
Towards a Scalable Representation of Run-Time Information: The
Challenge and Proposed Solution

Abdelwahab Hamou-Lhadj
Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve West, Montreal, Canada

abdelw@ece.concordia.ca

Keywords: Application modernization, software maintenance, reverse engineering, metamodeling, execution traces.

Abstract: An important issue in application modernization is the time and effort needed to understand existing
applications. Understanding the dynamic aspects of software is a difficult task, further complicated by the
lack of a scalable way of representing the extracted knowledge. The behavior of a software system is
typically represented in the form of execution traces. Traces, however, can be extraordinary large. Existing
metamodels such as the Knowledge Discovery Metamodel and the UML metamodel provide limited support
for handling large execution traces. In this paper, we describe a metamodel called the Compact Trace Format
(CTF) for efficient modeling of traces of routine (method) calls generated from multi-threaded systems. CTF
is intended to facilitate the interoperability among modernization tools that focus on the analysis of the
behavior of software systems. CTF is designed to be easily extensible to support other types of traces.

1 INTRODUCTION

Software modernization is defined as the process of
understanding and evolving existing software systems
for the purpose of improving their various facets
(Bézivin 2004).

Understanding a software system requires both
static and dynamic analysis techniques. The former
focuses on exploring the structure of the system by
analyzing its source code, whereas the latter, which is
the focus of this paper, provides insight into the
system’s behavioral properties. Both approaches aim
at extracting knowledge about the system under study
that can later be fed to a modernization tool for
further analysis.

There exist several standards for representing the
knowledge extracted from software systems, among
which the most recent is the Knowledge Discovery
Metamodel (KDM) (KDM 2007) supported by the
Object Management Group (OMG). Others include
the UML 2 metamodel (UML 2005), the Dagstuhl
Middle Metamodel (DMM) (Lethbridge 2003), etc.

However, while existing metamodels provide a
full range of constructs for the modeling of the static
aspects of the system (i.e. its static components and

the way they interact), they do not support efficient
representation of the system’s behavioral features,
typically represented in the form of execution traces.
Traces have historically been difficult to work with
since they may contain millions of events. The
challenge is to develop a trace format that scales up
to handle large and complex traces.

In this paper, we describe ongoing work towards
the development of a scalable format for representing
execution traces. A particular format called CTF
(Compact Trace Format) is proposed. CTF focuses on
representing traces of routine (methods) calls
generated from multi-threaded systems. It is built
with scalability in mind using graph theory concepts.
In addition, CTF metamodel is defined in such a way
that it can be easily extended to support other types of
traces and constructs.

The remaining of this paper is organized as
follows: In Section 2, we discuss the requirements
that guided us in the development of CTF. In Section
3, we present the CTF metamodel and its syntactic
form. CTF semantics are presented in the appendix
section. In Section 4, we discuss related studies and
how they differ from the work presented in this
paper.

2 REQUIREMENTS FOR A TRACE
EXCHANGE FORMAT

Requirements for an effective exchange format have
been the subject of many studies (Bowman et al.
1999, St-Denis et al. 2000, Woods et al. 2000). In this
section, we present the ones that a trace exchange
format should fulfill in order to facilitate its adoption.
These requirements were also used to guide the
development of CTF.

2.1 Scalability

The adoption of a trace exchange format will greatly
depend on its ability to support large-sized traces.
Trace, however, tend to contain many repetitions due
to the presence of loops and recursions in the source
code. They also contain non-contiguous repetitions
known as trace patterns. The scalability of a trace
exchange format can, therefore, be significantly
improved if repeated events are factored out and
represented only once. For example, the trace of
routine calls described in Figure 1a can be
transformed into an ordered directed acyclic graph
(DAG) represented in Figure 1b by representing the
repeated subtree rooted at “B” only once. This
technique was first introduced by Downey et al. in
(Downey et al. 1980) to improve tools that
manipulate trees. It was also used by Larus (Laurs
1999) and Reiss and Renieris (Reiss and Renieris
2001) to encode traces with the objective of saving
disk space.

It should be noticed, however, that the graph must
be ordered in order to be able to restore the initial
order of calls. In addition, the graph representation of
a trace does not necessarily result in a loss of
information associated with individual nodes of the
tree such as timing information commonly collected
when generating a trace. The simplest solution is to
augment the nodes of the graph with ordered
collections that holds the information describing
individual nodes of the tree.

