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Abstract: An important issue in application modernization is the time and effort needed to understand existing 
applications. Understanding the dynamic aspects of software is a difficult task, further complicated by the 
lack of a scalable way of representing the extracted knowledge. The behavior of a software system is 
typically represented in the form of execution traces. Traces, however, can be extraordinary large. Existing 
metamodels such as the Knowledge Discovery Metamodel and the UML metamodel provide limited support 
for handling large execution traces. In this paper, we describe a metamodel called the Compact Trace Format 
(CTF) for efficient modeling of traces of routine (method) calls generated from multi-threaded systems. CTF 
is intended to facilitate the interoperability among modernization tools that focus on the analysis of the 
behavior of software systems. CTF is designed to be easily extensible to support other types of traces.

1 INTRODUCTION

Software modernization is defined as the process of 
understanding and evolving existing software systems 
for the purpose of improving their various facets
(Bézivin 2004).

Understanding a software system requires both 
static and dynamic analysis techniques. The former 
focuses on exploring the structure of the system by 
analyzing its source code, whereas the latter, which is 
the focus of this paper, provides insight into the 
system’s behavioral properties. Both approaches aim 
at extracting knowledge about the system under study 
that can later be fed to a modernization tool for 
further analysis. 

There exist several standards for representing the 
knowledge extracted from software systems, among 
which the most recent is the Knowledge Discovery 
Metamodel (KDM) (KDM 2007) supported by the 
Object Management Group (OMG). Others include 
the UML 2 metamodel (UML 2005), the Dagstuhl 
Middle Metamodel (DMM) (Lethbridge 2003), etc.

However, while existing metamodels provide a 
full range of constructs for the modeling of the static 
aspects of the system (i.e. its static components and 

the way they interact), they do not support efficient 
representation of the system’s behavioral features, 
typically represented in the form of execution traces.
Traces have historically been difficult to work with
since they may contain millions of events. The
challenge is to develop a trace format that scales up
to handle large and complex traces. 

In this paper, we describe ongoing work towards
the development of a scalable format for representing 
execution traces. A particular format called CTF 
(Compact Trace Format) is proposed. CTF focuses on 
representing traces of routine (methods) calls
generated from multi-threaded systems. It is built 
with scalability in mind using graph theory concepts. 
In addition, CTF metamodel is defined in such a way 
that it can be easily extended to support other types of 
traces and constructs.

The remaining of this paper is organized as
follows: In Section 2, we discuss the requirements 
that guided us in the development of CTF. In Section 
3, we present the CTF metamodel and its syntactic 
form. CTF semantics are presented in the appendix 
section. In Section 4, we discuss related studies and 
how they differ from the work presented in this 
paper.



2 REQUIREMENTS FOR A TRACE
EXCHANGE FORMAT

Requirements for an effective exchange format have 
been the subject of many studies (Bowman et al. 
1999, St-Denis et al. 2000, Woods et al. 2000). In this 
section, we present the ones that a trace exchange 
format should fulfill in order to facilitate its adoption. 
These requirements were also used to guide the 
development of CTF.

2.1 Scalability

The adoption of a trace exchange format will greatly 
depend on its ability to support large-sized traces. 
Trace, however, tend to contain many repetitions due 
to the presence of loops and recursions in the source 
code. They also contain non-contiguous repetitions 
known as trace patterns. The scalability of a trace 
exchange format can, therefore, be significantly 
improved if repeated events are factored out and 
represented only once. For example, the trace of
routine calls described in Figure 1a can be
transformed into an ordered directed acyclic graph
(DAG) represented in Figure 1b by representing the 
repeated subtree rooted at “B” only once. This 
technique was first introduced by Downey et al. in 
(Downey et al. 1980) to improve tools that 
manipulate trees. It was also used by Larus (Laurs 
1999) and Reiss and Renieris (Reiss and Renieris 
2001) to encode traces with the objective of saving 
disk space. 

It should be noticed, however, that the graph must 
be ordered in order to be able to restore the initial 
order of calls. In addition, the graph representation of 
a trace does not necessarily result in a loss of 
information associated with individual nodes of the 
tree such as timing information commonly collected 
when generating a trace. The simplest solution is to 
augment the nodes of the graph with ordered 
collections that holds the information describing 
individual nodes of the tree.

In previous work (Hamou-Lhadj and Lethbridge 
2005), we applied this compaction technique to over 
thirty execution traces and showed that it can reach a 
97% compression ratio (i.e. the graph contains only 
3% of the number of nodes of the tree). This has led 
us, as we will see in Section 3, to build CTF using the 
ordered DAG as its main mechanism.

