repository, we defined and implemented the regular 

expression presented in Figure 3. 

[EXCEPTION] ([:] [MESSAGE])? ( [at] [METHOD] [(] [SOURCE] [)] )+ ( [Caused by:] [TEMPLATE] )? 

Figure 2.  Regular expression used for extracting stack traces from bug report description in the Eclipse bug repository [LM13]. 



7 

 

([#NUMBER] [HEX ADDRESS] [IN] [FUNCTION NAME] [(] [PARAMETERS] [)] ([FROM] | [AT]) ([LIBRARYNAME] | [FILENAME]))* 

Figure 3.  Regular expression used for extracting stack traces from bug report description in the Gnome bug repository 

Categorical features can be found in the XML preview of a bug report.  Each categorical feature is enclosed 

by a specific XML tag that conforms to the Bugzilla schema. Since both Gnome and Eclipse use the same 

bug tracking system, the XML preview is structured in the same format. In our work, we implemented a 

custom parser to extract this information from the bug report XML previews. 

3.2 Measuring Similarity between Bug Reports 

Given two bug reports (𝐵1, 𝐵2), the combined similarity is calculated as follows: 

SIM (𝐵1, 𝐵2) =    ∑ 𝑤𝑖 ∗  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖
4
𝑖=1          (1) 

where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 𝑎𝑛𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 are defined as follows: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 =   𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒𝑠  

𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 =  {
1               𝑖𝑓 𝐵1. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐵2. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒3 =  {
1           𝑖𝑓 𝐵1. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐵2. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒4 =  {
1         𝑖𝑓 𝐵1. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐵2. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚
0                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Based on Equation (1), the similarity of two bug reports is the linear combination of their corresponding 

stack traces and categorical features similarities. We discuss the similarity of stack traces in the next 

section. The similarity of categorical features is one if they are the same and zero if they are not. Note that 

Equation (1) uses four parameters wi: (w1, w2, w3, w4), which represent the weight of each feature. These 

parameters need to be optimized to reflect the importance of each feature. To this end, we use an adaptive 

learning approach that relies on a cost function and gradient descent in a similar way to the one proposed 

by Sun et al. [SLKJ11]. The format of our training set is similar to the one used by Sun et al. [SLKJ11]. 

The dataset contains triples in the form of (q, rel, irr) where q is the incoming bug report, rel is a bug report 

with the same severity and irr is a bug report with a different severity. The method used to create the 

training set (TS) is shown in Algorithm 1. 

Based on Algorithm 1, in the first step, bug reports are grouped based on their severity levels. Next, for 

each bug report (q) in each severity group we need to find bug reports that have the same severity level and 

those with a different severity.  We chose another bug report from the same severity group (rel) and chose a 

bug report from another severity group (irr). The process continues until we create all (rel, irr) pairs for the 



8 

 

bug report (q). We continue the same steps for all the bug reports in our training set to create the (q, rel, irr) 

triples. For example, assume we have two severity labels {S1, S2} and Bug1and Bug2 have severity level 

S1,  and Bug3 and Bug4 have severity level S2. The triples with the format (q, rel, irr) for training in this 

case is: (bug1, bug2, bug3), (bug2, bug1, bug4), (bug3, bug4, bug1), (bug4, bug3, bug2). 

TS = ∅: training set 

N>0 parameter controlling size of TS 

G={𝐺1, 𝐺2, 𝐺3, 𝐺4, … , 𝐺𝑛 } 

𝐺𝑖 =  𝑏𝑢𝑔 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑜𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑖  

For each Group 𝐺𝑖 in the repository do 

   R= all bug reports in Group 𝐺𝑖 

   For each report q in R do 

        For each report rel  in R-{q} do 

             For i=1 to N do 

                    Randomly choose a report irr out of R 

                   TS=TS U  {(q,rel,irr)} 

             End for 

        End for 

   End For 

End for 

Return TS 

Algorithm 1. Creating training set. 

To define a cost function based on the created triples in order to optimize the free parameters 

(𝑤1, 𝑤2, 𝑤3, 𝑤4), we use the cost function, RankNet, that is defined in [SLKJ11]: 

Y= Sim(irr,q) – Sim (rel,q)   (2) 

RankNet(I)=𝐿𝑜𝑔(1 + 𝑒𝑌)     (3) 

The goal is to minimize the defined RankNet cost function. The cost function is minimized when the 

similarity of bug reports with the same severity defined in Equation (1) is maximized and the similarity of 

the bug reports with different severities is minimized. To minimize the above cost function, we use a 

gradient descent algorithm as shown in Algorithm 2. 



9 

 

TS = ∅: training set 

N>0 size of TS 

Ƞ: the tuning rate 

For n=1 to N do 

    For each instance I in TS in random order do 

        For each free parameter x in sim() do 

            x=x-  Ƞ * 
𝜕RankNet 

𝜕𝑥
             

        End for 

    End for 

End For 

Algorithm 2. Optimization using gradient descent [SLKJ11]. 

3.3 Stack Trace Similarity 

To compare two stack traces, we first create feature vectors using all distinct functions in all the stack 

traces, then weigh the feature vector for each stack trace using term-frequency and inverse document 

frequency (TF-IDF). We use cosine similarity to compare stack traces using their corresponding weighted 

feature vectors. We further elaborate on each of these steps in the following subsections  

3.3.1 Building Feature Vectors 

In our approach the term concept refers to a function name and a document refers to a stack trace. Before 

explaining the process, let us consider the following definitions: 

• Let 𝑇 = 𝑓1,𝑓2, … . . , 𝑓𝐿 be a stack trace of a bug that is generated by a crash in the system. T is a set 

function calls 𝑓1,to 𝑓𝐿, where L is the length of T. 

• Let  be an alphabet of size m = || that represents distinct function names (terms) in the system.  

• Let 𝛤 = 𝑇1,𝑇2, … . . , 𝑇𝐾 be a collection of K traces that are generated by the process (or the system) 

and then provided for designing the severity prediction system. 

• Each stack trace T  could be mapped into a vector of size m functions, 𝑇 → ∅(𝑇)𝑓𝑖𝜖Σ, in which 

each function name 𝑓𝑖   either has the value one, which indicates the presence of the function or 

zero, which indicates the absence of that function. 

Given the previous definitions, the term-vector can be weighted by the term-frequency (tf) as shown in 

Equation 4: 



10 

 

𝜙𝑡𝑓(𝑓, 𝑇) = 𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚         (4) 

In Equation (4), freq(fi) is the number of times the function 𝑓𝑖 appears in 𝑇 normalized by L, where L is 

total number of functions calls in T. 

Term frequency only shows the local importance of a function 𝑓𝑖 in a stack trace. However, unique function 

names (terms) that appear frequently in a small number of stack traces convey more information than those 

that are frequent in all stack traces. Hence, the inverse document frequency (idf) is used to adjust the 

weights of functions according to their presence across all stack traces. The term vector weighted by the 

tf.idf is therefore given by Equation (5): 

𝜙𝑡𝑓.𝑖𝑑𝑓(𝑓, 𝑇, 𝛤) =
Κ

𝑑𝑓(𝑓𝑖)
𝑓𝑟𝑒𝑞(𝑓𝑖); 𝑖 = 1, … , 𝑚        (5) 

In Equation (5), 𝑑𝑓(𝑓𝑖) is the number of traces in the collection 𝛤 that contains the function name 𝑓𝑖. Thus, 

higher score is given to functions that are very common in a stack trace, but rare in other traces of the 

collection . 

Next, for each stack trace Ti, ∈ 𝛤 a feature vector based on the model is constructed and weighed using       

TF-IDF. The output of this part is an adjacency matrix, where each row shows a weighed stack trace 

corresponding to a bug.  

3.3.2 Measuring Similarity between Stack Traces 

To compare two stack traces, we measure the distance between their corresponding feature vectors using 

the cosine similarity measure. Given two vectors 𝑉1 =< 𝑣11, 𝑣12, … . . 𝑣1𝑛 > and 𝑉2 =< 𝑣21, 𝑣22, … . . 𝑣2𝑛>, 

the cosine similarity is calculated as follows [MRS08]:  

𝐶𝑜𝑠(𝜃)  =  
𝑉1.𝑉2

|𝑉1|.|𝑉2|
     (6) 

As shown in Equation (6), the cosine similarity between the two vectors is the cosine of the angle between 

the two vectors. It is equal to the dot product of the two vectors divided by the multiplication of their sizes. 

3.4 KNN Classifier for Severity Classification  

After calculating the similarity of bug reports by a linear combination of their stack traces and categorical 

features similarity, we use KNN to predict the severity of the incoming bug report. KNN is an instance-

based lazy learning algorithm [TLS12]. Given a feature vector, KNN returns the K most similar instances 

to that vector. Following a typical KNN classification algorithm, in our case, KNN has two phases: in the 

first phase, the similarity of the incoming bug report 𝐵𝑖 to all the bugs in the training set is calculated. 



11 

 

Accordingly, based on the value of (K), which is a constant value that defines the number of returned 

neighbors, the algorithm returns the K nearest relevant instances. In the second phase, a voting algorithm 

(e.g., majority voting) among the labels of the k most similar instances is used to classify the incoming bug 

report 𝐵𝑖. The label of instance X (i.e., the instance that corresponds to 𝐵𝑖)  can be determined given the 

labels set C by majority voting as in Equation (7) [PF13]. 

C(X) = 
𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑗  ∈ 𝐶 𝑠𝑐𝑜𝑟𝑒 (𝑐𝑗 , 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋))    (7) 

In Equation (7) 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑘(𝑋) is the K nearest neighbors of instance X, argmax returns the label that 

maximizes the score function, which is defined in Equation (8) [PF13]. 

Score (𝑐𝑗 , 𝑁) =  ∑  [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁   (8) 

In Equation (8), 𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗 returns either one or zero. It is one when 𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗 and zero otherwise. 

In Equation (8) the frequency of appearance of a label is the only factor that determines the output label. 

Finally, the label with the highest frequency among K labels is chosen as the label of the incoming bug 

report. 

While the score function in Equation (8) shows promising results, to further enhance the prediction 

capability of our approach, we also need to consider the similarity of each top K returned bug reports by 

giving more weights to the labels of the bug reports that are closer to the incoming bug. The reason is that, 

bug reports that are closer to the incoming bug report 𝐵𝑖 will most probably have the same label as Bi. 

If we assume the distance of the closest bug report in the sorted list as 𝑑𝑖𝑠𝑡1 and the distance of the farthest 

bug report in the retrieved list as 𝑑𝑖𝑠𝑡𝑘 , then the weight of each label in the list can be calculated as 

Equation (9), as discussed by Gou et al. [GDZX12], where 𝑑𝑖𝑠𝑡𝑖 is the distance of bug report i. 