In previous work (Hamou-Lhadj and Lethbridge
2005), we applied this compaction technique to over
thirty execution traces and showed that it can reach a
97% compression ratio (i.e. the graph contains only
3% of the number of nodes of the tree). This has led
us, as we will see in Section 3, to build CTF using the
ordered DAG as its main mechanism.

2.2 Completeness

This requirement consists of having an exchange
format that includes all the necessary information

needed during the exchange: the data to exchange as
well the metamodel that describes the structure of the
data. The rationale behind this is to enable tools to
check the validity of the instance data against the
metamodel. To address this requirement, we need to
select a syntactic form language (i.e. the language
that “carries” CTF instance data) that is designed to
support the exchange of the instance data as well as
the metamodel. In Section 3.2, we discuss possible
syntactic forms that could be used with CTF.

a) b)

Figure 1: a) An example of a call tree. b) The compact form
of the call tree

2.3 Extensibility

The data model of a trace exchange format must be
flexible enough to support new types of traces,
language specific entities and properties, and some
properties that are specific to the trace analysis tool
that uses the format. CTF addresses this requirement
by adopting an open design based on abstract classes
that allow new constructs to be easily added.

2.4 Tool Support

In order to facilitate the adoption of an exchange
format by tool builders, we need to develop well-
defined mechanisms that facilitate the manipulation
of traces. First, we need to design procedures that
ensure that the information exchanged is represented
without any alteration. Second, we need to develop
algorithms for on the fly generation of traces in the
new format. Finally, we need to create converters that
will convert other commonly used formats into the
new format to facilitate the transition to the new
exchange format. Since CTF is still an ongoing
project, this requirement will be addressed in future
work.

Figure 2: CTF Metamodel

3 CTF

In this section, we present CTF metamodel and its
syntactic form. CTF semantics are presented in the
appendix section.

The initial version of the CTF metamodel was
presented at the First International Workshop on
Metamodels and Schemas for Reverse Engineering
(Hamou-Lhadj et al. 2003). The metamodel had since
undergone significant changes. The current version of
CTF is described in this paper. Due to limited space,
we did not attempt to show the changes made to the
previous version.

3.1 CTF Metamodel

CTF metamodel is presented in Figure 2. CTF models
traces as ordered directed acyclic graphs and not as
tree structures. The elements of CTF metamodel as
presented in what follows:

The class Trace is an abstract class that describes
common information that different types of traces
usually share such as timing information. To create
other types of traces, one needs to extend this class.

The class CallTree depicts a trace of routine or
method calls. The class Node refers to nodes in the
ordered DAG; each can have many child nodes and
many parent nodes as illustrated on the diagram using
the parent and child roles. Each node maintains a
collection of timestamps and another one that stores
the execution times of the individual routine calls
represented by this node.

Edges (i.e. calls) are depicted using the
TraceEdge class. An edge is labeled with the number
of repetitions (set to zero by default) that may exist
due to loops or recursion as illustrated in Figure 3. In
this example, the number of repetition of B is two
(i.e. the number of times B appears in this trace is
three).

Figure 3: Contiguous repetitions collapsed and replaced by
the number of repetitions.

As its name indicates, the class TracePattern
represents patterns of execution invoked in the trace.
A trace pattern is defined as a sequence of events that
is repeated non-contiguously in the trace. They are
used by software engineers as a means to uncover key
domain concepts from the trace. The common
hypothesis is that the same sequence of calls that
appear in various places in the trace might
encapsulate some knowledge about the system such
as a particular aspect of an algorithm, etc. (Jerding
and Rugaber 1997, Systä 2000). Software engineers
often associate a textual description to trace patterns
that are deemed important. The class TracePattern
uses an attribute called “description” to capture this
textual description.

A node can either be a routine call node
(RoutineCallNode), a method node
(MethodCallNode), or a control node (ControlNode).
A RoutineCallNode object represents a call to a
routine that is not a method of a class, whereas a
MethodCallNode stands for a method invocation.
Method calls are considered as routine calls except
that they may contain additional information such as
the objects (represented using the class Object) on
which the methods are invoked.

