
 i

Software Clustering Using Dynamic Analysis and Static Dependencies

Chiragkumar Patel

A Thesis

In

The Department

Of

Computer Science

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

August 2008

© Chiragkumar Patel, 2008

 ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Chiragkumar Patel

Entitled: Software Clustering Using Dynamic Analysis and Static

Dependencies

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 ___Chair

 __Examiner

 __Examiner

__Supervisor

Approved by:

 Chair of Department or Graduate Program Director

______20__ ___

 Dean of Faculty

 iii

ABSTRACT

Software Clustering Using Dynamic Analysis and Static Dependencies

Chiragkumar Patel

Maintaining a large software system is not an easy task. The problem is that software

engineers must understand various parts of the system prior to performing the

maintenance task at hand.

The comprehension process of an existing system can be made easier if the system is

decomposed into smaller and more manageable clusters; software engineers can focus on

analyzing only the subsystems needed to solve the maintenance task at hand. There exists

several software clustering techniques, among which the most predominant ones are

based on the analysis of the source code. However, due to the increasing complexity of

software, we argue that this structural clustering is no longer sufficient.

In this thesis, we present a novel software clustering approach that combines dynamic

and static analysis. Dynamic analysis is used to build a stable core skeleton

decomposition of the system by measuring the similarity between the system’s

components according to the number of software features they implement. Static analysis

is used to enrich the skeleton decomposition by adding the components that were not

clustered using dynamic analysis.

A case study involving two object-oriented systems is presented to evaluate the

applicability and effectiveness of our approach.

 iv

Acknowledgements

It gives me an immense pleasure to take the opportunity to thank every one who

supported me in the completion of my Masters.

I would like to express my deep regards to my supervisor Dr. Abdelwahab Hamou-Lhadj.

I would like to thank him for giving me an opportunity to conduct this research. I am

grateful to him for sharing his valuable experience and knowledge to me that created new

ideas in me for my work. His encouragement developed enthusiasm in me to explore my

research work.

I would like to thank Dr. Juergen Rilling, my co-supervisor, for assisting me in

conducting my research and also for his efforts to review my work, which has provided a

better insight to it.

I would like to thank to my lab mates, Computer Science and Electrical department staff

and friends for always being supportive in providing the valuable information, guidance

and help whenever I needed. It was a great pleasure to share ideas about academic as well

as cultural interests.

Finally, I would like to thank to my family for their continuous support in my education. I

would like to express my heartiest regards to my mother, who has always supported me

in all of my decisions.

 v

Table of Contents

List of Figures …………………………………………………………………….

List of Tables .…………………………………………………………………….

1. Introduction ……………………………………………………………..……

1.1. Problem and Motivations …………………………………........................

1.2. Research Contributions ………………………………………...................

1.3. Outline of the Thesis ……………………………………….......................

2. Background ……………………………………………………….…………..

2.1. Cluster Analysis ……………………………………………..……………

2.1.1. The Entities ……………………………………………………..…

2.1.2. The Attributes ………………………………………………..……

2.1.3. Similarity Metrics ………………………………………………....

2.1.4. Hierarchical Clustering Algorithms ………………….....................

2.1.5. Partitioning Algorithms ……………………………………………

2.2. Software Clustering ……………………………………………………....

2.2.1. Graph-Based Clustering Techniques ……………………………...

2.2.2. Similarity Matrix Based Clustering Techniques …………………..

2.3. Discussion ………………………………………………………………...

3. Software Features ...………………………………………….…..……..……

ix

x

01

01

03

04

06

06

07

07

08

10

13

14

14

19

21

23

 vi

3.1. What is a Software Feature? ..………………….………..…..…..…..…..

3.1.1. Feature-Oriented Software Development ……………..…..…..…..

3.1.2. Feature Location …………………………………………..…..…..

3.1.3. Feature Interaction ………………………………………..…..…...

3.1.4. Summary…..…..…..…..…..…..…..…..…..…..…..…..…..……

3.2. Software Features as a Clustering Attribute ………………….…..…..…..

4. Clustering Approach ……………………………………………....................

4.1. Overall Approach …………………………………………………………

4.2. Skeleton Decomposition ………………………………………………….

4.2.1. Feature Selection …………………………………………………..

4.2.2. Feature Trace Generation …………………………….....................

4.2.3. Clustering of Omnipresent Classes ………………………………..

4.2.4. Building the Class-Feature Matrix ………………………………...

4.2.5. Applying the Clustering Algorithm ………………….....................

4.2.6. Removing Singleton Clusters ……………………………………...

4.3. Full Decomposition - The Orphan Adoption Algorithm …………………

4.3.1. Building a Component Dependency Graph ………….....................

4.3.2. Clustering of Orphan Components ………………………………..

5. Evaluation ……………………………………………………….....................

23

24

25

27

28

29

32

32

33

34

34

35

36

36

37

37

38

39

40

 vii

5.1. Target Systems ……………………………………………........................

5.2. Constructing the Skeleton Decomposition ………………………………..

5.2.1. Feature Selection …………………………………………………..

5.2.2. Trace Generation …………………………………………………..

5.2.3. Omnipresent Class Identification …………………….....................

5.2.4. Class-Feature Matrix ………………………………………………

5.2.5. Applying the Clustering Algorithm ………………….....................

5.2.6. Removing Singleton Clusters ……………………………………...

5.3. Applying the Orphan Adoption Algorithm ……………………………….

5.3.1. Building the Class Dependency Graph ..

5.3.2. Generation of the Final Decomposition …………………………...

5.4. Analysis of Results ……………………………………………………….

5.4.1. Comparison with Expert Decomposition …………………………

5.4.2. Internal Analysis of Weka Clusters ……………………………….

5.4.3. Internal Analysis of JHotDraw Clusters ….………….....................

5.4.4. Conclusion of Analysis ……………………………………………

6. Conclusions …………………………………………………………………..

6.1. Research Contributions …………………………………………………...

6.2. Future Directions …………………………………………........................

40

45

45

48

49

49

50

53

58

58

59

59

60

63

65

70

71

71

72

 viii

6.3. Closing Remarks ………………………………………………………….

References ………………………………………………………………………..

Appendix A ………………………………………………………….....................

72

73

83

 ix

List of Figures

2.1 Example of a dendrogram …..……………….………………………..……… 10

3.1 A feature model …...………………………………………………………….. 26

4.1 Phase 1: Skeleton building ….………………………………………………... 33

4.2 A dendrogram with various cut points shown as dashed lines .………………. 37

4.3 Phase 2: Orphan adoption .………..…………………………………………... 38

5.1 Weka architecture .……………………………………………………………. 41

5.2 JHotDraw architecture .……………………………………………………….. 43

5.3 Dendrogram generated by applying the clustering algorithm to Weka

classes …………………………………………………………………………

51

5.4 Dendrogram generated by applying the clustering algorithm to JHotDraw

classes .………………………………………………………………………...

52

5.5 Example of two partitions .…………………………………………………… 61

 x

List of Tables

2.1 Association coefficient matrix …...……………...…………………………... 08

2.2 Association coefficient metrics …………………………...……………....... 09

2.3 Updating rules for agglomerative hierarchical algorithms ..……………........ 11

4.1 Class-feature matrix ………………………………………………................. 35

5.1 Target system details ..……………………………………………………...... 41

5.2 Weka features used in this study ...…………………………………………... 45

5.3 JHotDraw features used in this study ...…………………...……………......... 47

5.4 Weka skeleton clusters ...…………………………………………………...... 53

5.5 JHotDraw skeleton clusters ...……..………………………………………..... 55

5.6 The result of comparing Weka and JHotDraw extracted decompositions

with the expert decompositions using MoJoFM ……..………………............

62

5.7 Mapping Weka clusters to Weka packages provided by system expert …...... 63

5.8 Mapping JHotDraw clusters to JHotDraw packages provided by system

expert …………………………………………………………………………

66

A.1 Weka complete decomposition ...…………………………………...……….. 82

A.2 JHotDraw complete decomposition ………………………………………..... 86

 1

Chapter 1 Introduction

Software maintenance is perhaps one of the most complex software engineering

activities; software engineers must understand various parts of a system before they can

perform the maintenance task at hand. In this thesis, we argue that the increased

complexity and behavioural aspects of today’s software systems demand for better

clustering algorithms to support the comprehension and analysis of existing systems. The

presented approach goes beyond the mere static analysis of the source code used

predominantly by most existing clustering techniques. For this purpose, we introduce a

novel clustering algorithm that uses dynamic analysis, as its main mechanism, to recover

the core structure decomposition of a system, and static information to enrich this

decomposition.

In the remainder of this chapter we will motivate the thesis, summarize the contributions

of this work, and present the thesis outline.

1.1 Problem and Motivations

Software evolution is an essential part of the software life cycle. As part of traditional

software life cycle models, software documentation plays an important role in supporting

the development and maintenance of a software system. However, it has also been shown

that for many existing systems, the documentation associated with an existing system is

often incomplete, inconsistent, or even inexistent [Wiggerts 97]. This is further

 2

complicated by the fact that key developers, knowledgeable of the system's design,

commonly move to new projects or companies, taking with them valuable technical and

domain knowledge about the system [Tzerpos 98].

These factors contribute to make these software systems difficult to comprehend and to

evolve. As a result, software engineers need to spend a considerable amount of time

understanding what the application does, and how it does it.

Software clustering techniques were introduced to facilitate the comprehension process

by automatically decomposing the system into smaller, more manageable clusters,

enabling software engineers to focus on analyzing only the subsystems needed to solve

the maintenance task at hand [Wiggerts 97, Tzerpos 98, Anquetil 99a].

Existing software clustering techniques can be grouped into two main categories

[Anquetil 99a]. The first category, also the most commonly used, relies on the source

code to extract relations among a system’s components. Examples of such relations

include file inclusions, routine calls, type references, etc. However, many of these

clustering approaches are limited to static analysis of the source code and therefore are

very conservative in analyzing the dynamic interactions among the system’s entities. The

second category of clustering approaches is based on less formal artefacts, such as file

names [Anquetil 99b], comments [Merlo 93], etc. The main drawback with these

techniques is that they assume that the software development process adopts certain

naming, programming and/or design conventions. However, it is not feasible to expect

that such conventions will be followed in practice [Patel 07]. In addition, extracting and

 3

analyzing the knowledge from such informal information sources is often difficult due to

the presence of noise and ambiguity in the data.

In this thesis, we propose a novel clustering approach that combines both dynamic (trace

based) and static dependency analysis. The approach introduces a software clustering

decomposition based on behavioural relations among system components compared to

existing approaches that typical relying only on mere structural relations.. The approach

extracts behavioural relations that exist in the source code by executing a single software

feature. The proposed approach has two main phases: In the first phase, we measure the

similarity between system entities based on the software features they implement. We

achieve this by examining traces generated by exercising these system features. This

dynamic analysis provides us with a skeleton decomposition of the system structure. In

the next step, we apply static dependency analysis to further cluster the system by adding

the remaining components to the skeleton decomposition.

1.2 Research Contributions

The main research contributions of this thesis are as follows:

• A novel software clustering approach based on dynamic analysis is presented. The

approach uses a dynamic analysis of feature traces as a primary step to create

skeleton decomposition of feature related components rather than relying on a

mere static analysis of relations among a system’s components as used by most

existing software clustering techniques.

 4

• In this thesis, we introduce the notion of a software feature as a new clustering

criterion. To our knowledge, this is the first study that exploits software features

in the context of software clustering. We argue that since software features

represent high-level system functions that can guide functional partitioning from

the forward engineering perspective, they are excellent candidates to be used to

recover these corresponding partitions from low-level implementation details.

• We present a complete hybrid clustering approach that combines both dynamic

and static dependency analysis. In this approach, static analysis is used to further

refine the cluster generated by the dynamic analysis.

• The clustering approach was applied on two object-oriented software systems, to

evaluate our approach and discuss its applicability.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows.

In Chapter 2, we introduce background related to essential concepts used in this thesis.

The chapter covers cluster analysis, software clustering and provides a detailed survey

and discussion of the most cited software clustering techniques relevant to this thesis

context. The chapter ends with a discussion section.

In Chapter 3, we present the concept of software features and the motivation for using it

as a clustering criterion. We start the chapter by defining what constitutes a software

feature in other software engineering related areas namely, feature-driven software

 5

development, feature location, and feature interaction. Next, we discuss the motivation

behind using software features as a clustering criterion, along with the potential issues

that emerge.

In Chapter 4, we present in detail the software clustering approach presented in this

thesis. We start, by describing the overall approach, which consists of two phases as

previously mentioned. The chapter continues with the detailed description of each phase,

where phase 1 is based on dynamic analysis and phase 2 is based on static analysis.

In Chapter 5, we evaluate the applicability of the proposed approach by applying it on

two software systems. The target systems are introduced as well as the results of applying

the clustering techniques to both systems are reported.

Finally, Chapter 6 concludes the thesis by summarizing the main contributions of the

thesis, and outlining some of the potential future work to enhance the presented approach,

followed by closing remarks.

 6

Chapter 2 Background

In this chapter, we present the background and terminology relevant to the thesis context.

In Section 2.1, we introduce various cluster analysis concepts. In Section 2.2, we focus

on software clustering and present a detailed survey of existing clustering techniques,

followed by a discussion in Section 2.3.