𝑤𝑖 = {

𝑑𝑖𝑠𝑡𝑘 −  𝑑𝑖𝑠𝑡𝑖

d𝑖𝑠𝑡𝑘− 𝑑𝑖𝑠𝑡1 
, 𝑖𝑓  𝑑𝑖𝑠𝑡𝑘  ≠  𝑑𝑖𝑠𝑡1 

1 ,                 𝑖𝑓 𝑑𝑖𝑠𝑡𝑘  =  𝑑𝑖𝑠𝑡1 
   (9) 

Equation (9) ensures that higher weights are given to bug reports that are closer to the incoming bug report. 

We need to update the score function in Equation (8) to incorporate the weights calculated in Equation (9). 

The updated score function is shown in Equation (10) [PF13]: 



12 

 

Score (𝑐𝑗, 𝑁) =  ∑ 𝑤(𝑥, 𝑦)  × [𝑐𝑙𝑎𝑠𝑠(𝑦) = 𝑐𝑗]𝑌∈𝑁     (10) 

 

where w(x,y) is the weight of each instance in the top k similar returned instances which is calculated by 

Equation (9) according to its distance to the incoming bug report 𝐵𝑖 corresponding to instance X. After 

calculating the weight of each label, according to Equation (10), the label with the highest weight is 

selected as the output label. 

4. Evaluation 

The goal of this section is to evaluate the accuracy of predicting the severity of bugs using stack traces and 

categorical features compared to our previous approach that only uses stack traces and the approach that 

uses bug report descriptions. More precisely, the experiment aims to answer the following questions: 

RQ1. How much improvement (if any) could be obtained by using stack traces over the approach that   

    uses bug report descriptions and a random approach? 

RQ2. Using the KNN classifier for predicting bug severity, how different the number of neighbors can 

affect the F-measure of the proposed approach? 

RQ3. What is the impact of adding categorical features to stack traces on accuracy of the severity 

prediction compared to solely using stack trace information and a random approach? 

Answering RQ1 shows the importance of using stack traces as an alternative to bug report descriptions.  

Answering RQ2 shows the sensitivity of the proposed approach based on the selected number of nearest 

neighbors. Answering RQ3 assesses the added value of categorical features.  

4.1. Experimental Setup 

4.1.1 The Datasets 

The datasets used in this paper consist of bug reports from the Eclipse and Gnome bug repositories. Both 

datasets are used extensively in similar studies [YZL14, BINF12, ZYLC15, SHH16]. We downloaded the 

Eclipse bug reports that were reported from October 2001 to February 2015 using a script that uses the bug 

report URLs. For example, URL https://bugs.eclipse.org/bugs/show_bug.cgi?id=1 refers to Bug Report #1. 

To obtain the next report, we simply need to change the id to 2, etc. In total, we collected of 455,700 bug 

reports by varying the bug report id until we reach bug reports that were reported in February 2015. After 

processing the collected bug reports, we found that about 1,000 reports were marked invalid. These bug 

reports may have been submitted, but later removed by the triaging teams, perhaps for maintenance 

purposes. We removed these reports from our dataset.  In addition, we found that 297,151 have normal 



13 

 

severity and 66,873 are labeled as enhancements. We also removed these reports from the dataset, resulting 

in a total of 90,676 valid bug reports with severities other than normal or enhancement. After applying the 

regular expression, we have found that 11,925 bug reports have at least one stack trace in the description. 

Stack traces with less than three functions were removed since they are partial stack traces and may 

mislead the approach. The resulting Eclipse dataset contains a total of 11,825 bug reports with17,695 stack 

traces in their description (see Table 1). 

Table 1. Characteristics of the datasets 

Data Eclipse Gnome 

Total number of reports 455,700 752,300 

Total number of enhancement reports 66,873 57,446 

Total number of bug reports with normal severity 297,151 297,831 

Total number of bug reports removed from the dataset 1,000 54,500 

Total number of BRs excluding normal and Enhancement  90,676 342,523 

Total number of BRs with stack traces 11,925 153,343 

 

The Gnome dataset used in this paper contains bug reports from February 1997 to August 2015. The 

dataset contains 752,300 reports out of which 57,446 are labeled as enhancement and 297,831 are labeled 

as normal. Similar to Eclipse, we found that 54,500 bug report were marked invalid. We removed these 

reports from our dataset (see Table 1). From the remaining 342,523 bugs, 153,385 bug reports come with 

one or more stack traces in their description. After eliminating bug reports with partial stack traces, we 

were left with a total of 153,343 bug reports with at least one stack trace in their description. 

In these repositories, stack traces are embedded in the bug report descriptions. As explained earlier, to 

extract the content of the stack traces in Eclipse, we use the same regular expression presented by Lerch et 

al. [LM13], and for Gnome, we use the regular expression shown in Figure 3. 

For Eclipse, the extracted stack traces are preprocessed to remove noise in the data such as native methods, 

used when a call to the Java library is performed. There are also lines in the traces that are labelled 

‘unknown source’. This occurs due to the way debugging parameters were set. 

Normal severity is the default choice when submitting a bug report, so it is usually chosen arbitrarily. 

Consistent with previous severity prediction studies (e.g. [LDSV11, AADPKG08, MM08]), we removed 



14 

 

bug reports with normal severity. Furthermore, enhancements are not considered as bugs, and are also 

removed from the datasets when performing the experiments [SHH16].  

Consistent with the previous studies (e.g., [TLS12, YZL14, ZYLC15]), we use the severity of bugs from 

the bug tracking system as label. These severities are set by users and then further adjusted by bug triagers.  

Figure 5 shows the process of assessing bug report severities by triagers after the bug is submitted by the 

user. 

 

Figure 5. The bug report handling process (adapted from [SSG15]) 

4.1.2 The Training and Testing Process 

In our approach, for each dataset, we sort bug reports by their creation date and use the first 10% of the 

dataset to train the linear combination model of Equation (1) and optimize the coefficients, w1, w2, w3, w4, 

using Algorithm (2). We tested different training dataset sizes for both datasets and did not find noticeable 

differences for the value of the coefficients of Equation (1) by increasing the training dataset size beyond 

10% of the bug reports. After optimizing the coefficients, we used the remaining 90% of the dataset for 

testing our online approach. With the arrival of each bug report in the test set, its stack trace is compared to 

stack traces of all previous bug reports in the testing set and then using the obtained coefficients from the 

training phase, the similarity of the bug reports is calculated. Next, the K nearest neighbor approach is used 

for predicting the severity of the incoming bug report. For instance, assume our test set has N bug reports, 

in our online severity prediction method, with the arrival of the M’th bug report (0<M<=N), all the M-1 

previous bug reports in the test set are compared to that bug report and their similarity is calculated using 

the linear model of Equation (1). The K nearest neighbor is then used to predict the severity of the M’th 

incoming bug report. 

This approach aims to be practical in the sense that it can be deployed in an actual bug tracking system. 

This is because bug reports follow a temporal order based on their creation date. This also explains why we 

did not follow the traditional splitting of the data into 70% training and 30% testing sets, typically used in 

machine learning studies.  

 

Analyzing a bug 

report 

Assessing bug     

report severity and    

adjusting it if 

necessary  

Assigning of bug 

report to developers 



15 

 

4.1.3 Dealing with Imbalanced data 

The distribution of severities of bugs in both datasets is not balanced. Overall, there are more bugs having 

Critical or Major severities than other severity labels. The distribution of the severity labels in our datasets 

is shown in Figures 6 and Figure 7. Note that for Gnome, the severity label distribution is shown using the 

logarithmic scale since the dataset is much more imbalanced compared to Eclipse 

These figures show that the distribution of severity labels in Eclipse and Gnome are unbalanced, favoring 

Critical and Major Severity labels.  In the next section, we discuss the approach that is used to tackle the 

imbalanced dataset distribution problem. 

4.2. Cost-sensitive learning  

In an ideal scenario, the distribution of labels in the training set should be balanced (there are similar 

sample sizes for each label). Unfortunately, this scenario is not common for large industrial systems. For 

example, in Eclipse and Gnome datasets, some severities have less bug reports in the bug tracking system 

and the distribution of the labels is unbalanced. 

Training a classifier on an imbalanced dataset creates bias towards the majority class labels. This is due to 

the fact that the classifier tends to increase the overall accuracy, which leads to ignoring minority class 

samples in the training set. Different approaches exist to overcome the imbalanced dataset problem. These 

approaches include oversampling the minority class, under-sampling the majority class or creating cost 

sensitive classifier [ZM03]. We experimented with all these approaches and observed that cost-sensitive 

learning [ZM03] is the most suitable approach to overcome the imbalanced dataset problem in Eclipse and 

Gnome datasets. 

 

0

1000

2000

3000

4000

5000

6000

7000

Blocker Critical Major Minor Trivial

N
u

m
b

er
 o

f 
b

u
gs

 r
ep

o
rt

s

Severity Level



16 

 

Figure 6. Distribution of the severity labels in Eclipse dataset 

 

 

Figure 7. Distribution of the severity labels in Gnome dataset 

 

To transform a classifier into a cost-sensitive classifier, we need the output of the classifier to be equal to 

the probability of a bug belonging to each severity class. Furthermore, we need to define a cost matrix. 

Using a cost matrix, the probability of each label is replaced by the average cost of choosing that class 

label. Indeed, to change a classifier to a cost-sensitive classifier, we do not need to change the internal 

functionality of the classifier. Instead, according to the output probabilities and using a cost matrix, the 

classifier makes an optimal cost-sensitive prediction. 

In Equation (10), the K nearest neighbor returns the weight for each label, then the label with the largest 

weight is chosen. To make our classifier cost sensitive, we first need to adjust the outputs to represent 

probabilities instead of weights. For example, if B is a bug report in the testing dataset that has m classes. 

The classifier must provide a list of probabilities 𝑝1 … … … 𝑝𝑚, in which each 𝑝𝑖 shows the probability that 

the bug (B) severity label belongs to the ith class in the test set. Since, the summation of all probabilities 

should be equal to one (i.e., 𝑝1 + 𝑝2 + ⋯ +  𝑝𝑚 =1), the weights need to be normalized. 

To calculate the probability of each label, considering that the output of our classifier is 𝑤1 … … … 𝑤𝑚, we 

use Equation (11) [SHH16], where W=𝑤1 + ⋯ + 𝑤𝑚. 

𝑝𝑖 =  
𝑤𝑖

𝑊
            (11) 

 

1

10

100

1000

10000

100000

1000000

Blocker Critical Major Minor Trivial

N
u

m
b

er
 o

f 
b

u
gs

 r
ep

o
rt

s

Severity Level



17 

 

The probability of each label is then changed to classification cost of each class label by a cost matrix 

which contains the misclassification cost of each class label. We set the misclassification cost in a cost 

matrix that corresponds to the confusion matrix [LD13] in Figure 8. 

 Actual 

Positive Negative 

Predicted 
True positive False positive 

False negative True negative 

Figure 8. Confusion matrix 

In the confusion matrix, higher values of true positives and true negatives are favorable, thus we set the 

misclassification cost of these two values to zero. However, the cost of false positives and false negatives is 

selected based on the classification context. 

