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Abstract

Host-based Anomaly Detection Systems (ADSs) monitor for significant devia-
tions from normal software behavior. Several techniques have been investigated
for detecting anomalies in system call sequences. Among these, Sequence Time-
Delay Embedding (STIDE), Hidden Markov Model (HMM), and One-Class Sup-
port Vector Machine (OCSVM) have shown a high level of anomaly detection
accuracy. Although ADSs can detect novel attacks, they generate a large num-
ber of false alarms due to the difficulty in obtaining complete descriptions of
normal software behavior. This paper presents a multiple-detector ADS that
efficiently combines the decisions from heterogeneous detectors (e.g., STIDE,
HMM, and OCSVM), using Boolean combination in the Receiver Operating
Characteristics (ROC) space, to reduce the false alarms. Results on two mod-
ern and large system call datasets generated from Linux and Windows operating
systems show that the proposed ADS consistently outperforms an ADS based
on a single best detector and on an ensemble of homogeneous detectors. At an
operating point of zero percent false alarm rate, the proposed multiple-detector
ADS increased the true positive rate by 500% on the Linux dataset and by 25%
on the Window dataset. Furthermore, the combinations of decisions from mul-
tiple heterogeneous detectors make the ADS more reliable and resilient against
evasion and adversarial attacks.
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1. Introduction

Intrusion Detection Systems (IDSs) are used to identify and report unau-
thorized or suspicious computer or network activities. Host-based IDSs are
designed to monitor the host system activities and states, while network-based
IDSs monitor network traffic for multiple hosts. In either case, an IDS can
be classified into misuse detection or anomaly detection depending on whether
the intrusion features are known or not during the design phase. Unlike mis-
use detection techniques, which look for patterns of known attacks, anomaly
detection is capable of detecting novel attacks. An anomaly detection system
(ADS) constructs a profile of expected normal behavior using datasets that are
collected over a period of normal (attack-free) activity. During operation, the
ADS attempts to detect events that deviate significantly from the expected nor-
mal profile. These deviations are considered and reported as anomalous events;
however, they are not necessarily malicious activities because they may also
correspond to coding or configuration errors.

Host-based ADSs, the focus of this paper, typically monitor for significant
deviations in operating system calls, as they provide a gateway between user
and kernel mode [1, 2]. The temporal order of system calls issued by a process to
request kernel services, have been shown effective in describing normal process
behavior [1, 2]. A substantial amount of research has focused various statistical,
neural, machine learning and data mining techniques for detecting anomalies
in system call sequences (see survey in [3]). Among these, sequential learning
techniques such as the Sequence Time-Delay Embedding (STIDE) [1, 2, 3] and
Hidden Markov Models (HMMs) [4, 5, 6, 7, 2, 8, 9, 10, 11, 12, 13, 14] have been
shown to successfully model the sequential nature of system calls, and hence
provide a high level of anomaly detection accuracy.

Standard machine learning techniques, such as Support Vector Machines
(SVM) have also been proposed for detecting system call anomalies. These
techniques require a fixed-size feature vector as an input for training. The bag
of system calls is the most commonly used mapping to transform a trace of
system calls into a feature vector of binary flags [15, 16, 17].

Despite over two decades of research effort, ADSs based on system calls still
face several challenges that limit their deployment in commercial settings. In
practice, ADSs generate an excessive number of false alarms, which undermine
their credibility. False alarms are due in large part to the difficulty in obtaining
complete descriptions of normal system behavior and to the changes that may
occur in the monitored environment over time. Combining the predictions from
multiple diverse and accurate detectors reduces the risk of selecting a single
detector with poor generalization performance. Different detectors may com-
mit different errors and hence provide complementary information that can be
exploited by the combiner to reduce the number of false alarms [18, 19].

In previous work, we proposed an anomaly detection technique that com-
bines the scores of several homogeneous detectors in the Receiver Operating
Characteristics (ROC) space and explored its potential in improving the accu-
racy of an ADS [20]. More precisely, the approach combines multiple HMMs



each with a varying number of hidden states. Although the approach showed
promising results, it suffered from the following drawbacks. First, it has been
shown in the literature on machine learning (see [21]) that varying the parame-
ters of homogeneous detectors provides a less diverse ensemble for combination,
and hence a reduced overall detection accuracy, than that provided by hetero-
geneous detectors. Although the combination of several HMMs makes the ADS
more resilient to evasion attacks than a single-detector system, the combina-
tion of multiple heterogeneous detectors further improves the ADS resilience
to evasion and adversarial attacks (as detailed in Section 5). Furthermore, the
previous approach was validated using the University of New Mexico (UNM)
system call datasets [2], which are 20 years old. They were still in use due to
the lack of publicly available system call benchmarks at that time. In addi-
tion, training HMMs with large number of states on large datasets requires a
considerable amount of time and resources. The time complexity for training
an HMM scales linearly with the sequence length and quadratically with the
number of states, and its memory complexity scales linearly with both sequence
length and number of states.

To address these issues, we propose, in this paper, a new anomaly detection
system that combines powerful heterogeneous detectors, namely STIDE, HMM
and One-Class SVM (OCSVM) detectors. We show that the combination of
responses from heterogeneous detectors can reduce the number of false alarms
while increasing the detection accuracy (without a significant performance over-
head) compared to the use of homogeneous detectors. To support our findings,
we conducted experiments using system call traces from two modern and large
datasets generated from Linux and Windows operating systems. The first is
a recently proposed system call dataset, called ADFA Linux Dataset (ADFA-
LD) [22]. It has been made publicly available on the website of the University of
New South Wales (UNSW) [22]. The ADFA-LD system call traces are generated
from modern Linux operating systems, using contemporary hacking techniques.
Furthermore, another dataset containing a large collection of system call traces
generated from several Windows machines is provided by Canali et al. [23]. We
refer to this dataset as CANALI-WD. These datasets provide a more realistic
benchmark for evaluation of Host-based ADSs.

The experimental results (in Section 4, Figures 3 and 4) show that, at an
operating point of zero percent false alarm rate, our heterogeneous multiple-
detector ADS has significantly increased the true positive rate by 500% on the
ADFA-LD and by 25% on the CANALI-WD datasets, compared to existing ap-
proaches including the one we proposed in [20]. Moreover, the paper provides
an in-depth discussion on the advantages of combining the decisions from mul-
tiple heterogeneous detectors, in particular, making the ADS more resilient and
robust to evasion and adversarial attacks, a topic that has not received much
attention in the literature. Finally, a detailed analysis of time and memory
complexity is provided for both design and operational phases.

The rest of this paper is organized as follows. The next section reviews
the application of STIDE, HMM, and OCSVM detectors in system call based
ADSs. In Section 3, the iterative Boolean combination technique is presented



and an illustrative example is provided for further clarification. The experimen-
tal methodology in Section 4 describes the datasets and the evaluation metrics.
The simulation results are presented and discussed in Section 4, followed by a
discussion on adversarial attacks and evasion techniques in Section 5. Finally,
the conclusions and future works are presented in Section 6.

2. Anomaly Detection using System Call Sequences

Forrest et al. were the first to suggest that the temporal order of system
calls could be used to represent the normal behavior of a privileged process [1].
They have collected system call datasets from various privileged processes at
the University of New Mexico (UNM), and confirmed that short sequences of
system calls are consistent with normal process operation, and unusual burst
will occur during an attack.

