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ABSTRACT 

 
Software Clustering Using Dynamic Analysis and Static Dependencies 

 

Chiragkumar Patel 
 

 
Maintaining a large software system is not an easy task. The problem is that software 

engineers must understand various parts of the system prior to performing the 

maintenance task at hand.  

The comprehension process of an existing system can be made easier if the system is 

decomposed into smaller and more manageable clusters; software engineers can focus on 

analyzing only the subsystems needed to solve the maintenance task at hand. There exists 

several software clustering techniques, among which the most predominant ones are 

based on the analysis of the source code. However, due to the increasing complexity of 

software, we argue that this structural clustering is no longer sufficient.  

In this thesis, we present a novel software clustering approach that combines dynamic 

and static analysis. Dynamic analysis is used to build a stable core skeleton 

decomposition of the system by measuring the similarity between the system’s 

components according to the number of software features they implement. Static analysis 

is used to enrich the skeleton decomposition by adding the components that were not 

clustered using dynamic analysis.  

A case study involving two object-oriented systems is presented to evaluate the 

applicability and effectiveness of our approach. 
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Chapter 1  Introduction 

Software maintenance is perhaps one of the most complex software engineering 

activities; software engineers must understand various parts of a system before they can 

perform the maintenance task at hand. In this thesis, we argue that the increased 

complexity and behavioural aspects of today’s software systems demand for better 

clustering algorithms to support the comprehension and analysis of existing systems. The 

presented approach goes beyond the mere static analysis of the source code used 

predominantly by most existing clustering techniques. For this purpose, we introduce a 

novel clustering algorithm that uses dynamic analysis, as its main mechanism, to recover 

the core structure decomposition of a system, and static information to enrich this 

decomposition. 

In the remainder of this chapter we will motivate the thesis, summarize the contributions 

of this work, and present the thesis outline. 

1.1 Problem and Motivations 

Software evolution is an essential part of the software life cycle. As part of traditional 

software life cycle models, software documentation plays an important role in supporting 

the development and maintenance of a software system. However, it has also been shown 

that for many existing systems, the documentation associated with an existing system is 

often incomplete, inconsistent, or even inexistent [Wiggerts 97]. This is further 
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complicated by the fact that key developers, knowledgeable of the system's design, 

commonly move to new projects or companies, taking with them valuable technical and 

domain knowledge about the system [Tzerpos 98].  

These factors contribute to make these software systems difficult to comprehend and to 

evolve. As a result, software engineers need to spend a considerable amount of time 

understanding what the application does, and how it does it.  

Software clustering techniques were introduced to facilitate the comprehension process 

by automatically decomposing the system into smaller, more manageable clusters, 

enabling software engineers to focus on analyzing only the subsystems needed to solve 

the maintenance task at hand [Wiggerts 97, Tzerpos 98, Anquetil 99a].  

Existing software clustering techniques can be grouped into two main categories 

[Anquetil 99a]. The first category, also the most commonly used, relies on the source 

code to extract relations among a system’s components. Examples of such relations 

include file inclusions, routine calls, type references, etc. However, many of these 

clustering approaches are limited to static analysis of the source code and therefore are 

very conservative in analyzing the dynamic interactions among the system’s entities. The 

second category of clustering approaches is based on less formal artefacts, such as file 

names [Anquetil 99b], comments [Merlo 93], etc. The main drawback with these 

techniques is that they assume that the software development process adopts certain 

naming, programming and/or design conventions. However, it is not feasible to expect 

that such conventions will be followed in practice [Patel 07]. In addition, extracting and 
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analyzing the knowledge from such informal information sources is often difficult due to 

the presence of noise and ambiguity in the data.  

In this thesis, we propose a novel clustering approach that combines both dynamic (trace 

based) and static dependency analysis. The approach introduces a software clustering 

decomposition based on behavioural relations among system components compared to 

existing approaches that typical relying only on mere structural relations.. The approach 

extracts behavioural relations that exist in the source code by executing a single software 

feature. The proposed approach has two main phases: In the first phase, we measure the 

similarity between system entities based on the software features they implement. We 

achieve this by examining traces generated by exercising these system features. This 

dynamic analysis provides us with a skeleton decomposition of the system structure. In 

the next step, we apply static dependency analysis to further cluster the system by adding 

the remaining components to the skeleton decomposition.  

1.2 Research Contributions 

The main research contributions of this thesis are as follows: 

• A novel software clustering approach based on dynamic analysis is presented. The 

approach uses a dynamic analysis of feature traces as a primary step to create 

skeleton decomposition of feature related components rather than relying on a 

mere static analysis of relations among a system’s components as used by most 

existing software clustering techniques.  
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• In this thesis, we introduce the notion of a software feature as a new clustering 

criterion. To our knowledge, this is the first study that exploits software features 

in the context of software clustering. We argue that since software features 

represent high-level system functions that can guide functional partitioning from 

the forward engineering perspective, they are excellent candidates to be used to 

recover these corresponding partitions from low-level implementation details. 

 

•  We present a complete hybrid clustering approach that combines both dynamic 

and static dependency analysis. In this approach, static analysis is used to further 

refine the cluster generated by the dynamic analysis.  

 

• The clustering approach was applied on two object-oriented software systems, to 

evaluate our approach and discuss its applicability. 

1.3 Outline of the Thesis 

The remainder of this thesis is organized as follows.  

In Chapter 2, we introduce background related to essential concepts used in this thesis. 

The chapter covers cluster analysis, software clustering and provides a detailed survey 

and discussion of the most cited software clustering techniques relevant to this thesis 

context. The chapter ends with a discussion section.  

In Chapter 3, we present the concept of software features and the motivation for using it 

as a clustering criterion. We start the chapter by defining what constitutes a software 

feature in other software engineering related areas namely, feature-driven software 
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development, feature location, and feature interaction. Next, we discuss the motivation 

behind using software features as a clustering criterion, along with the potential issues 

that emerge.  

In Chapter 4, we present in detail the software clustering approach presented in this 

thesis. We start, by describing the overall approach, which consists of two phases as 

previously mentioned. The chapter continues with the detailed description of each phase, 

where phase 1 is based on dynamic analysis and phase 2 is based on static analysis.  

In Chapter 5, we evaluate the applicability of the proposed approach by applying it on 

two software systems. The target systems are introduced as well as the results of applying 

the clustering techniques to both systems are reported.  

Finally, Chapter 6 concludes the thesis by summarizing the main contributions of the 

thesis, and outlining some of the potential future work to enhance the presented approach, 

followed by closing remarks.  
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Chapter 2  Background 

In this chapter, we present the background and terminology relevant to the thesis context. 

In Section 2.1, we introduce various cluster analysis concepts. In Section 2.2, we focus 

on software clustering and present a detailed survey of existing clustering techniques, 

followed by a discussion in Section 2.3.  

2.1 Cluster Analysis 

The formal study of clustering algorithms and methods is known as cluster analysis [Jain 

88], which aims to classify entities within a domain into disjoint groups according to 

some kind of similarity metric [Anderberg 73]. The resulting groups of entities are often 

referred to as “clusters” or “partitions”. Clustering techniques have been used in many 

fields including life sciences (e.g., biology, zoology), medical sciences (e.g., psychiatry), 

behavioural and social sciences (e.g., sociology, education), earth science (e.g. geology), 

engineering sciences (e.g., pattern recognition, software reverse engineering), 

information and decision sciences (e.g., information retrieval, marketing research), etc.  

The clustering process itself is based on four main elements [Jain 88]:  

• Entities to cluster 

• Attributes that describe the entities 

• Similarity metric used to measure the distance between the entities 

• Clustering algorithm that describes the steps of the clustering process 
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2.1.1 The Entities 

The entities to cluster depend on the domain in which a cluster analysis is performed. In 

psychology, for example, the entities could be training methods, behavioural patterns, etc. 

There is no common terminology that describes clustering concepts. The objects to be 

clustered are normally referred to as: “data units,”  “cases,”  “entities,”  “patterns,”  

“observations,”  and “elements” [Anderberg 73, Jain 88]. In the context of this thesis, we 

refer to the entities to be clustered as “entity”. 

2.1.2 The Attributes 

Attributes define the characteristics of the entities to be clustered. They are also called 

“features,”  “variables,”  “characters,”  or “measurements” [Anderberg 73, Jain 88]. The 

relationship between entities and the attributes that describe them can be represented 

using an entity-attribute matrix, where rows represent entities and columns refer to 

attributes of these entities. Therefore, a cell (i, j) represents the value of an attribute Aj for 

an entity Ei. The values of all attributes for a specific entity form the attribute vector for 

this entity.  

Clustering attributes can be grouped into four categories depending on the values that can 

be assigned to them [Anderberg 73]. The first category is the nominal scale attributes, 

which limit the comparison between two variable values to whether they are equal or not. 

A special type of nominal scale attributes are binary attributes, which can have only two 

possible values. The second category consists of ordinal scale attributes, which improve 

over the nominal scale attributes by allowing “greater than” or “less than” comparisons 

among entities. Interval scale attributes, which represents the third category, provide the 
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ability to express additional information compared to ordinal scale attributes. Interval 

scale attributes allow to express the difference between the values (e.g., temperature 

measurement). Finally, the last category consists of ratio scale attributes, which allow 

comparing attribute values based on their ratios (e.g., 20 meters is double the distance of 

10 meters).  

2.1.3 Similarity Metrics 

An important step used for any clustering technique is the need to select a similarity 

metric, which will determine how the similarity of two entities is computed. There exist 

various categories of similarity measures in the literature [Wiggerts 97, Anderberg 73], 

among which the most popular are perhaps the association coefficient metrics.  

Table 2.1. Association coefficient matrix 

Entity Ei 

Entity Ej 

a b 

c d 

 

Where:  

a = The number of attributes present for both Ei and Ej 

 b = The number of attributes present for Ei and not in Ej 

 c = The number of attributes present for Ej and not in Ei 

 d = The number of attributes not present for both Ei and Ej 

Association coefficients are based on the analysis of binary attributes. The association 

coefficients measure the similarity between two entities based on the number of attributes 
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present for each entity. Using the association coefficient metrics, the similarity between 

two entities is calculated based on a 2x2 matrix like the one shown in Table 2.1. 

Existing association coefficient metrics vary depending on how a, b, c, and d are 

weighted. Table 2.2 shows examples of commonly used association coefficients and how 

they compute similarity based on a, b, c, and d [Anderberg 73]. 

Table 2.2. Association coefficient metrics  

Name Value 

Simple matching coefficient (a + d) / (a + b + c + d) 

Russell and Rao a / (a + b + c + d) 

Jaccard a / (a + b + c) 

Sorenson-Dice 2a / (2a + b + c) 

Kulcsynski a / (b + c) 

Rogers-Tanimato (a + d) / (a + 2(b + c) + d) 

Sokal and Sneath a / (a + 2(b + c)) 

 

It should be noted that many coefficients (e.g., Jaccard, Sorenson-Dice, Sokal and 

Sneath) do not consider the value of d, the number of attributes not present in both 

entities. The argument is that there seems to be a consensus among researchers that 

absent attributes often lead to a large and meaningless clusters absorbing most entities 

[Anquetil 03]. 
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There are other types of similarity metrics such as the distance measures, which measure 

the geometrical distance between the attribute vectors of two entities. Distance measures 

are usually used when the attributes are of type ordinal, interval, or ratio scale attributes. 

Examples of distance measures include the Euclidian distance (a special case of the 

Minkowski distance), the Canberra distance, the Bray-Curtis distance, etc [Anderberg 

73].  

2.1.4 Hierarchical Clustering Algorithms 

A clustering algorithm describes the steps involved in clustering entities of a system. 

There are two main clustering algorithms: Hierarchical and partitioning algorithms.   