We overcome the imbalance distribution problem by assigning high misclassification cost to the under-

sampled class labels and low misclassification cost to over-sampled class labels. We chose the cost of the 

misclassification of each class label to be reciprocal to the number of existing instances of that class 

divided by the number of instances of the majority class (see Equation (12)). In this case, classes which 

have lower number of instances will have higher misclassification cost and classes which have high 

number of instances will have lower misclassification cost. If we consider having C different classes and 

assume 𝑠𝑗 is the number of instances of class j in the training set and s is the number of instances of the 

majority class in the training set, then the misclassification cost of each class  𝐶𝑗 is calculated by Equation 

(12) [SHH16].  

𝑀𝐶𝑗 =  
𝑆

𝑆𝑗
        (12) 

The cost matrix is constructed using the misclassifications cost based on Equation (12). Then, we need to 

calculate the classification cost of each class label based on the cost matrix and the calculated probabilities 

based on Equation (11). Assume we have M classes and the incoming bug belongs to each of these classes 

with probabilities of 𝑃1 … … 𝑃𝑚,  and assume that each class has a misclassification cost of 𝐶𝑂1 … … 𝐶𝑂𝑚, 

then the cost of assigning the bug report to each of those classes is calculated by Equation (13) [QWZZ13]. 

𝐶𝐶𝑂𝑖 =  ∑ 𝐶𝑂𝑗  ×  𝑃𝑗𝑗 ∈𝑚 𝑎𝑛𝑑 𝑗≠𝑖   (13) 



18 

 

Finally, the class label with the lowest classification cost is selected as the output of the classifier. 

Misclassification costs, if assigned improperly, may degrade the classification accuracy of the 

classifier. In this paper, we used Equation (12) to determine the misclassification costs. 

Furthermore, to avoid very high misclassification costs that may be associated to some class 

labels, we choose a threshold of ten to be the maximum misclassification cost. 

We choose ten as our threshold because we want the majority and minority class labels to have the same 

impact on our classification method in both best- and worst-case scenarios based on Equation (13).  In one 

extreme case, if all ten returned most similar bug reports are of the majority class label, then the 

classification cost of all other severity labels will be increased by 100. The reason is that based in  Equation 

(12) the misclassification cost of the majority label is one and the probability of the majority class label is 

100% if all the returned bug reports have majority class label. Then based on Equation (13), the 

classification cost of all other labels will be raised to 1*100=100. We also choose to set the threshold of 

misclassification cost to be ten because in the worst scenario if only one out of ten most similar bug reports 

has the minority class label (if we consider that all ten most similar bug reports have the same distance to 

the incoming bug report) then the misclassification cost of minority severity label is ten and the probability 

of minority class label is 10% too. In other words, based on Equation (13), the classification cost of all 

other severity labels will be increased by 10*10=100, which is the same as in the case for majority class 

labels. However, not in all the cases the distance of bug report to all ten nearest returned bug reports is the 

same and a better threshold could be identified by testing different values for threshold and comparing the 

results of the classification method. 

Based on the proposed cost sensitive K nearest neighbor method, we update our testing phase to consider 

the probability of each severity and the cost of classifying each bug report to that severity using the 

misclassification cost matrix. Finally, the severity with the least classification cost will be selected as the 

output label (Figure 9 describes this process). 



19 

 

 

Figure 9. Updated the testing phase using cost sensitive k nearest neighbor  

4.3. Predicting severity of bugs using bug report description 

In this study, we compare our approach to the use of bug report descriptions. To predict the severity of a 

bug using the bug report description, we extract descriptions from all bug reports in our dataset. We 

tokenize words in the description of bug reports by splitting the text using space and new line character. 

We used the raw tokenized words for building a feature vector for each bug report. We build the feature 

vector using the distinct words in all bug report descriptions in our dataset. We use   TF-IDF to weigh the 

feature vectors. In this approach, each bug report description is represented by a vector built based on the 

frequency of occurrence of each word (Equation (4)) multiplied by inverse document frequency of each 

word (Equation (5)). We follow the same online severity prediction approach that is discussed in Section 3 

for predicting severity based on weighted feature vectors constructed from bug report descriptions.  

We create an ordered set of bug reports based on their creation date. We then exercise the scenario in which 

each bug report in our ordered set is compared to all previous bug reports using their corresponding 

weighted feature vectors. After calculating the distance of each bug report to all the previous bug reports, 

we use the K nearest neighbor bug reports to determine the bug severity label using Equation (10). Based 

on the K nearest neighbor of Equation (10), the severity of an incoming bug report is selected based on the 

severity label of its nearest neighbor weighted using their distance to the incoming bug report.  

Furthermore, we tackle the imbalanced dataset distribution problem by using the cost sensitive k nearest 

neighbor method with the same setting as for our approach using stack traces and categorical features. In 

this approach, after calculating the probability of each severity label, we use cost sensitive k nearest 



20 

 

neighbor of Equation (13) which calculates the cost of choosing each severity label by considering the 

misclassification cost of each severity label calculated using Equation (12) to predict severity of bug report. 

For example, assume our test set contains sorted bug reports {𝐵1, … … , 𝐵𝑁}, to predict severity of 𝐵𝐽 (1 < J 

<= N), we compared 𝐵𝐽 description to all the bug reports in the set {𝐵1, … , 𝐵𝐽−1}, then we predict the 

severity of 𝐵𝐽 using Equation (13). 

4.4. Predicting severity of bugs using a random classifier 

We also compare the result of our approach to a random classifier model, which selects a severity label for 

each bug in proportion to the different class labels. Assume we have T severity classes and the number of 

bug reports that belong to each class is 𝐵𝑠1
… … 𝐵𝑠𝑇

. If we randomly select severity labels for each bug, 

then our accuracy of predicting the severity label 𝑆𝑖 can be calculated using Equation (14): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆𝑖)   =
𝐵𝑆𝑖

∑ 𝐵𝑆𝑗
𝑇
𝑗=1

     (14) 

4.5. Evaluation Metrics 

In this study, we use the precision, recall and F-measure metrics to evaluate our approach. If we consider 

the number of bugs for which we predict that they should have a severity label 𝑆𝐿  as 𝑃𝑆𝐿
 and the number of 

bugs for which we correctly predict the severity label to be 𝑆𝐿 as 𝐶𝑆𝐿
 then precision is defined by Equation 

(15): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑆𝐿) =
𝐶𝑆𝑙

𝑃𝑆𝑙
 
     (15) 

Furthermore, if we consider the number of bugs that actually have the severity label 𝑆𝐿 as 𝑇𝑆𝐿
 then recall is 

calculated by Equation (16):  

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝐿)   =
𝐶𝑆𝑙

𝑇𝑆𝑙

     (16) 

In this study, a confusion matrix is built for each severity label. Then using the built confusion matrix, 

recall and precision is calculated. Since precision is the ratio of correctly predicted labels of a specific 

severity to the total number of labels predicted to have that severity, it actually measures the correctness of 

the approach. Meanwhile, since recall is the number of correct prediction of a severity to the total number 

of instances of that severity, it actually shows the completeness of the approach. However, the common 

practice is to combine these two metrics together to have a better perception of the accuracy of the severity 

prediction results. A common approach for combining these two metrics is F-measure. F-measure is the 

harmonic mean of precision and recall. F-measure is calculated according to Equation (17). 



21 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (17) 

4.6. Results and Discussion 

In the rest of the paper we refer to the approach that uses stack traces alone as  𝐵𝑆𝑃𝑆𝑇, the approach that 

uses bug report descriptions as 𝐵𝑆𝑃𝐷𝐸,  and the approach that uses stack traces and categorical features as 

𝐵𝑆𝑃𝑆𝑇+𝐶𝐹. 

In this section, we discuss the results of applying the proposed approach to stack traces and categorical 

features of the bug reports of the Eclipse and Gnome datasets. In our previous study [SHH16], we showed 

that 𝐵𝑆𝑃𝑆𝑇  outperforms 𝐵𝑆𝑃𝐷𝐸 . In this study, we show how 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹  performs better than 𝐵𝑆𝑃𝑆𝑇  and 

𝐵𝑆𝑃𝐷𝐸. When using a K nearest neighbor classifier, one of the most important factors is the value of K. The 

value of K shows the number of most similar items, which are used to choose a label. In our experiments, 

we recorded precision and recall and calculated F-measure by varying the value of K from 1 to 10 for each 

severity label in each dataset.   

Figure 10 to Figure 19 show the results for predicting different severity levels by varying list size for the 

Eclipse and Gnome datasets. We revisit the research questions in light of the results presented in Figure 10 

to Figure 19.  

We provide the detailed values of precision, recall and F-measure for each of the list sizes for all severity 

levels for both datasets in Appendix A. 

RQ1) F-measure of 𝑩𝑺𝑷𝑺𝑻 

Figure 10 to Figure 19 show the F-measure of the 𝐵𝑆𝑃𝑆𝑇 compared to the F-measure of 𝐵𝑆𝑃𝐷𝐸. For Eclipse 

dataset severity prediction using 𝐵𝑆𝑃𝑆𝑇 outperforms 𝐵𝑆𝑃𝐷𝐸 for Critical and Blocker severity labels. 𝐵𝑆𝑃𝑆𝑇 

has the same performance as 𝐵𝑆𝑃𝐷𝐸  for Major and Trivial severity labels. For Gnome dataset severity 

prediction using 𝐵𝑆𝑃𝑆𝑇  outperforms 𝐵𝑆𝑃𝐷𝐸  for Major and Blocker severity labels. 𝐵𝑆𝑃𝑆𝑇  has the same 

performance as 𝐵𝑆𝑃𝐷𝐸 for Critical and Trivial severity labels. 

For both datasets, 𝐵𝑆𝑃𝐷𝐸 outperforms 𝐵𝑆𝑃𝑆𝑇  for the Minor severity label only. It is worth to mention that 

although the bug report descriptions contain stack traces, we have higher accuracy using stack traces 

independently as described in our approach. These results are consistent with our previous study [SHH16], 

confirming that 𝐵𝑆𝑃𝑆𝑇  outperforms or has the same performance 𝐵𝑆𝑃𝐷𝐸  for predicting all bug severity 

levels, except the Minor severity level, when applied to Eclipse and Gnome bug reports datasets. 

We further investigated the reason that 𝐵𝑆𝑃𝑆𝑇  is slightly less performant compared to 𝐵𝑆𝑃𝐷𝐸  when 

predicting the Minor severity level. We elaborate more on this at the end of this Section. 



22 

 

We also compared the performance of our approach to a random classifier. Based on Figure 10 to              

Figure 19, we see that our approach outperforms a random classifier for all severity labels for both datasets, 

except for the Critical severity level in the case of the Gnome dataset. This is caused by two factors 

including the fact that the Critical severity label is the majority class label in Gnome and that the 

distribution of labels in Gnome favors the majority class. As we can see from Figure 7, the number of bugs 

of Critical severity is over 100,000, which is considerably higher than any other class. 