The authors proposed a host-based ADS using a sequence matching tech-
niques, called STIDE (Sequence Time-Delay Embedding), for detecting anoma-
lous system call sequences generated by UNIX privileged processes [1]. To build
a profile of normal behavior for a process of interest, STIDE proceeds by seg-
menting and enumerating the system call traces provided for training into fixed-
length contiguous sequences, using a fixed-size sliding window, shifted by one
symbol. These sequences are then stored in a database that represents the
normal process behavior. During operations, STIDE uses the sliding window
scheme (with the same window size used to construct the normal profile) to scan
the system calls generated by the monitored process for anomalies — sequences
that are not found in the normal database.

STIDE is therefore a crisp (or binary) detector that declares any sequence not
found in the normal database as anomalous. Therefore rare normal sequences
that did not appear in the normal database will be misclassified as anomalies
(producing large numbers of false alarms). To reduce the number of false alarms,
an anomalous score is defined as the number of mismatches in a temporally
local region, and then an arbitrary threshold is set on this score, above which a
sequence is considered as anomalous [2]. Hamming distance between sequences
— the number of positions in which two sequences differ — has been successfully
employed as an alternative measure of anomalous behavior [24]. To compute the
anomaly score for a new observation sequence o1, 09, ..., or (consisely denoted
by 01.1), the Hamming distance between between o1.7 and all sequences in the
normal database is first computed; then the minimal Hamming represents the
anomalous score. STIDE is now transformed to a soft detector, which outputs
scores instead of binary decisions as further described in Section 3. While the
time complexity for STIDE to process a trace of length T using a window of
size W is of the order of O(W.T), its worst-case memory complexity is O(S, W),
where S, is number of unique sequences extracted from 7. However, in practice,
the storage requirements are much lower because the sequences are stored as
trees [24].

Several statistical and machine learning techniques have been investigated
over the last two decades for detecting system call anomalies using the UNM



data sets [3]. For instance, finite state automata have been proposed to model
the system calls language, using deterministic or nondeterministic automatons
[25, 26], or a call graph representation [27]. Lee et al. evaluated information-
theoretic measures such as entropy and information cost [28]. Abstracting the
system call traces as interactions of kernel state modules has also been pro-
posed to reduce the processing time [29, 30]. Application of machine learning
techniques include neural network [31], k-nearest neighbors [32], Markov models
or n-grams [33, 34], Bayesian models [35]. Among these, techniques based on
discrete HMMs have been shown to produce a high level of detection accuracy
on the UNM system call datasets [2, 8, 9, 10, 13, 14, 11, 12, 6, 7, 36].

A discrete HMM is a stochastic process for sequential data [5, 37]. An HMM
is determined by two interrelated mechanisms — a latent Markov chain having
a finite number of states NV, and a set of observation probability distributions,
each one associated with a state. Starting from an initial state S; € {51, ..., SN },
determined by the initial state probability distribution 7;, at each discrete-time
instant, the process transits from state S; to state S; according to the transition
probability distribution a;;. The process then emits a symbol v, from a finite
alphabet V' = {v1, ..., v} of size M symbols, according to the output probabil-
ity distribution b;(vy) of the current state S;. HMM is commonly parametrized
by A = (m, A, B), where the vector # = {m;} is the initial state probability
distribution, matrix A = {a,;} is the state transition probabilities, and matrix
B = {b;(vg)} is the output probabilities, (1 <4,7 < N and 1 < k < M).

A well trained HMM provides a compact detector that captures the under-
lying structure of a process based on the temporal order of system calls, and
detects deviations from normal system call sequences with high accuracy and
tolerance to noise. Training an HMM from a sequence (or a block) of observation
symbols, o1.7, aims at estimating HMM parameters A to best fit the training
data. Typically, parameters estimation consists of maximizing the likelihood of
the training data over HMM parameters space, P(o1.7 | A). Since this likeli-
hood depends on the latent states, there is no known analytical solution to the
learning problem. Iterative optimization techniques, such as the Baum-Welch
(BW) algorithm, are applied to estimate the HMM parameters over several
training iterations, until the likelihood function is maximized[5, 37]. During op-
eration, the likelihood of a new observation sequence o1.7 given a trained HMM
A, P(o1.r | A) is typically evaluated by using the Forward-Backward (FB) al-
gorithm [5, 37]. Finally, a third canonical property of HMM is called decoding
or finding the most likely state sequence S that best explains a given observa-
tion sequence o1.r, i.e, maximize P(S | o1.1, A), which is commonly determined
by the Viterbi algorithm [37]. The time and memory complexity for training
an HMM with N states according to Baum-Welch algorithm is O(N?T) and
O(NT) respectively, for a sequence of length T symbols.

Unlike algorithms for sequential data, which can directly learn from data
streams, standard machine learning algorithms (e.g., K-Nearest Neighbor, Arti-
ficial Neural Networks and Support Vector Machines) require fixed-size numeric
feature vectors as inputs. Therefore, a mapping from the system call traces
into such feature vectors is required to allow the application of various machine



learning algorithms. Traditional data representation for text categorization or
document classification involves the term vectors or (bag of words), where each
document is represented by a vector of terms or words. The term vector is
a mapping from the document space to a fixed-size vector whose entries are
nonzero if the corresponding term appears in the document and zero otherwise.
Each term in the vector is typically weighted using the term frequency (¢f) or
the term frequency—inverse document frequency (tf.idf) [38].

In host-based anomaly detection systems, the term vector or the bag of
system calls has been used to train one-class Naive Bayes algorithm and K-
Means clustering for anomaly detection as well as two-class classifiers, such as
decision tree, Naive Bayes, SVM and Logistic Regression for misuse detection
[17]. Chen et al. compared the performance of the support vector machine
(SVM) classifier to that of an artificial neural network (ANN) classifiers, both
trained using the term vector representation of system call traces [16]. They
showed that the detection accuracy of SVM was superior to ANN and the results
improved when the term vector is weighted by the tf.idf instead of just by tf
[16]. However, this data representation discards the temporal order among the
system calls in a trace.

In this work, we focus on building a multiple-detector anomaly detection
system based on the combination of these well-known and diverse detectors:
STIDE, HMM, and OCSVM. As described in Section 4.2, the OCSVM is trained
using a Gaussian kernel with a tf.idf weighted term vectors.

Recently, Creech and Hu proposed a “semantic” feature extraction technique
from system call traces [39]. The basic idea is to create feature vectors of phrases
of different length (up to five in their experiments) comprising the frequency of
n-grams (n = 1,...,5) that appear in the training traces. As an anomaly
detector, the authors proposed to use the Extreme Language Machine (ELM),
which is a generalized single-hidden-layer feed-forward networks [40]. In fact,
ELM randomly chooses the input weights and analytically determines the output
weights of the feed-forward network, and hence requires less human interventions
and runs faster than conventional neural networks. However, it not clear how
the authors have trained the ELM technique using the normal traces only. They
showed that their proposed approach yielded the best detection accuracy on the
ADFA-LD dataset. We have compared the results of our system with their
results as shown in Section 4.3.

3. Iterative Boolean Combination of Detectors in the ROC Space

The iterative Boolean combination (I BC) technique summarized and further
clarified in this section has been proposed to combine detectors’ decisions in the
ROC space for an improved accuracy [20].

A crisp detector outputs a class label (e.g., normal or anomaly) while a soft
detector such as STIDE (using Hamming distance) or HMM assigns scores to the
input samples, which can be converted to a crisp detector by setting a decision
threshold on the scores. Given the responses of a crisp detector on a validation
set, the true positive rate (tpr) is the proportion of positives correctly classified



over the total number of positive samples. The false positive rate (fpr) is the
proportion of negatives incorrectly classified over the total number of negative
samples. The positive (or target) class is typically the class of interest, which is
the anomalous class for an ADS.