2.2 Completeness

This requirement consists of having an exchange 
format that includes all the necessary information 

needed during the exchange: the data to exchange as 
well the metamodel that describes the structure of the 
data. The rationale behind this is to enable tools to 
check the validity of the instance data against the 
metamodel. To address this requirement, we need to 
select a syntactic form language (i.e. the language 
that “carries” CTF instance data) that is designed to 
support the exchange of the instance data as well as 
the metamodel. In Section 3.2, we discuss possible 
syntactic forms that could be used with CTF.

a)      b)

Figure 1: a) An example of a call tree. b) The compact form 
of the call tree

2.3 Extensibility

The data model of a trace exchange format must be 
flexible enough to support new types of traces, 
language specific entities and properties, and some 
properties that are specific to the trace analysis tool 
that uses the format. CTF addresses this requirement 
by adopting an open design based on abstract classes 
that allow new constructs to be easily added.

2.4 Tool Support

In order to facilitate the adoption of an exchange 
format by tool builders, we need to develop well-
defined mechanisms that facilitate the manipulation 
of traces. First, we need to design procedures that 
ensure that the information exchanged is represented 
without any alteration. Second, we need to develop 
algorithms for on the fly generation of traces in the 
new format. Finally, we need to create converters that 
will convert other commonly used formats into the 
new format to facilitate the transition to the new 
exchange format. Since CTF is still an ongoing 
project, this requirement will be addressed in future 
work. 



Figure 2: CTF Metamodel

3 CTF 

In this section, we present CTF metamodel and its 
syntactic form. CTF semantics are presented in the 
appendix section.

The initial version of the CTF metamodel was 
presented at the First International Workshop on 
Metamodels and Schemas for Reverse Engineering 
(Hamou-Lhadj et al. 2003). The metamodel had since 
undergone significant changes. The current version of 
CTF is described in this paper. Due to limited space, 
we did not attempt to show the changes made to the 
previous version.

3.1 CTF Metamodel

CTF metamodel is presented in Figure 2. CTF models 
traces as ordered directed acyclic graphs and not as 
tree structures. The elements of CTF metamodel as 
presented in what follows:

The class Trace is an abstract class that describes 
common information that different types of traces 
usually share such as timing information. To create 
other types of traces, one needs to extend this class.

The class CallTree depicts a trace of routine or 
method calls. The class Node refers to nodes in the 
ordered DAG; each can have many child nodes and 
many parent nodes as illustrated on the diagram using 
the parent and child roles. Each node maintains a 
collection of timestamps and another one that stores
the execution times of the individual routine calls 
represented by this node.

Edges (i.e. calls) are depicted using the 
TraceEdge class. An edge is labeled with the number 
of repetitions (set to zero by default) that may exist 
due to loops or recursion as illustrated in Figure 3. In 
this example, the number of repetition of B is two 
(i.e. the number of times B appears in this trace is 
three).

Figure 3: Contiguous repetitions collapsed and replaced by 
the number of repetitions.



As its name indicates, the class TracePattern 
represents patterns of execution invoked in the trace. 
A trace pattern is defined as a sequence of events that 
is repeated non-contiguously in the trace. They are 
used by software engineers as a means to uncover key 
domain concepts from the trace. The common 
hypothesis is that the same sequence of calls that 
appear in various places in the trace might 
encapsulate some knowledge about the system such 
as a particular aspect of an algorithm, etc. (Jerding 
and Rugaber 1997, Systä 2000). Software engineers 
often associate a textual description to trace patterns 
that are deemed important. The class TracePattern 
uses an attribute called “description” to capture this 
textual description. 

A node can either be a routine call node 
(RoutineCallNode), a method node 
(MethodCallNode), or a control node (ControlNode). 
A RoutineCallNode object represents a call to a 
routine that is not a method of a class, whereas a 
MethodCallNode stands for a method invocation. 
Method calls are considered as routine calls except 
that they may contain additional information such as 
the objects (represented using the class Object) on 
which the methods are invoked. 

The above metamodel relies on a string label to 
identify trace events (i.e. the routines invoked). It 
does not provide any other static information about 
the routines (or methods) invoked such as the 
parameter list and return type. The reason is that CTF 
is intended to work with existing metamodels such 
the UML metamodel, KDM, or DMM. For example, 
DMM defines two classes called Routine and Method
that describe the static elements of a routine and a 
method respectively. Assuming that CTF is used with 
DMM, then the classes RoutineCallNode and 
MethodCallNode will need to be linked to DMM 
classes Routine and Method in order to retrieve static 
information. This linkage is not defined in this paper 
and will be the subject of future improvements of 
CTF. The advantage of such design is that it allows 
CFT to be adopted by static analysis tools that use the 
aforementioned metamodels. 