The above metamodel relies on a string label to
identify trace events (i.e. the routines invoked). It
does not provide any other static information about
the routines (or methods) invoked such as the
parameter list and return type. The reason is that CTF
is intended to work with existing metamodels such
the UML metamodel, KDM, or DMM. For example,
DMM defines two classes called Routine and Method
that describe the static elements of a routine and a
method respectively. Assuming that CTF is used with
DMM, then the classes RoutineCallNode and
MethodCallNode will need to be linked to DMM
classes Routine and Method in order to retrieve static
information. This linkage is not defined in this paper
and will be the subject of future improvements of
CTF. The advantage of such design is that it allows
CFT to be adopted by static analysis tools that use the
aforementioned metamodels.

Control nodes represent extra information that
might be used by software engineers to customize
parts of the trace. In particular, we define two control
nodes: SequenceNode and RecursionNode. A
SequenceNode object is used to represent contiguous
repetitions of multiple sequences of events. Figure 4
illustrates how such node is used to avoid repeating
the sequence “BC and D” twice. The label “SEQ” is
used in CTF to identify a SequenceNode object.

Figure 4: The control node SEQ is used to represent the
contiguous repetitions of the subtrees rooted at B and D.

A recursive sequence of calls is represented using
another control node called RecursionNode, which in
turn refers to the recursively repeated sequence of
calls. Figure 5 shows a recursion occurrence node
labeled “REC” that is used in CTF to collapse the
recursive repetitions of the node B. Note that the
number of repetitions is captured through the attribute
“repetitions” of the class TraceEdge since an edge
will be created between the routine “A” and the
recursive sequence.

Figure 5:.The control node REC is used in CTF to represent
the recursive repetitions of a sequence of calls.

The class Thread represents the thread that
executes the corresponding portion of the trace
(represented by the class Node). Threads are
identified using unique thread names since this is a
common practice in languages such as Java and C++.
We do not distinguish between thread start/end
routines from other routines for simplicity reasons.
An obvious extension to this model is to fully support
various multi-thread communication mechanisms.

3.2 Syntactic Form

CTF instance data can be carried using a syntactic
form that supports the representation of graph
structures. There exist several languages that satisfy
this requirement, which differ essentially on whether
they rely on XML or not. In this paper, we discuss
how the Graph Exchange Language (GXL) (Holt et
al. 2000) and the Tuple Attribute (TA) (Holt 1998)
can be used with CTF. The choice of these languages
is due to the fact that they are widely used by the
reverse engineering research community. In addition,
both languages support the exchange of the instance
data as well as the metamodel; this is compliant with
the completeness requirement discussed in Section
2.2.

A GXL file consists of XML elements for
describing nodes, edges, attributes, etc. It was
designed to supersede a number of pre-existing graph
formats such as GraX (Ebert 1999), TA (Holt 1998),
and RSF (Müller 1988). GXL has been widely
adopted as a standard exchange format for various
types of graphs by both industry and academia.

However, an XML-based representation of a trace
would tend to be much larger than necessary due to
the use of XML tags and the explicit need to express
the data as XML nodes and edges. The compactness
benefits of a trace exchange format discussed earlier
would therefore be partially cancelled out by
representing it using XML. As noted by Chilimbi et
al. (Chilimbi et al. 2000), whereas the wordiness of
XML would not be a problem when expressing
moderately sized structures in other domains, the
sheer hugeness of traces suggests an alternative might
be appropriate. In addition, a general XML format
often requires more processing than a tuned special
format. XML will ultimately be parsed and processed
to create an internal model. Performance of parsing
XML poses an obstacle, especially for large data set.
One study related to the performance of XML parsing
showed that XML loading is 26 times slower than flat
file with delimited format (Nicola and John 2003).
The situation is worsened the metamodel validation
step is taken into account.

One reasonable alternative to GXL is the Tuple
Attribute (TA) (Holt 1998), which would
substantially reduce the space required by a CTF
trace (since it is not based on XML). The TA
language was originally developed to help visualize
information about software systems. It has been used
as a model interchange format in several contexts and
has a reasonable tool support despite the fact that it is
not XML-based.

We are still in the process of testing CTF in order
to determine the most suitable syntactic form that
represents its instance data efficiently.