Based on Figure 6, the number of bug reports in Eclipse with Major severity is excessively higher than 

other severity labels. Using a classifier, the excessive number of Major severity label instances creates a 

bias in the outcome of classifier by drifting the machine learning approach toward predicting a major class 

label to increase the overall accuracy. This explains the similar results in the severity prediction 

performance using 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸 in Figure 12. 

The accuracy of predicting the Trivial severity level using both approaches is low compared to other 

severity labels in both datasets. The reason is due to the fact that the number of bug reports having Trivial 

severity is considerably less than other severity labels. 

RQ2) Sensitivity of the approach to the number of nearest neighbors 

Based on the Figure 10 to Figure 19, the proposed approach is slightly sensitive to the number of nearest 

neighbors chosen. For Gnome, none of the approaches are hugely sensitive to the number of nearest 

neighbors. For Eclipse, only the Major severity is slightly sensitive to the number of neighbors. The reason 

is that the Major severity label based on the Figure 6 is the majority class label. In this case, increasing the 

number of nearest neighbors will cause more labels to appear in the returned list, which increases the 

probability of not choosing a Major severity label. 

RQ3) Severity prediction improvement by adding categorical features 

As shown in Figure 10 to Figure 14, for Eclipse dataset, we have the best performance using 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 

compared to 𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸. Also based on Figure 15 to Figure 19, we have the best performance using 

𝐵𝑆𝑃𝑆𝑇+𝐶𝐹  compared to 𝐵𝑆𝑃𝑆𝑇  and 𝐵𝑆𝑃𝐷𝐸  for all cases but Minor severity for Gnome dataset. We can 

conclude that using the categorical features (product, component and operating system) in addition to stack 

traces improves the prediction accuracy of 𝐵𝑆𝑃𝑆𝑇 . The severity prediction accuracy improvement by 

adding categorical features ranges from 5% for Eclipse to 20% for the Gnome dataset. 

Similar to RQ1, we found that our approach, 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹, performs better than a random classifier, except for 

the Critical severity level in the case of the Gnome dataset for the same reasons we explained in RQ1. 



23 

 

The results shown in Figure 10 to Figure 19 confirm that combining product, component, and operating 

system categorical features with stack traces increase the severity prediction accuracy. 

We used the two tailed Mann-Whitney test to further assess the statistical significance of difference 

between the results shown in Figure 10 to Figure 19. More precisely, we compared F-measure of 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 

to F-measure of 𝐵𝑆𝑃𝑆𝑇 and also F-measure of 𝐵𝑆𝑃𝑆𝑇 to F-measure of 𝐵𝑆𝑃𝐷𝐸. We consider the difference 

between two sets of F-measures to be statistically significant if the significance level (p-value) is less than 

0.05. 

Based on the results shown in Appendix A, we found that, compared to 𝐵𝑆𝑃𝐷𝐸 , 𝐵𝑆𝑃𝑆𝑇  and 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 

improve precision more than recall. Higher precision means that the predicted severity level using  𝐵𝑆𝑃𝑆𝑇 

or 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 compared to 𝐵𝑆𝑃𝐷𝐸 has a higher probability of being the correct severity level. This makes 

the approach very suitable for developers who are reviewing bug reports, since it helps them to properly 

prioritize bugs and work on the critical ones sooner. 

 

Figure 10. F-measure of predicting Critical severity levels by varying list size in 

Eclipse dataset 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re
 

Size of list in K-NN
Stacktrace Description StackTrace With Catgorical Random



24 

 

 

Figure 11. F-measure of predicting Blocker severity levels by varying list size in 

Eclipse dataset 

 

  

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Stacktrace Description Stacktrace and catrgorical Random



25 

 

 

Figure 12. F-measure of predicting Majority severity levels by varying list size in 

Eclipse dataset 

 

 

Figure 13. F-measure of predicting Minor severity levels by varying list size in 

Eclipse dataset 

 

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Stacktrace Description Stac trace and categorical Random

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

StackTrace Description Stacktrace and categorical Random



26 

 

 

Figure 14. F-measure of predicting Trivial severity levels by varying list size in 

Eclipse dataset 

 

 

Figure 15. F-measure of predicting Critical severity levels by varying list size in 

the Gnome dataset 

 

 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Stacktrace Description Stacktrace and categorical Random

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Word Stack StackWithCategorical Random



27 

 

 

Figure 16. F-measure of predicting Blocker severity levels by varying list size in 

the Gnome dataset 
 

  

 

Figure 17. F-measure of predicting Major severity levels by varying list size in the 

Gnome dataset 
 

 

  

 
 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Word Stack StackWithCategorical Random

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Word Stack StackWithCategorical Major



28 

 

 

Figure 18. F-measure of predicting Minor severity levels by varying list size in the 

Gnome dataset 

 

 

Figure 19. F-measure of predicting Trivial severity levels by varying list size in the 

Gnome dataset 
 

 

 

 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Word Stack StackWithCategorical Random

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10

F-
m

ea
su

re

Size of list in K-NN

Word Stack StackWithCategorical trivial



29 

 

Furthermore, we used the Cliff’s non-parametric effect size measure, which shows the magnitude of effect 

size of difference between two sets of F-measures. The effect size estimates the probability that a value 

chosen from one group is statistically higher than a value chosen from another group [RJ05, GER11]. We 

want to calculate Cliff’s effect size to estimate the probability that one F-measure obtained from one of our 

approaches is statistically higher than an F-measure of another approach.  Cliff’s effect size (d) is 

calculated as follows [RJ05, GER11]: 

Cliff’s effect size = 
#(𝑥1> 𝑥2)−#(𝑥1< 𝑥2)

𝑛1∗ 𝑛2
 (18) 

In Equation (18), x1 and x2 are F-measure values within each group (each approach), # indicates number of 

times values of one group is higher or lower than values of other group and 𝑛1and 𝑛2 are size of each 

approach result. More precisely, let us define 𝑑𝑖𝑗 as follows [RJ05, GER11]: 

𝑑𝑖𝑗 = {

+1 𝑖𝑓 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑖 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ >  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑗 𝑓𝑟𝑜𝑚 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 

−1 𝑖𝑓 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑖 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ <  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑗 𝑓𝑟𝑜𝑚 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

0 𝑖𝑓 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑖 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ =  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑗 𝑓𝑟𝑜𝑚 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
 (19) 

Based on Equation (19), we can define Cliff’s effect size as follows [RJ05, GER11]: 

Cliff’s effect size = 
∑ ∑ 𝑑𝑖𝑗𝑗𝑖

𝑛1∗ 𝑛2
 (20) 

Cliff’s effect size ranges from [-1, +1]. Cliff’s effect size of +1 indicates that all the values of the first 

group are larger than second group, and -1 shows that all values of the first group are smaller than the 

second group. Considering Cliff’s effect size as d, effect size is small when 0.147 ≤ d < 0.33, medium for 

0.33 ≤ d < 0.474 and large for d ≥ 0 .474 [RJ05, GER11]: 

Table 2. Mann-Whitney test significance level and Cliff’s effect size of the approach with stack traces and categorical 

features and an approach which uses stack traces alone using the Eclipse dataset 

 Critical Blocker Major Minor Trivial 

Two tailed Mann-Whitney test significance level 0.045 0.007 0.02 0.0001 0.0007 

Cliff’s effect size 0.59 0.72 0.62 0.98 0.90 

 



30 

 

 

Table 3. Mann-Whitney test significance level and Cliff’s effect size of the approach with stack traces and categorical 

features and an approach which uses stack traces alone using the Gnome dataset 

 Critical Blocker Major Minor Trivial 

Two tailed Mann-Whitney test significance 

level 

0.0001 0.00018 0.00028 0.00018 0.00018 

Cliff’s effect size 1 1 0.97 1 1 

 

Tables 2 and 3 show the result of Mann-Whitney test significance level and Cliff’s effect size test between 

𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 and 𝐵𝑆𝑃𝑆𝑇 for Eclipse and Gnome, respectively. For both datasets and all severity levels, the 

difference of F-measure of the two approaches is statistically significant with a p-value < 0.05. Hence, we 

can conclude that the difference between F-measures of 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 and 𝐵𝑆𝑃𝑆𝑇is statistically significant for 

both datasets. 

Furthermore, since for all severity labels, the Cliff’s effect size of  𝐵𝑆𝑃𝑆𝑇+𝐶𝐹  compared to 𝐵𝑆𝑃𝑆𝑇 is more 

than 0.474, we can conclude that the former outperforms the latter with a large effect size for both datasets. 

Table 4. Mann-Whitney test significance level and Cliff’s effect size of the approach with stack traces and an approach that 

uses bug report descriptions using the Eclipse dataset 

 Critical Blocker Major Minor Trivial 

Mann-Whitney test a significance level 0.001 0.00736 0.79486 0.00168 0.72786 

Cliff’s effect size 0.88 0.72 -0.08 -0.84 0.1 

 

Table 4 and Table 5 show the result of Mann-Whitney test significance level and Cliff’s effect size between 

𝐵𝑆𝑃𝑆𝑇 and 𝐵𝑆𝑃𝐷𝐸 for Eclipse and Gnome respectively.  

For Eclipse dataset, the difference of F-measure of the two approaches is statistically significant with a p-

value < 0.05 for all severity levels, except for Major and Trivial. Consistent to the result of our previous 

study [SHH16] as shown in the Figure 12, since the Major severity is the majority class label, and the 

classifier is normally biased toward majority class label, we have the same accuracy when using 𝐵𝑆𝑃𝑆𝑇 as 

when using 𝐵𝑆𝑃𝐷𝐸. For Trivial, as shown in Figure 14, since the Trivial severity level is under-sampled, we 

see the same effect. This is because the classifier is biased toward the majority class label.  

 

 



31 

 

Table 5. Mann-Whitney test significance level and Cliff’s effect size of the approach that uses stack traces and an approach 

that uses bug report descriptions using the Gnome dataset 

 Critical Blocker Major Minor Trivial 

Mann-Whitney test a significance level 0.34722 0.00018 0.00018 0.00018 0.8493 

Cliff’s effect size 0.26 1 1 -1 0.06 

 

Furthermore, for Critical and Blocker, the Cliff’s effect size of 𝐵𝑆𝑃𝑆𝑇 compared to 𝐵𝑆𝑃𝐷𝐸 is more than 

0.474 and 𝐵𝑆𝑃𝑆𝑇 outperforms 𝐵𝑆𝑃𝐷𝐸 with a large effect. For the Major severity level, the Mann-Whitney 

test and Cliff’s effect size test results are consistent. Consistent with Mann-Whitney test, Cliff’s effect size 

for Major severity is close to zero which shows that the difference in F-measure of two approaches is not 

statistically different. Also, for the Minor severity level, the Mann-Whitney test shows that the difference 

between F-measure of the two approaches is statistically significant and the Cliff’s effect size shows that  

𝐵𝑆𝑃𝐷𝐸  largely outperforms 𝐵𝑆𝑃𝑆𝑇.  