A receiver operating characteristic (ROC) curve is a plot of tpr against fpr
[41]. A crisp detector produces a single data point in the ROC plane, while a soft
detector produces a ROC curve by varying the decision thresholds. In practice,
an empirical ROC plot is obtained by connecting the observed (tpr, fpr) pairs
of a soft detector at each decision threshold. With a finite number of decision
thresholds, an empirical ROC plot is a step-like function which approaches a true
curve as the number of samples, and hence the number of decision thresholds,
approaches infinity.

The ROC curves have originally been introduced in signal detection theory
to visualize the performance of detectors and select optimal operational points,
without committing to a single decision threshold. ROC analysis presents the
detectors performance across the entire range of class distribution and error
costs. A random guess would give a point along the diagonal line joining the
left bottom point (0,0) to the top right one (1,1), which is also called diagonal
of chance. For equal prior probability and cost of errors, the optimal decision
threshold corresponds to the vertex that is closest to the upper-left corner (0, 1)
of the ROC plane. This point can be graphically located on the ROC curve by
moving a line with a slope of one (called iso-performance line), i.e., parallel to
the diagonal of chance, until it touches the ROC curve.

In many practical cases, such as in intrusion detection systems, the prior
probability of intrusions and misclassification costs (the cost of a false alarm
versus the cost of missing an intrusion) are critical to evaluate the overall system
performance. These information must be considered while analyzing the ROC
curve and selecting the optimum operating points. The slope of iso-performance
lines could be adjusted to account for the prior probability or the costs ratio [41,
42]. Another interesting technique applies the decision tree to provide expected
cost metrics that account for the misclassification costs ratio at different prior
probabilities intervals [19]. Our combination technique in the ROC space is
based on Boolean combination of decisions form various thresholds(on the same
or different ROC curves), independently from the prior probabilities or cost
of errors. This allows for the application of techniques that account for the
prior probabilities and costs of errors (e.g., [42, 19]) while selecting the optimal
operating point to be readily applied on the combination results provided by our
technique. As described in the rest of this section, an IDS based on the proposed
combination technique is capable of changing the operating point during system
operations to adapt to changes in prior probabilities and costs of errors (which
may happen after deployment to operations).

The area under the ROC curve (AUC) has been proposed as more robust
(global) measure for evaluation and selection of classifiers than accuracy or con-
versely error rate [43]. In fact, the accuracy depends on the decision threshold,
and assume fixed distributions for both positive and negative classes. The AUC
however is the average of the tpr over all values of the fpr (independently of



decision thresholds and prior class distributions). The AUC assesses ranking
in terms of class separation, it evaluates how well a classifier is able to sort its
predictions according to the confidence they are assigned. For instance, with
an AUC =1 all positives are ranked higher than negatives indicating a perfect
discrimination between normal and anomalous classes, while a random classifier
has an AUC = 0.5.

In some cases however the ROC curves may cross, and hence detectors pro-
viding higher overall AUC values may perform worse than those providing lower
AUC values, in a specific region of ROC space [44]. In such cases, the partial
area under a specific region of the ROC curve (for instance the area under the
curve between fpr = 0 and fpr = 0.1), could be more useful for comparison
than the area under the entire ROC curve [44]. However, if the AUC or the
partial AUC values are not significantly different, the shape of the curves might
need to be looked at.

In any case, any attempt to summarize a ROC curve into a single number
leads to information loss, such as those incorporated in the prior probability
and misclassification costs, which reduces the system adaptability in practice.
Therefore, in our experimental evaluation we present the entire ROC curves for
comparison and we mainly compare the ¢pr of different detectors for specific fpr
values (in particular for fpr = 0). In addition, we provide the AUC value as a
global metric of detectors’ performance. Note that, for the combined systems,
the AUC is the area under the final composite ROC convex hull (as described
next).

An important concept in ROC analysis is the ROC curves Convex Hull
(ROCCH), which is the piece-wise outer envelope connecting only superior
points in the ROC space [41, 42]. Given two operating points, say a and b,
in the ROC space, a is defined as superior to b if fpr, < fpr, and tpr, > tpry.
A detector is therefore potentially optimal if it lies on the convex hull of the set
of points in the ROC space. The ROCCH has been proposed for combination of
detectors, based on a simple interpolation between their responses [41, 42, 45].
In practice, this is achieved by randomly alternating detectors responses pro-
portionately between the two corresponding vertices of the line segment on the
convex hull where the desired operational point lies. For example, given the
ROC curves of two detectors D; and Ds presented in Figure la, assume that
the maximum tolerated false alarm rate is 10% (fpr < 0.1). Under such de-
sign constraints, the highest detection performance (tpr = 25%) is achieved by
detector D, at point d.

However by applying the ROCCH combination, the detection performance
could be increased to point ¢, which has a tpr = 35%. Although, the desired
operating point ¢ does not lie on any ROC curves of the given detectors, which,
in reality, means that there is no threshold ¢ that can be applied to output of
D, or D5 to provide the performance achieved by the point ¢, it can be achieved
by taking the responses from a and b proportionally to their relative positions
with reference to ¢ on the line segment ab. In our example, the ratio of the line
segment ac to ab is about 0.3, therefore by randomly taking the decisions from



Algorithm 1: BCarr(T,, Ty, labels)

input : Thresholds of two ROC curves, T, and T} and labels

output : ROCCH and fused responses (R) of combined curves; each point
results from two thresholds combined with a Boolean function (bf)

let m < number of distinct thresholds in T,;

let n < number of distinct threhoslds in Tj;

allocate an array F[2,m X n] // temporary fusions;

BooleanFunctions < {a Ab,—a A b,a A —b,=(a A D),

aVb,—aVbaV —b-(aVb),adb,a=b};

B W N =

5 compute ROCCH,4 of the original curves;
6 foreach bf € BooleanFunctions do
7 for i + 1 to m do
8 Ro + (To > Tu,) // threshold to response;
9 for j < 1 ton do
10 Ry (Tb > Tbj);
11 Rc + bf(Ra, Rb) // fuse responses;
12 compute (tpr, fpr) using R. and labels;
13 push (¢pr, fpr) onto F;

14 compute ROCCHpew of F

15 push responses of points above ROCCH,;4 into R;

16 store their thresholds and Boolean functions to be used during operations;
17 ROCCHnew — ROCCHold // Update ROCCH7

18 return ROCCH e, R

point b at a rate of 30% and from point a at a rate of 70% (1 — 0.3 = 0.7) the
point ¢ is realized; a gain of 10% in true positive rate at the same fpr = 0.1.
By selecting only superior detectors, the ROCCH combination discards re-
sponses from inferior detectors which may diverse information for an improved
performance [20, 19]. As illustrated in the following examples, the Boolean com-
bination of two detectors can produce new operating points in the ROC space,
yielding superior performance than the ROCCH of the original curves [20].
The algorithm for Boolean combination (BCarr) of two ROC curves is
presented in Algorithm 1, and illustrated in Figure 1. It inputs a pair of ROC
curves defined by their decision thresholds and the labels for a validation set. For
each of the ten Boolean functions (see line 4 of Algorithm 1), BC 411, combines
the responses (on the validation set) of each threshold from the first curve with
the responses of each threshold from the second (as illustrated in the right part of
Figure 1b). The results of all combination are then mapped to points (fpr, tpr)
in the ROC space (as illustrated in the left part of Figure 1b). The thresholds
(from each curve) of combined points that are superior to the ROCCH of original
curves are then stored in a database (R) along with their corresponding Boolean
functions (as illustrated in Figure 1c¢). The ROCCH is then updated to include
the new emerging points. The outputs are the vertices of the final ROCCH,
where each point is the results of one thresholds from each ROC curve combined
with the corresponding Boolean function, which are stored in (R) and applied