4 RELATED WORK

As previously mentioned, the Knowledge Discovery
Metamodel (KDM) was introduced by OMG to allow
interoperability among software modernization tools
(KDM 2007). KDM supports a large spectrum of
software artifacts at various levels of abstraction. The
KDM package dedicated to the modeling of the
behavioral aspects of a software system is called
Action Package. The package describes how various
types of a system’s execution are modeled such as
control flows, traces of routine calls, etc. However,
KDM’s approach to representing traces of routine
calls is an exact representation of the dynamic call
tree. That means that if a trace, for example, contains
one million calls then, using the KDM metamodel, a
modernization tool will need to create one million
objects in memory. KDM does not take into account
any sort of compaction scheme.

The UML 2 metamodel is another alternative
(UML 2005). However, it is designed for forward
engineering, and omits the compact representation of
traces as well. It is also rather more complex than
what appears to be needed for simple modernization
tools that are tuned toward the analysis of execution
traces.

In her master’s thesis (Leduc 2004), Leduc
presented a metamodel for representing traces of
method calls, which supports also statement-level
traces. Similar to KDM and the UML metamodel,
Leduc’s approach does not include any compaction
scheme.

Reiss and Renieris proposed a technique called
string compaction that can be used to represent a
dynamic call tree as a lengthy string (Reiss and
Renieris 2001). For example, if function ‘A’ calls
function ‘B’ which in turn calls function ‘C’, then the
sequence could be represented as ‘ABC’. Markers are
added to indicate call returns. For example, a
sequence ‘A’ calls ‘B’ and then calls ‘C’ will be
represented as ‘ABvC’ (the marker ‘v’ will indicate a
call return). However, we posit that this basic
representation has a number of limitations: It does not
have the flexibility to attach various attributes to
routines, and cannot be easily adapted to support
other kind of traces such as statement-level traces.

In (Brown et al. 2000), the authors presented
STEP, a system designated for the efficient encoding
of program trace data. One of the main components

of the STEP system is STEP-DL, a definition
language for representing STEP traces, which contain
various types of events generated from the Java
Virtual Machine including object allocation, variable
declaration, etc. STEP is useful for applications that
explore Java bytecode files and does not explicitly
deal with traces of routine calls.

CONCLUSIONS

Application modernization requires the representation
of knowledge about the system under study. While
existing metamodels such as KDM, UML, and DMM
capture efficiently the static aspects of software, they
lack an efficient representation of the behavioral
aspects of the system. In this paper, we presented
CTF (Compact Trace Format), an exchange format
for representing traces of routine (method) calls. To
deal with the vast size of typical traces, we designed
CTF based on the idea that dynamic call trees can be
turned into ordered directed acyclic graphs, where
repeated subtrees are factored out. CTF, as described
in this paper, is a metamodel. Trace data conforming
to CTF can be expressed using GXL, TA, or any
other data “carrier” language. However, we suggest
using a compact representation since doing otherwise
would somewhat defeat the compactness objective of
CTF.

While CTF covers a significant gap in terms of
exchanging traces of routine calls, dynamic analysis
is a highly versatile process that has a large number
of needs including needs for dynamic information
that is not necessarily supported by CTF. We need to
work towards enhancing CTF in order to support
other types of traces and constructs.

The main future direction is to agree on what
should be represented in a trace exchange format. We
also need to investigate how various traces can be
compacted so as the embedded repetitive behavior is
represented only once. Moreover, we need to analyze
the proper syntactic form that is most suitable for
representing lengthy traces.

Finally, we need to work towards the adoption of
CTF by developing converters that can easily convert
existing formats into CTF. We also need to develop
mechanisms for the on the fly generation of CTF
traces.

REFERENCES

Bézivin J., 2004. Model Engineering for Software
Modernization. In WCRE'04, 11th Working Conference
on Reverse Engineering.

Bowman T., Godfrey M. W., and Holt R. C., 1999.
Connecting Architecture Reconstruction Frameworks.
In CoSET’99, 1st International Symposium on
Constructing Software Engineering Tools.

Brown R., Driesen K., Eng D., Hendren L., Jorgensen J.,
Verbrugge C., and Wang Q., 2002. STEP: a framework
for the efficient encoding of general trace data. In
PASTE’02, Workshop on Program Analysis for
Software Tools and Engineering.

Chilimbi T., Jones R., and Zorn B., 2000. Designing a trace
format for heap allocation events. In ISMM’00, ACM
SIGPLAN International Symposium on Memory
Management.