2.1 Cluster Analysis

The formal study of clustering algorithms and methods is known as cluster analysis [Jain

88], which aims to classify entities within a domain into disjoint groups according to

some kind of similarity metric [Anderberg 73]. The resulting groups of entities are often

referred to as “clusters” or “partitions”. Clustering techniques have been used in many

fields including life sciences (e.g., biology, zoology), medical sciences (e.g., psychiatry),

behavioural and social sciences (e.g., sociology, education), earth science (e.g. geology),

engineering sciences (e.g., pattern recognition, software reverse engineering),

information and decision sciences (e.g., information retrieval, marketing research), etc.

The clustering process itself is based on four main elements [Jain 88]:

• Entities to cluster

• Attributes that describe the entities

• Similarity metric used to measure the distance between the entities

• Clustering algorithm that describes the steps of the clustering process

 7

2.1.1 The Entities

The entities to cluster depend on the domain in which a cluster analysis is performed. In

psychology, for example, the entities could be training methods, behavioural patterns, etc.

There is no common terminology that describes clustering concepts. The objects to be

clustered are normally referred to as: “data units,” “cases,” “entities,” “patterns,”

“observations,” and “elements” [Anderberg 73, Jain 88]. In the context of this thesis, we

refer to the entities to be clustered as “entity”.

2.1.2 The Attributes

Attributes define the characteristics of the entities to be clustered. They are also called

“features,” “variables,” “characters,” or “measurements” [Anderberg 73, Jain 88]. The

relationship between entities and the attributes that describe them can be represented

using an entity-attribute matrix, where rows represent entities and columns refer to

attributes of these entities. Therefore, a cell (i, j) represents the value of an attribute Aj for

an entity Ei. The values of all attributes for a specific entity form the attribute vector for

this entity.

Clustering attributes can be grouped into four categories depending on the values that can

be assigned to them [Anderberg 73]. The first category is the nominal scale attributes,

which limit the comparison between two variable values to whether they are equal or not.

A special type of nominal scale attributes are binary attributes, which can have only two

possible values. The second category consists of ordinal scale attributes, which improve

over the nominal scale attributes by allowing “greater than” or “less than” comparisons

among entities. Interval scale attributes, which represents the third category, provide the

 8

ability to express additional information compared to ordinal scale attributes. Interval

scale attributes allow to express the difference between the values (e.g., temperature

measurement). Finally, the last category consists of ratio scale attributes, which allow

comparing attribute values based on their ratios (e.g., 20 meters is double the distance of

10 meters).

2.1.3 Similarity Metrics

An important step used for any clustering technique is the need to select a similarity

metric, which will determine how the similarity of two entities is computed. There exist

various categories of similarity measures in the literature [Wiggerts 97, Anderberg 73],

among which the most popular are perhaps the association coefficient metrics.

Table 2.1. Association coefficient matrix

Entity Ei

Entity Ej

a b

c d

Where:

a = The number of attributes present for both Ei and Ej

 b = The number of attributes present for Ei and not in Ej

 c = The number of attributes present for Ej and not in Ei

 d = The number of attributes not present for both Ei and Ej

Association coefficients are based on the analysis of binary attributes. The association

coefficients measure the similarity between two entities based on the number of attributes

 9

present for each entity. Using the association coefficient metrics, the similarity between

two entities is calculated based on a 2x2 matrix like the one shown in Table 2.1.

Existing association coefficient metrics vary depending on how a, b, c, and d are

weighted. Table 2.2 shows examples of commonly used association coefficients and how

they compute similarity based on a, b, c, and d [Anderberg 73].

Table 2.2. Association coefficient metrics

Name Value

Simple matching coefficient (a + d) / (a + b + c + d)

Russell and Rao a / (a + b + c + d)

Jaccard a / (a + b + c)

Sorenson-Dice 2a / (2a + b + c)

Kulcsynski a / (b + c)

Rogers-Tanimato (a + d) / (a + 2(b + c) + d)

Sokal and Sneath a / (a + 2(b + c))

It should be noted that many coefficients (e.g., Jaccard, Sorenson-Dice, Sokal and

Sneath) do not consider the value of d, the number of attributes not present in both

entities. The argument is that there seems to be a consensus among researchers that

absent attributes often lead to a large and meaningless clusters absorbing most entities

[Anquetil 03].

 10

There are other types of similarity metrics such as the distance measures, which measure

the geometrical distance between the attribute vectors of two entities. Distance measures

are usually used when the attributes are of type ordinal, interval, or ratio scale attributes.

Examples of distance measures include the Euclidian distance (a special case of the

Minkowski distance), the Canberra distance, the Bray-Curtis distance, etc [Anderberg

73].

2.1.4 Hierarchical Clustering Algorithms

A clustering algorithm describes the steps involved in clustering entities of a system.

There are two main clustering algorithms: Hierarchical and partitioning algorithms.

Figure 2.1. Example of a dendrogram

Hierarchical clustering algorithms work by clustering the entities of the system in an

iterative manner. There are two types of hierarchical algorithms: agglomerative

algorithms and divisive algorithms. Agglomerative algorithms use a bottom-up approach,

starting from individual entities, with each of them represented in a single cluster. After

 11

each iteration, the algorithm merges two clusters, therefore reducing the initial number of

clusters by one. Before the last iteration, all entities are clustered into two clusters. In the

last final iteration, the algorithm merges these two clusters into one single cluster, which

includes all the entities into it. The result of the clustering process is depicted in a tree-

like structure known as a dendrogram (see Figure 2.1).

Four variations of agglomerative algorithms can be distinguished depending on the way

they measure the similarity between the newly formed cluster and all pre-existing

clusters. These variations, also referred to as updating rules, are: Complete linkage,

Single linkage, Weighted average linkage and Unweighted average linkage.

Table 2.3. Updating rules for agglomerative hierarchical algorithms

Updating rule Similarity formula

Single Linkage f (Em, Eij) = min(f (Em, Ei), f (Em, Ej))

Complete Linkage f (Em, Eij) = max(f (Em, Ei), f (Em, Ej))

Weighted Average

Linkage

f (Em, Eij) = (f (Em, Ei), f (Em, Ej))/ 2

Unweighted Average

Linkage

f (Em, Eij) = (f (Em, Ei)*size(Ei)+ f (Em, Ej)*size(Ej)) /

(size(Ei)+ size(Ej))

Table 2.3 summarizes these updating rules used in agglomerative clustering algorithms,

with f (Em, Eij) referring to the similarity metric used to measure the similarity

(proximity) between two clusters Ei and Ej. In this table, the proximity formula for

different updating rule is presented, which finds a new proximity value between an

 12

existing cluster Em and a newly formed cluster Eij. Cluster Eij is created by merging the

two clusters Ei and Ej. The proximity value between Em and Eij is calculated based on the

proximity of Em with Ei and Ej. For example, in single linkage updating rule, f (Em, Eij),

which measures the proximity between an existing cluster Em and a newly formed cluster

Eij, is calculated as the minimum value between f (Em, Ei) and f (Em, Ej).

It also has to be noted that the selection of an updating rule may have a significant impact

on the resulting clusters. It has been shown that single linkage tends to form large and

isolated clusters including many entities in them compared to complete linkage, which

usually results in less isolated clusters [Anquetil 99a]. The results obtained by applying

weighted and unweighted average linkage can be found between these two extremes,

complete and single linkage.

Unlike agglomerative algorithms, divisive algorithms, which represent the second

category of hierarchical algorithms, proceed in a top-down fashion [Wiggerts 97]. They

start by grouping the entities to cluster into a single cluster. This cluster is then split, in

the next iteration, into two clusters, which in turn are divided into more clusters, and so

on, until a cluster is created for each entity.

Agglomerative algorithms have been shown to be timely more efficient compared to

divisive algorithms. Divisive algorithms tend to take longer time to create two clusters in

the very first iteration, because there are 2N-1-1 (N is the number of entities to be

clustered) possibilities [Wiggerts 97].

 13

2.1.5 Partitioning Algorithms

Partitioning algorithms start by grouping all entities into a predefined number of clusters

[Jain 88]. The entities are rearranged according to some clustering criteria provided by

the user. The clustering criterion is expressed in the form of an objective function.

Examples for such criteria include high cohesion, low coupling, shared data bindings, etc.

It might take several iterations before the value of the objective function can be reached.

A partitioning algorithm begins by identifying the seed points from the entity set. These

seed points act as the nucleus of a cluster that attracts other elements to them [Anderberg

73]. The number of seed points is equal to the number of clusters the algorithm produces.

The set of seed points could be selected by the user or chosen randomly from the entity

set. The idea is to group the entities according to their minimum distance with the seed

points while at the same time improving the objective function. If seed points are selected

from the entity set, then each partition will have at least one entity in it as its seed point.

Jain et al. discuss two issues related to using partitioning algorithms: the selection of the

clustering criteria and the number of all possible iterations [Jain 88]. The selection of

clustering criteria depends highly on the problem at hand and cannot be generalized to

other problem domains. In addition, the criteria have to be expressed into a mathematical

formula to form the objective function. The second challenge is somewhat more complex

to resolve, as the number of iterations one has to perform in order to fulfill the criteria

across all partitions can be enormous, even for small sets of entities. One proposed

solution to this combinatorial explosion problem is to start with an initial partition of

entities that a user can provide in advance. However, the selection of an initial partition

 14

requires great care since it has been shown that the result of applying the same

partitioning algorithm to two different initial partitions can be significantly different.

2.2 Software Clustering

Software clustering is defined as recovering architectural knowledge by applying a

clustering technique to software entities in order to group them into different clusters.

The entities grouped in one cluster are more similar to one another and at the same time

more dissimilar to the entities in other clusters [Tzerpos 98]. These clusters are also

referred to as “sub-systems” or “decompositions” of a software system. There exists

several software clustering techniques that vary depending on the attributes used to

describe the entities to be clustered, the clustering process, as well as the clustering

algorithm itself. These techniques can be grouped into two categories that we present

here and discuss in more detail in the subsequent subsections:

▪ Graph-based clustering techniques

▪ Similarity matrix based clustering techniques

2.2.1 Graph-Based Clustering Techniques

Graph-based clustering techniques operate on a graph representation, where the nodes are

the entities to be clustered and the links are the relationships among them.

Hutchens and Basili studied the applicability of clustering techniques to software

architecture recovery [Hutchens 85]. In particular, they used data binding as a clustering

criterion to cluster routines of FORTRAN programs based on the degree of data shared

between these routines. For this purpose, a routine dependency graph was extracted from

 15

the system under study where the vertices represent the routines of the system and the

edges represent the relationships among these routines based on the data they share.

Examples of data binding between two routines p and q include data sharing through

global variables. For example by having p assigning a value to a variable that is later

referenced by q, etc.

The authors defined several levels of data binding, grouped into four categories, namely,

potential data binding, used data binding, actual data binding and control flow data

binding, with potential data binding being the simplest and least expensive to extract,

whereas control flow data binding being the most complex and highly expensive to

represent.

The authors showed the applicability of their approach by applying it to two small-sized

FORTRAN systems. They used different hierarchical clustering algorithms on the routine

dependency graphs extracted from these systems. They validated their approach by

comparing the resulting decompositions to the ones provided by the designers of the

systems. They concluded that the usage of data binding could be useful in software

clustering after noticing a large degree of correspondence between their decompositions

and the ones produced by the initial developers of both systems.

Mancoridis et al. proposed a tool, called Bunch, to group a system’s modules (e.g., files,

classes, routines, or any other component of the system) into clusters [Mancoridis 99].

The modules are represented in a module dependency graph (MDG) where the nodes

represent a system’s modules and the edges are the structural relations (e.g., procedural

invocation, variable access) connecting the modules with each other. The clustering

 16

process was performed by partitioning the MDG into disjoint clusters using a partitioning

clustering algorithm (see Section 2.1.5). The authors used high cohesion (dependency

between the modules of the same partition) and low coupling (dependency between the

modules of different partitions) as the main partitioning selection criterion, which they

expressed in the form of an objective function referred to as the Modularization Quality

(MQ) function. MQ ranges from -1 to 1, where the extremes represent no internal

cohesion (-1) and no external coupling (1).

Another important contribution of the authors’ approach is the ability to preprocess the

entities of the system prior to performing the clustering. For this purpose, they allow the

users of their tool to filter out utility modules (also called omnipresent components) from

the clustering process. The rationale behind this is that omnipresent components tend to

encumber the module dependency graph and may affect the effectiveness of the

clustering process. In our research we apply similar approach of removing omnipresent

components and propose to group them into a separate cluster that we call a utility

cluster. This will be discussed in more detail in Section 4.2.3.

In addition, the tool enables users to guide the clustering process by allowing them to

specify modules that must be clustered together. This ability for users to override the

decisions made by the automatic partitioning algorithm adds a significant additional

flexibility to the tool, allowing user knowledge to be integrated into the clustering

process.

The authors conducted several experiments by applying their approach to clustering C

programs. The main observation from these experiments was that a better result was

 17

obtained when omnipresent components were removed from the clustering process. In

addition, they showed that a user-directed clustering approach combined with the

automatic partitioning algorithm provided better results than relying on a pure automatic

algorithm alone.

In [Tzerpos 00], Tzerpos and Holt presented an algorithm called ACDC (Algorithm for

Comprehension-Driven Clustering) where the authors introduced the concept of

incremental clustering. Their clustering process consists of two phases. During the first

phase, they built a skeleton decomposition of the system, which contains core entities of

the system. In the second phase, they cluster non-core entities by adding them to the

already formed clusters. An interesting aspect of their work is that they did not use the

source code to build the skeleton decomposition. Instead, they built an algorithm that

simulates the way software engineers group entities into subsystems. The authors showed

that their approach performed better than most other clustering techniques that cluster all

entities at once using the source code to measure similarity between entities. We attribute

this to the fact that they used an abstract concept (clustering patterns) to build the

skeleton decomposition. In our case, we use software features as discussed in Section 3.