Algorithm 2: BCMay(T1,Ts, ..., Tk,labels): Boolean Combination of
Multiple ROC curves

input : Thresholds of K ROC curves [T1,...,Tx]| and labels
output : ROCCH of combined curves; each point is the result of combination
from two selected curves
1 [ROCCHai.2, Ri:2) = BCarr(T1, Tz, labels) // combine the first two ROC
curves;
2 for k + 3 to K do
// combine the responses of the previous combination with those
of the following ROC curve;
3 [ROCCHl;k,R1;k] = BCALL(Rkath,labelS)

4 store selected thresholds and Boolean functions;
5 return ROCCH1.x, R1.x

Algorithm 3: IBC(T1,T5,. .., Tk, labels): Iterative Boolean Combination

input : Thresholds of K ROC curves [T1,...,Tx]| and labels
output : ROCCH of combined curves; each point is the result of a composite

combination
1 set maxiter and tol // number of iterations allowed and tolerance
between AUCH values;
2 iter < 1,
3 [ROCCHZ‘ter, Riter] = BCMALL([Tl, TQ, ey TK}, labels);
4 for iter + 2 to maxiter do
5 [ROCCH“ET, Ritm«] = BCMALL([RitET_l, Tl, TQ, ey TK], labels);
6 if (AUCHiter < AUCH ter—1 + tOl) then
7 L return // no significant improvement;
8 store selected thresholds and fusion functions for each iteration;

9 return ROCCHiter, Riter

during operations.

The example presented in Figure 1 illustrates the improvement in perfor-
mance achieved by the Boolean combination in the ROC space. For the same
constraints on the maximum tolerable false positive value, fpr = 10%, the
BC4pr1 is now able to achieve a tpr = 50% (point e), i.e., a 15% increase in de-
tection accuracy over point d (achieved by C'Hy, the ROCCH of the original de-
tectors). Again the new operational point (e), which corresponds to fpr = 10%,
is located between points c¢12 and c¢13 of the new composite ROCCH CHs, and
can be achieved by interpolation of their responses (by randomly taking the
decisions from point cjo at a rate of about 30% and from point ci3 at a rate of
about 70%). The point ¢ is achieved by negating the decisions of detector Dy
at threshold ¢; and AND’ing them with the decisions of detector Dy at threshold
to. Similarly, the point cq3 is achieved by the following Boolean combination
rules retrieved from the database R: ¢13 = (D1,t2) V (Da,t1). It is important
to notice that the BC 41,1, algorithm allows the system to operate on point c11,

10
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Figure 1: Example of the steps involved with the Boolean combination of two detectors (D1
and D3) in the ROC space (according to Algorithm 1).

which has a true positive rate similar to that of point ¢ (tpr = 35%), however
with zero false alarms (fpr = 0%).

Given K detectors for combination, the complete Iterative Boolean combi-
nation (IBC) algorithm, first proposed in [20], is described in Algorithm 3. The
IBC starts with the combination of a pair of detectors according to BCsrr,. The
outputs of this combination are the selected vertexes, which have emerged above
the ROCCH of the original curves, that are stored in the database R along with
their corresponding thresholds and Boolean functions (as shown in Figure 1c).
The responses from these vertexes are then combined with those of the third
detector as described in Algorithm 2. The results from this combination are the

11



vertexes that emerged above the previous ROCCH of the previous combination.
These vertexes are then appended to the database along with their thresholds
and Boolean functions, and so on until all detectors are combined.

As described in Algorithm 3, when all K detectors have been combined (first
iteration), IBC re-combines the resulting responses of the emerged vertexes, ly-
ing on the facet of the ROCCH, with each individual ROC curve, while selecting
and saving the emerging vertexes and their Boolean combinations. This step is
repeated iteratively until a maximum iteration number is reached or the ROCCH
improvement and hence the increase in AUC values drops below a given thresh-
old. This iterative procedure can further improve the overall performance of
the combination and typically requires few (less than ten) iterations to con-
verge. The results of iterative Boolean combination of K ROC curves are the
selected vertexes on the facet of the final ROCCH, where each vertex represents
an ensemble of crisp detectors and Boolean functions selected from the original
detectors according to specific thresholds. Although the iterative process does
not necessarily provide an optimal set of combinations, its time complexity is
linear in the number of detectors. To ensure that the method provides equal or
better performance, since the ROC curves of the original detectors are always
included to the ROC spaces, the performance of combination is guaranteed to
be greater than or equal to that of the best detector.

The Boolean combination of detectors responses in the ROC space requires
no assumption about the independence of detectors, in contrast with other fu-
sion functions such as sum, product or averaging [46, 47]. The normalization
of the output scores from heterogeneous detectors is also not required, because
ROC curves are invariant to monotonic transformation of decision thresholds
[48]. More importantly, since the IBC aims at maximizing the ROCCH of com-
binations over all decision thresholds provided by the combined detectors, it
allows to adapt to changes in prior probabilities and cost of errors during sys-
tem operation. When the operating point changes, different vertices on the
ROCCH will be selected and hence different thresholds and Boolean functions
will be activated to accommodate this change, without the need for retraining
new detectors. This is an important property for ADSs, since the prior class
distributions are highly imbalanced and misclassification costs are different and
both may change over time; hence the operating point may change during op-
eration. The next section describes how the iterative Boolean combination is
applied to form ADSs based on multiple homogeneous or heterogeneous detec-
tors trained on normal system call traces.

3.1. Illustrative Example

The following example provides further insight into why the Boolean com-
bination in the ROC space can improve the detection accuracy while reducing
the false alarm rate. Suppose that you have been provided by a validation set
comprising 20 labeled system call sequences (5 anomalous and 15 normal) and
the scores of two models M; and Ms (have been previously trained on normal
sequences) for each of these sequences, as shown in Table 1. The ROC curves
of models M; and My and their AUC values are illustrated in Figure 2. When
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Table 1: Scores provided by models M; and M to the sequences of system calls (S1,...,S20)
in the validation set, labeled as normal (0) or anomalous (1), followed by the decision of the
selected crisp detectors (A, B, C, D) and their Boolean combinations.

Validation Set Model Scores  Selected Detector Predictions Boolean Combination
Seq.  Label My Moy D A B C E: F: G
(DAN-A) (DA-B) (DV-C)
S1 1 0.90 0.90 1 0 0 1 1 1 1
So 1 0.59 0.95 1 0 1 1 1 0 1
Ss 1 0.80 0.95 1 0 1 1 1 0 1
Sy 1 0.58 045 1 0 0 1 1 1 1
Ss 1 040 0.35 0 0 0 0 0 0 1
Se 0 0.60 091 1 0 1 1 1 0 1
Sq 0 0.50  0.59 0 0 0 1 0 0 0
Ss 0 0.70  0.99 1 1 1 1 0 0 1
So 0 045  0.40 0 0 0 1 0 0 0
S10 0 0.52 0.80 0 0 0 1 0 0 0
S11 0 0.53 0.70 0 0 0 1 0 0 0
S12 0 0.55 0.80 0 0 0 1 0 0 0
Si3 0 040  0.80 0 0 0 1 0 0 0
S14 0 042  0.70 0 0 0 1 0 0 0
Sis 0 040  0.60 0 0 0 1 0 0 0
Sie 0 0.50  0.50 0 0 0 1 0 0 0
Stz 0 0.50  0.40 0 0 0 1 0 0 0
Sis 0 0.20  0.30 0 0 0 0 0 0 1
S19 0 0.85 0.99 1 1 1 1 0 0 1
S0 0 0.89 0.99 1 1 1 1 0 0 1
Threshold (see Figure 2): Ty Ty T Ty
False positive rate: 0.27 0.20 0.27 0.93 0.07 0.00 0.34
True positive rate: 0.80 0.00 0.40 0.80 0.80 0.40 1.00
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Figure 2: Illustration of the improvement achieved by Boolean combination of the crisp de-
tectors selected from models M; and Ms in the ROC space.