Control nodes represent extra information that 
might be used by software engineers to customize 
parts of the trace. In particular, we define two control 
nodes: SequenceNode and RecursionNode. A 
SequenceNode object is used to represent contiguous 
repetitions of multiple sequences of events. Figure 4 
illustrates how such node is used to avoid repeating 
the sequence “BC and D” twice. The label “SEQ” is 
used in CTF to identify a SequenceNode object.

Figure 4: The control node SEQ is used to represent the 
contiguous repetitions of the subtrees rooted at B and D.

A recursive sequence of calls is represented using
another control node called RecursionNode, which in 
turn refers to the recursively repeated sequence of 
calls. Figure 5 shows a recursion occurrence node 
labeled “REC” that is used in CTF to collapse the 
recursive repetitions of the node B. Note that the 
number of repetitions is captured through the attribute
“repetitions” of the class TraceEdge since an edge 
will be created between the routine “A” and the 
recursive sequence.

Figure 5:.The control node REC is used in CTF to represent
the recursive repetitions of a sequence of calls.

The class Thread represents the thread that 
executes the corresponding portion of the trace 
(represented by the class Node). Threads are 
identified using unique thread names since this is a 
common practice in languages such as Java and C++. 
We do not distinguish between thread start/end 
routines from other routines for simplicity reasons. 
An obvious extension to this model is to fully support 
various multi-thread communication mechanisms.



3.2 Syntactic Form

CTF instance data can be carried using a syntactic 
form that supports the representation of graph 
structures. There exist several languages that satisfy 
this requirement, which differ essentially on whether 
they rely on XML or not. In this paper, we discuss 
how the Graph Exchange Language (GXL) (Holt et 
al. 2000) and the Tuple Attribute (TA) (Holt 1998) 
can be used with CTF. The choice of these languages 
is due to the fact that they are widely used by the 
reverse engineering research community. In addition, 
both languages support the exchange of the instance 
data as well as the metamodel; this is compliant with 
the completeness requirement discussed in Section
2.2.

A GXL file consists of XML elements for 
describing nodes, edges, attributes, etc. It was 
designed to supersede a number of pre-existing graph 
formats such as GraX (Ebert 1999), TA (Holt 1998), 
and RSF (Müller 1988). GXL has been widely 
adopted as a standard exchange format for various 
types of graphs by both industry and academia. 

However, an XML-based representation of a trace 
would tend to be much larger than necessary due to 
the use of XML tags and the explicit need to express 
the data as XML nodes and edges. The compactness 
benefits of a trace exchange format discussed earlier 
would therefore be partially cancelled out by 
representing it using XML. As noted by Chilimbi et 
al. (Chilimbi et al. 2000), whereas the wordiness of 
XML would not be a problem when expressing 
moderately sized structures in other domains, the 
sheer hugeness of traces suggests an alternative might 
be appropriate. In addition, a general XML format 
often requires more processing than a tuned special 
format. XML will ultimately be parsed and processed 
to create an internal model. Performance of parsing 
XML poses an obstacle, especially for large data set. 
One study related to the performance of XML parsing 
showed that XML loading is 26 times slower than flat 
file with delimited format (Nicola and John 2003). 
The situation is worsened the metamodel validation 
step is taken into account. 

One reasonable alternative to GXL is the Tuple
Attribute (TA) (Holt 1998), which would 
substantially reduce the space required by a CTF 
trace (since it is not based on XML). The TA 
language was originally developed to help visualize 
information about software systems. It has been used 
as a model interchange format in several contexts and 
has a reasonable tool support despite the fact that it is 
not XML-based. 

We are still in the process of testing CTF in order 
to determine the most suitable syntactic form that 
represents its instance data efficiently.

4 RELATED WORK 

As previously mentioned, the Knowledge Discovery 
Metamodel (KDM) was introduced by OMG to allow 
interoperability among software modernization tools 
(KDM 2007). KDM supports a large spectrum of 
software artifacts at various levels of abstraction. The 
KDM package dedicated to the modeling of the 
behavioral aspects of a software system is called 
Action Package. The package describes how various 
types of a system’s execution are modeled such as 
control flows, traces of routine calls, etc. However, 
KDM’s approach to representing traces of routine 
calls is an exact representation of the dynamic call 
tree. That means that if a trace, for example, contains 
one million calls then, using the KDM metamodel, a 
modernization tool will need to create one million 
objects in memory. KDM does not take into account 
any sort of compaction scheme.