Tzerpos et al. [Xiao 05] are perhaps the first authors in the area of software clustering

who used a combination of static and dynamic analysis for clustering. Their clustering

technique uses a static component dependency graph to represent the entities to cluster

(e.g., a system’s files, classes, etc.) and the relationships among these entities (e.g., file

inclusion, object interaction, etc.). Run-time information was used to weigh the edges of

the static dependency graph based on the number of times a component (i.e., represented

as a node in the graph) invokes another component according to a given scenario. This

 18

information was obtained by applying dynamic analysis techniques. More precisely, in

their approach they instrumented the source code of the system, and an execution trace

was generated by exercising the given scenario using the instrumented version of the

system. The authors applied their technique to a large C-based software system and

showed promising results.

Unlike the previous authors, Bauer and Trifu favoured higher level semantic information

such as architectural patterns over static dependencies among a system’s entities as the

clustering criteria for their clustering approach [Bauer 04]. They argued that the result of

clustering using static dependencies was not always significant to the end users. They

clustered the classes of an object-oriented system using a five-phase approach. First, they

extracted a class dependency graph from the system, where the nodes represent the

classes of the system and the edges represent various relations among classes including

access to global variables, method invocations, inheritance relations, etc. The second

phase was performed manually and consisted of gathering architectural clues from the

facts (i.e., classes and relations among them) extracted in the first phase. They defined an

architectural clue as small structural pattern, which is part of an architectural pattern. In

the third phase, they built a multi-edge system graph, which has classes as the nodes and

the edges represent six types of coupling between classes: inheritance coupling,

aggregation coupling, association coupling, access coupling, call coupling, and indirect

coupling. The architectural clues were used to guide the identification of the type of

coupling between any two given classes and create an edge between classes. There could

be multiple edges possible between any two classes according to the type of coupling

between them. During this phase, a weight is also assigned to the edges. The weight of an

 19

edge is calculated according to the metric specified for the corresponding type of

coupling represented by that edge. The fourth stage consisted of compacting the multiple

edges between two classes into a single edge where the new weight consists of the

summation of the weights assigned to the multiple edges. The final stage consisted of

applying a clustering algorithm to the resulting graph.

They applied their approach on two software systems, and compared their results with the

ones obtained by applying the same clustering algorithm to class dependency graphs that

were not refined using architectural clues. Their approach performed better than the

traditional approach both in accuracy and efficiency.

2.2.2 Similarity Matrix Based Clustering Techniques

The similarity matrix based clustering techniques represent the proximity between

entities based on the attributes that describe them (discussed earlier in Section 2.1).

Several approaches for similarity matrix based clustering techniques have been proposed

in the literature, with the main difference among being the type of attributes used to

create the clusters.

Schwanke introduced the concept of information sharing heuristics to define the

attributes based on procedures in the system that are used to group entities in clusters

[Schwanke 91]. The information sharing heuristic is based on the idea that two

procedures should be grouped together based on the degree to which they share

information through non-local names. Non-local names are the names of procedures,

macros, type definitions, or variables that appear in more than one procedure’s scope.

The non-local names were distinguished by unique identifiers due to the fact that they

 20

might have multiple declarations in different scopes. One important contribution of their

work is the ability to identify non-local names and use them as attributes to cluster the

entities. Non-local names are cross references between the entities in the static

dependency graph. The cross-reference between two entities is used as attribute for both

the entities (e.g., if procedure A calls procedure B then, A receives the attribute as “B”

and B receives the attribute as “Called by A”). The authors applied their approach to a

software system written in C. The result was evaluated by three architects who were

familiar with the system. The obtained decomposition recall reached only 60% of the

original decomposition of the system.

Dugerdil used a dynamic analysis driven approach to recover the system architecture

from execution traces generated from the system under study [Dugerdil 07]. The authors

collected traces by exercising various scenarios of a Visual Basic system they worked

with. The traces were sliced into portions of equal size, called trace samples. The

clustering attributes consisted of these trace samples. In other words, two entities were

considered identical if they appeared in the same samples and were not invoked in any

other sample. However, before the clustering process started, omnipresent components

were removed from the traces. These were the components that appeared in most samples

(the threshold was 75% in their case study). The author applied his technique to a

commercial application written in Visual Basic, and was able to cluster about 11% of the

total entities of the system. This low number of entities was attributable to the fact that

these were the only components invoked in the traces. The author stated that the results

were promising but no validation was performed.

 21

Anquetil and Lethbridge [Anquetil 99b] used file names as a clustering criterion. They

made this choice after an experiment they conducted, where they asked software

engineers to manually group the files of the system under study into clusters. The

experiment showed that software engineers had used file names as the main clustering

criterion. The authors run several other studies on the same system using various

clustering criteria besides file names and concluded that file names were the best suitable

clustering criterion for their system.

2.3 Discussion

Software clustering is a broad domain, which involves many different algorithms,

similarity measures, and attributes. The challenge lies in identifying a suitable clustering

algorithm along with the other parameters such as attributes of the entities and similarity

measures. Different clustering algorithm types also have different advantages and

limitations. For example, a hierarchical algorithm makes arbitrary decisions that may

affect early on the end result of the clustering process. On the other hand, the computing

cost of partitioning algorithms is often too high to be applicable to large systems. In

addition, one has to have some knowledge of the system prior to applying the algorithm

in order to propose an initial partition used to initialize the algorithms.

Also, it is very common that a clustering algorithm imposes a structure instead of

recovering the one created by the initial designers of the system. It might happen that a

clustering algorithm extracts clusters out of data that has no natural grouping.

 22

Software clustering techniques uses various clustering algorithms discussed in the

previous section. Also many researchers developed their own algorithm, which is build

specifically for software clustering and focuses onto some predefined criteria [Tzerpos

00, Mancoridis 99]. The comparison with various clustering elements that affect the

software clustering like clustering algorithm, similarity metric and omnipresent

component elimination has also provided in the literature [Anquetil 99a, Mancoridis 99,

Xiao 05, Tzerpos 00]. The comparison is made with different software systems that

favours one clustering element over the other, which does not give clear benefits for the

usage of one specific clustering algorithm or similarity metric. However, the

improvement of clustering results due to omnipresent component elimination is

confirmed through many experimental analyses [Mancoridis 99, Müller 93, Wen 05].

 23

Chapter 3 Software Features

One of the novel contributions of this thesis is the use of software features as a new

clustering attribute. In other words, we cluster a large number of a system’s entities based

on the degree to which they collaborate with each other to implement software features.

Therefore, we have embarked on to study the concept of software features to understand

their characteristics and how they are related to other system artefacts such as system

architecture.

The remaining parts of this chapter are organized as follows: In the next section, we

review the literature on the use of software features to understand various definitions

provided in it. The section ends with summery of feature definitions. The motivations

behind using features as a clustering attributes is discussed in Section 3.2, followed with

the challenges that are associated with this choice.

3.1 What is a Software Feature?

In this section, we review literature on what constitutes a software feature, and how

software features have been related to other system artefacts. We focus our survey in

particular on three areas in which features are used extensively, namely, feature-driven

software development, feature location, and feature interaction.

 24

3.1.1 Feature-Oriented Software Development

Feature-oriented software development is a research area that explores the relationship

between a system’s features and functional and non-functional system requirements

[Davis 82]. Perhaps, the most widely used definition of a software feature is the one

given in [American Heritage 85], which describes a feature as “a prominent or distinctive

user-visible aspect, quality, or characteristic of a system or systems.” Although this

definition is too broad to be used in our research, it refers to the fact that a software

feature should represent an important aspect of a system that can be observed by an

external user. This aspect could be in the form of a function of the system or one of its

quality attributes (e.g., speed by which the system responds to a user query). Kang et al.

[Kang 90] refine this definition by adding that software features are a powerful tool to

uncover the common aspects of a particular domain. They suggest that software features

capture abstract concepts of a domain that can be reused when developing applications of

the same domain. Similarly, Kang et al. [Kang 98], propose using software features to

capture the commonalities and differences that exist among software applications in

terms of the features they provide. The authors argue that this feature-based analysis can

lead to creating domain architectures and components that can be easily reused. In

addition, Lee et al. stress the importance of using feature models in the development of

software product lines since product lines typically require reusing existing components

and that software features tend to be ideal to capture abstract domain concepts [Lee 02].

The authors note that there is a tendency to consider a software feature and a software

concept as the same. They also assume that a software concept represents an abstract

 25

construct that are identified from the internal viewpoint such as functions, objects and

software aspects, whereas features are externally visible characteristics of the system.

Griss et al. argue that software features are closely related to the concept of use cases

defined in UML [Griss 98]. According to them, a use case model is something that is

designed by a system engineer with a user perspective in mind, whereas a feature model

is designed by a domain engineer for the purpose of reusing the application. They add

that the main difference between a use case model and a software feature model is that a

use case model provides “what” the system is capable of doing, whereas a feature model

puts an emphasis on the knowledge about “which” system functionality to be selected

when engineering a new system in the same domain.

Finally, Liu and Mei propose that a “feature is a higher-level abstraction of a set of

relevant detailed software requirements, and is perceivable by users (or customers)” [Liu

03]. The authors support the idea that features are first class entities in requirement

modeling. They add that features are at a higher level of abstraction than requirements.

Once the requirement specification has been organized by features, the authors propose a

way to map the feature model to an architectural model. According to them, functional

features can be mapped directly to a subsystem or an entity of the system.

3.1.2 Feature Location

Feature location is a reverse engineering technique that focuses on locating specific parts

of a software system that implement a particular feature [Rohatgi 08], also known as

software location in source code. Feature location has been shown to be useful in helping

 26

software engineers, working on solving maintenance problems, understand how software

features are implemented [Eisenbarth 03].

Perhaps, one of the earliest proposed feature location techniques is the Software

Reconnaissance technique introduced by Wilde and Skully [Wilde 95]. Their approach

consists of generating execution traces by exercising various features of the system. The

traces are then compared and the components that implement particular features are

identified. Although the authors have not provided an explicit definition of what they

consider as a feature, it is clear from the experiment they conducted that they have

considered features as any function of the system that can be triggered by an external

user.

Eisenbarth et al. proposed a feature location approach that combines static and dynamic

analysis techniques. According to them a feature is “a realized functional requirement of

a system”. They argue that a feature is an “observable behaviour of the system that can be

triggered by the user”.

Figure 3.1. A feature model (taken from [Eisenbarth 03])

As shown in Figure 3.1, the authors show the relationship between a software feature, a

scenario, and a computation unit. A scenario is defined here as the way the system is

expected to be used by the user. Based on this, a scenario can invoke many features of a

 27

system. For example, editing picture using a drawing tool might involve loading the

picture to memory, editing it, and saving it to disk. As such, the same software feature

can be involved in multiple usage scenarios. Computational unit refers to the source code

units that are executed by exercising the feature on the system. The authors add that a

feature might require many execution traces in order to fully understand how it is

implemented.

Antoniol and Gael-Gueheneuc define a feature as “a requirement of a program that a user

can exercise and which produces an observable behaviour” [Antoniol 06]. Similarly,

Einsberg et al. state that features are “defined as behaviours that are observable to users at

their particular level of interaction with the system” [Eisenberg 05]. Unlike Einsbarth et

al., they consider one to one mapping between features and execution traces.

Poshyvanyk et al. define features as “the concepts that represent a functionality of a

system accessible and visible to the users, usually captured by the requirements

explicitly” [Poshyvanyk 07]. They further state that “a feature links program architecture

with its dynamic behaviour”. In other words, a software feature exercised on a system can

exhibit the behaviour of the system from its architectural point of view.

3.1.3 Feature Interaction

Feature interaction is the study of how features influence or conflict with other features of

the same system. Feature interaction techniques have traditionally been discussed in the

context of telecommunication systems due to the fact that the features of such systems

represent a modification or an enhancement of the same baseline feature set.

 28

Research in the feature interaction adopts a common definition that considers features as

incrementally added functionalities to the basic functionality of a system [Calder 03].

Zave, for example, defines a software feature as “an increment of functionality, usually

with a coherent purpose. If a system description is organized by features, then it probably

takes the form B + F1 + F2 + F3..., where B is a base description, each Fi is a feature

module, and + denotes some feature-composition operation” [Zave 99]. This definition

proposes that system evolution is usually feature driven through continuous enhancement

of existing features or addition of new ones based on the existing ones. This suggests that

software features can be highly coupled (i.e., the execution of one feature depends on

another one).

3.1.4 Summary

From the above discussion, there is a strong agreement among researchers that a software

feature should represent a behavioural aspect of the system that is observable by an

external user. In this thesis, we also define a software feature as an observable behaviour

of a system that represents a particular functionality. At a high-level, there is a strong

relationship between software features and the concept of use cases defined in UML

[Jacobson 94], since use cases also define the system functionality from the user’s

perspective. The main difference is that software features capture high-level domain

concepts whereas use cases focus on mapping these concepts to system functionality as

noted by Griss et al. [Griss 98]. Similar to the concept of use cases, a software feature can

cover many functional requirements of the system, and that a particular requirement can

be involved in many features.

 29

In addition, software features play an important role during functional decomposition of

the system into subsystems by having a subsystem encompass the components that

implement related features (i.e., the ones that represent common functionality of the

system).