 

Figure 2.1. Example of a dendrogram 

Hierarchical clustering algorithms work by clustering the entities of the system in an 

iterative manner. There are two types of hierarchical algorithms: agglomerative 

algorithms and divisive algorithms. Agglomerative algorithms use a bottom-up approach, 

starting from individual entities, with each of them represented in a single cluster. After 
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each iteration, the algorithm merges two clusters, therefore reducing the initial number of 

clusters by one. Before the last iteration, all entities are clustered into two clusters. In the 

last final iteration, the algorithm merges these two clusters into one single cluster, which 

includes all the entities into it. The result of the clustering process is depicted in a tree-

like structure known as a dendrogram (see Figure 2.1). 

Four variations of agglomerative algorithms can be distinguished depending on the way 

they measure the similarity between the newly formed cluster and all pre-existing 

clusters. These variations, also referred to as updating rules, are: Complete linkage, 

Single linkage, Weighted average linkage and Unweighted average linkage.  

Table 2.3. Updating rules for agglomerative hierarchical algorithms  

Updating rule Similarity formula 

Single Linkage f (Em, Eij) = min(f (Em, Ei), f (Em, Ej))  

Complete Linkage f (Em, Eij) = max(f (Em, Ei), f (Em, Ej)) 

Weighted Average 

Linkage 

f (Em, Eij) = (f (Em, Ei), f (Em, Ej))/ 2 

Unweighted Average 

Linkage 

f (Em, Eij) = (f (Em, Ei)*size(Ei)+ f (Em, Ej)*size(Ej)) / 

(size(Ei)+ size(Ej)) 

 

Table 2.3 summarizes these updating rules used in agglomerative clustering algorithms, 

with f (Em, Eij) referring to the similarity metric used to measure the similarity 

(proximity) between two clusters Ei and Ej. In this table, the proximity formula for 

different updating rule is presented, which finds a new proximity value between an 
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existing cluster Em and a newly formed cluster Eij. Cluster Eij is created by merging the 

two clusters Ei and Ej. The proximity value between Em and Eij is calculated based on the 

proximity of Em with Ei and Ej. For example, in single linkage updating rule, f (Em, Eij), 

which measures the proximity between an existing cluster Em and a newly formed cluster 

Eij, is calculated as the minimum value between f (Em, Ei) and f (Em, Ej). 

It also has to be noted that the selection of an updating rule may have a significant impact 

on the resulting clusters. It has been shown that single linkage tends to form large and 

isolated clusters including many entities in them compared to complete linkage, which 

usually results in less isolated clusters [Anquetil 99a]. The results obtained by applying 

weighted and unweighted average linkage can be found between these two extremes, 

complete and single linkage.  

Unlike agglomerative algorithms, divisive algorithms, which represent the second 

category of hierarchical algorithms, proceed in a top-down fashion [Wiggerts 97]. They 

start by grouping the entities to cluster into a single cluster. This cluster is then split, in 

the next iteration, into two clusters, which in turn are divided into more clusters, and so 

on, until a cluster is created for each entity. 

Agglomerative algorithms have been shown to be timely more efficient compared to 

divisive algorithms. Divisive algorithms tend to take longer time to create two clusters in 

the very first iteration, because there are 2N-1-1 (N is the number of entities to be 

clustered) possibilities [Wiggerts 97]. 
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2.1.5 Partitioning Algorithms 

Partitioning algorithms start by grouping all entities into a predefined number of clusters 

[Jain 88]. The entities are rearranged according to some clustering criteria provided by 

the user. The clustering criterion is expressed in the form of an objective function. 

Examples for such criteria include high cohesion, low coupling, shared data bindings, etc. 

It might take several iterations before the value of the objective function can be reached. 

A partitioning algorithm begins by identifying the seed points from the entity set. These 

seed points act as the nucleus of a cluster that attracts other elements to them [Anderberg 

73]. The number of seed points is equal to the number of clusters the algorithm produces. 

The set of seed points could be selected by the user or chosen randomly from the entity 

set. The idea is to group the entities according to their minimum distance with the seed 

points while at the same time improving the objective function. If seed points are selected 

from the entity set, then each partition will have at least one entity in it as its seed point.  

Jain et al. discuss two issues related to using partitioning algorithms: the selection of the 

clustering criteria and the number of all possible iterations [Jain 88]. The selection of 

clustering criteria depends highly on the problem at hand and cannot be generalized to 

other problem domains. In addition, the criteria have to be expressed into a mathematical 

formula to form the objective function. The second challenge is somewhat more complex 

to resolve, as the number of iterations one has to perform in order to fulfill the criteria 

across all partitions can be enormous, even for small sets of entities. One proposed 

solution to this combinatorial explosion problem is to start with an initial partition of 

entities that a user can provide in advance. However, the selection of an initial partition 



 14 

requires great care since it has been shown that the result of applying the same 

partitioning algorithm to two different initial partitions can be significantly different. 

2.2 Software Clustering 

Software clustering is defined as recovering architectural knowledge by applying a 

clustering technique to software entities in order to group them into different clusters. 

The entities grouped in one cluster are more similar to one another and at the same time 

more dissimilar to the entities in other clusters [Tzerpos 98]. These clusters are also 

referred to as “sub-systems” or “decompositions” of a software system. There exists 

several software clustering techniques that vary depending on the attributes used to 

describe the entities to be clustered, the clustering process, as well as the clustering 

algorithm itself. These techniques can be grouped into two categories that we present 

here and discuss in more detail in the subsequent subsections: 

▪ Graph-based clustering techniques 

▪ Similarity matrix based clustering techniques 

2.2.1 Graph-Based Clustering Techniques 

Graph-based clustering techniques operate on a graph representation, where the nodes are 

the entities to be clustered and the links are the relationships among them. 

Hutchens and Basili studied the applicability of clustering techniques to software 

architecture recovery [Hutchens 85]. In particular, they used data binding as a clustering 

criterion to cluster routines of FORTRAN programs based on the degree of data shared 

between these routines. For this purpose, a routine dependency graph was extracted from 
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the system under study where the vertices represent the routines of the system and the 

edges represent the relationships among these routines based on the data they share. 

Examples of data binding between two routines p and q include data sharing through 

global variables. For example by having p assigning a value to a variable that is later 

referenced by q, etc. 

The authors defined several levels of data binding, grouped into four categories, namely, 

potential data binding, used data binding, actual data binding and control flow data 

binding, with potential data binding being the simplest and least expensive to extract, 

whereas control flow data binding being the most complex and highly expensive to 

represent.  

The authors showed the applicability of their approach by applying it to two small-sized 

FORTRAN systems. They used different hierarchical clustering algorithms on the routine 

dependency graphs extracted from these systems. They validated their approach by 

comparing the resulting decompositions to the ones provided by the designers of the 

systems. They concluded that the usage of data binding could be useful in software 

clustering after noticing a large degree of correspondence between their decompositions 

and the ones produced by the initial developers of both systems.  

Mancoridis et al. proposed a tool, called Bunch, to group a system’s modules (e.g., files, 

classes, routines, or any other component of the system) into clusters [Mancoridis 99]. 

The modules are represented in a module dependency graph (MDG) where the nodes 

represent a system’s modules and the edges are the structural relations (e.g., procedural 

invocation, variable access) connecting the modules with each other. The clustering 
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process was performed by partitioning the MDG into disjoint clusters using a partitioning 

clustering algorithm (see Section 2.1.5). The authors used high cohesion (dependency 

between the modules of the same partition) and low coupling (dependency between the 

modules of different partitions) as the main partitioning selection criterion, which they 

expressed in the form of an objective function referred to as the Modularization Quality 

(MQ) function. MQ ranges from -1 to 1, where the extremes represent no internal 

cohesion (-1) and no external coupling (1).  

Another important contribution of the authors’ approach is the ability to preprocess the 

entities of the system prior to performing the clustering. For this purpose, they allow the 

users of their tool to filter out utility modules (also called omnipresent components) from 

the clustering process. The rationale behind this is that omnipresent components tend to 

encumber the module dependency graph and may affect the effectiveness of the 

clustering process. In our research we apply similar approach of removing omnipresent 

components and propose to group them into a separate cluster that we call a utility 

cluster. This will be discussed in more detail in Section 4.2.3. 

In addition, the tool enables users to guide the clustering process by allowing them to 

specify modules that must be clustered together. This ability for users to override the 

decisions made by the automatic partitioning algorithm adds a significant additional 

flexibility to the tool, allowing user knowledge to be integrated into the clustering 

process. 

The authors conducted several experiments by applying their approach to clustering C 

programs. The main observation from these experiments was that a better result was 
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obtained when omnipresent components were removed from the clustering process. In 

addition, they showed that a user-directed clustering approach combined with the 

automatic partitioning algorithm provided better results than relying on a pure automatic 

algorithm alone.  

In [Tzerpos 00], Tzerpos and Holt presented an algorithm called ACDC (Algorithm for 

Comprehension-Driven Clustering) where the authors introduced the concept of 

incremental clustering. Their clustering process consists of two phases. During the first 

phase, they built a skeleton decomposition of the system, which contains core entities of 

the system. In the second phase, they cluster non-core entities by adding them to the 

already formed clusters. An interesting aspect of their work is that they did not use the 

source code to build the skeleton decomposition. Instead, they built an algorithm that 

simulates the way software engineers group entities into subsystems. The authors showed 

that their approach performed better than most other clustering techniques that cluster all 

entities at once using the source code to measure similarity between entities. We attribute 

this to the fact that they used an abstract concept (clustering patterns) to build the 

skeleton decomposition. In our case, we use software features as discussed in Section 3. 

Tzerpos et al. [Xiao 05] are perhaps the first authors in the area of software clustering 

who used a combination of static and dynamic analysis for clustering. Their clustering 

technique uses a static component dependency graph to represent the entities to cluster 

(e.g., a system’s files, classes, etc.) and the relationships among these entities (e.g., file 

inclusion, object interaction, etc.). Run-time information was used to weigh the edges of 

the static dependency graph based on the number of times a component (i.e., represented 

as a node in the graph) invokes another component according to a given scenario. This 
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information was obtained by applying dynamic analysis techniques. More precisely, in 

their approach they instrumented the source code of the system, and an execution trace 

was generated by exercising the given scenario using the instrumented version of the 

system. The authors applied their technique to a large C-based software system and 

showed promising results. 

Unlike the previous authors, Bauer and Trifu favoured higher level semantic information 

such as architectural patterns over static dependencies among a system’s entities as the 

clustering criteria for their clustering approach [Bauer 04]. They argued that the result of 

clustering using static dependencies was not always significant to the end users. They 

clustered the classes of an object-oriented system using a five-phase approach. First, they 

extracted a class dependency graph from the system, where the nodes represent the 

classes of the system and the edges represent various relations among classes including 

access to global variables, method invocations, inheritance relations, etc. The second 

phase was performed manually and consisted of gathering architectural clues from the 

facts (i.e., classes and relations among them) extracted in the first phase. They defined an 

architectural clue as small structural pattern, which is part of an architectural pattern. In 

the third phase, they built a multi-edge system graph, which has classes as the nodes and 

the edges represent six types of coupling between classes: inheritance coupling, 

aggregation coupling, association coupling, access coupling, call coupling, and indirect 

coupling. The architectural clues were used to guide the identification of the type of 

coupling between any two given classes and create an edge between classes. There could 

be multiple edges possible between any two classes according to the type of coupling 

between them. During this phase, a weight is also assigned to the edges. The weight of an 
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edge is calculated according to the metric specified for the corresponding type of 

coupling represented by that edge. The fourth stage consisted of compacting the multiple 

edges between two classes into a single edge where the new weight consists of the 

summation of the weights assigned to the multiple edges. The final stage consisted of 

applying a clustering algorithm to the resulting graph.  

They applied their approach on two software systems, and compared their results with the 

ones obtained by applying the same clustering algorithm to class dependency graphs that 

were not refined using architectural clues. Their approach performed better than the 

traditional approach both in accuracy and efficiency.  