For the Gnome dataset, the difference of F-measure of the two approaches is statistically significant with a 

p-value < 0.05 for all severity levels, except for Critical and Trivial. This is similar to the Eclipse dataset. 

Furthermore, for all severity labels other than Critical and Trivial, the Cliff’s effect size is large. For 

Blocker and Major severity, Cliff’s effects size of 𝐵𝑆𝑃𝑆𝑇 compared to 𝐵𝑆𝑃𝐷𝐸  is more than 0.474. For the 

Critical severity level, consistent with Mann-Whitney test which shows that the difference of F-measure of 

the two approaches is not statistically significant, Cliff’s test shows the effect size is small. Also, for Trivial 

severity level, we have consistent results from Mann-Whitney test and Cliff’s test (Mann-Whitney p-

value>0.05 and Cliff’s test is close to zero) which both show the difference of F-measure of 𝐵𝑆𝑃𝑆𝑇 and 

𝐵𝑆𝑃𝐷𝐸  are not statistically significant and both approach have the same performance. For the Minor 

severity level, the Mann-Whitney test shows that the difference of F-measure values of the two approaches 

is statistically significant and the Cliff’s effect size shows 𝐵𝑆𝑃𝐷𝐸  outperforms  𝐵𝑆𝑃𝑆𝑇 by a large effect size.  

For the Eclipse dataset, in the case of Minor severity, we had lower performance when using 𝐵𝑆𝑃𝑆𝑇 

compared to using the 𝐵𝑆𝑃𝐷𝐸. We investigated the dataset to study the underlying reason. Based on this 

investigation, we arrived to the following possible reasons: 

• Bug reports from Eclipse with Minor severity are mainly not from Eclipse platform, but from 

Eclipse plugins. Hence, their stack traces significantly vary from one to another. Studies [LM13, 

SHL17] show that 𝐵𝑆𝑃𝑆𝑇 can detect duplicate bug reports with higher accuracy compared to the 

approach which uses bug report descriptions. In our previous study [SHH16], we confirmed this 



32 

 

argument and showed that 𝐵𝑆𝑃𝑆𝑇  can predict bug reports severities with higher accuracy than 

𝐵𝑆𝑃𝐷𝐸. However, in the case of bug reports with Minor severity, due to the variety among plugins, 

there are fewer duplicate bug reports. Fewer duplicate bug reports mean less similar stack traces 

and hence a lower severity prediction accuracy. 

• We studied bug reports with Minor severity and observed that many bug reports with Minor 

severity have categorical features available in their header or description. Since categorical 

information is stored in the header or description of the bug reports, when using 𝐵𝑆𝑃𝐷𝐸, categorical 

features are being used to predict severity too. These categorical features boost severity prediction 

accuracy of bug report descriptions. For example, Bug Report#296383 and Bug Report#313534 of 

Eclipse bug repository are shown in Table 6 and Table 7 respectively.  

Table 6. Eclipse Bug Report #296383 

Bug report field Value 

Product EclipseLink 

Component JPA 

Header 
JPA 2.0 server test script requires better rebuild integration with 

Eclipse IDE development 

Description 

If you are developing in eclipse while running these server tests - note 

that there is currently an issue with the JPA 2.0 test framework where 

a full build in eclipse will remove classes expected by the server test 

ant script. 

*You will see the following issue unless you do a full ant trunk build 

after any Eclipse IDE rebuild or clean .Do a 2nd rebuild off of trunk 

or eclipselink.jpa.test after any IDE development. 

 

In both bug reports, JPA, the faulty component of the bug, appeared in the header of the bug reports. This 

extra information provides a ground to make predictions based on 𝐵𝑆𝑃𝐷𝐸 outperform predictions based on 

𝐵𝑆𝑃𝑆𝑇. However, as shown in Figure 13, if we add categorical features to stack traces, then the 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 

outperforms the one that uses only 𝐵𝑆𝑃𝐷𝐸.  

For the Gnome dataset (Figure 15 to Figure 19), the only case that the 𝐵𝑆𝑃𝑆𝑇+𝐶𝐹 is outperformed by the 

𝐵𝑆𝑃𝐷𝐸 is when the approach is predicting Minor severity. We investigated the reason and observed that the 

description of bugs with Minor severity contain more structured information than categorical features of the 

bugs in Gnome Bugzilla. For example, as shown in Table 8, Gnome Bug Report#273727, which is a bug 



33 

 

with Minor severity, not only contains all important categorical features in its description, but also it 

contains information regarding the step to reproduce the bug. Moreover, in addition to categorical features, 

sometimes the source code is copied in the description of the bug report. For example, Gnome Bug Report# 

532680, shown in Table 9, contains the source code of the bug. This information causes the approach that 

uses descriptions to outperform the approach which uses stack traces and categorical features when 

predicting the Minor severity. 

Table 7. Eclipse Bug Report #313534 

Bug report 

field 
Value 

Product EclipseLink 

Component JPA 

Header 
JPA: entities in separate eclipse project must be explicitly listed in 

persistence.xml 

Description 

<exclude-unlisted-classes> has no effect in this configuration 

Configuration: (I am using an eclipse .classpath reference only) - and not 

generating a jar file 

- no MANIFEST.MF Class-Path entry 

- no <jarfile> element in persistence.xml 

- persistence.xml is in client project 

- no persistence.xml in entities project 

.classpath = <classpathentry combineaccessrules="false" kind="src" 

path="/org.eclipse.persistence.example.jpa.server.entities"/> 

 <classpathentry kind="src" path="src"/> 

This may be expected behavior for SE PU's when we fail to use the 

persistence.xml element - as mormally the entities must be at the root of the 

classpath that contains persistence.xml <jarfile>entities.jar</jarfile>>Found: 

Using <exclude-unlisted-classes>false</exclude-unlisted-

classes><class>org.eclipse.persistence.example.jpa.server.business.Cell</class> 

[EL Config]: 2010-05-19 10:24:01.195--ServerSession(27196165)--

Thread(Thread[main,5,main])--The access type for the persistent class [class 

org.eclipse.persistence.example.jpa.server.business.Cell] is set to [FIELD]. 

 



34 

 

Table 8. Gnome Bug Report#273727 

Bug report field Value 

Product evolution 

Component Shell 

Header sanity check for e-d-s on start 

Description 

Descriptionorogor 2005-03-15 19:41:19 UTC 

Distribution: Gentoo Base System version 1.4.16 

Package: Evolution 

Priority: Normal 

Version: GNOME2.8.1 2.0.3 

Gnome-Distributor: Gentoo Linux 

Synopsis: Random UI crash 

Bugzilla-Product: Evolution 

Bugzilla-Component: Calendar 

Bugzilla-Version: 2.0.3 

BugBuddy-GnomeVersion: 2.0 (2.8.1) 

Description: 

Description of the crash: 

It just  exit 

Steps to reproduce the crash: 

1. Do random stuff , preferably around the  contact list 

2.  wait 

3.  play with  it again 

4 

Expected Results: 

than it doesn t  exit       

How often does this happen? 

maybe  average session is 15 minutes ( depends  how mutch you use the ui 

) 

 

 

 

https://bugzilla.gnome.org/show_bug.cgi?id=273727#c0


35 

 

Table 9. Gnome Bug Report #532680 

Bug report field Value 

Product GIMP 

Component Plugins 

Header help-browser segfaults on 64bit systems 

Description 

It was the latest Ubuntu HH version of the libgtk2.0-0 package. 

%  dpkg -p libgtk2.0-0 

Package: libgtk2.0-0 

Architecture: amd64 

Source: gtk+2.0 

Version: 2.12.9-3ubuntu3 

Now it is immediately clear what went wrong: 

_gdk_x11_convert_to_format has parameter src_buf==NULL 

This shows that we have a pixmap that is non-NULL, with pixmap->pixels 

that is NULL. This pixmap is found in the cache. If I insert the condition 

  && gdk_pixbuf_get_pixels(icon->pixbuf) != NULL 

 

in gtk+-2.12.9/gtk/gtkiconfactory.c around line 2445: 

 

@@ -2441,7 +2441,8 @@ 

       if (icon->style == style && 

           icon->direction == direction && 

           icon->state == state && 

-          (size == (GtkIconSize)-1 || icon->size == size)) 

+          (size == (GtkIconSize)-1 || icon->size == size) && 

+         gdk_pixbuf_get_pixels(icon->pixbuf) != NULL) 

         { 

           if (prev) 

             { 

then the segfault goes away. I have not investigated further what the real cause 

of the problems is. 

 



36 

 

5. Threats to Validity 

In this Section, we explain threats to the external validity, internal validity and construct validity of our 

approach. 

5.1 Threats to External Validity 

We evaluated our approach using two well-known open source datasets. While the results of our 

experiments show that leveraging categorical features improves the severity prediction accuracy, in order to 

generalize these results, our approach needs to be tested on a bigger pool of datasets. 

Moreover, for Eclipse, stack traces are stored in the description of the bug reports and are optional. Only 

10% of Eclipse bug reports contain stack traces. This said, since 2015, Eclipse has been equipped with an 

automated stack trace collection system. We intend to extend our study to include bug reports beyond 2015 

in a future study.  

We evaluated our approach using the severity labels that are reported from users and further revised and 

adjusted (if need be) by the triagers. Errors may occur when reporting or adjusting severity levels, which 

can impact our analysis. 

5.2 Threats to Internal Validity 

One of the sources of internal threats is the misclassification function used in our approach. In our study we 

used Equation (12) to calculate the misclassification cost. This misclassification cost equation was derived 

based on heuristics. While the results obtained using Equation (12) are convincing, using a more optimized 

approach for deriving misclassification cost of each severity label could further improve the severity 

prediction accuracy. 

We set a threshold of ten to be our upper bound for the misclassification cost based on the criteria we 

explained in Section 4.2. A different threshold may have yield different results. 

The regular expression used for extracting stack traces from bug report descriptions may have missed some 

stack traces or some functions in the stack traces. This could reduce the accuracy of the severity prediction 

approach. Using a different regular expression may improve the results.  

6. Related Work 

There exist two categories of severity prediction techniques based on the features that are used.  

• The first category uses descriptions of bug reports. They resort to natural language processing 

techniques to calculate similarity among bug report descriptions and predict the bug severity.  



37 

 

• The second category uses stack traces. They consider methods in stack traces as terms in 

description and calculate similarity of bug reports based on similarity of their stack traces. 

6.1 Predicting Bug Severity Using Description 

Antoniol et al. [AADPKG08] built a data set using 1800 issues reported to bug tracking systems of 

Mozilla, Eclipse and JBoss (600 reports from each bug tracking system). In these bug tracking systems, 

issues can be labeled as corrective maintenance or other kind of activities such as perfective maintenance, 

preventive maintenance, restructuring or feature addition. In this study issues that are related to corrective 

maintenance are categorized as Bug, while issues related to other activities are categorized as Non-bug. 