Moreover, there are various relations between software features such as dependency

relationships. Exercising a software feature might involve exercising other features on

which it depends.

3.2 Software Features as a Clustering Attribute

From the above discussion, we demonstrated that software features represent abstract

concepts of a system. This has led us to believe that they are more suitable for recovering

high-level and more abstract views of a system from low-level implementation details

than mere source code constructs used by many other clustering approaches.

In fact, one can argue that an effective clustering of low-level system components should

start by clustering more abstract concepts such as software features and then locate the

components that implement these high-level clusters. The difficulty with this approach is

the ability to locate the components that implement specific features; a research topic that

has been the subject of many studies (e.g., [Wilde 95]).

At first glance, one might make several objections to using software features:

• Execution traces represent a partial model of the system, with the components

being invoked constituting a subset of the entire set of the system components.

Therefore, feature-based clustering does not cover the system in its entirety.

 30

• The number of software features can affect the result of the clustering process.

The more features we have in a system, the better will be the result of the

clustering approach. But since it would be impractical to exercise all possible

features of a system, one has to determine an acceptable threshold that can lead to

a satisfactory decomposition of the overall system.

• The choice of software features is crucial to the success of the clustering process.

For example, if we only choose features that represent similar functions of the

system then we will most likely end up with a few clusters that contain most of

the elements. Therefore it is necessary to derive a balanced set of features that

cover various aspects of the system.

We address the first issue by adopting a two-phase clustering process rather than

traditional clustering methods. Traditional one-phase algorithms start their clustering

process only once all system entities and their relations are available. In comparison to

these approaches, our two-phase approach starts in the first phase, which is also the most

important one, by determining a skeleton decomposition. The clusters belonging to the

skeleton form the core clusters of the system. The remaining components are then

incrementally added to the skeleton during the second phase. The remaining components

are added by measuring their similarity with the ones already grouped in the skeleton

decomposition. It should also be noted that during this phase, new clusters can also be

created, if any remaining component does not hold relationship with none of the already

clustered component.

 31

For the second issue, which deals with the number of features, a threshold-based

approach can be derived from experimental analysis in order to determine the impact of

code coverage achieved on the resulting decomposition.

Finally, to address the third issue, there is a need to cover different system functions to be

able to identify the basic feature set of a system. The selection of software features can

and should be guided by domain experts or based on any other form of domain

knowledge, e.g., available documentation or product usage guide.

 32

Chapter 4 Clustering Approach

In this chapter, we present the main contribution of the thesis, which consists of a new

clustering approach that uses software features as its main clustering criterion. Unlike

existing techniques, our approach groups a system’s entities based on the degree to which

they collaborate with each other rather than mere structural relationships extracted from

the source code.

The remainder of this chapter is organized as follows. In Section 4.1, we discuss the

overall approach. In Section 4.2, we present the first phase of our approach which

consists of building a skeleton decomposition of the system using software features. The

second phase of the clustering process is presented in Section 4.3. Finally, we conclude

the chapter in Section 4.4.

4.1 Overall Approach

The approach proposed in this thesis emphasizes the use of both dynamic and static

analysis techniques to support software clustering. It compasses two main phases. The

first phase, which is also the most important, consists of determining a skeleton

decomposition of a system. The clusters belonging to the skeleton form the core clusters

of a system. We achieve this by measuring the similarity between a system’s entities by

identifying the number of features they implement.

 33

In the next phase, we apply static dependency analysis to further cluster the non core

entities of the system, also known as “orphans”. Orphans are the entities that were not

clustered in the skeleton decomposition. We achieve this using the orphan adoption

algorithm presented by Tzerpos et al. [Tzerpos 00], which is an algorithm that is based on

analyzing static dependencies among entities in order to determine the skeleton clusters

to which they should belong.

In the context of our research, we consider system classes of object oriented system as

clustering entities, since each class typically is represented by one source file. The goal of

our clustering approach is then to group system classes based on their behavioural

characteristics (similarity measurement) rather than only relying on their mere structural

relationships.

4.2 Skeleton Decomposition

Figure 4.1 shows the steps involved in the first phase of our clustering approach, the

skeleton creation based on the software features. The detailed steps are presented in the

subsequent sections.

Feature Selection
Feature Traces

Generation

Removal of

Omnipresent

Classes

Building Feature

Class Matrix

Application of

Clustering

Algorithm

Removal of

Singleton

Clusters

Skeleton

Decomposition

Figure 4.1. Phase 1: Skeleton building

 34

4.2.1 Feature Selection

In this step, we select the software features that will be used during the formation of the

skeleton decomposition. As discussed previously, it is important to select features that

execute a wide range of different system functionalities. If the selected features perform

only a narrow subset of the overall functions found in the system then the resulting

skeleton will most likely end up with a few clusters that contain most of the entities.

Therefore it is necessary to derive a balanced set of features that cover various aspects of

the system. In this thesis, we use any available documentation to derive a balanced set of

software features.

4.2.2 Feature Trace Generation

In this step of our approach, a trace for every selected feature is generated by executing

the instrumented version of a system. Source code instrumentation consists of inserting

probes at the location of interest in either the source or the byte code of the system. This

is usually done automatically. There are other ways of generating traces including

instrumenting the execution environment such as the Java Virtual Machine. A debugger

can also be set to collect events of interests. However, the use of a debugger slows down

considerably the execution of the system and should be avoided for large-scale software

systems [Hamou-Lhadj 06, Xiao 05]. We use the term feature trace to refer to a trace that

corresponds to a particular feature. The distinct classes of the trace are extracted while

the trace is being generated. These are the entities that will be clustered by our approach.

 35

4.2.3 Clustering of Omnipresent Classes

Software systems often contain entities that act as mere utilities to support feature

specific components. They are referred to as omnipresent components [Müller 93].

Müller et al. showed that omnipresent components obscure the structure of a system and

argued that they should be excluded from the architecture recovery process [Müller 93].

Wen and Tzerpos [Wen 05] also agreed that removing omnipresent components can

significantly improve the clustering result. Therefore, we have decided to remove

omnipresent system classes and group them into a utility cluster. The detection of

omnipresent classes has been discussed in many studies. Hamou-Lhadj and Lethbridge,

for example, presented an approach for automatic detection of system-level utilities using

fan-in analysis [Hamou-Lhadj 06]. Wen and Tzerpos considered omnipresent

components to be the ones that are connected to a large number of subsystems [Wen 05].

In [Mancoridis 99], Mancoridis et al. presented a heuristic based approach for detecting

omnipresent components.

Table 4.1. Class-feature matrix

 F1 F2 … Fm

C1 1 0 … 1

C2 1 1 … 0

… … … … …

Cn 0 1 … 0

 36

4.2.4 Building the Class-Feature Matrix

A class-feature matrix is a two dimensional table that provides the input to the clustering

algorithm. The rows represent the classes (i.e. the entities to cluster) and the columns are

the feature traces. The value of each cell of the table is either 0 or 1, indicating the

absence or presence of a class in the feature trace. For example, Table 4.1 shows a matrix

where the rows represent the distinct classes invoked in all traces, where as the columns

refer to the feature-traces generated in the previous step.

4.2.5 Applying the Clustering Algorithm

The next step in this phase consists of selecting a clustering algorithm and applying it to

the class-feature matrix. As discussed in Chapter 2, clustering algorithms can be grouped

into two main categories: Partitioning and hierarchical clustering algorithms. In this

thesis, we apply an agglomerative hierarchical algorithm, with complete linkage as an

updating rule, and the Jaccard coefficient as a similarity metric. We selected this

algorithm and similarity metrics because complete linkage as well as Jaccard distance

metrics have been shown to perform better compared to the other schemes [Anquetil

99a].

The result of the clustering algorithm can be visualized through a dendrogram (Figure

4.2), which is a tree like structure representing clusters formed at different stages of the

algorithm. A cut through the tree determines a set of clusters of the system.

 37

Figure 4.2. A dendrogram with various cut points shown as dashed lines

4.2.6 Removing Singleton Clusters

The final step of constructing the skeleton decomposition is the need to analyze the

clusters resulting from the previous step and remove the ones that contain one single class

(i.e. singleton clusters). The rationale behind this is that singleton clusters are clusters

without any similarity to the formed clusters. These clusters can often lead to a

deterioration of the skeleton stability as shown by Tzerpos et al. in [Tzerpos 00]. The

classes of these singleton clusters are added to the pool of components that will be

clustered later when we apply the orphan adoption algorithm (i.e. during the second

phase of the clustering process).

4.3 Full Decomposition - The Orphan Adoption Algorithm

The second phase of our approach is based on an orphan adoption algorithm [Tzerpos

00]. The algorithm takes as input the skeleton clusters derived in the first phase of the

 38

algorithm and a component dependency graph of the orphans as shown in Figure 4.3. In

what follows we describe this orphan adoption algorithm in more detail.

Applying Orphan

Adoption Algorithm

Final Clustering

Orphan

Dependency

Graph

Skeleton

Decomposition

Figure 4.3. Phase 2: Orphan adoption

4.3.1 Building a Component Dependency Graph

After identifying the orphans, the next activity is to derive the components dependency

graph of the orphans. The dependencies used in the orphan adoption algorithm are

structural relations between the components. The structural relations can be of various

types such as referencing of variables, inheritance, instantiation of other components, etc.

The dependency graph includes the links representing the structural relations among the

classes and the classes are the nodes of the graph. The graph is a directed graph with at

most two edges between two classes and all edges have same weight.

Extraction of structural relationship is an automatic task which is supported by numerous

tools (e.g., SA4J1). The extraction tools differ by their support of various technologies

1 SA4J: http://www.alphaworks.ibm.com/tech/sa4j

 39

and programming languages.

4.3.2 Clustering of Orphan Components

The orphan adoption algorithm works as follows: First, the algorithm attempts to identify

the core cluster for each orphan based on naming criteria. In other words, the algorithm

matches the name of the orphan to the name of the skeleton clusters based on naming

conventions used during the development of the software system. However, this assumes

that the developers have followed a specific naming convention during the development

process. This assumption is not always valid in practice. In our research, we did not

consider any naming conventions to avoid situations where naming conventions have

either not been applied or followed correctly.

In situations when the clustering based on naming conventions fails, the algorithm uses

structural relations to uncover the core cluster for each orphan. The algorithm calculates

the strength of relation of an orphan with each core cluster by considering the number of

relations that exist between the orphan and the entities of a cluster. It then places the

orphan in the core cluster with which it has the strongest relation. If there is a tie between

many core clusters then the core cluster having more entities in it wins over the other

clusters. If there is no core cluster selected for an orphan, then the algorithm creates a

new cluster called “orphan container” and add all such orphans to it. Orphan container

represents all orphans that do not have relations to core clusters.

 40

Chapter 5 Evaluation

In this chapter, we present two case studies to demonstrate the applicability of our

approach. We first introduce the target systems used for the case studies. Then, we

describe in detail the application of our clustering approach. Finally, we compare the

results of our clustering decomposition with the results obtained by manual analysis

through domain experts (the designers of the target system).

5.1 Target Systems

We applied our approach to two Java-based object-oriented software systems: Weka (ver.

3.0)2, and JHotDraw (ver 5.1)3. Weka is a machine learning tool that provides several

algorithms for classification, regression techniques, clustering, and association rules.

JHotDraw is a system that provides a graphical user interface (GUI) framework support

for graphical activities. The framework can be extended to support new graphical

capabilities by adding extra functionality to it. The tool has been designed using many

well known design patterns, which enhances its reusability. Table 5.1 shows the

characteristics of both systems.

2 Weka : http://www.cs.waikato.ac.nz/ml/weka/

3 JHotDraw : http://sourceforge.net/projects/jhotdraw

 41

We selected Weka and JHotDraw because both systems are well documented. Their

documentation also includes architectural properties that are later used to validate our

approach and to identify the omnipresent classes.

Table 5.1. Target system details

 Number of Packages Number of Classes KLOC

Weka 09 142 95

JHotDraw 11 155 17

Figure 5.1 shows Weka architecture, which consists of the following packages:

associations, clusterers, core, estimators, filters,

attributeSelection and classifiers. The classifiers package contains

two additional packages namely j48 and m5.

Clusterers

Classifiers

Estimators

Filters
Attribute

Selection

Association

m5

j48
1 1

11

Figure 5.1. Weka architecture

 42

The role of each package is as follows:

• associations: This package contains two classes that implement the Apriori

machine learning algorithm [Agrawal 94].

• attributeSelection: The classes of this package implement techniques

from reducing the dimensionality of data set.

• classifiers: This package contains several classes that implement the

following classification algorithms: SMO [Platt 99], Naïve Bayes [John 95],

ZeroR [Holte 93], Decision Stump, Linear regression, and OneR [Witten 05]. It

also contains two other sub packages J48 and M5. J48 contains classes that

implement the J48 (also known as the C45) classification algorithm [Quinlan 93],

while M5 classes are used to implement the M5Prime classification algorithm

[Wang 97].

• clusterers: This package contains classes that implement two clustering

algorithms supported by Weka, namely, Cobweb [Fisher 87] and EM [Dempster

77].

• filters: This package contains classes that allow preprocessing the data that is

used as input for the machine learning algorithms.

• estimators: This package contains classes that compute various types of

probabilities needed for the clustering and classification algorithms.

 43

• core: The core package contains general-purpose utilities. It is not shown in

Figure 5.1 to avoiding cluttering the figure, since all other packages depend on it.