2.2.2 Similarity Matrix Based Clustering Techniques 

The similarity matrix based clustering techniques represent the proximity between 

entities based on the attributes that describe them (discussed earlier in Section 2.1). 

Several approaches for similarity matrix based clustering techniques have been proposed 

in the literature, with the main difference among being the type of attributes used to 

create the clusters. 

Schwanke introduced the concept of information sharing heuristics to define the 

attributes based on procedures in the system that are used to group  entities in clusters 

[Schwanke 91]. The information sharing heuristic is based on the idea that two 

procedures should be grouped together based on the degree to which they share 

information through non-local names. Non-local names are the names of procedures, 

macros, type definitions, or variables that appear in more than one procedure’s scope. 

The non-local names were distinguished by unique identifiers due to the fact that they 
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might have multiple declarations in different scopes. One important contribution of their 

work is the ability to identify non-local names and use them as attributes to cluster the 

entities. Non-local names are cross references between the entities in the static 

dependency graph. The cross-reference between two entities is used as attribute for both 

the entities (e.g., if procedure A calls procedure B then, A receives the attribute as “B” 

and B receives the attribute as “Called by A”). The authors applied their approach to a 

software system written in C. The result was evaluated by three architects who were 

familiar with the system. The obtained decomposition recall reached only 60% of the 

original decomposition of the system. 

Dugerdil used a dynamic analysis driven approach to recover the system architecture 

from execution traces generated from the system under study [Dugerdil 07]. The authors 

collected traces by exercising various scenarios of a Visual Basic system they worked 

with. The traces were sliced into portions of equal size, called trace samples. The 

clustering attributes consisted of these trace samples. In other words, two entities were 

considered identical if they appeared in the same samples and were not invoked in any 

other sample. However, before the clustering process started, omnipresent components 

were removed from the traces. These were the components that appeared in most samples 

(the threshold was 75% in their case study). The author applied his technique to a 

commercial application written in Visual Basic, and was able to cluster about 11% of the 

total entities of the system. This low number of entities was attributable to the fact that 

these were the only components invoked in the traces. The author stated that the results 

were promising but no validation was performed.  
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Anquetil and Lethbridge [Anquetil 99b] used file names as a clustering criterion. They 

made this choice after an experiment they conducted, where they asked software 

engineers to manually group the files of the system under study into clusters. The 

experiment showed that software engineers had used file names as the main clustering 

criterion. The authors run several other studies on the same system using various 

clustering criteria besides file names and concluded that file names were the best suitable 

clustering criterion for their system.  

2.3 Discussion 

Software clustering is a broad domain, which involves many different algorithms, 

similarity measures, and attributes. The challenge lies in identifying a suitable clustering 

algorithm along with the other parameters such as attributes of the entities and similarity 

measures. Different clustering algorithm types also have different advantages and 

limitations. For example, a hierarchical algorithm makes arbitrary decisions that may 

affect early on the end result of the clustering process. On the other hand, the computing 

cost of partitioning algorithms is often too high to be applicable to large systems. In 

addition, one has to have some knowledge of the system prior to applying the algorithm 

in order to propose an initial partition used to initialize the algorithms. 

Also, it is very common that a clustering algorithm imposes a structure instead of 

recovering the one created by the initial designers of the system. It might happen that a 

clustering algorithm extracts clusters out of data that has no natural grouping.  
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Software clustering techniques uses various clustering algorithms discussed in the 

previous section. Also many researchers developed their own algorithm, which is build 

specifically for software clustering and focuses onto some predefined criteria [Tzerpos 

00, Mancoridis 99]. The comparison with various clustering elements that affect the 

software clustering like clustering algorithm, similarity metric and omnipresent 

component elimination has also provided in the literature [Anquetil 99a, Mancoridis 99, 

Xiao 05, Tzerpos 00]. The comparison is made with different software systems that 

favours one clustering element over the other, which does not give clear benefits for the 

usage of one specific clustering algorithm or similarity metric. However, the 

improvement of clustering results due to omnipresent component elimination is 

confirmed through many experimental analyses [Mancoridis 99, Müller 93, Wen 05]. 
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Chapter 3  Software Features  

One of the novel contributions of this thesis is the use of software features as a new 

clustering attribute. In other words, we cluster a large number of a system’s entities based 

on the degree to which they collaborate with each other to implement software features. 

Therefore, we have embarked on to study the concept of software features to understand 

their characteristics and how they are related to other system artefacts such as system 

architecture.   

The remaining parts of this chapter are organized as follows: In the next section, we 

review the literature on the use of software features to understand various definitions 

provided in it. The section ends with summery of feature definitions. The motivations 

behind using features as a clustering attributes is discussed in Section 3.2, followed with 

the challenges that are associated with this choice.  

3.1 What is a Software Feature? 

In this section, we review literature on what constitutes a software feature, and how 

software features have been related to other system artefacts. We focus our survey in 

particular on three areas in which features are used extensively, namely, feature-driven 

software development, feature location, and feature interaction. 
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3.1.1 Feature-Oriented Software Development 

Feature-oriented software development is a research area that explores the relationship 

between a system’s features and functional and non-functional system requirements 

[Davis 82]. Perhaps, the most widely used definition of a software feature is the one 

given in [American Heritage 85], which describes a feature as “a prominent or distinctive 

user-visible aspect, quality, or characteristic of a system or systems.” Although this 

definition is too broad to be used in our research, it refers to the fact that a software 

feature should represent an important aspect of a system that can be observed by an 

external user. This aspect could be in the form of a function of the system or one of its 

quality attributes (e.g., speed by which the system responds to a user query). Kang et al. 

[Kang 90] refine this definition by adding that software features are a powerful tool to 

uncover the common aspects of a particular domain. They suggest that software features 

capture abstract concepts of a domain that can be reused when developing applications of 

the same domain. Similarly, Kang et al. [Kang 98], propose using software features to 

capture the commonalities and differences that exist among software applications in 

terms of the features they provide. The authors argue that this feature-based analysis can 

lead to creating domain architectures and components that can be easily reused. In 

addition, Lee et al. stress the importance of using feature models in the development of 

software product lines since product lines typically require reusing existing components 

and that software features tend to be ideal to capture abstract domain concepts [Lee 02]. 

The authors note that there is a tendency to consider a software feature and a software 

concept as the same. They also assume that a software concept represents an abstract 
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construct that are identified from the internal viewpoint such as functions, objects and 

software aspects, whereas features are externally visible characteristics of the system. 

Griss et al. argue that software features are closely related to the concept of use cases 

defined in UML [Griss 98]. According to them, a use case model is something that is 

designed by a system engineer with a user perspective in mind, whereas a feature model 

is designed by a domain engineer for the purpose of reusing the application. They add 

that the main difference between a use case model and a software feature model is that a 

use case model provides “what” the system is capable of doing, whereas a feature model 

puts an emphasis on the knowledge about “which” system functionality to be selected 

when engineering a new system in the same domain.   

Finally, Liu and Mei propose that a “feature is a higher-level abstraction of a set of 

relevant detailed software requirements, and is perceivable by users (or customers)” [Liu 

03]. The authors support the idea that features are first class entities in requirement 

modeling. They add that features are at a higher level of abstraction than requirements. 

Once the requirement specification has been organized by features, the authors propose a 

way to map the feature model to an architectural model. According to them, functional 

features can be mapped directly to a subsystem or an entity of the system. 

3.1.2 Feature Location 

Feature location is a reverse engineering technique that focuses on locating specific parts 

of a software system that implement a particular feature [Rohatgi 08], also known as 

software location in source code. Feature location has been shown to be useful in helping 
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software engineers, working on solving maintenance problems, understand how software 

features are implemented [Eisenbarth 03].  

Perhaps, one of the earliest proposed feature location techniques is the Software 

Reconnaissance technique introduced by Wilde and Skully [Wilde 95]. Their approach 

consists of generating execution traces by exercising various features of the system. The 

traces are then compared and the components that implement particular features are 

identified. Although the authors have not provided an explicit definition of what they 

consider as a feature, it is clear from the experiment they conducted that they have 

considered features as any function of the system that can be triggered by an external 

user.  

Eisenbarth et al. proposed a feature location approach that combines static and dynamic 

analysis techniques. According to them a feature is “a realized functional requirement of 

a system”. They argue that a feature is an “observable behaviour of the system that can be 

triggered by the user”.  

 

Figure 3.1. A feature model (taken from [Eisenbarth 03]) 

As shown in Figure 3.1, the authors show the relationship between a software feature, a 

scenario, and a computation unit. A scenario is defined here as the way the system is 

expected to be used by the user. Based on this, a scenario can invoke many features of a 
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system. For example, editing picture using a drawing tool might involve loading the 

picture to memory, editing it, and saving it to disk. As such, the same software feature 

can be involved in multiple usage scenarios. Computational unit refers to the source code 

units that are executed by exercising the feature on the system. The authors add that a 

feature might require many execution traces in order to fully understand how it is 

implemented.  

Antoniol and Gael-Gueheneuc define a feature as “a requirement of a program that a user 

can exercise and which produces an observable behaviour” [Antoniol 06].  Similarly, 

Einsberg et al. state that features are “defined as behaviours that are observable to users at 

their particular level of interaction with the system” [Eisenberg 05]. Unlike Einsbarth et 

al., they consider one to one mapping between features and execution traces. 

Poshyvanyk et al. define features as “the concepts that represent a functionality of a 

system accessible and visible to the users, usually captured by the requirements 

explicitly” [Poshyvanyk 07]. They further state that “a feature links program architecture 

with its dynamic behaviour”. In other words, a software feature exercised on a system can 

exhibit the behaviour of the system from its architectural point of view.  

3.1.3 Feature Interaction  

Feature interaction is the study of how features influence or conflict with other features of 

the same system. Feature interaction techniques have traditionally been discussed in the 

context of telecommunication systems due to the fact that the features of such systems 

represent a modification or an enhancement of the same baseline feature set.   
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Research in the feature interaction adopts a common definition that considers features as 

incrementally added functionalities to the basic functionality of a system [Calder 03]. 

Zave, for example, defines a software feature as “an increment of functionality, usually 

with a coherent purpose. If a system description is organized by features, then it probably 

takes the form B + F1 + F2 + F3..., where B is a base description, each Fi is a feature 

module, and + denotes some feature-composition operation” [Zave 99]. This definition 

proposes that system evolution is usually feature driven through continuous enhancement 

of existing features or addition of new ones based on the existing ones. This suggests that 

software features can be highly coupled (i.e., the execution of one feature depends on 

another one).  

3.1.4 Summary 

From the above discussion, there is a strong agreement among researchers that a software 

feature should represent a behavioural aspect of the system that is observable by an 

external user. In this thesis, we also define a software feature as an observable behaviour 

of a system that represents a particular functionality. At a high-level, there is a strong 

relationship between software features and the concept of use cases defined in UML 

[Jacobson 94], since use cases also define the system functionality from the user’s 

perspective. The main difference is that software features capture high-level domain 

concepts whereas use cases focus on mapping these concepts to system functionality as 

noted by Griss et al. [Griss 98]. Similar to the concept of use cases, a software feature can 

cover many functional requirements of the system, and that a particular requirement can 

be involved in many features.  
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In addition, software features play an important role during functional decomposition of 

the system into subsystems by having a subsystem encompass the components that 

implement related features (i.e., the ones that represent common functionality of the 

system).   

Moreover, there are various relations between software features such as dependency 

relationships. Exercising a software feature might involve exercising other features on 

which it depends. 

3.2 Software Features as a Clustering Attribute 

From the above discussion, we demonstrated that software features represent abstract 

concepts of a system. This has led us to believe that they are more suitable for recovering 

high-level and more abstract views of a system from low-level implementation details 

than mere source code constructs used by many other clustering approaches.  