Each of 1800 issues, extracted from bug tracking systems, are revised and labeled manually. In some cases, 

bugs were not related to Eclipse, so they are removed from the training and testing set. They considered 

bug reports descriptions as the best sources of information to train the machine learning techniques for 

predicting severity [BJSWPZ08]. The authors used words in the descriptions as features. They used 

frequency of words for weighing the feature vector which corresponds to each bug. In addition to the words 

in the description, they added the value of the severity field as a feature. After extracting words, they are 

stemmed. However, no stop-word removal is performed. The rationale behind not removing stop-words is 

that they may be discriminative and may be used by the classifier to improve classification accuracy. They 

used various classification methods, such as decision trees, logistic regression, and naïve Bayes to classify 

issues. Each of the classifiers is trained using the top 20 or 50 features. The accuracy of the approach when 

applied to Mozilla is 67% and 77% with top 20 and 50 features respectively. The accuracy of the approach 

applied to Eclipse issues having 20 features is 81% and having 50 features is 82%. The accuracy of the 

approach when applied to JBoss issues having 20 features is 80% and having 50 features is 82%. They 

showed that for Eclipse, some words (e.g. “Enhancement”) are good indicator of Non-bug issues, while 

some words (e.g. “failure”) are good indicator of Bug issues. They also showed that their approach 

outperforms regular expression-based approach which uses grep command [AADPKG08].  

Menzies et al. [MM08] did a study on an industrial system in NASA. NASA uses a bug tracking system 

called Project and Issue tracking system (PITS). They examined bugs raised by testers and sent to PITS. In 

NASA severity of bugs are in a five-point scale. One corresponds to the worst, most critical bug and five is 

the dullest bug. They introduced a tool called SEVERIS which, using the description of the bugs and text 

mining techniques, predicts the severity of an issue. They tokenized terms, removed stop-words and finally 

stemmed the terms. They used TF-IDF score of each term to rank them, then they cut all but top K features. 

Furthermore, they did another round of feature reduction using information gain. They used rule learner to 

deduce rules from the weighed features. For the case study, five different systems and consequently five 



38 

 

different datasets are used. The main problem with the datasets was that they did not have any bug with 

severity one (Critical severity) and the total number of bugs was 3877. The authors calculated precision, 

recall and F-measure for each of the severities. Using top 100 words as features, F-measure was averagely 

50% for predicting bugs severities. The most important point in this study is that they showed, in their 

dataset, using top 3 features or 100 features does not change the F-measure significantly. This fact shows 

that predicting severities using much less number of features that have more discriminative power reveals 

good results.  

Lamkanfi et al. [LDGG10] did a study to show discriminability power of the terms in description. They 

build dataset of the open source software such as Mozilla, Eclipse and Gnome to evaluate the proposed 

approach. In Bugzilla, severity can be Critical, Major, Normal, Minor, Trivial or Enhancement. To have a 

coarse-grain categorization the authors labeled all issues which were Critical or Major as Severe and issues 

that were Minor, Trivial or Enhancement as Non-Severe. They ignored using issues marked as Normal 

because it is the default choice which will be assigned to a bug in Bugzilla and users may choose it 

arbitrarily. The bug severity prediction in this study is modeled as a document classification problem. They 

used the summary and description of bug reports for evaluation. When extracting bugs, the authors 

organized them according to the products and components that are affected. They used 70% of bugs as 

training set and 30% of issues as testing set. They did a study on the most important features and concluded 

that words like “crash” or “memory” are good indicators of severe bugs. The authors did a second round of 

experiments using only descriptions and showed that using only descriptions decreases the performance in 

many cases. They did experiment having training sets with different sizes and concluded that a training set 

having 500 bugs is enough to have a generalizable result. They also showed that increasing the number of 

bugs to more than 500 does not change the evaluation result. In the fourth round of experiments, they 

showed that applying severity prediction approach on Eclipse bug tracking system isolating bugs according 

to the affected component and product leads to a better result. 

Lamkan et al. [LDSV11] compared the effect of having diverse mining algorithms applied to bug 

repositories to predict the severity of the bugs. The authors used the same labeling principal as Lamkanfi et 

al. [LDGG10]. Eclipse and Gnome are the datasets that are used to evaluate the accuracy of predicted 

severities. Bug reports are extracted and categorized according to their faulty products and components. 

They compared Naive Bayes, Naive Bayes multinomial, 1-Nearest Neighbor and Support Vector machine 

classifiers. Due to the fact that different classification approaches need different ways to weigh feature 

vector, in this study when doing experiments using Naïve Bayes, only presence or absence of each term is 

used for weighing features. When doing experiments using Naïve Bayes Multinomial, frequency of each 



39 

 

word is used for weighing each feature vector. Using 1-Nearest Neighbor or Support Vector Machine, term 

frequency and inverse document frequency is used for weighing feature vectors. They calculated precision 

and recall, the area under curve (AUC) for each dataset to compare the classifiers. They showed that using 

Naïve Byes Multinomial, the area under curve is averagely 80% which is higher than other approaches. 

Next, they showed that using Naïve Bayes classifier, a stable accuracy value is achieved having 250 bug 

reports of each severity for training. This shows that increasing training set by adding more than 250 bug 

reports does not change the accuracy. Having a list of words that have good discriminative power, they 

concluded that each component has its own list of words. Thus, terms that have good discriminative power 

are component specific. This result encourages applying severity prediction approaches on each component 

independently since it reveals better results. 

Yang et al. [YHKC12] compared effectiveness of feature selection methods on a coarse grain severity 

prediction technique. They used Naïve Bayes classifier to study effectiveness of each feature selection 

method. They used information gain, Chi-square and correlation coefficient as feature selection techniques. 

They used Eclipse and Firefox datasets and true positive rate (TPR), false positive rate (FPR) and area 

under curve (AUC) metrics to evaluate their studies. They showed high information gain is a good 

indicator of severe bugs and low information gain is a good indicator of non-severe bugs. They concluded 

that the best feature selection technique for Eclipse and Mozilla is the correlation coefficient.  

Tian et al. [TLS12] did a study on a finer grain severity prediction approach. Features with more 

discriminability power is a necessity for a fine grain severity prediction.  They used pruning techniques to 

improve the discriminability power of features. For each of the bugs in the training set they used unigram 

and bi-gram techniques to extract features from textual description. These features are then used to 

calculate the similarity of descriptions of bug reports in the testing and training set. To calculate similarity 

of bug reports descriptions, they used an extended version of BM25 called 𝐵𝑀25𝑒𝑥𝑡. The similarity of bug 

report descriptions using unigram and bi-gram features together with the similarity of categorical features 

including faulty products and components are then used to retrieve most similar bugs in the training set. 

They used a linear combination of these four features to calculate similarity of bug reports. The K nearest 

neighbor method is then used to classify the bug reports in the testing set.  The rational for using K nearest 

neighbor is that the most similar bug reports are expected to have the same severity.  They used Open 

Office, Mozilla and Eclipse to evaluate their approach. They showed that their approach outperforms 

SEVERIS. 

Yang et al. [YCKY14] studied the effectiveness of four quality indicators of bug reports in severity 

prediction. They used a naïve Bayes classifier and did a coarse grain severity prediction. The four quality 



40 

 

indicators studied in their work are stack traces, report length, attachment and steps to reproduce.  They did 

two series of experiments on 2 components of Eclipse to measure the effectiveness of quality indicators on 

predicting severity of bug. In the first series of experiment they only studied the impact of the existence of 

those quality indicators. In the second round of experiments they used the quantitative value of those 

indicators. They extracted these quantitative values from each quality indicators differently. For stack 

traces they used number of functions, for attachment they considered number of attachments, for report 

length they used the quantitative value of report length and for step to reproduce they used number of steps. 

They showed that stack trace is the most useful information which could be used as an indicator. However, 

unlike Sabor et al. [SHH16], they did not study the effectiveness of using the content of stack traces for 

predicting severity of bugs.  

Yang et al. [YZL14] studied the effectiveness of topic modeling on fine grain severity prediction. Instead 

of using categorical features in similarity calculation, they only considered bugs if they had same product, 

component and priority. In the first step, they used latent dirichlet allocation (LDA) to extract topics from 

the corpus of documents. They represented each topic as a bag of words. Instead of vector space model 

they used smoothed unigram vectors and they used KL divergence instead of cosine similarity to measure 

similarity of smoothed vectors. They showed effectiveness of their approach by applying it on Mozilla, 

Eclipse and NetBeans bug repositories.  They used an online approach in which with the incoming of each 

bug report its probability vector is extracted. Next, K nearest neighbor is applied to the bugs with the same 

topic and according to returned list of similar bugs, the label is chosen. 

Bhattachrya et al. [BINF12] explored alternate avenues for bug severity prediction by a graph-based 

analysis of the software system. They built graph based on different aspects of software systems including 

source code graphs based on function calls (i.e., a static call graph) modules (module collaboration graph) 

and, in a more abstract level, they built a graph based on developer’s collaboration. They used Firefox, 

Eclipse and MySql to show effectiveness of their approach. They used various graph-based metrics 

including average degree, clustering coefficient, node rank, graph diameter and assortativity to characterize 

software structure and evolution. They showed that node rank metric in the function call graph is a good 

indicator of bug severity. They also showed that that Modularity Ratio is a good indicator for modules 

which need less maintenance effort. 

Zhang et al. [ZYLC15] explored the effectiveness of concept profile in predicting severity of bugs. They 

extracted concept terms and calculated their threshold for each fine grain severity label in the training set. 

A concept profile corresponding to each severity label using concept terms is built next. Instead of vector 

space model, they used probability vector to represent each bug. Also, instead of cosine similarity, they 



41 

 

used KL divergence for calculating similarity between each bug in the testing set and each concept profile 

which corresponds to each severity label in the training set. They showed effectiveness of their approach by 

applying it on Eclipse and Mozilla bug repositories. They used an offline approach in which they used 90% 

of the data as the training set and 10% of the data as the testing set. They showed that their approach 

outperforms other machine learning approaches. 

6.2 Predicting Bug Severity Using Stack Traces 

There exist studies which uses advanced machine learning methods based on stack traces to predict various 

bug report fields [SNTH18]. Sabor et al. [SHH16] used the content of stack trace for predicting severity of 

bugs. They extracted the stack traces form the Eclipse bug reports. Next, they built a feature vector based 

on the functions of all stack traces in the bug repository. They weighed the feature vector using term 

frequency and inverse document frequency. They used cosine similarity to compare feature vectors. In their 

online approach, with the incoming of each bug report the feature vector is built and the K nearest neighbor 

is returned. Since not all of the bug reports had the same distance to the incoming bug report in the reported 

list, they used distance-based K nearest neighbor [GDZX12]. Since the distribution of labels was not 

balance, they used a cost sensitive K nearest neighbor [QWZZ13] to predict severity of the incoming bug 

report. They applied their approach on the Eclipse bug repository for the period of 2001 to 2015 and 

showed that their approach using stack traces outperforms the approach that uses bug report descriptions. 