It should also be noted that the associations package is isolated in Figure 5.1

because it only depends on the core package.

applet

net

standerd

figures

contrib

nothing

pert

javadraw

framework

application

Figure 5.2. JHotDraw architecture

Figure 5.2 shows the JHotDraw architecture, which consists of the following packages:

applet, application, contrib, figures, framework, javadraw, net,

nothing, pert, standard and util. Package sample includes javadraw, net,

 44

nothing and pert packages, but it does not contain any class in it. For this purpose,

we have excluded sample package from the analysis and considered all its sub packages

as separate packages.

The role of JHotDraw packages is as follows:

• applet: The package provides two classes to run JHotDraw as an applet.

• application: This package contains one class to run JHotDraw as a

standalone application.

• contrib: This package contains classes from other implementers that contribute

to JHotDraw by adding new graphical capabilities, etc.

• figures: This package contains classes that implement the many graphical

capabilities (e.g., drawing circles, rectangles, etc.) provided by JHotDraw.

• framework: This package contains abstract classes and interfaces that can be

extended by other contributors to specialize JHotDraw capabilities.

• Javadraw, net, nothing and pert includes classes for sample applets

and/or applications.

• standard: The package includes the standard implementation for the classes

provided in framework package. The implementation of interfaces of framework

package is provided in the abstract classes of this package.

 45

• util: The package includes utility classes used by all other packages of

JHotDraw. Similar to the Weka core package, we decided not show the util

package in Figure 5.2 to avoid cluttering.

5.2 Constructing the Skeleton Decomposition

In this section, we apply the steps for constructing the skeleton decomposition to Weka

and JHotDraw and show the resulting skeletons generated by our approach.

5.2.1 Feature Selection

Table 5.2 shows the software features selected for Weka. We carefully selected features

that covered most of Weka’s machine learning algorithms and data filters to ensure a

balanced set of features. We used Weka documentation as the main source of information

for identifying these features.

 Table 5.2. Weka features used in this study

Feature Feature Name

F1 Cobweb clustering algorithm

F2 EM clustering algorithm

F3 Ibk classification algorithm

F4 OneR classification algorithm

F5 Decision table classification algorithm

F6 J48 (C4.5) classification algorithm

 46

F7 SMO classification algorithm

F8 Naïve Bayes classification algorithm

F9 ZeroR classification algorithm

F10 Decision stump classification algorithm

F11 Linear regression classification algorithm

F12 M5Prime classification algorithm

F13 Apriori association algorithm

F14 Attribute Filter

F15 Add Filter

F16 Merge Two Values Filter

F17 Instance Filter

F18 Swap Attribute Values Filter

F19 Split Dataset Filter

F20 Numeric Transform Filter

Similarly, we selected several features of JHotDraw based on the tool’s documentation.

The list of JHotDraw features are listed in Table 5.3.

 47

Table 5.3. JHotDraw features used in this study

Feature Feature Name Feature Feature Name

F1 Align Bottom F29 New Window

F2 Align Center F30 No arrow

F3 Align Left F31 Open an Application

F4 Align Middle F32 Open File

F5 Align Right F33 Open

F6 Align Top F34 Paste

F7 Arrow at back F35 Pattern

F8 Arrow at both F36 Pen Color

F9 Arrow at front F37 Polygon

F10 Border F38 Print

F11 Buffered Update F39 Put Images

F12 Close an Application F40 Rounded square

F13 Connecting Line F41 Save as Serializable

F14 Copy F42 Save as

F15 Cut F43 Scribble

F16 Delete F44 Select Text

F17 Draw Circle F45 Select Multiple Objects

F18 Draw Line F46 Select Object

 48

F19 Duplicate F47 Send Back

F20 Elbow Connecting Line F48 Send To front

F21 Exit F49 Simple Update

F22 Fill Color F50 Square

F23 Font color changed F51 Start Animation

F24 Font size change F52 Stop Animation

F25 Font Style Changed F53 Toggle

F26 Font Change F54 Ungroup Objects

F27 Group Object F55 Write Text

F28 New Document F56 WriteText2

5.2.2 Trace Generation

We generated an execution trace for each of the features shown in Table 5.2 and Table

5.3. For this purpose, we instrumented the Weka and JHotDraw class files using the BIT

(Bytecode Instrumentation Toolkit) framework [Lee 97] by inserting probes at entry of

every method in the source code, including constructors. Since we are only interested in

analyzing the presence or absence of a particular class in a trace, only distinct classes of

each trace have to be stored.

The number of classes involved in traces of Weka and JHotDraw system is 59 and 88

respectively, which represent 47% and 65% of the total number of classes of Weka and

JHotDraw.

 49

5.2.3 Omnipresent Class Identification

Most of the removal of omnipresent classes can be performed automatically based on the

omnipresent detection approach introduced by Hamou-Lhadj and Lethbridge [Hamou-

Lhadj 06]. The approach is based on fan-in analysis. However, a quick analysis of the

Weka and JHotDraw documentation revealed that the packages core (of Weka) and

util (of JHotDraw) are used by all other packages within the system, resulting in a high

fan-in for these particular packages. We have, therefore, decided to categorize these

packages manually as utility (i.e., omnipresent) packages and moved them into a utility

cluster created for each system, and eliminated all classes within these package from

further analysis.

5.2.4 Class-Feature Matrix

Building the class-feature matrix is a straightforward process, since we have already

analyzed the feature-traces and collected the distinct set of classes involved in the

different features. As previously mentioned, a cell (i, j) is set to 1 if a class in the ith row

is invoked in the execution trace corresponding to the feature of the jth column. It is set to

0 otherwise.

The class-feature matrix for Weka is 59x20, i.e., 59 classes and 20 features. The

dimension of the JHotDraw class-feature matrix is 88x56 (88 classes and 56 features).

5.2.5 Applying the Clustering Algorithm

The next step is to apply the clustering algorithm to the class-feature matrices for the

Weka and JHotDraw system. As discussed in Section 4.2.5, we used an agglomerative

 50

hierarchical algorithm, with complete linkage as an updating rule, and the Jaccard

coefficient as a similarity metric. The result of the hierarchical clustering of Weka and

JHotDraw is shown in the dendrograms of Figure 5.3 and 5.4, respectively.

Cutting the dendrogram at a certain cut point will result in distinct trees that have been

formed underneath the cut point. These distinct trees correspond to different clusters of

classes identified by our clustering algorithm. One of the challenges in our approach is to

determine this cut point. As discussed by Anquetil et al. in [Anquetil 99a], there exists

typically more than one potential cut point value. They proposed to cut the dendrogram at

an arbitrary height and then re-adjust it if the result provides either too many clusters with

too few classes or only a few clusters containing a large number of classes.

After analyzing manually the content of both dendrograms, we decided to cut the tree at

point P1 shown in Figure 5.3 and 5.4, which balances the number of clusters and the

number of classes in each cluster.

 51

Figure 5.3. Dendrogram generated by applying the clustering

algorithm to Weka classes

P1

 52

Figure 5.4. Dendrogram generated by applying the clustering

algorithm to JHotDraw classes

P1

 53

5.2.6 Removing Singleton Clusters

During the singleton cluster removal steps, we remove now all those clusters that contain

only one single class, i.e., singleton clusters from the list of clusters identified in the

previous step. The classes in these singleton clusters are moved to the pool of orphans to

be further processed later as part of the static analysis.

As a result, the remaining core skeleton of the Weka system consisted of eight clusters

(C1 to C8), which are shown in Table 5.4. The number of classes that were clustered

during the skeleton decomposition phase is 48, which represents 32.65% of the total

number of classes of the system under analysis.

Table 5.4. Weka skeleton clusters

Cluster Classes

C1 weka.estimators.DiscreteEstimator

weka.classifiers.NaiveBayes

weka.estimators.NormalEstimator

C2 weka.filters.AttributeFilter

weka.classifiers.DecisionTable

weka.filters.DiscretizeFilter

C3 weka.associations.Apriori

weka.associations.ItemSet

C4 weka.classifiers.m5.M5Prime

weka.classifiers.m5.Options

weka.classifiers.m5.M5Utils

weka.classifiers.m5.Node

weka.classifiers.m5.Function

weka.classifiers.m5.SplitInfo

weka.classifiers.m5.Impurity

weka.classifiers.m5.Values

 54

weka.classifiers.m5.Errors

weka.classifiers.m5.Ivector

weka.classifiers.m5.Dvector

weka.classifiers.m5.Matrix

C5 weka.clusterers.EM

weka.clusterers.DistributionClusterer

weka.clusterers.Clusterer

weka.clusterers.Clusterevaluation

C6 weka.classifiers.LinearRegression

weka.filters.NominalToBinaryFilter

weka.filters.ReplaceMissingValuesFilter

weka.estimators.KernelEstimator

C7 weka.classifiers.j48.J48

weka.classifiers.j48.C45ModelSelection

weka.classifiers.j48.ModelSelection

weka.classifiers.j48.C45PruneableClassifierTree

weka.classifiers.j48.ClassifierTree

weka.classifiers.j48.Distribution

weka.classifiers.j48.NoSplit

weka.classifiers.j48.ClassifierSplitModel

weka.classifiers.j48.C45Split

weka.classifiers.j48.EntropyBasedSplitCrit

weka.classifiers.j48.InfoGainSplitCrit

weka.classifiers.j48.SplitCriterion

weka.classifiers.j48.GainRatioSplitCrit

weka.classifiers.j48.Stats

C8 weka.classifiers.DistributionClassifier

weka.classifiers.Classifier

weka.classifiers.Evaluation

weka.filters.Filter

weka.classifiers.SMO

weka.filters.NormalizationFilter

 55

The resulting skeleton decomposition of JHotDraw consists of 10 clusters (see Table 5.5).

The number of JHotDraw classes clustered during this phase is 84, which represents

62.22% of the total number of classes of the system under analysis.

Table 5.5. JHotDraw Skeleton clusters

Cluster Classes

C1 CH.ifa.draw.standard.SouthWestHandle

CH.ifa.draw.standard.WestHandle

CH.ifa.draw.standard.SouthHandle

CH.ifa.draw.standard.SouthEastHandle

CH.ifa.draw.standard.NorthWestHandle

CH.ifa.draw.standard.NorthHandle

CH.ifa.draw.standard.NorthEastHandle

CH.ifa.draw.standard.EastHandle

CH.ifa.draw.standard.BoxHandleKit

CH.ifa.draw.standard.AbstractLocator

CH.ifa.draw.standard.ReverseFigureEnumerator

C2 CH.ifa.draw.figures.GroupCommand

CH.ifa.draw.standard.CutCommand

CH.ifa.draw.standard.DeleteCommand

CH.ifa.draw.standard.DuplicateCommand

CH.ifa.draw.figures.UngroupCommand

CH.ifa.draw.standard.SendToBackCommand

CH.ifa.draw.standard.CopyCommand

CH.ifa.draw.standard.BringToFrontCommand

CH.ifa.draw.standard.AlignCommand

CH.ifa.draw.samples.javadraw.BouncingDrawing

CH.ifa.draw.standard.FigureChangeEventMulticaster

CH.ifa.draw.figures.RectangleFigure

CH.ifa.draw.standard.ToolButton

C3 CH.ifa.draw.figures.PolyLineLocator

CH.ifa.draw.standard.ChangeAttributeCommand

 56

C4 CH.ifa.draw.figures.GroupFigure

CH.ifa.draw.figures.GroupHandle

C5 CH.ifa.draw.framework.FigureSelection

CH.ifa.draw.standard.FigureTransferCommand

C6 CH.ifa.draw.figures.ChopEllipseConnector

CH.ifa.draw.standard.ChopBoxConnector

C7 CH.ifa.draw.samples.javadraw.Animator

CH.ifa.draw.samples.javadraw.JavaDrawApp

C8 CH.ifa.draw.application.DrawApplication

CH.ifa.draw.standard.StandardDrawingView

CH.ifa.draw.standard.FigureEnumerator

CH.ifa.draw.standard.CompositeFigure

CH.ifa.draw.standard.BufferedUpdateStrategy

CH.ifa.draw.standard.AbstractTool

CH.ifa.draw.figures.AttributeFigure

CH.ifa.draw.figures.FigureAttributes

CH.ifa.draw.samples.javadraw.AnimationDecorator

CH.ifa.draw.standard.DecoratorFigure

CH.ifa.draw.figures.TextFigure

CH.ifa.draw.framework.DrawingChangeEvent

CH.ifa.draw.framework.FigureChangeEvent

CH.ifa.draw.standard.AbstractFigure

CH.ifa.draw.standard.StandardDrawing

CH.ifa.draw.figures.ArrowTip

CH.ifa.draw.figures.PolyLineFigure

CH.ifa.draw.figures.EllipseFigure

CH.ifa.draw.figures.RoundRectangleFigure

CH.ifa.draw.contrib.PolygonFigure

CH.ifa.draw.figures.BorderDecorator

CH.ifa.draw.standard.AbstractHandle

CH.ifa.draw.standard.LocatorHandle

CH.ifa.draw.standard.RelativeLocator

 57

CH.ifa.draw.figures.RadiusHandle

C9 CH.ifa.draw.figures.ElbowConnection

CH.ifa.draw.figures.LineConnection

CH.ifa.draw.figures.ShortestDistanceConnector

CH.ifa.draw.standard.AbstractConnector

CH.ifa.draw.figures.ElbowHandle

CH.ifa.draw.standard.ChangeConnectionStartHandle

CH.ifa.draw.standard.ChangeConnectionHandle

CH.ifa.draw.standard.ChangeConnectionEndHandle

CH.ifa.draw.figures.FontSizeHandle

CH.ifa.draw.standard.NullHandle

C10 CH.ifa.draw.contrib.PolygonTool

CH.ifa.draw.figures.BorderTool

CH.ifa.draw.standard.ActionTool

CH.ifa.draw.figures.InsertImageCommand

CH.ifa.draw.figures.ScribbleTool

CH.ifa.draw.samples.javadraw.URLTool

CH.ifa.draw.standard.ToggleGridCommand

CH.ifa.draw.standard.PasteCommand

CH.ifa.draw.standard.ConnectionTool

CH.ifa.draw.figures.LineFigure

CH.ifa.draw.figures.ConnectedTextTool

CH.ifa.draw.figures.TextTool

CH.ifa.draw.standard.CreationTool

CH.ifa.draw.samples.javadraw.MySelectionTool

CH.ifa.draw.standard.SelectionTool

 58

5.3 Applying the Orphan Adoption Algorithm

In the second step of our approach, we apply the orphan adoption algorithm to cluster the

remaining classes by assigning them to either an existing or a new cluster.