In fact, one can argue that an effective clustering of low-level system components should 

start by clustering more abstract concepts such as software features and then locate the 

components that implement these high-level clusters. The difficulty with this approach is 

the ability to locate the components that implement specific features; a research topic that 

has been the subject of many studies (e.g., [Wilde 95]).  

At first glance, one might make several objections to using software features:  

• Execution traces represent a partial model of the system, with the components 

being invoked constituting a subset of the entire set of the system components. 

Therefore, feature-based clustering does not cover the system in its entirety. 
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• The number of software features can affect the result of the clustering process. 

The more features we have in a system, the better will be the result of the 

clustering approach. But since it would be impractical to exercise all possible 

features of a system, one has to determine an acceptable threshold that can lead to 

a satisfactory decomposition of the overall system.  

• The choice of software features is crucial to the success of the clustering process. 

For example, if we only choose features that represent similar functions of the 

system then we will most likely end up with a few clusters that contain most of 

the elements. Therefore it is necessary to derive a balanced set of features that 

cover various aspects of the system.  

We address the first issue by adopting a two-phase clustering process rather than 

traditional clustering methods. Traditional one-phase algorithms start their clustering 

process only once all system entities and their relations are available. In comparison to 

these approaches, our two-phase approach starts in the first phase, which is also the most 

important one, by determining a skeleton decomposition. The clusters belonging to the 

skeleton form the core clusters of the system. The remaining components are then 

incrementally added to the skeleton during the second phase. The remaining components 

are added by measuring their similarity with the ones already grouped in the skeleton 

decomposition. It should also be noted that during this phase, new clusters can also be 

created, if any remaining component does not hold relationship with none of the already 

clustered component. 
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For the second issue, which deals with the number of features, a threshold-based 

approach can be derived from experimental analysis in order to determine the impact of 

code coverage achieved on the resulting decomposition.   

Finally, to address the third issue, there is a need to cover different system functions to be 

able to identify the basic feature set of a system. The selection of software features can 

and should be guided by domain experts or based on any other form of domain 

knowledge, e.g., available documentation or product usage guide. 
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Chapter 4  Clustering Approach 

In this chapter, we present the main contribution of the thesis, which consists of a new 

clustering approach that uses software features as its main clustering criterion. Unlike 

existing techniques, our approach groups a system’s entities based on the degree to which 

they collaborate with each other rather than mere structural relationships extracted from 

the source code.  

The remainder of this chapter is organized as follows. In Section 4.1, we discuss the 

overall approach. In Section 4.2, we present the first phase of our approach which 

consists of building a skeleton decomposition of the system using software features. The 

second phase of the clustering process is presented in Section 4.3. Finally, we conclude 

the chapter in Section 4.4. 

4.1 Overall Approach 

The approach proposed in this thesis emphasizes the use of both dynamic and static 

analysis techniques to support software clustering. It compasses two main phases. The 

first phase, which is also the most important, consists of determining a skeleton 

decomposition of a system. The clusters belonging to the skeleton form the core clusters 

of a system. We achieve this by measuring the similarity between a system’s entities by 

identifying the number of features they implement.  
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In the next phase, we apply static dependency analysis to further cluster the non core 

entities of the system, also known as “orphans”. Orphans are the entities that were not 

clustered in the skeleton decomposition. We achieve this using the orphan adoption 

algorithm presented by Tzerpos et al. [Tzerpos 00], which is an algorithm that is based on 

analyzing static dependencies among entities in order to determine the skeleton clusters 

to which they should belong. 

In the context of our research, we consider system classes of object oriented system as 

clustering entities, since each class typically is represented by one source file. The goal of 

our clustering approach is then to group system classes based on their behavioural 

characteristics (similarity measurement) rather than only relying on their mere structural 

relationships. 

4.2 Skeleton Decomposition  

Figure 4.1 shows the steps involved in the first phase of our clustering approach, the 

skeleton creation based on the software features. The detailed steps are presented in the 

subsequent sections. 

Feature Selection
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Classes
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Figure 4.1. Phase 1: Skeleton building 



 34 

4.2.1 Feature Selection  

In this step, we select the software features that will be used during the formation of the 

skeleton decomposition.  As discussed previously, it is important to select features that 

execute a wide range of different system functionalities. If the selected features perform 

only a narrow subset of the overall functions found in the system then the resulting 

skeleton will most likely end up with a few clusters that contain most of the entities. 

Therefore it is necessary to derive a balanced set of features that cover various aspects of 

the system. In this thesis, we use any available documentation to derive a balanced set of 

software features. 

4.2.2 Feature Trace Generation 

In this step of our approach, a trace for every selected feature is generated by executing 

the instrumented version of a system. Source code instrumentation consists of inserting 

probes at the location of interest in either the source or the byte code of the system. This 

is usually done automatically. There are other ways of generating traces including 

instrumenting the execution environment such as the Java Virtual Machine. A debugger 

can also be set to collect events of interests. However, the use of a debugger slows down 

considerably the execution of the system and should be avoided for large-scale software 

systems [Hamou-Lhadj 06, Xiao 05]. We use the term feature trace to refer to a trace that 

corresponds to a particular feature. The distinct classes of the trace are extracted while 

the trace is being generated. These are the entities that will be clustered by our approach. 
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4.2.3 Clustering of Omnipresent Classes 

Software systems often contain entities that act as mere utilities to support feature 

specific components. They are referred to as omnipresent components [Müller 93]. 

Müller et al. showed that omnipresent components obscure the structure of a system and 

argued that they should be excluded from the architecture recovery process [Müller 93]. 

Wen and Tzerpos [Wen 05] also agreed that removing omnipresent components can 

significantly improve the clustering result. Therefore, we have decided to remove 

omnipresent system classes and group them into a utility cluster. The detection of 

omnipresent classes has been discussed in many studies. Hamou-Lhadj and Lethbridge, 

for example, presented an approach for automatic detection of system-level utilities using 

fan-in analysis [Hamou-Lhadj 06]. Wen and Tzerpos considered omnipresent 

components to be the ones that are connected to a large number of subsystems [Wen 05]. 

In [Mancoridis 99], Mancoridis et al. presented a heuristic based approach for detecting 

omnipresent components. 

Table 4.1. Class-feature matrix 

 F1 F2 … Fm 

C1 1 0 … 1 

C2 1 1 … 0 

… … … … … 

Cn 0 1 … 0 
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4.2.4 Building the Class-Feature Matrix 

A class-feature matrix is a two dimensional table that provides the input to the clustering 

algorithm. The rows represent the classes (i.e. the entities to cluster) and the columns are 

the feature traces. The value of each cell of the table is either 0 or 1, indicating the 

absence or presence of a class in the feature trace. For example, Table 4.1 shows a matrix 

where the rows represent the distinct classes invoked in all traces, where as the columns 

refer to the feature-traces generated in the previous step.   

4.2.5 Applying the Clustering Algorithm 

The next step in this phase consists of selecting a clustering algorithm and applying it to 

the class-feature matrix. As discussed in Chapter 2, clustering algorithms can be grouped 

into two main categories: Partitioning and hierarchical clustering algorithms. In this 

thesis, we apply an agglomerative hierarchical algorithm, with complete linkage as an 

updating rule, and the Jaccard coefficient as a similarity metric. We selected this 

algorithm and similarity metrics  because complete linkage as well as Jaccard distance 

metrics have been shown to perform better compared to the other schemes [Anquetil 

99a].  

The result of the clustering algorithm can be visualized through a dendrogram (Figure 

4.2), which is a tree like structure representing clusters formed at different stages of the 

algorithm. A cut through the tree determines a set of clusters of the system.  
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Figure 4.2. A dendrogram with various cut points shown as dashed lines 

4.2.6 Removing Singleton Clusters 

The final step of constructing the skeleton decomposition is the need to analyze the 

clusters resulting from the previous step and remove the ones that contain one single class 

(i.e. singleton clusters). The rationale behind this is that singleton clusters are clusters 

without any similarity to the formed clusters. These clusters can often lead to a 

deterioration of the skeleton stability as shown by Tzerpos et al. in [Tzerpos 00]. The 

classes of these singleton clusters are added to the pool of components that will be 

clustered later when we apply the orphan adoption algorithm (i.e. during the second 

phase of the clustering process).    

4.3 Full Decomposition - The Orphan Adoption Algorithm 

The second phase of our approach is based on an orphan adoption algorithm [Tzerpos 

00]. The algorithm takes as input the skeleton clusters derived in the first phase of the 
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algorithm and a component dependency graph of the orphans as shown in Figure 4.3. In 

what follows we describe this orphan adoption algorithm in more detail.  

Applying Orphan 

Adoption Algorithm

Final Clustering

Orphan 

Dependency 

Graph

Skeleton 

Decomposition

 

Figure 4.3. Phase 2: Orphan adoption  

4.3.1 Building a Component Dependency Graph 

After identifying the orphans, the next activity is to derive the components dependency 

graph of the orphans. The dependencies used in the orphan adoption algorithm are 

structural relations between the components. The structural relations can be of various 

types such as referencing of variables, inheritance, instantiation of other components, etc. 

The dependency graph includes the links representing the structural relations among the 

classes and the classes are the nodes of the graph. The graph is a directed graph with at 

most two edges between two classes and all edges have same weight.  

Extraction of structural relationship is an automatic task which is supported by numerous 

tools (e.g., SA4J1). The extraction tools differ by their support of various technologies  

                                                 

1 SA4J: http://www.alphaworks.ibm.com/tech/sa4j 
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and programming languages.  

4.3.2 Clustering of Orphan Components 

The orphan adoption algorithm works as follows: First, the algorithm attempts to identify 

the core cluster for each orphan based on naming criteria. In other words, the algorithm 

matches the name of the orphan to the name of the skeleton clusters based on naming 

conventions used during the development of the software system. However, this assumes 

that the developers have followed a specific naming convention during the development 

process. This assumption is not always valid in practice. In our research, we did not 

consider any naming conventions to avoid situations where naming conventions have 

either not been applied or followed correctly.  

In situations when the clustering based on naming conventions fails, the algorithm uses 

structural relations to uncover the core cluster for each orphan. The algorithm calculates 

the strength of relation of an orphan with each core cluster by considering the number of 

relations that exist between the orphan and the entities of a cluster. It then places the 

orphan in the core cluster with which it has the strongest relation. If there is a tie between 

many core clusters then the core cluster having more entities in it wins over the other 

clusters. If there is no core cluster selected for an orphan, then the algorithm creates a 

new cluster called “orphan container” and add all such orphans to it. Orphan container 

represents all orphans that do not have relations to core clusters. 
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Chapter 5  Evaluation  

In this chapter, we present two case studies to demonstrate the applicability of our 

approach. We first introduce the target systems used for the case studies. Then, we 

describe in detail the application of our clustering approach. Finally, we compare the 

results of our clustering decomposition with the results obtained by manual analysis 

through domain experts (the designers of the target system). 

5.1 Target Systems 

We applied our approach to two Java-based object-oriented software systems: Weka (ver. 

3.0)2, and JHotDraw (ver 5.1)3. Weka is a machine learning tool that provides several 

algorithms for classification, regression techniques, clustering, and association rules. 

JHotDraw is a system that provides a graphical user interface (GUI) framework support 

for graphical activities. The framework can be extended to support new graphical 

capabilities by adding extra functionality to it. The tool has been designed using many 

well known design patterns, which enhances its reusability. Table 5.1 shows the 

characteristics of both systems. 

                                                 
2 Weka : http://www.cs.waikato.ac.nz/ml/weka/  

3 JHotDraw : http://sourceforge.net/projects/jhotdraw 
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We selected Weka and JHotDraw because both systems are well documented. Their 

documentation also includes architectural properties that are later used to validate our 

approach and to identify the omnipresent classes. 