Most existing approaches rely on bug report descriptions for predicting bug report severity. These 

approaches are presented in Section 6.1. In our previous work, we showed that 𝐵𝑆𝑃𝑆𝑇  could predict 

severity of bugs with a better accuracy compared to 𝐵𝑆𝑃𝐷𝐸 . In this paper, we showed that adding 

categorical features can further enhance the severity prediction accuracy. 

7. Conclusions and Future Work 

In this paper, we proposed a new severity prediction approach. The new approach combines the use of 

stack traces and categorical features. Our approach uses a linear combination of stack trace similarity and 

categorical features similarity to predict the severity of bugs. Since the dataset (i.e., the labels in bug report 

repositories) is normally unbalanced, we adopted a cost sensitive K nearest neighbor approach to overcome 

the unbalanced dataset distribution problem.  

We used two open source and popular datasets (Eclipse and Gnome bug repositories) to evaluate our 

approach. The result showed that in both cases the accuracy of predicting the severity of bugs is higher 

using 𝐵𝑆𝑃𝑆𝑇 compared to 𝐵𝑆𝑃𝐷𝐸. Moreover, adding categorical features and using linear combination of 



42 

 

stack trace and categorical features similarity can further improve the severity prediction accuracy for both 

datasets. 

In this study we used K nearest neighbor in an online approach to predict severity of bugs, in the future we 

want to assess the effect of using more advanced machine learning methods such as Support Vector 

Machine (SVM), Random Forest and Neural Networks. We believe using more advanced machine learning 

techniques may further improve the severity prediction accuracy. Moreover, we plan to extend our study by 

applying our approach to a wider range of public and proprietary bug repository datasets. Also, we plan to 

use a more optimized misclassification cost function to overcome the unbalance dataset distribution 

problem. 

  



43 

 

APPENDIX A 

Detailed precision and recall 

In Section 4.7, we showed the F-measure of approaches that predict severity of bugs using stack traces and categorical 

features, using stack traces only, and using bug report descriptions. We present the detailed precision, recall and F-

measure values for all the k value (list size of the k nearest neighbor) here. 

Table A1. Severity prediction accuracy (Eclipse Critical severity) 

List size 
Bug report description Stack traces 

Stack trace and categorical 
features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 28.2% 29.1% 28.64% 31.5% 27.1% 29.1% 34.5% 25.1% 29.14% 

2 26.4% 33.1% 29.37% 30.6% 33.1% 31.8% 33.9% 30.1% 31.88% 

3 26.3% 33.1% 29.31% 30% 34.4% 32% 34.3% 31.4% 32.785 

4 26.3% 33.1% 29.31% 30.3% 34.8% 32.4% 33.3% 37.5% 35.27% 

5 27.5% 34% 30.4% 31.1% 35.6% 33.2% 34.1% 38.2% 36.03% 

6 27.2% 34.1% 30.26% 31.1% 35.2% 33 33.3% 38.9% 35.88% 

7 28% 34% 30.7% 31.3% 34.5% 32.8% 33.3% 38.1% 35.53% 

8 28% 34% 30.7% 31.6% 34.7% 33.1% 33.3% 38.7% 35.79% 

9 28% 34% 30.7% 31.6% 34.6% 33% 34% 38.3% 36.02% 

10 28% 34% 30.7% 31.7% 34.8% 33.2% 32.6% 38.3% 35.22% 

 

Table A2. Severity prediction accuracy (Eclipse Blocker severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 23% 24.6% 23.77% 26.5% 23.5% 24.91% 27.7% 26.2% 26.92% 

2 20% 29.4% 23.8% 23.2% 27.9% 25.33% 24.5% 31.8% 27.67% 

3 20% 32% 26.76% 23% 32% 26.76% 24.2% 36.7% 29.16% 

4 20% 35.3% 28% 23.2% 35.4% 28.03% 23.8% 39.4% 29.67% 

5 20% 36.1% 27.87% 22.7% 36.1% 27.87% 24.2% 40.6% 30.32% 

6 20% 37.3% 27.89% 22.5% 36.7% 27.89% 24.1% 41.4% 30.46% 

7 20% 38% 28.42% 22.7% 38% 28.42% 24% 42% 30.54% 

8 20% 38% 28.63% 22.8% 38.5% 28.63% 23.8% 43% 30.64% 

9 20% 38.1% 28.5% 22.6% 38.6% 28.50% 23.8% 43.6% 30.79% 

10 20% 39% 28.53% 22.5% 39% 28.53% 23.5% 44% 30.63% 

 

 



44 

 

List size 
Bug report description Stack trace 

Stack trace and categorical 
features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 60% 58% 62.59% 61.7% 54.1% 57.65% 63.1% 62.1% 62.59% 

2 61.1% 45% 57.16% 63.5% 43.2% 51.41% 64.7% 51.2% 57.16% 

3 62% 38% 52.69% 64.5% 35.6% 45.87% 65.9% 43.9% 52.69% 

4 63.3% 33% 49.63% 65.5% 31.7% 42.72% 66.5% 39.6% 49.63% 

5 63% 30.1% 48.03% 66% 29% 40.29% 66.8% 37.5% 48.03% 

6 64.1% 28% 46.76% 66.3% 27.1% 38.47% 67.4% 35.8% 46.76% 

7 65% 26% 46.35% 66.2% 25.8% 37.12% 67.5% 35.3% 46.35% 

8 65% 24.8% 45.44% 66.5% 24.5% 35.80% 67.7% 34.2% 45.44% 

9 65% 23.8% 45.37% 66.9% 23.5% 34.78% 68.6% 33.9% 45.37% 

10 65% 22.7% 45.19% 66.5% 22.7% 33.84% 68.2% 33.8% 45.19% 

 

Table A4. Severity prediction accuracy (Eclipse Minor severity) 

List size 
Bug Report Description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 23.1% 21.4% 22.21% 23.5% 17.6% 20.12% 28.1% 21.1% 24.10% 

2 20.9% 29.3% 24.39% 20.8% 23.8% 22.19% 24.6% 27.6% 26.01% 

3 19.6% 34.7% 25.05% 19.8% 28.6% 23.4% 22.1% 31.5% 25.97% 

4 19.2% 39.2% 25.77% 18.8% 32.1% 23.71% 20.1% 33.5% 25.12% 

5 18.2% 40.9% 25.19% 18.5% 34.8% 24.15% 19.9% 36.9% 25.85% 

6 17.8% 43.35 25.22% 18% 36.2% 24.04% 19.1% 37.4% 25.28% 

7 17.5% 45.7% 25.30% 17.6% 37.7% 23.99% 18.9% 39.2% 25.50% 

8 17.6% 47.1% 25.62% 17.3% 39% 23.96% 18.7% 41.6% 25.80% 

9 17.5% 48.2% 25.67% 17.1% 40% 23.95% 18.5% 43.2% 25.90% 

10 17.3% 49.2% 25.59% 16.8% 40.1% 23.67% 18.6% 44.2% 26.18% 

 

 

 

 

 

 

 

 

 

Table A3. Severity prediction accuracy (Eclipse Major severity) 



45 

 

 

Table A5. Severity prediction accuracy (Eclipse Trivial severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 6.7% 5.6% 6.10% 5.5% 4.3% 4.82% 7% 5% 5.83% 

2 5.5% 8.1% 6.55% 5.5% 6.8% 6.08% 6.4% 7.2% 6.77% 

3 4.1% 8.1% 5.44% 4.6% 8.5% 5.96% 6.2% 9.8% 7.59% 

4 4.6% 11% 6.48% 5.1% 11.8% 7.12% 5.9% 13.3% 8.17% 

5 4.4% 11% 6.28% 4.3% 11.8% 6.30% 5.1% 13.3% 7.375 

6 3.6% 11% 5.42% 3.8% 11.8% 5.74% 5.2% 14.9% 7.70% 

7 3.2% 11% 4.95% 3.5% 11.8% 5.39% 5.5% 16.5% 8.25% 

8 2.8% 10.5% 4.42% 3.4% 12.6% 5.35% 5.4% 17.3% 8.23% 

9 2.7% 10.5% 4.29% 3.1% 12.6% 4.975 4.9% 17.3% 7.63% 

10 2.6% 10.5% 4.16% 3.1% 13.5% 5.04% 4.8% 18.2% 7.6% 

 

 

Table A6. Severity prediction accuracy (Gnome Critical severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 79% 87% 82.80% 82% 82% 82% 86% 89% 87.47% 

2 79% 87% 82.80% 82% 82% 82% 85% 89% 86.95% 

3 79% 88% 83.25% 83% 83% 83% 85% 90% 87.42% 

4 79% 88% 83.25% 83% 85% 83.98% 85% 90% 87.42% 

5 79% 89% 83.70% 83% 86% 84.47% 85% 90% 87.42% 

6 79% 89% 83.70% 82% 86% 83.95% 85% 90% 87.42% 

7 79% 89% 83.70% 82% 87% 84.42% 85% 90% 87.42% 

8 79% 90% 84.14% 82% 87% 84.42% 85% 90% 87.42% 

9 79% 90% 84.14% 82% 87% 84.42% 85% 91% 87.89% 

10 79% 90% 84.14% 81% 87% 83.89% 85% 90% 87.42% 

 

 

 

 

 

 

 



46 

 

 

Table A7. Severity prediction accuracy (Gnome Blocker severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 54% 47% 50.25% 67% 67% 67% 70% 72% 70.98% 

2 54% 47% 50.25% 67% 69% 67.98% 70% 74% 71.94% 

3 56% 48% 51.69% 69% 70% 69.49% 72% 74% 72.98% 

4 57% 47% 51.51% 70% 70% 70% 72% 74% 72.98% 

5 58% 48% 52.52% 70% 69% 69.49% 72% 74% 72.98% 

6 59% 48% 52.93% 70% 69% 69.49% 72% 75% 73.46% 

7 59% 48% 52.93% 70% 69% 69.49% 72% 75% 73.46% 

8 60% 48% 53.33% 69% 69% 69% 735 73% 73% 

9 61% 48% 53.72% 70% 67% 68.46% 73% 73% 73% 

10 61% 47% 53.09% 70% 67% 68.46% 73% 73% 73% 

 

Table A8. Severity prediction accuracy (Gnome Major severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 64% 64% 64% 75% 64% 69.06% 77% 69% 72.78% 