The UML 2 metamodel is another alternative 
(UML 2005). However, it is designed for forward 
engineering, and omits the compact representation of 
traces as well. It is also rather more complex than 
what appears to be needed for simple modernization 
tools that are tuned toward the analysis of execution 
traces.

In her master’s thesis (Leduc 2004), Leduc 
presented a metamodel for representing traces of 
method calls, which supports also statement-level 
traces. Similar to KDM and the UML metamodel, 
Leduc’s approach does not include any compaction 
scheme. 

Reiss and Renieris proposed a technique called 
string compaction that can be used to represent a 
dynamic call tree as a lengthy string (Reiss and 
Renieris 2001). For example, if function ‘A’ calls 
function ‘B’ which in turn calls function ‘C’, then the 
sequence could be represented as ‘ABC’. Markers are 
added to indicate call returns. For example, a 
sequence ‘A’ calls ‘B’ and then calls ‘C’ will be 
represented as ‘ABvC’ (the marker ‘v’ will indicate a 
call return). However, we posit that this basic 
representation has a number of limitations: It does not 
have the flexibility to attach various attributes to 
routines, and cannot be easily adapted to support 
other kind of traces such as statement-level traces.

In (Brown et al. 2000), the authors presented 
STEP, a system designated for the efficient encoding 
of program trace data. One of the main components 



of the STEP system is STEP-DL, a definition 
language for representing STEP traces, which contain 
various types of events generated from the Java 
Virtual Machine including object allocation, variable 
declaration, etc. STEP is useful for applications that 
explore Java bytecode files and does not explicitly 
deal with traces of routine calls. 

CONCLUSIONS

Application modernization requires the representation 
of knowledge about the system under study. While 
existing metamodels such as KDM, UML, and DMM 
capture efficiently the static aspects of software, they 
lack an efficient representation of the behavioral 
aspects of the system.  In this paper, we presented 
CTF (Compact Trace Format), an exchange format 
for representing traces of routine (method) calls. To 
deal with the vast size of typical traces, we designed 
CTF based on the idea that dynamic call trees can be 
turned into ordered directed acyclic graphs, where 
repeated subtrees are factored out. CTF, as described 
in this paper, is a metamodel. Trace data conforming 
to CTF can be expressed using GXL, TA, or any 
other data “carrier” language. However, we suggest 
using a compact representation since doing otherwise 
would somewhat defeat the compactness objective of 
CTF.

While CTF covers a significant gap in terms of
exchanging traces of routine calls, dynamic analysis 
is a highly versatile process that has a large number 
of needs including needs for dynamic information 
that is not necessarily supported by CTF. We need to 
work towards enhancing CTF in order to support 
other types of traces and constructs.

The main future direction is to agree on what 
should be represented in a trace exchange format. We 
also need to investigate how various traces can be 
compacted so as the embedded repetitive behavior is 
represented only once. Moreover, we need to analyze 
the proper syntactic form that is most suitable for 
representing lengthy traces.

Finally, we need to work towards the adoption of 
CTF by developing converters that can easily convert 
existing formats into CTF. We also need to develop 
mechanisms for the on the fly generation of CTF 
traces. 
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APPENDIX

In this appendix, we present the detailed semantics of 
CTF.

Class “Trace”

Semantics: An abstract class representing common 
information about traces generated from the 
execution of the system. 

Attributes:
 startTime: Time - Specifies the starting time of the 

generation of the trace. 
 endTime: Time - Specifies the ending time of the 

generation of the trace. 

Associations: No associations.

Constraints:
 endTime should be greater than or equal to 

startTime
self.endTime >= self.startTime

Class “CallTree (Subclass of Trace)”

Semantics: An object of CallTree represents a trace 
of routine calls. A routine is defined as any function 
whether it is in a class or not. Although the class 
refers to a tree but in fact it will be saved as an 
ordered DAG.

Attributes:  No additional attributes.

Associations:

 root: Node[1] - Specifies the root of the call tree.

Constraints:
 The root of a trace must not have parent node

self.root.incoming ->isEmpty()

 The root node cannot be an object of ControlNode 
subclasses:

not self.root.oclIsTypeOf(SequenceNode) and
not self.root.oclIsTypeOf(RecursionNode)

 The graph needs to be an ordered directed acyclic 
graph.