5.3.1 Building the Class Dependency Graph

We built a class dependency graph using a tool called Javex4 to extract dependencies of

orphan classes. Javex is a fact extractor for Java based software systems. A fact consists

of the two classes and the relationship between them. An example of a fact is “<Relation

Type> <entity1> <entity2>,” which indicates that entity1 and entity2 of the system are

related using RelationType.

Javex takes into account many dependencies that may exist between two classes such as

method calls, associations, inheritance relationships, etc. The facts were saved in TA

(Tupple Attribute)5 format, which is a common format in reverse engineering for

representing facts. It should be noted that the class dependency graph includes the core

classes as well as the orphan classes.

The implementation of the orphan adoption algorithm was provided to us by the author of

the algorithm, Vassilios Tzerpos. However, his implementation takes as input facts

expressed in RSF (Rigi Source Format) format [Müller 93], which is another common

data exchange format in the area of reverse engineering. We, therefore, had to create a

converter that converts TA to RSF.

4 Javex : http://www.swag.uwaterloo.ca/javex/index.html

5 TA : http://plg.uwaterloo.ca/~holt/papers/ta-intro.htm

 59

The resulting RSF files for both Weka and JHotDraw were fed to the orphan adoption

algorithm along with the skeleton decomposition of both systems.

5.3.2 Generation of the Final Decomposition

The orphan adoption algorithm works by assigning each orphan to the suitable core

cluster. If the algorithm cannot find a suitable cluster then it puts the orphan into a newly

created cluster called “orphan container”.

When applied to Weka, the final decomposition resulted in eight clusters, which is the

same number of clusters built during the skeleton decomposition phase. In other words,

all orphans were successfully placed in one of the core clusters.

The final decomposition of JHotDraw contained 11 clusters. An additional cluster,

”orphan container,” was created during the orphan adoption phase, containing five

classes that were originally categorized as orphans. Except these five classes, all other

orphan classes were moved in one of the core clusters.

The complete decompositions for both systems including the clusters and their classes are

presented in Appendix A.

5.4 Analysis of Results

In what follows we first compare the result of our clustering approach with an expert

decomposition and then provide a more detailed analysis of the various clusters created

for both systems.

 60

5.4.1 Comparison with Expert Decomposition

For initial evaluation of our approach, we compared the results obtained from our

clustering approach, with the decompositions based on the package structure of these

systems. We assumed that this package structure, defined by the original developers,

reflects closely their structural decomposition of these systems. The package structures

for the Weka and JHotDraw system are shown in Table 5.7 and Table 5.8 respectively.

For the comparison, we measured the extent to which two given decompositions are

similar or apart to each other, using the MoJoFM distance [Wen 04], which is an

improved version of a MoJo metric introduced by the same authors [Tzerpos 99]. The

metric takes two partitions as input and calculates the number of “move” and “join”

operations, needed to transform one partition into another. The “move” operation moves

an entity from one cluster to another existing cluster or a newly created cluster. The

“join” operation joins two clusters into one cluster and reduces the number of clusters by

one. The MoJoFM distance assigns the same weight to both operations.

More precisely, given two partitions P and Q, MoJoFM is calculated as follows:

%100
)),(max(

),(
1 










−=

QPmno

QPmno
MoJoFM .

Where:

•),(QPmno is the number of “move” and “join” operations needed to go from P to

Q.

•)),(max(QPmno  is the maximum number of possible “move” and “join”

operations to transform any partition P into Q.

 61

MoJoFM ranges from 0% to 100%. It converges to 0% if the partitions are very

different from each other. It reaches 100% if the two partitions are exactly the same.

An example of applying the MoJoFM distance to the two partitions of Figure 5.5 is as

follows:

Figure 5.5. Example of two partitions

Figure 5.5 shows two partitions, A and B with A1, A2 and B1, B2 as their respective

clusters. The value is calculated by first calculating the number of “move” and “join”

operations needed to transform partition A into B, i.e.,),(BAmno . By analyzing the

partition A, we can see that we need to replace elements e2 and e3 in order to obtain

partition B. This can be achieved by performing two “move” operations: Moving e2 from

cluster A1 to cluster A2, and moving e3 from cluster A2 to cluster A1. After the move

operations, the partition A will become identical to partition B. Therefore, the cost

of),(BAmno is 2 (i.e., two operations). The value of)),(max(QPmno  , which shows the

maximum value of “move” and “join” operations needed from any partition P to Q,

Partition A Partition B

A1 A2 B1 B2

e1, e2,

e4

e3, e5,

e6

e1, e3,

e4

e2, e5,

e6

 62

where the set of entities in partition P and partition Q is equal, is described in an

algorithm provided by Wen and Tzerpos in [Wen 04]. By applying this algorithm, the

maximum cost of transforming any partition to partition B of Figure 5.5 is 8. Therefore,

MoJoFM(A, B) is ()() %1008/21 − = 75%. In other words, partition A is 75% similar to

partition B.

Table 5.6 shows the result of comparing Weka and JHotDraw decompositions, which are

recovered by our clustering algorithm, to the expert decompositions.

Table 5.6. The result of comparing Weka and JHotDraw extracted decompositions with

the expert decompositions using MoJoFM

Target System MoJoFM

Weka 87.83%

JHotDraw 36.8%

As shown in this table, the MoJoFM values indicate a significant difference between our

recovered decomposition and the package decomposition provided by the system

developer. The results of this comparison shows that the our decomposition results in a

behavioural interactions among classes that might provide additional insights to support

the comprehension of the system behaviour and the recovery of architectural views.

In what follows, we further compare the internal quality of cluster results, by

superimposing the resulting clusters onto the Weka and JHotDraw architectures (shown

in Tables 5.7 and 5.8, respectively). For example, the cluster C1 (Table 5.7), which was

 63

recovered by our approach contains classes that belong to the Weka packages:

estimators and classifiers.

5.4.2 Internal Analysis of Weka Clusters

From Table 5.7, we can observe that the associations, clusterers, j48 and m5

packages of Weka were completely recovered by our clustering technique. The

corresponding clusters are C3, C5, C7 and C4 respectively.

Table 5.7. Mapping Weka clusters to Weka packages provided by system expert

Cluster Classes from Packages

C1 Estimators, classifiers

C2 attributeSelection, filters, classifiers

C3 Associations

C4 m5

C5 Clusterers

C6 Classifiers, estimators, filters

C7 j48

C8 attributeSelection, classifiers, filters

The other clusters, C1, C2, C6 and C8, map to more than one Weka package. To

understand the reasons behind this, we analyzed the static dependencies of the classes

residing in these clusters using a static analysis tool called SA4J. The tool has a feature

 64

called “explorer” that allowed us to visually explore the relationships between Weka

components. We discuss the analysis of each of these clusters in what follows:

Cluster C1 contains the classes of the package estimators and one class,

NaiveBayes, which belongs to the classifiers package. The class

NaiveBayes implements the naive Bayesian classification algorithm which uses

various estimators to measure so-called precision values. From the implementation point

of view, the class NaiveBayes depends tightly on classes of the estimators

package, which explains why our clustering approach grouped these elements together.

Cluster C2 recovered most classes of the attribulteSelection package.

However, it also included classes of the filters package (namely

AttributeFilter and DiscretizeFilter) and one class named

DecisionTable of the classifiers package. Based on Weka documentation,

the classes of the filters package included in this cluster serve as utility classes to

classes of the attribulteSelection package. The class DecisionTable does

not depend on classes of attributeSelection package but rather uses classes of

the filters package, which explains its inclusion in C2. Ideally, the class

DecisionTable should have been clustered separately. However, the utility classes

of the filters packages have caused this class to be misplaced in C2. We believe that

this could have be avoided if we had considered AttributeFilter and

DiscretizeFilter as utilities and removed them from the clustering process as we

did with the system-level utility package core. This would require using utility detection

 65

techniques that can detect utilities that are local to part of the system other than system-

level utilities.

Each of the clusters C6 and C8 includes classes from three Weka packages as shown in

Table 5.7. The static analysis of the classes of C6 and C8 shows that these packages

contain classes that are tightly coupled.

Cluster C8 represents mainly two packages classifiers and filters. The various

classification algorithms of Weka use classes of the filters package to filter data

prior to performing the classification algorithms, which again justifies the grouping of

these classes into one cluster, C8.

From the above analysis, we were able to infer that Weka designers have packaged the

system classes based on the fact that they implement similar functionality (e.g.,

classification algorithms), although these classes might be completely decoupled. Our

clustering approach, on the other hand, groups related system components according to

the degree of their interaction.

5.4.3 JHotDraw Clusters

Table 5.8 shows the mapping between the recovered clusters and JHotDraw packages.

At first glance, one can attribute the discrepancy between the recovered decomposition

and the expert decomposition to the high volume of dependencies between the JHotDraw

packages (shown in Figure 5.2). A further in-depth analysis of each cluster using the

SA4J tool and the documentation revealed the following:

 66

• Cluster C1 includes only one class from the figure package and 12 classes from

the package standard. The classes of this cluster are centered around one core

class BoxHandleKit, which dragged into the same cluster a set of utility classes,

deal with JHotDraw handles such as SouthWestHandle, WestHandle,

SouthHandle, SouthEastHandle, NorthWestHandle, NorthHandle,

NorthEastHandle, EastHandle. The handle classes are responsible for

creating the handles for locations of figures on the display.

Table 5.8. Mapping JHotDraw clusters to JHotDraw packages provided by system expert

Cluster Classes from Packages

C1 standard and figures

C2 Figures, standard, javadraw, applet, contrib,

framework

C3 Figures, standard

C4 Figures

C5 Framework, standard

C6 Figures, standard

C7 Javadraw

C8 application, standard, figures, javadraw,

framework, contrib, net, pert

C9 atandard, figures

C10 Contrib., figures, standard, javadraw, net,

nothing, pert

C11 standard, framework

 67

• C2 groups classes responsible for the editing, alignment, grouping/ungrouping, and

bouncing of the figure elements. These classes are responsible for editing figure

elements as well as for performing cut, copy, delete and duplicate functions. The

alignment functions implement positioning of figure elements (top, left, right,

center, bottom or middle). Furthermore also two classes are included to perform

grouping and ungrouping of figure elements. The cluster includes one class for start

and stop of the animation, which performs bouncing of figure elements on the

display. Another class included in this cluster is responsible for figure selection.

• Cluster C3 to C7 contain only two classes each. Cluster C3 includes one class,

PolyLineLocator, which is responsible for optional line decoration at the start

and end of the polygon. The other class, ChangeAttributeCommand, provides

the command to change a named figure attribute. Cluster C4 has one class

(GroupFigure) to group figure elements into one object, and another class

(GroupHandle) that provides a handle to the newly created object. The two

classes included in cluster C5 (FigureSelection and

FigureTransferCommand) allow copying a figure element from the display to

the clipboard and importing the figure element from the clipboard to the display.

Cluster C6 contains two classes (ChopEllipseConnector and

ChopBoxConnector) that collaborate with each other to provide a connection

point to an eclipse figure element. Cluster C7 includes two basic classes

(JavaDrawApp, Animator) that start the application. In summary, Clusters C3

to C7 seem to provide specific features supported by JHotDraw.

 68

• Cluster C8 is the largest cluster recovered by our approach and contains many

interfaces and base classes of the JHotDraw system. 50% of the classes grouped in

the C8 cluster are from the framework and standard package. Both of these

packages support basic operating environment functionality for the JHotDraw

drawing tool. Cluster C8 also includes classes responsible for the standard

implementation of drawing, buffered update strategy (to draw a view into a buffer

followed by copying the buffer to the figure display), as well as the default

implementation to support various tools such as: line, polygon. Furthermore it

provides the abstract handle for any figure element, figure element enumerator.

Figure change listener is also implemented in C8 to track any change to a figure as

well as a basic figure interface with its handles to manipulate its shape or attributes,

as well as connectors to define how to locate a connection point are provided.

• Cluster C9 contains a core abstract class AbstractConnector that provides

default implementation for connector interface. Other classes provide handles to

various connector activities by implementing AbstractConnector. Connectors

locate connection points on a figure element. Cluster C9 groups the classes for

various connector activities such as elbow connection, line connection, shortest

distance connection, etc.