Table 5.1. Target system details 

 Number of Packages Number of Classes KLOC 

Weka 09 142 95 

JHotDraw 11 155 17 

 

Figure 5.1 shows Weka architecture, which consists of the following packages: 

associations, clusterers, core, estimators, filters, 

attributeSelection and classifiers. The classifiers package contains 

two additional packages namely j48 and m5.  

Clusterers

Classifiers

Estimators

Filters
Attribute 

Selection

Association

m5

j48
1 1

11

 

Figure 5.1. Weka architecture 
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The role of each package is as follows: 

• associations: This package contains two classes that implement the Apriori 

machine learning algorithm [Agrawal 94]. 

• attributeSelection: The classes of this package implement techniques 

from reducing the dimensionality of data set. 

• classifiers: This package contains several classes that implement the 

following classification algorithms: SMO [Platt 99], Naïve Bayes [John 95], 

ZeroR [Holte 93], Decision Stump, Linear regression, and OneR [Witten 05]. It 

also contains two other sub packages J48 and M5. J48 contains classes that 

implement the J48 (also known as the C45) classification algorithm [Quinlan 93], 

while M5 classes are used to implement the M5Prime classification algorithm 

[Wang 97]. 

• clusterers: This package contains classes that implement two clustering 

algorithms supported by Weka, namely, Cobweb [Fisher 87] and EM [Dempster 

77]. 

• filters: This package contains classes that allow preprocessing the data that is 

used as input for the machine learning algorithms. 

• estimators: This package contains classes that compute various types of 

probabilities needed for the clustering and classification algorithms. 
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• core: The core package contains general-purpose utilities. It is not shown in 

Figure 5.1 to avoiding cluttering the figure, since all other packages depend on it. 

It should also be noted that the associations package is isolated in Figure 5.1 

because it only depends on the core package. 

applet

net

standerd

figures

contrib

nothing

pert

javadraw

framework

application

 
Figure 5.2. JHotDraw architecture 

Figure 5.2 shows the JHotDraw architecture, which consists of the following packages: 

applet, application, contrib, figures, framework, javadraw, net, 

nothing, pert, standard and util. Package sample includes javadraw, net, 
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nothing and pert packages, but it does not contain any class in it. For this purpose, 

we have excluded sample package from the analysis and considered all its sub packages 

as separate packages. 

The role of JHotDraw packages is as follows: 

• applet: The package provides two classes to run JHotDraw as an applet. 

• application: This package contains one class to run JHotDraw as a 

standalone application. 

• contrib: This package contains classes from other implementers that contribute 

to JHotDraw by adding new graphical capabilities, etc. 

• figures: This package contains classes that implement the many graphical 

capabilities (e.g., drawing circles, rectangles, etc.) provided by JHotDraw. 

• framework: This package contains abstract classes and interfaces that can be 

extended by other contributors to specialize JHotDraw capabilities.  

• Javadraw, net, nothing and pert includes classes for sample applets 

and/or applications. 

• standard: The package includes the standard implementation for the classes 

provided in framework package. The implementation of interfaces of framework 

package is provided in the abstract classes of this package. 
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• util: The package includes utility classes used by all other packages of 

JHotDraw. Similar to the Weka core package, we decided not show the util 

package in Figure 5.2 to avoid cluttering.  

5.2 Constructing the Skeleton Decomposition 

In this section, we apply the steps for constructing the skeleton decomposition to Weka 

and JHotDraw and show the resulting skeletons generated by our approach. 

5.2.1 Feature Selection 

Table 5.2 shows the software features selected for Weka. We carefully selected features 

that covered most of Weka’s machine learning algorithms and data filters to ensure a 

balanced set of features. We used Weka documentation as the main source of information 

for identifying these features. 

                                  Table 5.2.  Weka features used in this study 

Feature Feature Name 

F1 Cobweb clustering algorithm 

F2 EM clustering algorithm 

F3 Ibk classification algorithm 

F4 OneR classification algorithm 

F5 Decision table classification algorithm 

F6 J48 (C4.5) classification algorithm 
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F7 SMO classification algorithm 

F8 Naïve Bayes classification algorithm 

F9 ZeroR classification algorithm 

F10 Decision stump classification algorithm 

F11 Linear regression classification algorithm 

F12 M5Prime classification algorithm 

F13 Apriori association algorithm 

F14 Attribute Filter 

F15 Add Filter 

F16 Merge Two Values Filter 

F17 Instance Filter 

F18 Swap Attribute Values Filter 

F19 Split Dataset Filter 

F20 Numeric Transform Filter 

Similarly, we selected several features of JHotDraw based on the tool’s documentation. 

The list of JHotDraw features are listed in Table 5.3. 
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Table 5.3.  JHotDraw features used in this study 

Feature Feature Name Feature Feature Name 

F1 Align Bottom F29 New Window 

F2 Align Center  F30 No arrow 

F3 Align Left F31 Open an Application 

F4 Align Middle F32 Open File 

F5 Align Right F33 Open 

F6 Align Top F34 Paste 

F7 Arrow at back F35 Pattern 

F8 Arrow at both F36 Pen Color 

F9 Arrow at front F37 Polygon 

F10 Border F38 Print 

F11 Buffered Update F39 Put Images 

F12 Close an Application F40 Rounded square 

F13 Connecting Line F41 Save as Serializable 

F14 Copy F42 Save as 

F15 Cut F43 Scribble 

F16 Delete F44 Select Text 

F17 Draw Circle F45 Select Multiple Objects 

F18 Draw Line F46 Select Object 
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F19 Duplicate F47 Send Back 

F20 Elbow Connecting Line F48 Send To front 

F21 Exit F49 Simple Update 

F22 Fill Color F50 Square 

F23 Font color changed F51 Start Animation 

F24 Font size change F52 Stop Animation 

F25 Font Style Changed F53 Toggle 

F26 Font Change F54 Ungroup Objects 

F27 Group Object F55 Write Text 

F28 New Document F56 WriteText2 

5.2.2 Trace Generation 

We generated an execution trace for each of the features shown in Table 5.2 and Table 

5.3. For this purpose, we instrumented the Weka and JHotDraw class files using the BIT 

(Bytecode Instrumentation Toolkit) framework [Lee 97] by inserting probes at entry of 

every method in the source code, including constructors. Since we are only interested in 

analyzing the presence or absence of a particular class in a trace, only distinct classes of 

each trace have to be stored. 

The number of classes involved in traces of Weka and JHotDraw system is 59 and 88 

respectively, which represent 47% and 65% of the total number of classes of Weka and 

JHotDraw.  
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5.2.3 Omnipresent Class Identification 

Most of the removal of omnipresent classes can be performed automatically based on the 

omnipresent detection approach introduced by Hamou-Lhadj and Lethbridge [Hamou-

Lhadj 06]. The approach is based on fan-in analysis. However, a quick analysis of the 

Weka and JHotDraw documentation revealed that the packages core (of Weka) and 

util (of JHotDraw) are used by all other packages within the system, resulting in a high 

fan-in for these particular packages. We have, therefore, decided to categorize these 

packages manually as utility (i.e., omnipresent) packages and moved them into a utility 

cluster created for each system, and eliminated all classes within these package from 

further analysis. 

5.2.4 Class-Feature Matrix 

Building the class-feature matrix is a straightforward process, since we have already 

analyzed the feature-traces and collected the distinct set of classes involved in the 

different features. As previously mentioned, a cell (i, j) is set to 1 if a class in the ith row 

is invoked in the execution trace corresponding to the feature of the jth column. It is set to 

0 otherwise.  

The class-feature matrix for Weka is 59x20, i.e., 59 classes and 20 features. The 

dimension of the JHotDraw class-feature matrix is 88x56 (88 classes and 56 features). 

5.2.5 Applying the Clustering Algorithm 

The next step is to apply the clustering algorithm to the class-feature matrices for the 

Weka and JHotDraw system. As discussed in Section 4.2.5, we used an agglomerative 
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hierarchical algorithm, with complete linkage as an updating rule, and the Jaccard 

coefficient as a similarity metric. The result of the hierarchical clustering of Weka and 

JHotDraw is shown in the dendrograms of Figure 5.3 and 5.4, respectively. 

Cutting the dendrogram at a certain cut point will result in distinct trees that have been 

formed underneath the cut point. These distinct trees correspond to different clusters of 

classes identified by our clustering algorithm. One of the challenges in our approach is to 

determine this cut point. As discussed by Anquetil et al. in [Anquetil 99a], there exists 

typically more than one potential cut point value. They proposed to cut the dendrogram at 

an arbitrary height and then re-adjust it if the result provides either too many clusters with 

too few classes or only a few clusters containing a large number of classes. 

After analyzing manually the content of both dendrograms, we decided to cut the tree at 

point P1 shown in Figure 5.3 and 5.4, which balances the number of clusters and the 

number of classes in each cluster. 
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Figure 5.3. Dendrogram generated by applying the clustering 

algorithm to Weka classes 

P1 
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Figure 5.4. Dendrogram generated by applying the clustering 

algorithm to JHotDraw classes 

P1 
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5.2.6 Removing Singleton Clusters 

During the singleton cluster removal steps, we remove now all those clusters that contain 

only one single class, i.e., singleton clusters from the list of clusters identified in the 

previous step. The classes in these singleton clusters are moved to the pool of orphans to 

be further processed later as part of the static analysis.  

As a result, the remaining core skeleton of the Weka system consisted of eight clusters 

(C1 to C8), which are shown in Table 5.4. The number of classes that were clustered 

during the skeleton decomposition phase is 48, which represents 32.65% of the total 

number of classes of the system under analysis. 

Table 5.4. Weka skeleton clusters 

Cluster Classes 

C1 weka.estimators.DiscreteEstimator 

weka.classifiers.NaiveBayes 

weka.estimators.NormalEstimator 

C2 weka.filters.AttributeFilter 

weka.classifiers.DecisionTable 

weka.filters.DiscretizeFilter 

C3 weka.associations.Apriori 

weka.associations.ItemSet 

C4 weka.classifiers.m5.M5Prime 

weka.classifiers.m5.Options 

weka.classifiers.m5.M5Utils 

weka.classifiers.m5.Node 

weka.classifiers.m5.Function 

weka.classifiers.m5.SplitInfo 

weka.classifiers.m5.Impurity 

weka.classifiers.m5.Values 
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weka.classifiers.m5.Errors 

weka.classifiers.m5.Ivector 

weka.classifiers.m5.Dvector 

weka.classifiers.m5.Matrix 

C5 weka.clusterers.EM 

weka.clusterers.DistributionClusterer 

weka.clusterers.Clusterer 

weka.clusterers.Clusterevaluation 

C6 weka.classifiers.LinearRegression 

weka.filters.NominalToBinaryFilter 

weka.filters.ReplaceMissingValuesFilter 

weka.estimators.KernelEstimator 

C7 weka.classifiers.j48.J48 

weka.classifiers.j48.C45ModelSelection 

weka.classifiers.j48.ModelSelection 

weka.classifiers.j48.C45PruneableClassifierTree 

weka.classifiers.j48.ClassifierTree 

weka.classifiers.j48.Distribution 

weka.classifiers.j48.NoSplit 

weka.classifiers.j48.ClassifierSplitModel 

weka.classifiers.j48.C45Split 

weka.classifiers.j48.EntropyBasedSplitCrit 

weka.classifiers.j48.InfoGainSplitCrit 

weka.classifiers.j48.SplitCriterion 

weka.classifiers.j48.GainRatioSplitCrit 

weka.classifiers.j48.Stats 

C8 weka.classifiers.DistributionClassifier 

weka.classifiers.Classifier 

weka.classifiers.Evaluation 

weka.filters.Filter 

weka.classifiers.SMO 

weka.filters.NormalizationFilter 
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The resulting skeleton decomposition of JHotDraw consists of 10 clusters (see Table 5.5). 