Class “TracePattern”

Semantics: An object of the class TracePattern 
represents a sequence of calls that is repeated in a 
non-contiguous manner in the trace. 

Attributes:
 description: String - Specifies a textual description 

that a software engineer can assign to a trace 
pattern. 

Constraints: No additional constraints.

Class “Node”

Semantics: Node is an abstract class that represents
the nodes of the directed acyclic graph (i.e. compact 
form of the call tree).

Attributes:
 label: String - If a static component is not 

specified, perhaps because it is not known, then the 
label can be used to indicate the node’s label. For 
example, a label can simply represent the name of 
the routine represented by this node.

 timestamps: Time[] - Specifies the timestamps of 
the routines represented by this node.  

 executionTime: double[] - Specifies the execution 
times of the routines represented by this node.  

Associations:
 DAG: CallTree [1] - References the Trace for 

which this node is the root.  

 incoming: TraceEdge [*] -  Specifies the 
TraceEdge objects that represent the incoming 
edges of this node.

 outgoing: TraceEdge [*] - Specifies the 
TraceEdge objects that represent the outgoing 
edges of this node.

 Thread [*] - References the Thread objects that 
represent the thread in which this node is 
executed.

Constraints:
 The timestamps of the routine calls represented by 

this node must be sorted in an ascending manner. 
This guarantees that the graph maintains the 
sequential execution of the routines. 

 The parent nodes of this node cannot be the same 
as its child nodes and vice-versa since the graph is 
acyclic.

self.incoming->excludesAll(self.outgoing) and



self.outgoing ->excludesAll(self.incoming)

Class “TraceEdge”

Semantics: Objects of the TraceEdge class represent 
edges of the directed acyclic graph. 

Attributes:
 repetitions: int - Specifies an edge label that will 

be used to represent the number of repetitions due 
to loops and recursion.  Default value is zero, i.e., 
no repetitions.

Associations:
 child: Node[1] - References the node that 

represents the child node that is pointed to by this 
trace edge.

 parent: Node [1] - References the node that 
represents the parent node from which this edge 
is an outgoing edge.

Constraints:
 The child and the parent nodes must be different. 

Recursion is represented using the RecursionNode
class (Section 3.1):

sefl.child <> self.parent

 The value of the attribute “repetitions” must be 
greater than or equal to zero

self.repetitions >= 0

Class “Thread”

Semantics: Objects of the Thread class represent the 
thread of execution invoked in the trace.

Attributes:
 name: String - Specifies the name of the thread. 

Associations:
 Node[1..*] - References the nodes that are 

executed in this thread of execution.

Constraints: No constraints

Class “RoutineCallNode (Subclass of Node)

Semantics: Objects of the RoutinceCallNode 
represent the routine calls invoked in the trace.  A 
routine here should not be confused with a method of 
a class.

Attributes: No additional attributes

Associations: No additional associations.

Constraints: No additional constraints

Class “MethodCallNode (Subclass of Node)”

Semantics: Objects of the MethodCallNode represent 
the method calls invoked in the trace.

Attributes: No additional attributes.

Associations:
 Object [0..1] - References the object, if known, on 

which the method is invoked. 

Constraints: No additional constraints

Class “Object”

Semantics: This class represents the objects invoked 
in the trace. In some traces, information about objects 
may be present; in others such information (and 
hence instances of this class) may be absent.

Attributes:
 objectID: String - Specifies the object identifier.

Associations:
 MethodCallNode [1..*] - Specifies the methods 

invoked on this object.

Constraints: No additional constraints

Class “ControlNode (Subclass of Node)”

Semantics: The ControlNode class is an abstract 
class that is used to specify additional information 
that can help better structure the trace.

Attributes: No additional attributes.

Associations: No additional associations.

Constraints:
 A control node cannot be the root of the entire 

trace:
self.incoming ->notEmpty()

 A control node must have children:
self.outgoing -> notEmpty()

Class “RecursionNode (Subclass of ControlNode)”

Semantics: An object of the RecursionNode is added 
to represent graph nodes that are repeated recursively. 
In this case, this object will be labeled ‘REC’.

Attributes: No additional attributes.

Associations:
 repeatedOccurrence: Node[1] - References the 

subtree that is repeated recursively.

Constraints: No additional constraints

Class “SequenceNode (Subclass of Control Node)”

Semantics: An object of the SequenceNode class is 
added to represent multiple nodes that are repeated in 
a contiguous way. In this case, this object will be 
labeled ‘SEQ’.

Attributes: No additional attributes.

Associations: No additional associations.

Constraints: No additional constraints.