the output scores of M; and My (which are also the unique thresholds of their
ROC curves) and the sequence labels are input into Algorithm 1, the outputs
are the ROCCH of combinations, the selected crisp detectors (thresholds on
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the models), and the Boolean functions, as shown in Figure 2. The selected
crisp detectors are denoted by letter A, to D on the ROC curves and Ts, T3,
Ty and Ty are their corresponding thresholds. These thresholds as well as the
true and false positive rates of each detector are also shown in the lower part
of Table 1. For instance, the crisp detector D is realized by setting a cut off
point of T = 0.58 on the scores of Mj. All scores that are greater to or equal
to this threshold are considered anomalous and given a label of one; otherwise
they are considered normal and labeled with zeros. The Boolean combinations
of selected detectors are shown in Table 1 for each sequence, and their corre-
sponding fpr and tpr are computed at the bottom of the table and mapped to
ROC space in Figure 2, (denoted by E, F, and G). For instance, point F, which
improves the detection rate from 20% to 40% while maintaining zero false alarm
rate can be achieved, in practice, by negating the decisions of detector B and
ANDing them with those of detector D. Any operation point between F and E
can be realized by interpolation of responses, as described in previous section.
The overall AUC of ROCCH of combination has increased to 0.95 compared to
0.69 of the original model M;.

4. Experiments

The main objectives of our experiments are to evaluate and compare the
performance of the proposed multiple-detector ADSs formed by the iterative
Boolean combination of heterogeneous (STIDE, HMM, and OCSVM) detectors
to that based on homogeneous Ensembles of HMMs (EoHMMs) using the mod-
ern and recently published system calls datasets: AFDA-LD for Linux [22] and
CANALI-WD for Windows [23]. In addition, the performance of the multiple-
detector ADS is compared to the ADS proposed in [39], presented in Section 2,
which achieves the best results to date on the ADFA-LD dataset (described
next).

4.1. Datasets

The normal system call traces are typically collected from the monitored
host system in a secured environment, during normal system operation. These
traces are assumed attack-free and used for training the anomaly detectors.
The testing traces are the system calls collected from the same host while being
under different kind of attacks. These attack traces comprise both normal and
anomalous sequences for testing. Therefore, during testing, the whole attack
trace or the collection of attack traces (an attack could result in more than one
trace as shown in Table 2) is usually considered as one anomaly.

The UNM datasets have been commonly used for benchmarking ADSs based
on system calls sequences for about 20 years now [2], due to the lack of publicly
available datasets. However, neither the normal nor the attack traces represent
the complexity of modern software application or the architecture or contempo-
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Table 2: Normal versus Anomalous Traces in ADFA-LD and CANAI-WD Datasets

Number of normal (benign) traces | Number of anomalous traces
ADFA-LD (Linux Datasets)

training 833

testing 4373 | testing (60 attacks) 636
CANALI-WD (Windows Datasets)

goodware 629 | malware 5855

anubis-good 36 | malware-test 1200

rary attack protocols. Recently, a new system call dataset, called ADFA-LD!,
has been created and made publicly available on the website of the University
of New South Wales (UNSW) [22].

The ADFA-LD dataset is generated using a modern Linux operating system
hosting servers that have been attacked by exploiting various (publicly known)
security vulnerabilities. As described by the authors, the ADFA-LD is gener-
ated using a fully patched Ubuntu Linux 11.04 operating system with an Apache
2.2.17 web server, PHP 5.3.5 server side scripting engine, TikiWiki 8.1 content
management system, FTP server, MySQL 14.14 database management system
and an SSH server [22]. Normal system call traces were collected from the host
system during normal user activities, such as web browsing and Latex document
preparation. About 60 different attacks, belonging to six types of attack vectors,
were launched by a certified penetration tester against the system, using modern
penetration testing tools like Metasploit?. These attacks include web-based ex-
ploitation, simulated social engineering, poisoned executable, remotely triggered
vulnerabilities, remote password brute force attacks and system manipulation
using the C100 webshell [22].

Table 2 presents the number of normal and attack traces in the ADFA-
LD dataset. The authors have divided the normal traces into 833 traces for
training and 4373 for testing (a ratio of about 1:5), and used this normal data
partitioning to training and evaluation of their proposed technique [22, 39].

In addition to the Linux system call datasets, we evaluated the proposed
multi-detector approach using modern datasets of system call traces generated
from several Windows machines. These datasets are provided by Canali et
al. [23], and hence we refer to hereafter by CANALI-WD (CANALI Windows
Datasets). In contrast to previously published system call datasets, which have
limited anomalous traces, CANALI-WD provides a large collection of anoma-
lous traces. As presented in Table 2, CANALI-WD contains 5,855 malware
traces randomly extracted from Anubis®, including malwares such as botnets,
worms, dropper,Trojan horses. It also includes 1,200 traces of malwares (called
malware-test) that have been collected on a different machine than that used
by Anubis. On the other hand, CANALI-WD contains 629 traces of normal

Lhttp://www.cybersecurity.unsw.adfa.edu.au/ADFA IDS Datasets
2http:/ /www.metasploit.com
Shttp://anubis.iseclab.org
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execution (about 180 GB) collected from 10 different real-world machines, used
by regular computer users (called goodware). The average length of these nor-
mal traces is about 1.2 million system calls, while the longest could reach 100
million system calls. Finally, it contains the traces of 36 normal application ex-
ecuted under Anubis (called anubis-good). Overall, the CANALI-WD dataset
consists of a total of 1.5 billion system calls invoked by over 363,000 processes
on different machines [23].

4.2. Experimental Protocol

For the ADFA-LD dataset, we followed the experimental setup provided in
[39]; therefore, the 833 normal traces are used for training STIDE, HMM, and
OCSVM detectors. However, we hold out 1000 traces randomly selected from
the 4373 normal traces and 20 attacks randomly selected from the 60 attacks for
validation. This validation set is used to select the Window Size (W) for STIDE
detector, the number of states for HMM, the kernel parameters for OCSVM and
compute the Boolean combination and select the decision thresholds for the IBC
technique. The remaining (3373) normal traces and (40) attack traces are only
used for testing and benchmarking the detection performance of detectors. Since
each attack consists of multiple traces (see Table 2), if an anomaly is detected
in any of the traces belonging to the same attack, then the attack is considered
successfully detected [39].

For CANALI-WD dataset, we used anubis-good traces and traces for nine
out of the 10 machines in the goodware dataset (similar to the authors method-
ology [23]) to train the STIDE, HMM, and OCSVM detectors. In contrast with
the authors however, where the malware traces were also used to build their
models, we used the malware traces for evaluation. This is because we focus
on anomaly detection where the anomaly detectors are only trained on normal
system calls. The traces from the tenth machine in the goodware, the malware-
test traces and malware traces are instead used to evaluate the models. Finally,
a fraction of about 10% of normal and anomalous system call for testing is used
as a validation set.

Training STIDE only requires the selection of the window size value. In
our experiments we trained STIDE using W = {5, 10,20} on the normal traces
provided for training, and used STIDE with Hamming distance to evaluate
the score of a new test sequence. Since STIDE with W = 5 provided the best
detection performance on both validation sets (as measured by its ROC curves),
it was selected and considered for the combination with HMM using the IBC
algorithm.