Downey J. P., Sethi R., Tarjan R. E., 1980. Variations on
the Common Subexpression Problem. Journal of the
ACM. 27(4).

Ebert J., Kullbach B., Winter A., 1999. GraX – An
Interchange Format for Reengineering Tools. In
WCRE’99, 6th Working Conference on Reverse
Engineering.

Hamou-Lhadj A. and Lethbridge T., 2003. The Compact
Trace Format, In ATEM’03, 1st International
Workshop on Metamodels and Schemas for Reverse
Engineering.

Hamou-Lhadj A. and Lethbridge T., 2005. Measuring
Various Properties of Execution Traces to Help Build
Better Trace Analysis Tools. In ICECCS’05, 10th IEEE
International Conference on Engineering of Complex
Computer Systems.

Holt R. C., 1998. An Introduction to TA: The Tuple
Attribute Language. Department of Computer Science,
University of Waterloo and University of Toronto.

Holt R. C., Winter A., Schürr A., 2000. GXL: Toward a
Standard Exchange Format. In WCRE’00, 7th Working
Conference on Reverse Engineering.

Jerding D., Rugaber S., 1997. Using Visualisation for
Architecture Localization and Extraction. In WCRE’97,
4th Working Conference on Reverse Engineering.

Knowledge Discovery Metamodel (KDM) 1.0
Specifications, 2007:
http://www.omg.org/cgi-bin/doc?ptc/2007-03-15

Larus J. R., 1999. Whole program paths. In PLDI'99,
Conference on Programming language design and
implementation.

Leduc J., 2004. Towards Reverse Engineering of UML
Sequence Diagrams of Real-Time, Distributed Systems
through Dynamic Analysis. Master’s thesis, Carleton
University.

Lethbridge T. C., 2003. The Dagstuhl Middle Model: An
Overview. In ATEM’03, 1st International Workshop on
Metamodels and Schemas for Reverse Engineering.

Müller H. A., Klashinsky K., 1988. Rigi – A System for
Programming in-the-large. In ICSE’88, 10th

International Conference on Software Engineering.
Nicola M., and John J., 2003. XML parsing: a threat to

database performance”, In ICIKM’03, 12th

International Conference on Information and
Knowledge Management.

Reiss S. P. and Renieris M., 2001. Encoding program
executions. In ICSE’01, 23rd International Conference
on Software Engineering.

St-Denis G., Schauer R., and Keller R. K., 2000. Selecting
a Model Interchange Format: The SPOOL Case Study.
In Proc. of the 33rd Annual Hawaii International
Conference on System Sciences.

Systä T., 2000. Understanding the Behaviour of Java
Programs. In Proc. of the 7th Working Conference on
Reverse Engineering (WCRE).

UML 2.0 Specifications, 2005:
http://www.omg.org/technology/documents/formal/uml
.htm

Woods S., Carrière S. J., Kazman R., 1999. A semantic
foundation for architectural reengineering and
interchange. In ICSM’99, 15th International
Conference on Software Maintenance.

APPENDIX

In this appendix, we present the detailed semantics of
CTF.

Class “Trace”

Semantics: An abstract class representing common
information about traces generated from the
execution of the system.

Attributes:
 startTime: Time - Specifies the starting time of the

generation of the trace.
 endTime: Time - Specifies the ending time of the

generation of the trace.

Associations: No associations.

Constraints:
 endTime should be greater than or equal to

startTime
self.endTime >= self.startTime

Class “CallTree (Subclass of Trace)”

Semantics: An object of CallTree represents a trace
of routine calls. A routine is defined as any function
whether it is in a class or not. Although the class
refers to a tree but in fact it will be saved as an
ordered DAG.

Attributes: No additional attributes.

Associations:

 root: Node[1] - Specifies the root of the call tree.

Constraints:
 The root of a trace must not have parent node

self.root.incoming ->isEmpty()

 The root node cannot be an object of ControlNode
subclasses:

not self.root.oclIsTypeOf(SequenceNode) and
not self.root.oclIsTypeOf(RecursionNode)

 The graph needs to be an ordered directed acyclic
graph.

Class “TracePattern”

Semantics: An object of the class TracePattern
represents a sequence of calls that is repeated in a
non-contiguous manner in the trace.