• Cluster 10 contains a core abstract class AbstractTool that provides

implementation support for various tools, and concrete classes that inherit from

AbstractTool. Such individual classes provide support for URL tool (To create

a hyperlink object in the figure), scribble tool, text tool, border tool, polygon tool

 69

and connected text tool. Cluster 10 includes a class CreationTool to create a

new tool for the application and to create a figure for that new tool. One class which

seems to be wrongly placed in cluster C10 is the PasteCommand class that should

be placed in cluster C2.

The classes of the system that were not clustered in any of the 10 core clusters are placed

in the orphan container cluster. These classes, moved to the orphan container cluster,

were GridConstrainer, PointConstrainer, LineDecoration, HJDError

and TextHolder. The static analysis of these classes using SA4J revealed that

HJDError extends the java Error class and does not have a static relation with the other

classes. The class GridConstrainer implements the PointConstrainer

interface to provide a constraint for creating a point on the grid. PointConstrainer

is an interface to create different grids. TextHolder is also an interface for editable

text contents, which is only used by TextTool.

From the above analysis of the JHotDraw decomposition we can conclude that the

resulting clusters contain classes that are inter-connected based on the responsibilities

they share rather than the type of functionality they provide. Cluster C1 for example

creates handles for locating figures, cluster C2 provides various commands for editing

and placing figure elements, Cluster C3 to C7 provides supports for various small

features, cluster C8 provides core operating environment functionality for the tool, cluster

C9 supports the connector activity and cluster C10 provides support capabilities.

 70

5.4.4 Conclusion of Analysis

It should be noted that it is very common for a clustering approach to impose a structural

clustering rather than finding “natural” clusters [Tzerpos 00]. The one imposed by the

feature-based clustering approach can be viewed as a behavioural decomposition of the

system. This view can be used with a combination of other views (e.g., a structural

decomposition) to support the comprehension process of large systems and their

architectures.

We were also able to observe for both systems that the skeleton decompositions provided

stable clusters, which allowed the static analysis phase to incorporate most of the

remaining components (i.e., “orphans”) into the skeleton clusters.

 71

Chapter 6 Conclusions

Understanding a large software system can be greatly facilitated if the system is

decomposed into smaller, more manageable clusters. Unlike existing clustering that focus

mainly on static analysis of the source code, in this thesis, we introduced a new clustering

technique that combines dynamic analysis and static dependencies. Our main objective is

to group a system’s entities according to the way they collaborate to implement software

features of the system rather than relying only on mere structural relationships found in

the source code.

The remaining of this chapter is organized as follows. In Section 6.1, we revisit the main

contribution of the thesis. In Section 6.2, we discuss future directions that can improve

the work presented in this thesis. We present our closing remarks in Section 6.3.

6.1 Research Contributions

In this research we introduced a novel clustering approach that uses software features as

clustering criteria to cluster the entities of a poorly documented software system. We

argued that software features are a good clustering criterion because of the fact that (1)

they represent an intrinsic grouping of the components that implement them, (2) they are

abstract concepts and, as such, they can readily be used to extract abstract components of

the system.

 72

We provided two case studies, Weka and JhotDraw, to evaluate our approach. The results

of both case studies are satisfactory. The approach is successful to construct

decomposition where the components that interact with each other are grouped into

clusters.

6.2 Future Directions

The approach is evaluated and gives satisfactory results on medium scale software

system. However there is a need to continue experimenting with the proposed approach

and assess its effectiveness when applied to large software systems with poor

architecture.

In addition, there is a need to determine the threshold for calculating the number of

features needed for better results and how this number correlates with code coverage.

We also need to compare our technique with existing techniques in order to evaluate its

effectiveness and precision.

6.3 Closing Remarks

While there are many clustering techniques already presented in the literature, we

identified a unique clustering technique which effectively uses the software features to

identify the relation between components. Our contribution to the software clustering

domain is to identify the benefit of using dynamic analysis in general and software

features in particular as potential clustering criteria to perform software clustering. We

hope that further research in the area of software clustering can benefit from the research

provided in this thesis.

 73

References

Agrawal 94 Agrawal, R. and Srikant, R., “Fast Algorithms for Mining

Association Rules in Large Databases,” in Proc. of the 20th

International Conference on Very Large Data Bases, pp. 487-

499, 1994.

American Heritage 85 American Heritage, The American Heritage Dictionary,

Houghton Mifflin, Boston, MA, 1985.

Anderberg 73 Anderberg, M. R., Cluster Analysis for Applications, Academic

Press, 1973.

Anquetil 99a Anquetil, N., Fourrier, C., and Lethbridge, T. C., “Experiments

with Clustering as a Software Remodularization Method,” in

Proc. of the 6th Working Conference on Reverse Engineering,

IEEE Computer Society, pp. 235-255, 1999.

Anquetil 99b Anquetil, N. and Lethbridge, T. C., “Recovering software

architecture from the names of source files,” Journal of Software

Maintenance and Evolution: Research and Practice, 11(3), pp.

201-221, 1999.

Anquetil 03 Anquetil, N. and Lethbridge, T. C., “Comparative study of

Clustering Algorithms and Abstract Representations for Software

Remodularisation,” IEE Proceedings on Software, 150(3), pp.

185-201, 2003.

Antoniol 06 Antoniol, G. and Guéhéneuc, Y., “Feature Identification: An

Epidemiological Metaphor,” IEEE Transactions on Software

Engineering, 32(9), pp. 627-641, 2006.

Bauer 04 Bauer, M. and Trifu, M., “Architecture-Aware Adaptive

Clustering of OO Systems,” in Proc. of the 8th European

 74

Working Conference on Software Maintenance and

Reengineering, IEEE Computer Society, pp. 03-14, 2001.

Calder 03 Calder, M., Kolberg, M., Magill, E., and Reiff-Marganiec, S.,

“Feature interaction: a critical review and considered forecast,”

The International Journal of Computer and Telecommunications

Networking, 41(1), pp. 115-141, 2003.

Davis 82 Davis, A. M., “The Design of a Family of Application-Oriented

Requirements Languages,” IEEE Computer, 15(5), pp. 21-28,

1982.

Dempster 77 Dempster, A., Laird, N. and Rubin, D., “Maximum likelihood

from incomplete data via the EM algorithm,” Journal of the Royal

Statistical Society, 39(1), pp. 1–38, 1977.

Dugerdil 07 Dugerdil, P., “Using trace sampling techniques to identify

dynamic clusters of classes,” in Proc. of the 2007 ACM

Conference of the Center for Advanced Studies on Collaborative

Research, pp. 306-314, 2007.

Eisenbarth 03 Eisenbarth, T., Koschke, R., and Simon, D., “Locating Features in

Source Code,” IEEE Transactions on. Software Engineering,

29(3), pp. 210-224, 2003.

Eisenberg 05 Eisenberg, A. D. and De Volder, K., “Dynamic Feature Traces:

Finding Features in Unfamiliar Code,” in Proc. of the 21st IEEE

international Conference on Software Maintenance, IEEE

Computer Society, pp. 337-346, 2005.

Fisher 87 Fisher, D. H., “Knowledge Acquisition Via Incremental

Conceptual Clustering,” PhD Dissertation, University of

California, Irvine, USA, 1987.

Griss 98 Griss, M. L., Favaro, J., and Alessandro, M. D., “Integrating

Feature Modeling with the RSEB,” in Proc. of the 5th

 75

international Conference on Software Reuse, IEEE Computer

Society, pp. 76-85, 1998.

Hamou-Lhadj 06 Hamou-Lhadj, A. and Lethbridge, T., “Summarizing the Content

of Large Traces to Facilitate the Understanding of the Behaviour

of a Software System,” in Proc. of the 14th International

Conference on Program Comprehension, IEEE Computer

Society, pp. 181-190, 2006.

Holte 93 Holte, R.C., “Very simple classification rules perform well on

most commonly used datasets,” Machine Learning, 11(1), pp. 63-

90, 1993.

Hutchens 85 Hutchens, D. H. and Basili, V. R., “System Structure Analysis:

Clustering with Data Bindings,” IEEE Transactions on Software

Engineering, 11(8), pp. 749-757, 1985.

Jacobson 94 Jacobson, I., Object-Oriented Software Engineering: A Use Case

Driven Approach, Addison-Wesley, 1994.

Jain 88 Jain, A. K. and Dubes, R. C. Algorithms for Clustering Data,

Prentice-Hall, 1988.

John 95 George H. John and Pat Langley. “Estimating Continuous

Distributions in Bayesian Classifiers”. in Proc. of the

Proceedings of the Eleventh Conference on Uncertainty in

Artificial Intelligence, Morgan Kaufmann, pp. 338-345, 1995.

Kang 90 Kang, K., Cohen, S., Hess, J., Novak, W. and Peterson, A.,

“Feature-Oriented Domain Analysis (FODA) Feasibility Study,”

Technical Report: CMU/SEI-90-TR-21, ADA 235785, Software

Engineering Institute, Carnegie Mellon University, 1990.

Kang 98 Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M.,

“FORM: A feature-oriented reuse method with domain-specific

reference architectures,” Annals of Software Engineering, 5, pp.

143-168, 1998.

 76

Lee 97 Lee, H. B. and Zorn, B. G., “BIT: A tool for instrumenting java

bytecodes,” in Proc. of the USENIX Symposium on Internet

Technologies, pp. 73-82, 1997.

Lee 02 Lee, K., Kang, K. C., and Lee, J., “Concepts and Guidelines of

Feature Modeling for Product Line Software Engineering,” in

Proc. of the 7th international Conference on Software Reuse:

Methods, Techniques, and Tools, Lecture Notes in Computer

Science, vol. 2319, Springer-Verlag, pp. 62-77, 2002.

Liu 03 Liu, D. and Mei, H., “Mapping requirements to software

architecture by feature-orientation,” in Proc. of the 2nd

International Workshop on From Software Requirements to

Architectures, pp. 69-76, 2004.

Mancoridis 99 Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R.,

“Bunch: A Clustering Tool for the Recovery and Maintenance of

Software System Structures,” in Proc. of the International

Conference on Software Maintenance, IEEE Computer Society,

pp. 50-59, 1999.

Merlo 93 Merlo, E., McAdam, I., Mori, R. D., “Source Code Informal

Information Analysis Using Connectionist Models,” in Proc. of

the 13th International Joint Conference on Artificial Intelligence,

pp. 1339-1344, 1993.

Müller 93 Müller H. A., Orgun M. A., Tilley S. R and Uhl J. S., “A reverse

engineering approach to subsystem structure identification,”

Journal of Software Maintenance and Evolution: Research and

Practice, 5(4), pp. 181 – 204, 1993.

Patel 07 Patel, C., Hamou-Lhadj, A. and Rilling, J., “Software clustering

based on behavioural features,” in Proc. of the 11th IASTED

International Conference on Software Engineering, Acta Press,

pp. 591-185, 2007.

 77

Poshyvanyk 07 Poshyvanyk, D., Guéhéneuc, Y., Marcus A., Antoniol, G.,

Rajlich, V., “Feature Location Using Probabilistic Ranking of

Methods Based on Execution Scenarios and Information

Retrieval,” IEEE Transactions on Software Engineering, 33(6),

pp. 420-432, 2007.

Platt 99 Platt, J. C., “Fast training of support vector machines using

sequential minimal optimization,” Advances in Kernel Methods:

Support Vector Learning, MIT Press, pp. 185-208, 1999.

Quinlan 93 Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers, 1993.

Rohatgi 08 Rohatgi, A., Hamou-Lhadj, A. and Rilling, J., “An Approach for

Mapping Features to Code Based on Static and Dynamic

Analysis,” in Proc. of the International Conference on Program

Comprehension, IEEE Computer Society, pp. 236-241, 2008.

Schwanke 91 Schwanke, R. W., “An intelligent tool for re-engineering software

modularity,” in Proc. of the 13th International Conference on

Software Engineering, IEEE Computer Society, pp. 83-92, 1991.

Tzerpos 98 Tzerpos, V. and Holt, R. C., “Software Botryology, Automatic

Clustering of Software Systems,” in Proc. of the 9th International

Workshop on Database and Expert Systems Applications, pp.

811-818, 1998.

Tzerpos 99 Tzerpos, V. and Holt, R. C., “MoJo: A Distance Metric for

Software Clustering,” in Proc. of the 6th Working Conference on

Reverse Engineering, pp. 187-193, 1999.

Tzerpos 00 Tzerpos, V. and Holt, R. C., “ACDC: An Algorithm for

Comprehension-Driven Clustering,” in Proc. of the Seventh

Working Conference on Reverse Engineering, pp. 258-267, 2000.

 78

Wang 97 Wang, Y. and Witten, I. H., “Induction of model trees for

predicting continuous classes,” in Proc. of European Conference

on Machine Learning, pp. 128-137, 1997.

Wen 04 Wen, Z. and Tzerpos, V., “An Effectiveness Measure for

Software Clustering Algorithms,” in Proc. of the 12th IEEE

international Workshop on Program Comprehension, IEEE

Computer Society, pp. 194-203, 2004.

Wen 05 Wen, Z. and Tzerpos, V., “Software Clustering based on

Omnipresent Object Detection,” in Proc. of the 13th international

Workshop on Program Comprehension, pp. 269-278, 2005.

Wiggerts 97 Wiggerts, T. A., “Using Clustering Algorithms in Legacy

Systems Remodularization,” in Proc. of the 4th Working

Conference on Reverse Engineering, pp. 33-43, 1997.