As described in Section 2, estimating the parameters of an HMM requires
the specification of the number output symbols (M) and the number of hidden
states N, as well as its topology. The number of output symbols is taken equal
to the host system alphabet size (M = 340 unique symbols for ADFA-LD and
M = 275 for CANALI-WD). Since using a single HMM with a pre-specified
number of states may have limited capabilities to capture the underlying struc-
ture of the data (as discussed in Section 2), therefore, different discrete-time
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ergodic HMMs are trained with various N = 10,20,...,200 values. The it-
erative Baum-Welch algorithm is used to estimate HMM parameters [49]. To
reduce overfitting effects, the evaluation of the log-likelihood on the validation
set is used as a stopping criterion. For each state value, the training process
is repeated ten times using a different random initialization to avoid local min-
ima, and the HMM that gives the highest log-likelihood value on the validation
data is selected for the IBC combination. The FB algorithm is used to evaluate
the performance of each trained HMM, which should assign significantly lower
likelihood values to anomalous sequences than to normal ones.

The OCSVM detector is trained using the term vectors with tf.idf weights
extracted from the (normal) training traces. The training of OCSVM is done
using LIBSVM*, a commonly used library for support vector machines. In our
experiments, we have trained and compared the performance of OCSVM using
a Gaussian or RBF (radial basis function) kernel: K(v;,.v;) = exp _vaf_:j”i
where v; and v; are the feature vectors and o2 denotes the variance. The values
that provided the best performance on the validation sets are sigma = 0.001
for ADFA-LD dataset and sigma = 0.00001 for CANALI-WD dataset.

For each dataset, the detector with best performing parameter settings on
the validation sets, i.e., STIDE (W = 5), HMMs (N = 200), and OCSVMs
(sigma = 0.001 for ADFA-LD, and sigma = 0.00001 for CANALI-WD dataset)
are selected for combination according to IBC in order to construct the hetero-
geneous multiple-detector ADS.

To construct and select the EoHMMs, we applied the IBC algorithm on
the validation set to combine the ROC curve of HMM with N = 200 (since
it provided the best ROC curve on validation) with the ROC curve of each of
the remaining HMMs. The combination with an HMM trained with N = 30
on ADFA-LD and N = 10 on CANALI-LD provided the best AUC on the
validation set, and hence selected for comparison.

4.8. Experimental Results

As described in Section 3, we evaluation the performance by comparing the
tpr achieved by each technique at zero false alram rate (fpr = 0). We also
present the entire ROC curves and composite ROCCH of combined detectors
for comparison at different operating points. In addition, we provide the AUC
value as a global metric of detectors’ performance. Figure 3 present the re-
sults obtained on ADFA-LD dataset, while Figure 4 presents those obtained on
CANALLI-WD dataset.

For the ADFA-LD dataset, the ROC curves of the best performing ADSs that
are based on the proposed multiple-detector and on the EOHMMSs are presented
in Figure 3a and 3b. Figure 3a presents the complete ROC curves achieved by
the multiple-detector ADS for the combination of the selected detectors STIDE
with W = 5, HMMs with N = 200, and OCSVMs with sigma = 0.001) and

4http:/ /www.csie.ntu.edu.tw/ cjlin/libsvm
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(a) Boolean combination of STIDE, HMM, and
OCSVM.

True positive rate

——— D, HMM(N=200), auc=0.919
D2: HMM(N=30), auc=0.872
—e— IBC(D,, D,), auc=0.968
'='=" Creech & Hu 2013, auc=0.954

False alarm rate

(b) Boolean combination of an EoHMMs.

Figure 3: ADFA-LD: ROC curves and AUC results of our multiple-detector ADS (a), com-
pared to the EoOHMMs based ADS (b), to those obtained by Creech and Hu [2013b], and to
each individual detector.
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compares them to that obtained by the system proposed in [39], and to each
individual detector (before combination).

As illustrated by the arrows on Figure 3a, at an operating point of zero
false alarm rate fpr = 0, our system achieves about 90% true positive rate
(tpr = 0.9) compared to less than 10% true positive rate (tpr < 0.1) obtained
by the ADS proposed by Creech and Hu [39] or by STIDE detector. The ROC
curve achieved by the multiple-detector ADS completely dominates all other
curves, in particular it dominates that obtained in [39] for all decision thresh-
olds. This improved detection accuracy is also shown in the AUC values in the
legend of the figure, where the proposed ADS combining the three detectors,
IBC(Dy, Dy, D3), achieves the highest overall AUC value of 0.993.

Figure 3b presents the ROC curves of the EOHMMs based ADS, achieved by
the IBC of HMM trained with IV = 200 to that trained with N = 30, which is
the best performing EoHMMs on the validation sets as described in Section 4.2.
The ROC curve obtained by the system proposed in [39] is also presented for
comparison. The results in this figure indicate better ROC curves and AUC per-
formance than those of Creech and Hu’s system, but worse than those obtained
by the proposed multiple-detector ADS in Figure 3a. In particular, at an oper-
ating point of zero false alarm rate the EOHMMs achieves a true positive rate of
about 15% compared to 90% obtained by the heterogeneous multiple-detector
ADS of Figure 3a.

As shown in Figure 4, the results obtained using the Windows system call
dataset, CANALI-WD, confirm the results obtained on the Linux system call
dataset (ADFA-LD). The true positive rate at zero false alarm rate achieved by
the multiple-detector is about 80% compared to 30% achieved by the OCSVM
(see arrows on Figure 4a) and compared to 64% achieved with EoHMMs (see
arrows on Figure 4b). These results indicate an increase of about 166% in the
tpr over that of OCSVM detector and an increase of about 25% in the tpr over
that of EOHMMs. The area under the ROC curve obtained by our multiple-
detector, IBC(STIDE with W = 5, HMM with N = 200, and OCSVMs with
sigma = 0.00001) is AUC = 0.984, as shown in Figure 4a, while that of the
EoHMMs, IBC (HMM with N = 200 and HMM with N = 10), is AUC = 0.958
(Figure 4b).

Overall, the results on both ADFA-LD (Figure 3) and CANALI-WD (Fig-
ure 4) datasets show that the proposed multiple-detector ADS consistently out-
performs each of the individual detectors as well as the ADS based on EoOHMMs.
In addition, on the ADFA-LD dataset, it outperforms the ADS proposed by the
creator of the dataset [39]. The results presented in Figure 3 for the Linux
(ADFA-LD) dataset indicate a 500% increase in the tpr at fpr = 0 over the
best resutls achieved by the existing techniques, and an increase of 25% in the
tpr is shown in Figure 4a for the Windows (CANALI-WD) dataset.  These
results confirm that the iterative Boolean combination is able to exploit the
diverse and complementary decision information provided by the combination
of heterogeneous detectors (STIDE, HMM, and OCSVM), to achieve better re-
sults than combining homogeneous ensembles of the same detectors (such as
EoHMMs).
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We kept the number of combined detectors intentionally low (two or three
detectors only) to keep a fair companion with other ADSs that are based on one
detector only. In practice, the only restriction on including other detectors would
be an increased system complexity beyond the design constraints. However, as
discussed in Section 4.4 the overhead of the IBC during the operational phase is
negligible with reference to those of the combined detectors. Our combination
technique in the ROC space is based on Boolean combination of decisions form
various thresholds independently from the prior probabilities or cost of errors.
Techniques that account for changes in the prior probabilities and costs of errors
[42, 19] could be used to select the optimal operating point. More importantly,
our technique is capable of changing the operating point during system opera-
tions to adapt to changes in the prior probability or cost of errors by activating
a different set of decision thresholds and Boolean functions. Future work in-
clude investigating a larger number of complimentary detectors for combination
in host-based ADS using system calls. Combining detectors working on differ-
ent features according to the IBC is expected to further increase the detection
accuracy while decreasing the false alarm rates. In addition, it will also make
the ADS more robust and resilient to evasion or adversarial attacks as detailed
in Section 5.