Attributes:
 description: String - Specifies a textual description

that a software engineer can assign to a trace
pattern.

Constraints: No additional constraints.

Class “Node”

Semantics: Node is an abstract class that represents
the nodes of the directed acyclic graph (i.e. compact
form of the call tree).

Attributes:
 label: String - If a static component is not

specified, perhaps because it is not known, then the
label can be used to indicate the node’s label. For
example, a label can simply represent the name of
the routine represented by this node.

 timestamps: Time[] - Specifies the timestamps of
the routines represented by this node.

 executionTime: double[] - Specifies the execution
times of the routines represented by this node.

Associations:
 DAG: CallTree [1] - References the Trace for

which this node is the root.

 incoming: TraceEdge [*] - Specifies the
TraceEdge objects that represent the incoming
edges of this node.

 outgoing: TraceEdge [*] - Specifies the
TraceEdge objects that represent the outgoing
edges of this node.

 Thread [*] - References the Thread objects that
represent the thread in which this node is
executed.

Constraints:
 The timestamps of the routine calls represented by

this node must be sorted in an ascending manner.
This guarantees that the graph maintains the
sequential execution of the routines.

 The parent nodes of this node cannot be the same
as its child nodes and vice-versa since the graph is
acyclic.

self.incoming->excludesAll(self.outgoing) and

self.outgoing ->excludesAll(self.incoming)

Class “TraceEdge”

Semantics: Objects of the TraceEdge class represent
edges of the directed acyclic graph.

Attributes:
 repetitions: int - Specifies an edge label that will

be used to represent the number of repetitions due
to loops and recursion. Default value is zero, i.e.,
no repetitions.

Associations:
 child: Node[1] - References the node that

represents the child node that is pointed to by this
trace edge.

 parent: Node [1] - References the node that
represents the parent node from which this edge
is an outgoing edge.

Constraints:
 The child and the parent nodes must be different.

Recursion is represented using the RecursionNode
class (Section 3.1):

sefl.child <> self.parent

 The value of the attribute “repetitions” must be
greater than or equal to zero

self.repetitions >= 0

Class “Thread”

Semantics: Objects of the Thread class represent the
thread of execution invoked in the trace.

Attributes:
 name: String - Specifies the name of the thread.

Associations:
 Node[1..*] - References the nodes that are

executed in this thread of execution.

Constraints: No constraints

Class “RoutineCallNode (Subclass of Node)

Semantics: Objects of the RoutinceCallNode
represent the routine calls invoked in the trace. A
routine here should not be confused with a method of
a class.

Attributes: No additional attributes

Associations: No additional associations.

Constraints: No additional constraints

Class “MethodCallNode (Subclass of Node)”

Semantics: Objects of the MethodCallNode represent
the method calls invoked in the trace.

Attributes: No additional attributes.

Associations:
 Object [0..1] - References the object, if known, on

which the method is invoked.

Constraints: No additional constraints

Class “Object”

Semantics: This class represents the objects invoked
in the trace. In some traces, information about objects
may be present; in others such information (and
hence instances of this class) may be absent.

Attributes:
 objectID: String - Specifies the object identifier.

Associations:
 MethodCallNode [1..*] - Specifies the methods

invoked on this object.

Constraints: No additional constraints

Class “ControlNode (Subclass of Node)”

Semantics: The ControlNode class is an abstract
class that is used to specify additional information
that can help better structure the trace.

Attributes: No additional attributes.

Associations: No additional associations.

Constraints:
 A control node cannot be the root of the entire

trace:
self.incoming ->notEmpty()

 A control node must have children:
self.outgoing -> notEmpty()

Class “RecursionNode (Subclass of ControlNode)”

Semantics: An object of the RecursionNode is added
to represent graph nodes that are repeated recursively.
In this case, this object will be labeled ‘REC’.

Attributes: No additional attributes.

Associations:
 repeatedOccurrence: Node[1] - References the

subtree that is repeated recursively.

Constraints: No additional constraints

Class “SequenceNode (Subclass of Control Node)”

Semantics: An object of the SequenceNode class is
added to represent multiple nodes that are repeated in
a contiguous way. In this case, this object will be
labeled ‘SEQ’.

Attributes: No additional attributes.

Associations: No additional associations.

Constraints: No additional constraints.