Wilde 95 Wilde, N. and Scully, M. C., “Software reconnaissance: mapping

program features to code,” Journal of Software Maintenance and

Evolution: Research and Practice, 7(1), pp. 49-62, 1995

Witten 05 Witten, I. H. and Frank, E., Data Mining: Practical Machine

Learning Tools and Techniques (Second Edition). Morgan

Kaufmann, 2005.

Xiao 05 Xiao, C. and Tzerpos, V., “Software Clustering Based on

Dynamic Dependencies,” in Proc. of the 9th European

Conference on Software Maintenance and Reengineering, pp.

124-133, 2005.

Zave 99 Zave, P., “FAQ Sheet on Feature Interaction,” AT&T Labs-

Research, 1999. URL:

http://www.research.att.com/~pamela/faq.html, 1999.

 79

 80

Appendix A

In this appendix, we show the complete decompositions resulting from applying our

clustering approach to Weka and JHotDraw systems.

Table A.1. Weka complete decomposition

Cluster Classes

C1 weka.estimators.DiscreteEstimator

weka.classifiers.NaiveBayes

weka.estimators.NormalEstimator

weka.estimators.DDConditionalEstimator

weka.estimators.DKConditionalEstimator

weka.estimators.DNConditionalEstimator

weka.estimators.NDConditionalEstimator

weka.estimators.ConditionalEstimator

weka.estimators.Estimator

weka.estimators.MahalanobisEstimator

weka.estimators.NNConditionalEstimator

weka.estimators.PoissonEstimator

C2 weka.filters.AttributeFilter

weka.classifiers.DecisionTable

weka.filters.DiscretizeFilter

weka.attributeSelection.CfsSubsetEval

weka.attributeSelection.GainRatioAttributeEval

weka.attributeSelection.InfoGainAttributeEval

weka.attributeSelection.SymmetricalUncertAttributeEval

weka.attributeSelection.ASEvaluation

weka.attributeSelection.AttributeEvaluator

 81

weka.attributeSelection.AttributeSelection

weka.attributeSelection.UnsupervisedSubsetEvaluator

weka.attributeSelection.UnsupervisedAttributeEvaluator

weka.attributeSelection.RankedOutputSearch

weka.attributeSelection.SubsetEvaluator

weka.attributeSelection.BestFirst

weka.attributeSelection.ForwardSelection

weka.attributeSelection.Ranker

weka.attributeSelection.ReliefFAttributeEval

C3 weka.associations.Apriori

weka.associations.ItemSet

C4 weka.classifiers.m5.M5Prime

weka.classifiers.m5.Options

weka.classifiers.m5.M5Utils

weka.classifiers.m5.Node

weka.classifiers.m5.Function

weka.classifiers.m5.SplitInfo

weka.classifiers.m5.Impurity

weka.classifiers.m5.Values

weka.classifiers.m5.Errors

weka.classifiers.m5.Ivector

weka.classifiers.m5.Dvector

weka.classifiers.m5.Matrix

weka.classifiers.m5.Measures

C5 weka.clusterers.EM

weka.clusterers.DistributionClusterer

weka.clusterers.Clusterer

weka.clusterers.ClusterEvaluation

weka.clusterers.Cobweb

C6 weka.classifiers.LinearRegression

 82

weka.filters.NominalToBinaryFilter

weka.filters.ReplaceMissingValuesFilter

weka.estimators.KernelEstimator

weka.estimators.KDConditionalEstimator

weka.estimators.KKConditionalEstimator

C7 weka.classifiers.j48.J48

weka.classifiers.j48.C45ModelSelection

weka.classifiers.j48.ModelSelection

weka.classifiers.j48.C45PruneableClassifierTree

weka.classifiers.j48.ClassifierTree

weka.classifiers.j48.Distribution

weka.classifiers.j48.NoSplit

weka.classifiers.j48.ClassifierSplitModel

weka.classifiers.j48.C45Split

weka.classifiers.j48.EntropyBasedSplitCrit

weka.classifiers.j48.InfoGainSplitCrit

weka.classifiers.j48.SplitCriterion

weka.classifiers.j48.GainRatioSplitCrit

weka.classifiers.j48.Stats

weka.classifiers.j48.BinC45ModelSelection

weka.classifiers.j48.BinC45Split

weka.classifiers.j48.C45PruneableDecList

weka.classifiers.j48.ClassifierDecList

weka.classifiers.j48.EntropySplitCrit

weka.classifiers.j48.MakeDecList

weka.classifiers.j48.PruneableDecList

weka.classifiers.j48.PART

weka.classifiers.j48.PruneableClassifierTree

C8 weka.classifiers.DistributionClassifier

weka.classifiers.Classifier

 83

weka.classifiers.Evaluation

weka.filters.Filter

weka.classifiers.SMO

weka.filters.NormalizationFilter

weka.attributeSelection.OneRAttributeEval

weka.attributeSelection.WrapperSubsetEval

weka.classifiers.AdaBoostM1

weka.classifiers.ZeroR

weka.classifiers.Bagging

weka.classifiers.BVDecompose

weka.classifiers.CheckClassifier

weka.classifiers.ClassificationViaRegression

weka.filters.MakeIndicatorFilter

weka.classifiers.CVParameterSelection

weka.classifiers.DecisionStump

weka.classifiers.IB1

weka.classifiers.IBk

weka.classifiers.Id3

weka.classifiers.KernelDensity

weka.classifiers.Logistic

weka.classifiers.LogitBoost

weka.classifiers.LWR

weka.classifiers.MultiClassClassifier

weka.classifiers.MultiScheme

weka.classifiers.NaiveBayesSimple

weka.classifiers.OneR

weka.classifiers.Prism

weka.classifiers.RegressionByDiscretization

weka.classifiers.Stacking

weka.classifiers.VotedPerceptron

weka.filters.AddFilter

 84

weka.filters.AllFilter

weka.filters.AttributeSelectionFilter

weka.filters.FirstOrderFilter

weka.filters.InstanceFilter

weka.filters.MergeTwoValuesFilter

weka.filters.NullFilter

weka.filters.NumericTransformFilter

weka.filters.SplitDatasetFilter

weka.filters.SwapAttributeValuesFilter

weka.attributeSelection.ASSearch

weka.classifiers.UpdateableClassifier

Table A.2. JHotDraw complete decomposition

Cluster Classes

C1 CH.ifa.draw.standard.SouthWestHandle

CH.ifa.draw.standard.WestHandle

CH.ifa.draw.standard.SouthHandle

CH.ifa.draw.standard.SouthEastHandle

CH.ifa.draw.standard.NorthWestHandle

CH.ifa.draw.standard.NorthHandle

CH.ifa.draw.standard.NorthEastHandle

CH.ifa.draw.standard.EastHandle

CH.ifa.draw.standard.BoxHandleKit

CH.ifa.draw.standard.AbstractLocator

CH.ifa.draw.standard.ReverseFigureEnumerator

CH.ifa.draw.figures.ElbowTextLocator

 85

CH.ifa.draw.standard.OffsetLocator

C2 CH.ifa.draw.figures.GroupCommand

CH.ifa.draw.standard.CutCommand

CH.ifa.draw.standard.DeleteCommand

CH.ifa.draw.standard.DuplicateCommand

CH.ifa.draw.figures.UngroupCommand

CH.ifa.draw.standard.SendToBackCommand

CH.ifa.draw.standard.CopyCommand

CH.ifa.draw.standard.BringToFrontCommand

CH.ifa.draw.standard.AlignCommand

CH.ifa.draw.samples.javadraw.BouncingDrawing

CH.ifa.draw.standard.FigureChangeEventMulticaster

CH.ifa.draw.figures.RectangleFigure

CH.ifa.draw.standard.ToolButton

CH.ifa.draw.applet.DrawApplet

CH.ifa.draw.contrib.DiamondFigure

CH.ifa.draw.framework.Tool

CH.ifa.draw.standard.SimpleUpdateStrategy

CH.ifa.draw.applet.SleeperThread

CH.ifa.draw.framework.Painter

C3 CH.ifa.draw.figures.PolyLineLocator

CH.ifa.draw.standard.ChangeAttributeCommand

C4 CH.ifa.draw.figures.GroupFigure

CH.ifa.draw.figures.GroupHandle

 86

C5 CH.ifa.draw.framework.FigureSelection

CH.ifa.draw.standard.FigureTransferCommand

C6 CH.ifa.draw.figures.ChopEllipseConnector

CH.ifa.draw.standard.ChopBoxConnector

C7 CH.ifa.draw.samples.javadraw.Animator

CH.ifa.draw.samples.javadraw.JavaDrawApp

C8 CH.ifa.draw.application.DrawApplication

CH.ifa.draw.standard.StandardDrawingView

CH.ifa.draw.standard.FigureEnumerator

CH.ifa.draw.standard.CompositeFigure

CH.ifa.draw.standard.BufferedUpdateStrategy

CH.ifa.draw.standard.AbstractTool

CH.ifa.draw.figures.AttributeFigure

CH.ifa.draw.figures.FigureAttributes

CH.ifa.draw.samples.javadraw.AnimationDecorator

CH.ifa.draw.standard.DecoratorFigure

CH.ifa.draw.figures.TextFigure

CH.ifa.draw.framework.DrawingChangeEvent

CH.ifa.draw.framework.FigureChangeEvent

CH.ifa.draw.standard.AbstractFigure

CH.ifa.draw.standard.StandardDrawing

CH.ifa.draw.figures.ArrowTip

CH.ifa.draw.figures.PolyLineFigure

CH.ifa.draw.figures.EllipseFigure

 87

CH.ifa.draw.figures.RoundRectangleFigure

CH.ifa.draw.contrib.PolygonFigure

CH.ifa.draw.figures.BorderDecorator

CH.ifa.draw.standard.AbstractHandle

CH.ifa.draw.standard.LocatorHandle

CH.ifa.draw.standard.RelativeLocator

CH.ifa.draw.figures.RadiusHandle

CH.ifa.draw.contrib.ChopPolygonConnector

CH.ifa.draw.contrib.PolygonHandle

CH.ifa.draw.contrib.PolygonScaleHandle

CH.ifa.draw.contrib.TriangleFigure

CH.ifa.draw.contrib.TriangleRotationHandle

CH.ifa.draw.figures.ImageFigure

CH.ifa.draw.figures.NumberTextFigure

CH.ifa.draw.figures.PolyLineConnector

CH.ifa.draw.figures.PolyLineHandle

CH.ifa.draw.samples.javadraw.FollowURLTool

CH.ifa.draw.samples.javadraw.JavaDrawViewer

CH.ifa.draw.samples.net.NodeFigure

CH.ifa.draw.standard.ConnectionHandle

CH.ifa.draw.samples.pert.PertDependency

CH.ifa.draw.samples.pert.PertFigure

CH.ifa.draw.standard.DragTracker

CH.ifa.draw.standard.HandleTracker

 88

CH.ifa.draw.standard.SelectAreaTracker

CH.ifa.draw.framework.DrawingEditor

CH.ifa.draw.framework.Drawing

CH.ifa.draw.framework.FigureEnumeration

CH.ifa.draw.framework.Figure

CH.ifa.draw.framework.Locator

CH.ifa.draw.framework.FigureChangeListener

CH.ifa.draw.framework.ConnectionFigure

CH.ifa.draw.framework.DrawingView

CH.ifa.draw.framework.DrawingChangeListener

CH.ifa.draw.framework.Connector

CH.ifa.draw.framework.Handle

CH.ifa.draw.samples.javadraw.PatternPainter

C9 CH.ifa.draw.figures.ElbowConnection

CH.ifa.draw.figures.LineConnection

CH.ifa.draw.figures.ShortestDistanceConnector

CH.ifa.draw.standard.AbstractConnector

CH.ifa.draw.figures.ElbowHandle

CH.ifa.draw.standard.ChangeConnectionStartHandle

CH.ifa.draw.standard.ChangeConnectionHandle

CH.ifa.draw.standard.ChangeConnectionEndHandle

CH.ifa.draw.figures.FontSizeHandle

CH.ifa.draw.standard.NullHandle

CH.ifa.draw.standard.LocatorConnector

 89

C10 CH.ifa.draw.contrib.PolygonTool

CH.ifa.draw.figures.BorderTool

CH.ifa.draw.standard.ActionTool

CH.ifa.draw.figures.InsertImageCommand

CH.ifa.draw.figures.ScribbleTool

CH.ifa.draw.samples.javadraw.URLTool

CH.ifa.draw.standard.ToggleGridCommand

CH.ifa.draw.standard.PasteCommand

CH.ifa.draw.standard.ConnectionTool

CH.ifa.draw.figures.LineFigure

CH.ifa.draw.figures.ConnectedTextTool

CH.ifa.draw.figures.TextTool

CH.ifa.draw.standard.CreationTool

CH.ifa.draw.samples.javadraw.MySelectionTool

CH.ifa.draw.standard.SelectionTool

CH.ifa.draw.samples.javadraw.JavaDrawApplet

CH.ifa.draw.samples.net.NetApp

CH.ifa.draw.samples.nothing.NothingApp

CH.ifa.draw.samples.nothing.NothingApplet

CH.ifa.draw.samples.pert.PertApplet

CH.ifa.draw.samples.pert.PertFigureCreationTool

CH.ifa.draw.samples.pert.PertApplication

C11

(Orphan

container)

CH.ifa.draw.standard.GridConstrainer

CH.ifa.draw.framework.PointConstrainer

 90

CH.ifa.draw.figures.LineDecoration

CH.ifa.draw.framework.HJDError

CH.ifa.draw.standard.TextHolder