The number of JHotDraw classes clustered during this phase is 84, which represents 

62.22% of the total number of classes of the system under analysis. 

Table 5.5. JHotDraw Skeleton clusters 

Cluster Classes 

C1 CH.ifa.draw.standard.SouthWestHandle 

CH.ifa.draw.standard.WestHandle 

CH.ifa.draw.standard.SouthHandle 

CH.ifa.draw.standard.SouthEastHandle 

CH.ifa.draw.standard.NorthWestHandle 

CH.ifa.draw.standard.NorthHandle 

CH.ifa.draw.standard.NorthEastHandle 

CH.ifa.draw.standard.EastHandle 

CH.ifa.draw.standard.BoxHandleKit 

CH.ifa.draw.standard.AbstractLocator 

CH.ifa.draw.standard.ReverseFigureEnumerator 

C2 CH.ifa.draw.figures.GroupCommand 

CH.ifa.draw.standard.CutCommand 

CH.ifa.draw.standard.DeleteCommand 

CH.ifa.draw.standard.DuplicateCommand 

CH.ifa.draw.figures.UngroupCommand 

CH.ifa.draw.standard.SendToBackCommand 

CH.ifa.draw.standard.CopyCommand 

CH.ifa.draw.standard.BringToFrontCommand 

CH.ifa.draw.standard.AlignCommand 

CH.ifa.draw.samples.javadraw.BouncingDrawing 

CH.ifa.draw.standard.FigureChangeEventMulticaster 

CH.ifa.draw.figures.RectangleFigure 

CH.ifa.draw.standard.ToolButton 

C3 CH.ifa.draw.figures.PolyLineLocator 

CH.ifa.draw.standard.ChangeAttributeCommand 
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C4 CH.ifa.draw.figures.GroupFigure 

CH.ifa.draw.figures.GroupHandle 

C5 CH.ifa.draw.framework.FigureSelection 

CH.ifa.draw.standard.FigureTransferCommand 

C6 CH.ifa.draw.figures.ChopEllipseConnector 

CH.ifa.draw.standard.ChopBoxConnector 

C7 CH.ifa.draw.samples.javadraw.Animator 

CH.ifa.draw.samples.javadraw.JavaDrawApp 

C8 CH.ifa.draw.application.DrawApplication 

CH.ifa.draw.standard.StandardDrawingView 

CH.ifa.draw.standard.FigureEnumerator 

CH.ifa.draw.standard.CompositeFigure 

CH.ifa.draw.standard.BufferedUpdateStrategy 

CH.ifa.draw.standard.AbstractTool 

CH.ifa.draw.figures.AttributeFigure 

CH.ifa.draw.figures.FigureAttributes 

CH.ifa.draw.samples.javadraw.AnimationDecorator 

CH.ifa.draw.standard.DecoratorFigure 

CH.ifa.draw.figures.TextFigure 

CH.ifa.draw.framework.DrawingChangeEvent 

CH.ifa.draw.framework.FigureChangeEvent 

CH.ifa.draw.standard.AbstractFigure 

CH.ifa.draw.standard.StandardDrawing 

CH.ifa.draw.figures.ArrowTip 

CH.ifa.draw.figures.PolyLineFigure 

CH.ifa.draw.figures.EllipseFigure 

CH.ifa.draw.figures.RoundRectangleFigure 

CH.ifa.draw.contrib.PolygonFigure 

CH.ifa.draw.figures.BorderDecorator 

CH.ifa.draw.standard.AbstractHandle 

CH.ifa.draw.standard.LocatorHandle 

CH.ifa.draw.standard.RelativeLocator 
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CH.ifa.draw.figures.RadiusHandle 

C9 CH.ifa.draw.figures.ElbowConnection 

CH.ifa.draw.figures.LineConnection 

CH.ifa.draw.figures.ShortestDistanceConnector 

CH.ifa.draw.standard.AbstractConnector 

CH.ifa.draw.figures.ElbowHandle 

CH.ifa.draw.standard.ChangeConnectionStartHandle 

CH.ifa.draw.standard.ChangeConnectionHandle 

CH.ifa.draw.standard.ChangeConnectionEndHandle 

CH.ifa.draw.figures.FontSizeHandle 

CH.ifa.draw.standard.NullHandle 

C10 CH.ifa.draw.contrib.PolygonTool 

CH.ifa.draw.figures.BorderTool 

CH.ifa.draw.standard.ActionTool 

CH.ifa.draw.figures.InsertImageCommand 

CH.ifa.draw.figures.ScribbleTool 

CH.ifa.draw.samples.javadraw.URLTool 

CH.ifa.draw.standard.ToggleGridCommand 

CH.ifa.draw.standard.PasteCommand 

CH.ifa.draw.standard.ConnectionTool 

CH.ifa.draw.figures.LineFigure 

CH.ifa.draw.figures.ConnectedTextTool 

CH.ifa.draw.figures.TextTool 

CH.ifa.draw.standard.CreationTool 

CH.ifa.draw.samples.javadraw.MySelectionTool 

CH.ifa.draw.standard.SelectionTool 
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5.3 Applying the Orphan Adoption Algorithm 

In the second step of our approach, we apply the orphan adoption algorithm to cluster the 

remaining classes by assigning them to either an existing or a new cluster.  

5.3.1 Building the Class Dependency Graph 

We built a class dependency graph using a tool called Javex4  to extract dependencies of 

orphan classes. Javex is a fact extractor for Java based software systems. A fact consists 

of the two classes and the relationship between them. An example of a fact is “<Relation 

Type> <entity1> <entity2>,”  which indicates that entity1 and entity2 of the system are 

related using RelationType.  

Javex takes into account many dependencies that may exist between two classes such as 

method calls, associations, inheritance relationships, etc. The facts were saved in TA 

(Tupple Attribute)5 format, which is a common format in reverse engineering for 

representing facts. It should be noted that the class dependency graph includes the core 

classes as well as the orphan classes.  

The implementation of the orphan adoption algorithm was provided to us by the author of 

the algorithm, Vassilios Tzerpos. However, his implementation takes as input facts 

expressed in RSF (Rigi Source Format) format [Müller 93], which is another common 

data exchange format in the area of reverse engineering. We, therefore, had to create a 

converter that converts TA to RSF. 

                                                 
4 Javex : http://www.swag.uwaterloo.ca/javex/index.html 

5 TA : http://plg.uwaterloo.ca/~holt/papers/ta-intro.htm 
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The resulting RSF files for both Weka and JHotDraw were fed to the orphan adoption 

algorithm along with the skeleton decomposition of both systems. 

5.3.2 Generation of the Final Decomposition 

The orphan adoption algorithm works by assigning each orphan to the suitable core 

cluster. If the algorithm cannot find a suitable cluster then it puts the orphan into a newly 

created cluster called “orphan container”.  

When applied to Weka, the final decomposition resulted in eight clusters, which is the 

same number of clusters built during the skeleton decomposition phase. In other words, 

all orphans were successfully placed in one of the core clusters. 

The final decomposition of JHotDraw contained 11 clusters. An additional cluster, 

”orphan container,”  was created during the orphan adoption phase, containing five 

classes that were originally categorized as orphans. Except these five classes, all other 

orphan classes were moved in one of the core clusters. 

The complete decompositions for both systems including the clusters and their classes are 

presented in Appendix A. 

5.4 Analysis of Results 

In what follows we first compare the result of our clustering approach with an expert 

decomposition and then provide a more detailed analysis of the various clusters created 

for both systems.  
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5.4.1 Comparison with Expert Decomposition 

For initial evaluation of our approach, we compared the results obtained from our 

clustering approach,  with the decompositions based on the package structure of these 

systems. We assumed that this package structure, defined by the original developers, 

reflects closely their structural decomposition of these systems. The package structures 

for the Weka and JHotDraw system are shown in Table 5.7 and Table 5.8 respectively.  

For the comparison, we measured the extent to which two given decompositions are 

similar or apart to each other, using the MoJoFM distance [Wen 04], which is an 

improved version of a MoJo metric introduced by the same authors [Tzerpos 99]. The 

metric takes two partitions as input and calculates the number of “move” and “join” 

operations, needed to transform one partition into another. The “move” operation moves 

an entity from one cluster to another existing cluster or a newly created cluster. The 

“join” operation joins two clusters into one cluster and reduces the number of clusters by 

one. The MoJoFM  distance assigns the same weight to both operations.  

More precisely, given two partitions P and Q, MoJoFM  is calculated as follows: 
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Where: 

• ),( QPmno  is the number of “move” and “join” operations needed to go from P to 

Q. 

• )),(max( QPmno   is the maximum number of possible “move” and “join” 

operations to transform any partition P into Q. 
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MoJoFM  ranges from 0% to 100%. It converges to 0% if the partitions are very 

different from each other. It reaches 100% if the two partitions are exactly the same.  

 

An example of applying the MoJoFM  distance to the two partitions of Figure 5.5 is as 

follows: 

 

Figure 5.5. Example of two partitions  

Figure 5.5 shows two partitions, A and B with A1, A2 and B1, B2 as their respective 

clusters. The value is calculated by first calculating the number of “move” and “join” 

operations needed to transform partition A into B, i.e., ),( BAmno . By analyzing the 

partition A, we can see that we need to replace elements e2 and e3 in order to obtain 

partition B. This can be achieved by performing two “move” operations: Moving e2 from 

cluster A1 to cluster A2, and moving e3 from cluster A2 to cluster A1. After the move 

operations, the partition A will become identical to partition B. Therefore, the cost 

of ),( BAmno is 2 (i.e., two operations). The value of )),(max( QPmno  , which shows the 

maximum value of “move” and “join” operations needed from any partition P to Q, 

Partition A Partition B 

A1 A2 B1 B2 

e1, e2, 

e4 

e3, e5, 

e6 

e1, e3, 

e4 

e2, e5, 

e6 
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where the set of entities in partition P and partition Q is equal, is described in an 

algorithm provided by Wen and Tzerpos in [Wen 04]. By applying this algorithm, the 

maximum cost of transforming any partition to partition B of Figure 5.5 is 8. Therefore, 

MoJoFM(A, B) is ( )( ) %1008/21 −  = 75%. In other words, partition A is 75% similar to 

partition B.  

Table 5.6 shows the result of comparing Weka and JHotDraw decompositions, which are 

recovered by our clustering algorithm, to the expert decompositions.  

Table 5.6. The result of comparing Weka and JHotDraw extracted decompositions with 

the expert decompositions using MoJoFM 

Target System MoJoFM 

Weka 87.83% 

JHotDraw 36.8% 

As shown in this table, the MoJoFM values indicate a significant difference between our 

recovered decomposition and the package decomposition provided by the system 

developer. The results of this comparison shows that the our decomposition  results in a 

behavioural interactions among classes that might provide additional insights to support 

the comprehension of the system behaviour and the recovery of architectural views. 

In what follows, we further compare the internal quality of cluster results, by 

superimposing the resulting clusters onto the Weka and JHotDraw architectures (shown 

in Tables 5.7 and 5.8, respectively). For example, the cluster C1 (Table 5.7), which was 
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recovered by our approach contains classes that belong to the Weka packages: 

estimators and classifiers. 

5.4.2 Internal Analysis of Weka Clusters 

From Table 5.7, we can observe that the associations, clusterers, j48 and m5 

packages of Weka were completely recovered by our clustering technique. The 

corresponding clusters are C3, C5, C7 and C4 respectively.  