2 64% 64% 64% 76% 64% 69.48% 78% 68% 72.65% 

3 64% 65% 64.49% 76% 65% 70.07% 79% 70% 74.22% 

4 64% 67% 65.46% 76% 67% 71.21% 79% 70% 74.22% 

5 65% 68% 66.46% 77% 67% 71.65% 79% 70% 74.22% 

6 65% 68% 66.46% 77% 66% 71.07% 79% 72% 75.33% 

7 65% 69% 66.94% 77% 66% 71.07% 79% 72% 75.33% 

8 65% 69% 66.94% 77% 67% 71.65% 78% 72% 74.88% 

9 65% 7% 67.40% 77% 69% 72.78% 78% 72% 74.88% 

10 66% 71% 68.40% 76% 66% 70.64% 78% 72% 74.88% 

 

 

 

 

 

 

 

 



47 

 

Table A9. Severity prediction accuracy (Gnome Minor severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 26% 28% 26.96% 26% 18% 21.27% 32% 20% 24.61% 

2 26% 28% 26.96% 27% 18% 21.6% 33% 20% 24.90% 

3 26% 27% 26.49% 295 17% 21.43% 35% 20% 25.45% 

4 29% 27% 27.96% 30% 17% 21.70% 37% 20% 25.96% 

5 32% 26% 28.68% 32% 15% 20.42% 39% 18% 24.63% 

6 36% 265 51.62% 33% 13% 18.65% 40% 17% 23.85% 

7 40% 26% 31.51% 35% 12% 17.87% 42% 17% 24.20% 

8 44% 25% 31.88% 37% 10% 15.74% 44% 17% 24.52% 

9 49% 25% 33.10% 39% 9% 14.62% 46% 16% 23.745 

10 51% 25% 33.55% 40% 8% 13.33% 48% 16% 24% 

 

 

 

Table A10. Severity prediction accuracy (Gnome Trivial severity) 

List size 
Bug report description Stack trace 

Stack trace and categorical 
Features 

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

1 12% 9% 10.28% 23% 6% 9.51% 33% 12% 17.6% 

2 12% 9% 10.28% 29% 6% 9.94% 33% 12% 17.6% 

3 13% 9% 10.63% 29% 6% 9.94% 33% 12% 17.6% 

4 18% 9% 12% 29% 6% 9.94% 33% 12% 17.6% 

5 23% 9% 12.935 5% 6% 10.71% 33% 12% 17.6% 

6 12% 3% 4.8% 5% 6% 10.71% 40% 12% 18.46% 

7 12% 3% 4.8% 34% 3% 5.51% 50% 15% 23.07% 

8 16% 3% 5% 25% 3% 5.35% 72% 15% 24.82% 

9 20% 3% 5% 25% 3% 5.35% 72% 15% 24.82% 

10 33% 3% 5.5% 25% 3% 5.35% 83% 15% 25.40% 

 

 

 

 

 

 

 



48 

 

References 

 

[AADPKG08]  G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y. Guéhéneuc, “Is it a bug or an 

enhancement?: a ext-based approach to classify change requests,” Proc. of the IBM 

International Conference of the Center for Advanced Studies on Collaborative Research: 

Meeting of Minds (CASCON), 2008. 

[BINF12] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analysis and 

prediction for software evolution,” Proc. of the 34th International Conference on Software 

Engineering (ICSE), pp. 419-429, 2012. 

[BJSWPZ08] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zimmermann, “What 

makes a good bug report?” Proc. of the 16th ACM SIGSOFT International Symposium on 

Foundations of Software Engineering (SIGSOFT/FSE), pp. 308-318, 2008. 

[DMJ11]  J. L. Davidson, N. Mohan, and C. Jensen, “Coping with duplicate bug reports in free/open 

source software projects,” Proc. of IEEE Symposium on Visual Languages and Human 

Centric Computing (VL/HCC), pp. 101–108, 2011. 

[ETIHK19] N. Ebrahmi, A. Trabeslsi, Md. S. Islam, A. Hamou-Lhadj, K. Khanmohammadi, "An 

HMM-Based Approach for Automatic Detection and Classification of Duplicate Bug 

Reports," Elsevier Journal of Information and Software Technology (IST), Volume 113, 

pp. 98-109 , 2019.  

[EH15] N. Ebrahimi, A. Hamou-Lhadj, "CrashAutomata: An Approach for the Detection of 

Duplicate Crash Reports Based on Generalizable Automata," Proc. of  the  IBM 25th 

Annual International Conference on Computer Science and Software Engineering 

(CASCON), pp. 201-210, 2015. 

 [EIHH16] N. Ebrahimi, Md. S. Islam, A. Hamou-Lhadj, M. Hamdaqa, "An Effective Method for 

Detecting Duplicate Crash Reports Using Crash Traces and Hidden Markov Models," 

Proc. of the IBM 26th Annual International Conference on Computer Science and 

Software Engineering (CASCON), pp. 75-84, 2016. 

[GDZX12]  J. Gou, L. Du, Y. Zhang, T. Xiong, “A New Distance-weighted K nearest Neighbor 

Classifier,” Journal of Information & Computational Science, pp. 1429-1436, 2012. 



49 

 

[GER11] G. Macbeth, E. Razumiejczyk, R. Ledesma, “Cliff's Delta Calculator: A non-parametric 

effect size program for two groups of observations,” Universitas Psychologica. vol.10, n.2, 

pp.545-555, 2011. 

[LD13] A. Lamkanfi and S. Demeyer, “Predicting reassignments of bug reports an exploratory 

investigation,” Proc. of the 17th European Conference on Software Maintenance and 

Reengineering, pp. 327–330, 2013. 

[LDGG10]  A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a reported 

bug,” Proc. of the 7th IEEE Working Conference on Mining Software Repositories (MSR), 

1–10, 2010. 

[LDSV11] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing mining 

algorithms for predicting the severity of a reported bug,” Proc. of 15th European 

Conference on Software Maintenance and Reengineering (CSMR), pp. 249–258, 2011. 

[LM13]  J. Lerch and M. Mezini, "Finding duplicates of your yet unwritten bug report," Proc. of 

European Conference on Software Maintenance and Reengineering (CSMR), pp. 69-78, 

2013. 

[MHNSL15]  A. Maiga, A. Hamou-Lhadj, M. Nayrolles, K. Koochekian Sabor and A. Larsson, "An 

empirical study on the handling of crash reports in a large software company: An 

experience report," Proc. of the IEEE International Conference on Software Maintenance 

and Evolution (ICSME), pp. 342-351, 2015. 

[MM08]  T. Menzies and A. Marcus, “Automated severity assessment of software defect reports,” 

Proc. of the International Conference on Software Maintenance (ICSM), pp. 346–355,  

2008. 

[MRS08] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval. 

Cambridge University Press, New York, NY, USA, 2008. 

[NHTL16] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, A. Larsson, "A Bug Reproduction Approach 

Based on Directed Model Checking and Crash Traces," Wiley Journal of Software: 

Evolution and Process (JSPE), Volume 29, Issue 3, 2016. 



50 

 

[NHTL15] M. Nayrolles, A. Hamou-Lhadj, S. Tahar and A. Larsson, "JCHARMING: A Bug 

Reproduction Approach Using Crash Traces and Directed Model Checking," Proc. of the 

22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering  

(SANER), pp. 101-110, 2015. 

[PF13]  F. Provost, T. Fawcett. Data Science for Business: What You Need to Know about Data 

Mining and Data-Analytic Thinking, O'Reilly Media, 2013. 

[QWZZ13]  Z. Qin, A. T. Wang, C. Zhang, and S. Zhang, “Cost-Sensitive Classification with k Nearest 

Neighbors,” Proc. of  the 6th International Conference on Knowledge Science, 

Engineering and Management (KSEM),  pp. 112–131, 2013. 

[RJ05] R.Grissom and J. Kim. Effect Sizes for Research: A Broad Practical Approach. Lawrence 

Erlbaum Associates, 2005. 

[SHH16]  K. K Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic prediction of the severity of 

bugs using stack traces,” Proc. of the 26th Annual International Conference on Computer 

Science and Software Engineering (CASCON '16), pp. 96-105, 2016. 

[SHL17]  K. K. Sabor, A. Hamou-Lhadj and A. Larsson, "DURFEX: A Feature Extraction 

Technique for Efficient Detection of Duplicate Bug Reports," Proc. of IEEE International 

Conference on Software Quality, Reliability and Security (QRS), pp. 240-250, 2017. 

[SNTH18]  K. K. Sabor, M. Nayrolles, A. Trabelsi and A. Hamou-Lhadj, "An Approach for Predicting 

Bug Report Fields Using a Neural Network Learning Model," Proc. of the IEEE 

International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 

232-236, 2018. 

[SSG15] G. Sharma, S. Sharma, S. Gujral, “A Novel Way of Assessing Software Bug Severity 

Using Dictionary of Critical Terms,” Proc. of the 4th International Conference on Eco-

friendly Computing and Communication Systems, Volume 70, pp. 632-639, 2015. 

[SLKJ11]  C. Sun, D. Lo, S. C. Khoo and J. Jiang, "Towards more accurate retrieval of duplicate bug 

reports," Proc. of the 26th IEEE/ACM International Conference on Automated Software 

Engineering (ASE), pp. 253-262, 2011. 



51 

 

[TLS12] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor classification for 

fine-grained bug severity prediction,” Proc. of the 19th International Working Conference 

on Reverse Engineering (WCRE), pp. 215-224, 2012. 

[WFH11] I. H. Witten, E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and 

Techniques. Morgan Kaufmann, 2011, ISBN 9780123748560. 

[YCKY14]  C. Z. Yang, K. Y. Chen, W. C. Kao, and C. C. Yang, “Improving severity prediction on 

software bug reports using quality indicators,” Proc. of the 5th IEEE International 

Conference on Software Engineering and Service Science (ICSESS), pp. 216–219, 2014. 

[YHKC12]  C.-Z. Yang, C.-C. Hou, W.-C. Kao, and I.-X. Chen, “An empirical study on improving 

severity prediction of defect reports using feature selection,” Proc. of the  19th Asia-

Pacific Software Engineering Conference (APSEC), pp. 240–249, 2012. 

[YZL14]  G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage and severity 

prediction based on topic model and multi feature of bug reports,” Proc. of the 38th Annual 

Computer Software and Applications Conference (COMPSAC), pp. 97–106, 2014. 

[ZCYLL16]  T. Zhang, J. Chen, G. Yang, B. Lee, X. Luo, “Towards more accurate severity prediction 

and fixer recommendation of software bugs,” Elsevier Journal of Systems and Software, 

Volume 117, pp. 166-184, 2016. 

[ZYLC15]  T. Zhang, G. Yang, B. Lee, and A. T. S. Chan, “Predicting severity of bug report by 

mining bug repository with concept profile,” Proc. of the 30th Annual ACM Symposium on 

Applied Computing (SAC), pp. 1553–1558, 2015. 

[ZM03] J. Zhang, I. Mani, “KNN Approach to Unbalanced Data Distributions: A Case Study,” 

Proc. of the ICML'2003 Workshop on Learning from Imbalanced Datasets, 2003. 

 

 