4.4. Time and Memory Complexity Analysis

The IBC algorithm is very efficient in practice. The space of all Boolean
combination is doubly exponential and finding the optimal set of combination
is practically infeasible even for a small number of detectors. For n binary
detectors there are 2" possible outcomes that can be combined in 22" Boolean
combinations.

During the design phase, it reduces the time complexity from (9(2”2) to the
order of O(n?) Boolean combinations, in the worst-case. A more detailed analy-
sis shows that the IBC algorithm requires fewer than O(n?) Boolean operations
due to its sequential nature. Given K ROC curves (from K soft detectors) each
with T} decision thresholds (i.e., each providing T} crisp detectors), and let
n="T,+T5+...T) be the total number of crisp detectors. The worst-case time
complexity required by the IBC algorithm to apply the ten Boolean functions
(to each decision threshold from each ROC curve) over n., iterations is of the
order of O(nje,T1Ts), where Th. Ty << n?. This is because, after combining
the first two ROC curves O(T1Tz), the number of emerging combinations that
push the composite ROCCH over that of the original curves, is typically oders
of magnitude smaller than 77.75. For example, Figure 2 shows that only three
combinations improved the ogriginal ROCCH. These points are then combined
with the third curve using O(T3) Boolean operations, and so on. Similarly,
the time complexity required by each subsequent iteration are reduced by an
order of magnitude with respect to that of the first iteration. The memory
complexity required to store the temporary results (tpr, fpr) of each Boolean
function is O(T1T5). In our experiments, the IBC algorithm required an average
of three iterations (n. = 3), and the average time for computing the Boolean
combination of STIDE, HMM and OCSVM was about 5 seconds.
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Figure 4: CANALI-WD: ROC curves and AUC results of our multiple-detector ADS compared
to the EoHMMs based ADS, and to each individual detector.
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During operations, the IBC requires the application of the selected Boolean
functions to the output of the combined detectors at the selected thresholds.
Therefore, the overhead of the combinations on the overall time complexity of
the multiple-detector ADS is negligible with reference to that of the original
detectors. Since the sequence of system calls is input in parallel to all detectors,
the overall time required to output a response is, in fact, the time required by
the slowest detector to provide its response, which also depends on the choice
of detectors parameters.

The worst-case time complexity of the Forward-Backward algorithm to eval-
uate a sequence of W observations with an N states HMM is of the order of
O(N2W) [37]. Selecting an HMM with small N values is therefore more efficient
in practice, since its time complexity grows quadratically with the number of
states, and linearly with the detector window size. On the other hand, the time
complexity of STIDE using Hamming distance is O(W(RaSy + 1)), where R4
is the rate of anomalous to normal sequences, and S, is the number of unique
sequences of length W in the normal database [24]. The additional computa-
tional complexity required by STIDE using Hamming distance over STIDE as
crisp detector stems from the fact that if a test sequence is not exactly found
in the normal database STIDE must compute the Hamming distance between
the test sequence and all (S,) sequences in the database [24]. Although the
time complexity of STIDE seems to grow linearly with the detector window size
W, in practice, the number of unique sequences S, could increase exponentially
with the large W values (also depending on R4). Consequently, a smaller win-
dow size should be always favored to reduce the response time of STIDE (and
also its storage requirements), provided that it is large enough to detect the
minimal foreign anomalous sequences [50]. For OCSVMs, the input sequence is
first transformed into a fixed size vector of length M (system call alphabet size)
and then input to the detector. The worst case time complexity for classifying
a vector of size M system calls is O(M). The selection of the detectors and
their parameters could be considered during the design phase to minimize the
response time if very low latency is required by the monitored environment.

4.5. Threats to Validity

We identify the following key threats to validity. First, the confidence in the
Boolean combination and thresholds selected by IBC during the design phase
relies on the validation set. If the validation set provided for designing the ADS
is not representative, the resulting combination may not provide the expected
performance during operations. However, the ROCCH convex hull of both de-
tectors is guaranteed to be the lower bound on the operational performance of
IBC, since it is always the starting point of this combination. This means that
the performance provided by the IBC algorithm is equal to or greater than that
of the ROC convex hull of both detectors.

A threat to internal validity exists in the implementation of anomaly de-
tection techniques (STIDE, HMMs, OCSVMs) and the Boolean combination
techniques, as well as in conducting the experiments for anomaly detection. We
have mitigated this threat by a manual verification of their outputs.
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5. Discussion of Evasion and Adversarial Attacks

In the section we limit our discussions to the related works that have not
been discussed in Section 2, in particular we focus on evasion and adversarial
attacks against system call ADSs. In general, all intrusion detection systems
are susceptible to evasion or adversarial attacks. As soon as IDSs are deployed,
they may become target of adversarial attacks that try to evade, undermine or
mislead their detection capabilities [51].

Mimicry attacks were among the earliest attempts toward defeating host-
based ADSs that only monitor the temporal order of system calls. Wagner
et al. proposed that it is possible to craft sequences of system calls which
appear normal to the ADS (hence they will not be detected) while exploiting
some vulnerabilities in the monitored process [27, 52]. The authors proposed
replacing the foreign system calls, which do not belong to the normal process
behavior (and can be easily detected), with one or multiple nullified system calls
that belong to the normal system behavior. Nullified system calls are legitimate
calls but have no effect (similar to no operation “no-op” system call) since their
return values and the parameters are ignored. This form of mimicry attacks
allow an attacker to embed the malicious sequence of system calls (necessary
to run the exploit) within the sequences that belong to the normal process
behavior, by careful substitution and padding of nullified calls. The authors
formulate the generation of mimicry attack sequence as a finite-state automata
intersection and showed that an initial detectable exploit of eight system calls
can be transformed into a mimicry attack of length 100 system calls.

In our opinion, the presence of mimicry attacks does not diminish the need
for anomaly detection systems based on system call sequences. In fact, it is
quite the opposite. It encourages researchers to combine models of system
call sequences with other models built from additional system artifacts such
as system call arguments [53, 54, 55, 56], memory and call stack information
[57, 58, 26|, and function calls and other user-space information [59, 60]. The
long-term goal is to work towards an anomaly detection infrastructure with
multiple layers of security, as further detailed below. With this in mind, system
call based techniques that can reduce false alarms while keeping a decent level
of accuracy such as the one we have introduced in this paper, should contribute
to building such a holistic solution.

Another form of evasion attack relies on crafting attacks sequences that
exploit specific weaknesses in the detection coverage of the sequence matching
anomaly detectors that are based on a sliding-window, such as STIDE [61].
An example of such blind regions is provided in [61] showing that the detector
window size (W) of STIDE must be at least equal to the smallest anomalous
sequence of the attack to be visible for the detector. Otherwise, the window
of STIDE detector will slide on the subsequences of the anomalous sequence
(which are all normal), without being able to discover that the whole sequence
is anomalous. This blind region issue only affects binary or crisp window-based
detectors that produce a class label (normal or anomalous) for a given sequence.
In contrast, probabilistic and sequential detectors have no blind regions and
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will able to detect the anomalous sequence even if its length is greater than
the detector window size [61]. Our multiple-detector ADS is resilient to such
evasion attacks, because the attacker must now simultaneously predicts two (or
more) thresholds as well as the applied Boolean functions (which are difficult to
guess) to remain undetected.