 

Table 5.7. Mapping Weka clusters to Weka packages provided by system expert 

Cluster Classes from Packages 

C1 Estimators, classifiers  

C2 attributeSelection, filters, classifiers 

C3 Associations 

C4 m5 

C5 Clusterers 

C6 Classifiers, estimators, filters 

C7 j48 

C8 attributeSelection, classifiers, filters 

 

The other clusters, C1, C2, C6 and C8, map to more than one Weka package. To 

understand the reasons behind this, we analyzed the static dependencies of the classes 

residing in these clusters using a static analysis tool called SA4J. The tool has a feature 
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called “explorer” that allowed us to visually explore the relationships between Weka 

components. We discuss the analysis of each of these clusters in what follows:  

Cluster C1 contains the classes of the package estimators and one class, 

NaiveBayes, which belongs to the classifiers package. The class 

NaiveBayes implements the naive Bayesian classification algorithm which uses 

various estimators to measure so-called precision values. From the implementation point 

of view, the class NaiveBayes depends tightly on classes of the estimators 

package, which explains why our clustering approach grouped these elements together.  

Cluster C2 recovered most classes of the attribulteSelection package. 

However, it also included classes of the filters package (namely 

AttributeFilter and DiscretizeFilter) and one class named 

DecisionTable of the classifiers package. Based on Weka documentation, 

the classes of the filters package included in this cluster serve as utility classes to 

classes of the attribulteSelection package. The class DecisionTable does 

not depend on classes of attributeSelection package but rather uses classes of 

the filters package, which explains its inclusion in C2. Ideally, the class 

DecisionTable should have been clustered separately. However, the utility classes 

of the filters packages have caused this class to be misplaced in C2. We believe that 

this could have be avoided if we had considered AttributeFilter and 

DiscretizeFilter as utilities and removed them from the clustering process as we 

did with the system-level utility package core. This would require using utility detection 
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techniques that can detect utilities that are local to part of the system other than system-

level utilities.  

Each of the clusters C6 and C8 includes classes from three Weka packages as shown in 

Table 5.7. The static analysis of the classes of C6 and C8 shows that these packages 

contain classes that are tightly coupled.  

Cluster C8 represents mainly two packages classifiers and filters. The various 

classification algorithms of Weka use classes of the filters package to filter data 

prior to performing the classification algorithms, which again justifies the grouping of 

these classes into one cluster, C8.  

From the above analysis, we were able to infer that Weka designers have packaged the 

system classes based on the fact that they implement similar functionality (e.g., 

classification algorithms), although these classes might be completely decoupled. Our 

clustering approach, on the other hand, groups related system components according to 

the degree of their interaction. 

5.4.3 JHotDraw Clusters 

Table 5.8 shows the mapping between the recovered clusters and JHotDraw packages.  

At first glance, one can attribute the discrepancy between the recovered decomposition 

and the expert decomposition to the high volume of dependencies between the JHotDraw 

packages (shown in Figure 5.2). A further in-depth analysis of each cluster using the 

SA4J tool and the documentation revealed the following: 
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• Cluster C1 includes only one class from the figure package and 12 classes from 

the package standard. The classes of this cluster are centered around one core 

class BoxHandleKit, which dragged into the same cluster a set of utility classes, 

deal with JHotDraw handles such as SouthWestHandle, WestHandle, 

SouthHandle, SouthEastHandle, NorthWestHandle, NorthHandle, 

NorthEastHandle, EastHandle. The handle classes are responsible for 

creating the handles for locations of figures on the display.  

Table 5.8. Mapping JHotDraw clusters to JHotDraw packages provided by system expert 

Cluster Classes from Packages 

C1 standard  and figures 

C2 Figures, standard, javadraw, applet, contrib, 

framework 

C3 Figures, standard 

C4 Figures 

C5 Framework, standard 

C6 Figures, standard 

C7 Javadraw 

C8 application, standard, figures, javadraw, 

framework, contrib, net, pert 

C9 atandard, figures 

C10 Contrib., figures, standard, javadraw, net, 

nothing, pert 

C11 standard, framework 
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• C2 groups classes responsible for the editing, alignment, grouping/ungrouping, and 

bouncing of the figure elements. These classes are responsible for editing figure 

elements as well as for performing cut, copy, delete and duplicate functions. The 

alignment functions implement positioning of figure elements (top, left, right, 

center, bottom or middle). Furthermore also two classes are included to perform 

grouping and ungrouping of figure elements. The cluster includes one class for start 

and stop of the animation, which performs bouncing of figure elements on the 

display. Another class included in this cluster is responsible for figure selection. 

• Cluster C3 to C7 contain only two classes each. Cluster C3 includes one class, 

PolyLineLocator, which is responsible for optional line decoration at the start 

and end of the polygon. The other class, ChangeAttributeCommand, provides 

the command to change a named figure attribute. Cluster C4 has one class 

(GroupFigure) to group figure elements into one object, and another class 

(GroupHandle) that provides a handle to the newly created object. The two 

classes included in cluster C5 (FigureSelection and 

FigureTransferCommand) allow copying a figure element from the display to 

the clipboard and importing the figure element from the clipboard to the display. 

Cluster C6 contains two classes (ChopEllipseConnector and 

ChopBoxConnector) that collaborate with each other to provide a connection 

point to an eclipse figure element. Cluster C7 includes two basic classes 

(JavaDrawApp, Animator) that start the application. In summary, Clusters C3 

to C7 seem to provide specific features supported by JHotDraw. 
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• Cluster C8 is the largest cluster recovered by our approach and contains many 

interfaces and base classes of the JHotDraw system. 50% of the classes grouped in 

the C8 cluster are from the framework and standard package. Both of these 

packages support basic operating environment functionality for the JHotDraw 

drawing tool. Cluster C8 also includes classes responsible for the standard 

implementation of drawing, buffered update strategy (to draw a view into a buffer 

followed by copying the buffer to the figure display), as well as the default 

implementation to support various tools such as: line, polygon. Furthermore it 

provides the abstract handle for any figure element, figure element enumerator. 

Figure change listener is also implemented in C8 to track any change to a figure as 

well as a basic figure interface with its handles to manipulate its shape or attributes, 

as well as connectors to define how to locate a connection point are provided.  

• Cluster C9 contains a core abstract class AbstractConnector that provides 

default implementation for connector interface. Other classes provide handles to 

various connector activities by implementing AbstractConnector. Connectors 

locate connection points on a figure element. Cluster C9 groups the classes for 

various connector activities such as elbow connection, line connection, shortest 

distance connection, etc. 

• Cluster 10 contains a core abstract class AbstractTool that provides 

implementation support for various tools, and concrete classes that inherit from 

AbstractTool. Such individual classes provide support for URL tool (To create 

a hyperlink object in the figure), scribble tool, text tool, border tool, polygon tool 
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and connected text tool. Cluster 10 includes a class CreationTool to create a 

new tool for the application and to create a figure for that new tool. One class which 

seems to be wrongly placed in cluster C10 is the PasteCommand class that should 

be placed in cluster C2.  

The classes of the system that were not clustered in any of the 10 core clusters are placed 

in the orphan container cluster. These classes, moved to the orphan container cluster, 

were GridConstrainer, PointConstrainer, LineDecoration, HJDError 

and TextHolder. The static analysis of these classes using SA4J revealed that 

HJDError extends the java Error class and does not have a static relation with the other 

classes. The class GridConstrainer implements the PointConstrainer 

interface to provide a constraint for creating a point on the grid. PointConstrainer 

is an interface to create different grids. TextHolder is also an interface for editable 

text contents, which is only used by TextTool.  

From the above analysis of the JHotDraw decomposition we can conclude that the 

resulting clusters contain classes that are inter-connected based on the responsibilities 

they share rather than the type of functionality they provide. Cluster C1 for example 

creates handles for locating figures, cluster C2 provides various commands for editing 

and placing figure elements, Cluster C3 to C7 provides supports for various small 

features, cluster C8 provides core operating environment functionality for the tool, cluster 

C9 supports the connector activity and cluster C10 provides support capabilities.  
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5.4.4 Conclusion of Analysis 

It should be noted that it is very common for a clustering approach to impose a structural 

clustering rather than finding “natural” clusters [Tzerpos 00]. The one imposed by the 

feature-based clustering approach can be viewed as a behavioural decomposition of the 

system. This view can be used with a combination of other views (e.g., a structural 

decomposition) to support the comprehension process of large systems and their 

architectures. 

We were also able to observe for both systems that the skeleton decompositions provided 

stable clusters, which allowed the static analysis phase to incorporate most of the 

remaining components (i.e., “orphans”) into the skeleton clusters.  
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Chapter 6  Conclusions  

Understanding a large software system can be greatly facilitated if the system is 

decomposed into smaller, more manageable clusters. Unlike existing clustering that focus 

mainly on static analysis of the source code, in this thesis, we introduced a new clustering 

technique that combines dynamic analysis and static dependencies. Our main objective is 

to group a system’s entities according to the way they collaborate to implement software 

features of the system rather than relying only on mere structural relationships found in 

the source code. 

The remaining of this chapter is organized as follows. In Section 6.1, we revisit the main 

contribution of the thesis. In Section 6.2, we discuss future directions that can improve 

the work presented in this thesis. We present our closing remarks in Section 6.3. 

6.1 Research Contributions  

In this research we introduced a novel clustering approach that uses software features as 

clustering criteria to cluster the entities of a poorly documented software system. We 

argued that software features are a good clustering criterion because of the fact that (1) 

they represent an intrinsic grouping of the components that implement them, (2) they are 

abstract concepts and, as such, they can readily be used to extract abstract components of 

the system.   
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We provided two case studies, Weka and JhotDraw, to evaluate our approach. The results 

of both case studies are satisfactory. The approach is successful to construct 

decomposition where the components that interact with each other are grouped into 

clusters.  

6.2 Future Directions 

The approach is evaluated and gives satisfactory results on medium scale software 

system. However there is a need to continue experimenting with the proposed approach 

and assess its effectiveness when applied to large software systems with poor 

architecture.  

In addition, there is a need to determine the threshold for calculating the number of 

features needed for better results and how this number correlates with code coverage.  

We also need to compare our technique with existing techniques in order to evaluate its 

effectiveness and precision.  

6.3 Closing Remarks 

While there are many clustering techniques already presented in the literature, we 

identified a unique clustering technique which effectively uses the software features to 

identify the relation between components. Our contribution to the software clustering 

domain is to identify the benefit of using dynamic analysis in general and software 

features in particular as potential clustering criteria to perform software clustering. We 

hope that further research in the area of software clustering can benefit from the research 

provided in this thesis. 
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Appendix A 

In this appendix, we show the complete decompositions resulting from applying our 

clustering approach to Weka and JHotDraw systems. 

Table A.1. Weka complete decomposition 

Cluster Classes 

C1 weka.estimators.DiscreteEstimator 

weka.classifiers.NaiveBayes 

weka.estimators.NormalEstimator 

weka.estimators.DDConditionalEstimator 

weka.estimators.DKConditionalEstimator 

weka.estimators.DNConditionalEstimator 

weka.estimators.NDConditionalEstimator 

weka.estimators.ConditionalEstimator 

weka.estimators.Estimator 

weka.estimators.MahalanobisEstimator 

weka.estimators.NNConditionalEstimator 

weka.estimators.PoissonEstimator 

C2 weka.filters.AttributeFilter 

weka.classifiers.DecisionTable 

weka.filters.DiscretizeFilter 

weka.attributeSelection.CfsSubsetEval 

weka.attributeSelection.GainRatioAttributeEval 

weka.attributeSelection.InfoGainAttributeEval 

weka.attributeSelection.SymmetricalUncertAttributeEval 

weka.attributeSelection.ASEvaluation 

weka.attributeSelection.AttributeEvaluator 
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weka.attributeSelection.AttributeSelection 

weka.attributeSelection.UnsupervisedSubsetEvaluator 

weka.attributeSelection.UnsupervisedAttributeEvaluator 

weka.attributeSelection.RankedOutputSearch 

weka.attributeSelection.SubsetEvaluator 

weka.attributeSelection.BestFirst 

weka.attributeSelection.ForwardSelection 

weka.attributeSelection.Ranker 

weka.attributeSelection.ReliefFAttributeEval 

C3 weka.associations.Apriori 

weka.associations.ItemSet 

C4 weka.classifiers.m5.M5Prime 

weka.classifiers.m5.Options 

weka.classifiers.m5.M5Utils 

weka.classifiers.m5.Node 

weka.classifiers.m5.Function 

weka.classifiers.m5.SplitInfo 

weka.classifiers.m5.Impurity 

weka.classifiers.m5.Values 

weka.classifiers.m5.Errors 

weka.classifiers.m5.Ivector 

weka.classifiers.m5.Dvector 

weka.classifiers.m5.Matrix 

weka.classifiers.m5.Measures 

C5 weka.clusterers.EM 

weka.clusterers.DistributionClusterer 

weka.clusterers.Clusterer 

weka.clusterers.ClusterEvaluation 

weka.clusterers.Cobweb 

C6 weka.classifiers.LinearRegression 
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weka.filters.NominalToBinaryFilter 

weka.filters.ReplaceMissingValuesFilter 

weka.estimators.KernelEstimator 

weka.estimators.KDConditionalEstimator 

weka.estimators.KKConditionalEstimator 

C7 weka.classifiers.j48.J48 

weka.classifiers.j48.C45ModelSelection 

weka.classifiers.j48.ModelSelection 

weka.classifiers.j48.C45PruneableClassifierTree 

weka.classifiers.j48.ClassifierTree 

weka.classifiers.j48.Distribution 

weka.classifiers.j48.NoSplit 

weka.classifiers.j48.ClassifierSplitModel 

weka.classifiers.j48.C45Split 

weka.classifiers.j48.EntropyBasedSplitCrit 

weka.classifiers.j48.InfoGainSplitCrit 

weka.classifiers.j48.SplitCriterion 

weka.classifiers.j48.GainRatioSplitCrit 

weka.classifiers.j48.Stats 

weka.classifiers.j48.BinC45ModelSelection 

weka.classifiers.j48.BinC45Split 

weka.classifiers.j48.C45PruneableDecList 

weka.classifiers.j48.ClassifierDecList 

weka.classifiers.j48.EntropySplitCrit 

weka.classifiers.j48.MakeDecList 

weka.classifiers.j48.PruneableDecList 

weka.classifiers.j48.PART 

weka.classifiers.j48.PruneableClassifierTree 

C8 weka.classifiers.DistributionClassifier 

weka.classifiers.Classifier 
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weka.classifiers.Evaluation 

weka.filters.Filter 

weka.classifiers.SMO 

weka.filters.NormalizationFilter 

weka.attributeSelection.OneRAttributeEval 

weka.attributeSelection.WrapperSubsetEval 

weka.classifiers.AdaBoostM1 

weka.classifiers.ZeroR 

weka.classifiers.Bagging 

weka.classifiers.BVDecompose 

weka.classifiers.CheckClassifier 

weka.classifiers.ClassificationViaRegression 

weka.filters.MakeIndicatorFilter 

weka.classifiers.CVParameterSelection 

weka.classifiers.DecisionStump 

weka.classifiers.IB1 

weka.classifiers.IBk 

weka.classifiers.Id3 

weka.classifiers.KernelDensity 

weka.classifiers.Logistic 

weka.classifiers.LogitBoost 

weka.classifiers.LWR 

weka.classifiers.MultiClassClassifier 

weka.classifiers.MultiScheme 

weka.classifiers.NaiveBayesSimple 

weka.classifiers.OneR 

weka.classifiers.Prism 

weka.classifiers.RegressionByDiscretization 

weka.classifiers.Stacking 

weka.classifiers.VotedPerceptron 

weka.filters.AddFilter 
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weka.filters.AllFilter 

weka.filters.AttributeSelectionFilter 

weka.filters.FirstOrderFilter 

weka.filters.InstanceFilter 

weka.filters.MergeTwoValuesFilter 

weka.filters.NullFilter 

weka.filters.NumericTransformFilter 

weka.filters.SplitDatasetFilter 

weka.filters.SwapAttributeValuesFilter 

weka.attributeSelection.ASSearch 

weka.classifiers.UpdateableClassifier 

Table A.2. JHotDraw complete decomposition 

Cluster Classes 

C1 CH.ifa.draw.standard.SouthWestHandle 

CH.ifa.draw.standard.WestHandle 

CH.ifa.draw.standard.SouthHandle 

CH.ifa.draw.standard.SouthEastHandle 

CH.ifa.draw.standard.NorthWestHandle 

CH.ifa.draw.standard.NorthHandle 

CH.ifa.draw.standard.NorthEastHandle 

CH.ifa.draw.standard.EastHandle 

CH.ifa.draw.standard.BoxHandleKit 

CH.ifa.draw.standard.AbstractLocator 

CH.ifa.draw.standard.ReverseFigureEnumerator 

CH.ifa.draw.figures.ElbowTextLocator 
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CH.ifa.draw.standard.OffsetLocator 

C2 CH.ifa.draw.figures.GroupCommand 

CH.ifa.draw.standard.CutCommand 

CH.ifa.draw.standard.DeleteCommand 

CH.ifa.draw.standard.DuplicateCommand 

CH.ifa.draw.figures.UngroupCommand 

CH.ifa.draw.standard.SendToBackCommand 

CH.ifa.draw.standard.CopyCommand 

CH.ifa.draw.standard.BringToFrontCommand 

CH.ifa.draw.standard.AlignCommand 

CH.ifa.draw.samples.javadraw.BouncingDrawing 

CH.ifa.draw.standard.FigureChangeEventMulticaster 

CH.ifa.draw.figures.RectangleFigure 

CH.ifa.draw.standard.ToolButton 

CH.ifa.draw.applet.DrawApplet 

CH.ifa.draw.contrib.DiamondFigure 

CH.ifa.draw.framework.Tool 

CH.ifa.draw.standard.SimpleUpdateStrategy 

CH.ifa.draw.applet.SleeperThread 

CH.ifa.draw.framework.Painter 

C3 CH.ifa.draw.figures.PolyLineLocator 

CH.ifa.draw.standard.ChangeAttributeCommand 

C4 CH.ifa.draw.figures.GroupFigure 

CH.ifa.draw.figures.GroupHandle 
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C5 CH.ifa.draw.framework.FigureSelection 

CH.ifa.draw.standard.FigureTransferCommand 

C6 CH.ifa.draw.figures.ChopEllipseConnector 

CH.ifa.draw.standard.ChopBoxConnector 

C7 CH.ifa.draw.samples.javadraw.Animator 

CH.ifa.draw.samples.javadraw.JavaDrawApp 

C8 CH.ifa.draw.application.DrawApplication 

CH.ifa.draw.standard.StandardDrawingView 

CH.ifa.draw.standard.FigureEnumerator 

CH.ifa.draw.standard.CompositeFigure 

CH.ifa.draw.standard.BufferedUpdateStrategy 

CH.ifa.draw.standard.AbstractTool 

CH.ifa.draw.figures.AttributeFigure 

CH.ifa.draw.figures.FigureAttributes 

CH.ifa.draw.samples.javadraw.AnimationDecorator 

CH.ifa.draw.standard.DecoratorFigure 

CH.ifa.draw.figures.TextFigure 

CH.ifa.draw.framework.DrawingChangeEvent 

CH.ifa.draw.framework.FigureChangeEvent 

CH.ifa.draw.standard.AbstractFigure 

CH.ifa.draw.standard.StandardDrawing 

CH.ifa.draw.figures.ArrowTip 

CH.ifa.draw.figures.PolyLineFigure 

CH.ifa.draw.figures.EllipseFigure 
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CH.ifa.draw.figures.RoundRectangleFigure 

CH.ifa.draw.contrib.PolygonFigure 

CH.ifa.draw.figures.BorderDecorator 

CH.ifa.draw.standard.AbstractHandle 

CH.ifa.draw.standard.LocatorHandle 

CH.ifa.draw.standard.RelativeLocator 

CH.ifa.draw.figures.RadiusHandle 

CH.ifa.draw.contrib.ChopPolygonConnector 

CH.ifa.draw.contrib.PolygonHandle 

CH.ifa.draw.contrib.PolygonScaleHandle 

CH.ifa.draw.contrib.TriangleFigure 

CH.ifa.draw.contrib.TriangleRotationHandle 

CH.ifa.draw.figures.ImageFigure 

CH.ifa.draw.figures.NumberTextFigure 

CH.ifa.draw.figures.PolyLineConnector 

CH.ifa.draw.figures.PolyLineHandle 

CH.ifa.draw.samples.javadraw.FollowURLTool 

CH.ifa.draw.samples.javadraw.JavaDrawViewer 

CH.ifa.draw.samples.net.NodeFigure 

CH.ifa.draw.standard.ConnectionHandle 

CH.ifa.draw.samples.pert.PertDependency 

CH.ifa.draw.samples.pert.PertFigure 

CH.ifa.draw.standard.DragTracker 

CH.ifa.draw.standard.HandleTracker 
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CH.ifa.draw.standard.SelectAreaTracker 

CH.ifa.draw.framework.DrawingEditor 

CH.ifa.draw.framework.Drawing 

CH.ifa.draw.framework.FigureEnumeration 

CH.ifa.draw.framework.Figure 

CH.ifa.draw.framework.Locator 

CH.ifa.draw.framework.FigureChangeListener 

CH.ifa.draw.framework.ConnectionFigure 

CH.ifa.draw.framework.DrawingView 

CH.ifa.draw.framework.DrawingChangeListener 

CH.ifa.draw.framework.Connector 

CH.ifa.draw.framework.Handle 

CH.ifa.draw.samples.javadraw.PatternPainter 

C9 CH.ifa.draw.figures.ElbowConnection 

CH.ifa.draw.figures.LineConnection 

CH.ifa.draw.figures.ShortestDistanceConnector 

CH.ifa.draw.standard.AbstractConnector 

CH.ifa.draw.figures.ElbowHandle 

CH.ifa.draw.standard.ChangeConnectionStartHandle 

CH.ifa.draw.standard.ChangeConnectionHandle 

CH.ifa.draw.standard.ChangeConnectionEndHandle 

CH.ifa.draw.figures.FontSizeHandle 

CH.ifa.draw.standard.NullHandle 

CH.ifa.draw.standard.LocatorConnector 
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C10 CH.ifa.draw.contrib.PolygonTool 

CH.ifa.draw.figures.BorderTool 

CH.ifa.draw.standard.ActionTool 

CH.ifa.draw.figures.InsertImageCommand 

CH.ifa.draw.figures.ScribbleTool 

CH.ifa.draw.samples.javadraw.URLTool 

CH.ifa.draw.standard.ToggleGridCommand 

CH.ifa.draw.standard.PasteCommand 

CH.ifa.draw.standard.ConnectionTool 

CH.ifa.draw.figures.LineFigure 

CH.ifa.draw.figures.ConnectedTextTool 

CH.ifa.draw.figures.TextTool 

CH.ifa.draw.standard.CreationTool 

CH.ifa.draw.samples.javadraw.MySelectionTool 

CH.ifa.draw.standard.SelectionTool 

CH.ifa.draw.samples.javadraw.JavaDrawApplet 

CH.ifa.draw.samples.net.NetApp 

CH.ifa.draw.samples.nothing.NothingApp 

CH.ifa.draw.samples.nothing.NothingApplet 

CH.ifa.draw.samples.pert.PertApplet 

CH.ifa.draw.samples.pert.PertFigureCreationTool 

CH.ifa.draw.samples.pert.PertApplication 

C11 

(Orphan 

container) 

CH.ifa.draw.standard.GridConstrainer 

CH.ifa.draw.framework.PointConstrainer 
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CH.ifa.draw.figures.LineDecoration 

CH.ifa.draw.framework.HJDError 

CH.ifa.draw.standard.TextHolder 

 