An attacker could also attempt to predict the threshold that raises the alarm
in order to make his attack go undetected (under the radar) [50]. As described
in Section 3, any ADS provides a trade-off between true and false positives.
In order to reduce the number false positives (i.e., smoothen the false alarms),
several researchers used another temporal threshold on a recent history of events.
Instead of raising an alarm when one subsequence is detected as anomalous,
the test sequence is only signaled as an attack if the number of anomalous
subsequences within a recent time window exceeded a given threshold. This has
been called a locality frame in [2], since the anomaly signal is computed from
the number of mismatches occurring in a temporally local region. However, this
second threshold is typically set to arbitrary values and opens the possibility
of crafting attacks that remain under the threshold value, by producing the
spreading the anomalous sequences over a period of time longer than the locality
frame. Our approach does not rely on smoothing thresholds to the reduce false
alarms, but on the on the Boolean combination of detectors, and hence this kind
of attack is not applicable.

An alternative type of evasion attacks against the control-flow relies on ex-
ploiting the system call arguments to evade the detection of ADSs monitoring
system call sequences. If an attacker is able to launch the attack by exploiting
the arguments of system calls without tempering the normal order of system
calls, then it may go undetected by the ADS since the arguments are not mon-
itored [52]. Recent works included additional information about the system
call arguments to defend against such attacks [53, 54, 55, 56]. However, these
approaches have difficulties in deciding which legitimate argument value is re-
ally benign, when multiple legitimate values appear in the training phase [62].
Our approach allows to include additional detectors (specialized for examining
different features such as system call arguments, return values and other infor-
mation flow features) in a modular way. This is achieved by only recomputing
and automatically selecting the Boolean combinations and decision thresholds
that reduce the overall false alarm rate while increasing the true positive rate.

The anomaly detection techniques, described above, which try to defend
against control-flow attacks using both the system call sequences (temporal or-
der) or the system call arguments, have been called black-box detectors [58].
In contrast, the white-box detectors examine the program being monitored by
statically analyzing the source code or binary files [63, 64, 65, 27]. Gaoo et al.
coined the term gray-box for the anomaly detector that does not utilize static
analysis of the program source code, but does extract additional runtime infor-
mation from the monitored process when a system call is invoked, by looking for
instance into the memory allocated for that process [58]. Sekar et al. proposed
the first gray-box anomaly detector by including the program counter of the
process with the system call number [26], while Feng et al. further incorporated
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the return addresses on the call stack of the process when each system call is
invoked [57]. Tandon and Chan coupled the system call arguments with their
return values [56]. Gao et al. proposed an execution graph model that accepts
sequences of system calls as well as the active function calls when each system
call is invoked [59]. The previous approach has been further extended using the
call stack information to provide more context for system call arguments, and
introduced a metric that quantifies the degree to which system call arguments
are unique to particular execution contexts [60].

These gray-box approaches made evasion and mimicry attacks harder, be-
cause the attack code will not be able to resume control after the execution of a
system call. In fact, if the attacker attempts to regain the execution control by
providing a return address on the stack, the ADS monitoring the return values
would detect the presence of the attack. However, Kruegel et al. devised an
approach that relies on corrupting the data in register contents or local variables
to regain control of the program execution flow after a system call is completed
[66]. The authors focused on demonstrating the ability of their symbolic exe-
cution technique to generate configurations to return the control to the attack
code. However, several issues that need to be addressed before constructing
such attacks against real-world applications were left open.

The main focus of the above approaches was mainly against code-injection
attacks to compromised the host system. Chen et al. demonstrated other kind
of attacks that do not modify the control flow of a program; instead, they exploit
the (non-control) data-flow to take full control of the system [67]. The authors
also demonstrated exploits against data-flow vulnerabilities by, for instance, us-
ing normal system calls to overwrite the password file and then elevate privileges
[67]. Similar kind of attacks have been also applied to common web servers by
targeting security-critical data, such as variables that store the user identifica-
tion numbers corresponding to an FTP client and the directory that contains
all allowable CGI scripts for a web server [68]. Some non-control data-flow at-
tacks require no invocation of system calls, therefore the attacks will most likely
evade detection by system-call based monitoring mechanisms. For instance, the
persistent interposition attacks proposed by Parampalli et al. are based on in-
jecting code that interposes on input/output operations, by modifying the data
read or written by the victim, but leaving the control-flow and other system-
call arguments unmodified. Although these persistent interposition attacks do
not aim at compromising the system (e.g., by obtaining a root shell), they are
powerful enough to steal credit card numbers and passwords or server’s private
key, or alter emails [69]. These attacks do not manifest at the system call level,
and hence are outside the scope of system call based ADS.

In practice, however, it may be difficult to launch an evasion or a mimicry
attack without disrupting the order of the system calls. As shown in [70], the
actions taken by the attacker before and while launching his attack (within
the preamble phase), may produce deviations from the normal behavior of the
monitored system that could be detected at the system call level, before the
attacker proceeds to take full control of the system or perform other stealthy
actions.
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In summary, we think that the key problem of anomaly detection systems
is the high rate of false alarms. An anomaly detector that generate an exces-
sive number of false alarms is not useful, especially that an expensive and time
consuming investigation is required to confirm or refute each alarm. Therefore,
an ADS monitoring the temporal order of system calls that generates a small
number of false alarms provides an important first line of defense. Attacks that
have no manifestations at the system call sequence level could be detected with
ADSs that rely on additional information about the system call arguments,
return values, call stack, function calls, or other runtime and memory informa-
tion, as described above. We strongly believe in a layered defense architecture
that employs several independent defense strategies to create a more robust
overall protection. An adversary is then forced to craft attacks that must con-
form to normal behavior of the system from various point of views, depending
on several detection techniques and features. The modularity of the proposed
multiple-detectors ADS provide an efficient and easy to apply solution because
it operates at the decision level. It allows to include any additional detec-
tor (specialized to detect specific features) by only recomputing the Boolean
combinations and decision thresholds (which is very efficient as described in
Section 4.4). Our multiple-detector ADS is resilient to evasion attacks, because
the attacker must now simultaneously predicts two (or more) thresholds and the
applied Boolean functions. Furthermore, the operating point could be changed
during system runtime, which activate different detectors, decision thresholds
and Boolean functions. More importantly, the combination of two or more de-
tectors compensates for the weaknesses of each individual detector. Exploiting
the diversity of detectors that commit different errors is at the heart of multiple
detector (or classifiers) systems.

6. Conclusions

This paper presents a multiple-detector ADS based on Boolean combina-
tion of responses from heterogeneous detectors in the ROC space. The exper-
iments show that the proposed combination of decisions from STIDE, HMM,
and OCSVM (which are among the most well investigated and best performing
detectors for host-based ADS using system call sequences) consistently yields a
significant increase in the detection accuracy over that of individual detectors,
while reducing the false alarm rate. This gain in detection accuracy and re-
duction in false alarms are achieved without a considerable overhead. In fact,
during system operation the time and resource requirements are those required
for operating the selected individual detectors. This is due to the ability of
the Boolean combination technique to efficiently exploit the diverse views pro-
vided by STIDE, HMM and OCSVM for the underlying structures of system
call traces.

Results on a modern real-world system call datasets collected form Linux
(ADFA-LD) and Windows (CANALI-LD) operating systems, have shown that
the overall performances of the proposed multiple-detector ADS have signif-
icantly increased compared to the best results achieved and to those of the
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best ensemble of HMMs. At an operating point of zero percent false alarm rate
(fpr = 0%), the proposed multiple-detector ADS increases the true positive rate
from tpr = 15% (best result achieved) to tpr = 90% on the ADFA-LD dataset
(an increase of 500%), and from tpr = 64% to tpr = 80% CANALI-WD dataset
(an increase of 25%). Our Future work involves the evaluation of combination
performance of ADSs based on additional features that are complementary to
system calls.
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