
An Anomaly Detection System based on Ensemble
of Detectors with Effective Pruning Techniques

Amirreza Soudi, Wael Khreich, and Abdelwahab Hamou-Lhadj
Software Behaviour Analysis (SBA) Research Lab, Department of Electrical and Computer Engineering,

Concordia University, Montreal, QC, Canada
Email: {am_soudi, wkhreich, abdelw}@ece.concordia.ca

Abstract—Anomaly detection systems rely on machine learn-
ing techniques to model the normal behavior of the system.
This model is used during operation to detect anomalies due
to attacks or design faults. Ensemble methods have been used
to improve the overall detection accuracy by combining the
outputs of several accurate and diverse models. Existing Boolean
combination techniques either require an exponential number of
combinations or sequential combinations that grow linearly with
the number of iterations, which make them difficult to scale up
and analyze. In this paper, we propose PBC (Pruning Boolean
Combination), an efficient approach for selecting and combining
anomaly detectors. PBC relies on two novel pruning techniques
that we have developed to aggressively prune redundant and
trivial detectors. Compared to existing work, PBC reduces signif-
icantly the number of detectors to combine, while keeping similar
accuracy. We show the effectiveness of PBC when applying it to
a large dataset.

Keywords—Intrusion Detection Systems; Anomaly Detection
Systems; Multiple-Detector Systems; Boolean Combination; Prun-
ing Techniques

I. INTRODUCTION

Intrusion Detection Systems (IDSs) have become impor-
tant tools that help security administrators to identify and
analyze unauthorized computer or network activities, from
both outsider and insider attacks. The dominant detection
methodologies are signature-based and anomaly-based ap-
proaches. Signature-based (or misuse) IDSs look for events
that correspond to patterns of known attacks. They can provide
a high level of accuracy, however are limited to detecting
known attacks and vulnerable to polymorphic attacks (which
are capable of changing their signatures as they propagate).

Anomaly detection systems (ADSs), on the other hand,
monitor for significant deviations from normal system behav-
ior. They are typically trained (using machine learning and
data mining techniques) on datasets collected over a period
of attack-free activities to learn the normal system behavior,
and then deployed to detect deviations from the expected
system behavior. These deviations are reported as anomalous
events, although they are not necessarily malicious activities
or attacks because they may also correspond to coding or
configuration errors. An ADS can detect novel attacks (not
known during training time) but generate large number of false
alarms, because it is difficult to obtain complete descriptions
of complex system behavior, which may change over time.

IDSs can also be categorized depending on their location of
deployment into network- and host-based detection systems (a
more comprehensive taxonomy of IDSs can be found in [30]).

Network-based IDSs monitor and analyze traffic to and from
all devices on the network. They may be be located anywhere
in the network; integrated in network devices (e.g., switches
and routers) or as a standalone device. A host-based IDS runs
on a host computer and monitors sensitive activities on this
host, such as unauthorized access, modification of files, or
system calls.

In this work, we focus on host-based anomaly detection us-
ing system calls – the gateway between user and kernel mode.
Short sequences of system calls have been shown consistent
with normal host operation, and can be used to detect attacks
[11], [41]. A large number of research studies have investigated
different machine learning and data mining techniques for
detecting anomalies in system call sequences [12]. Among
these, techniques based on Hidden Markov Models (HMMs) –
probabilistic models for sequential data – have been shown to
produce a high level of detection accuracy [8], [13], [17], [18],
[20], [33], [37], [39], [41], [43].

The success of an ADS depends largely on the model of
normal behavior. A single HMM may not, however, provide
adequate approximation of the underlying data distribution of a
complex host system behavior, due to the many local maxima
of the likelihood function [20]. Ensemble methods have been
used to improve the overall system accuracy by combining
the outputs of several accurate and diverse models [7], [23],
[25], [44]. In particular, combining the outputs from multiple
HMMs, each trained with a different number of states, in the
Receiver Operating Characteristics (ROC) space according to
the Iterative Boolean Combination (IBC), has been shown to
provide a significant improvement in the detection accuracy of
system call anomalies [21].

The IBC is a general decision-level combination technique
that attempts to select the decision thresholds (from each input
detector) and the Boolean functions that maximize the overall
ROC convex hull of the combined ensemble [21]. As presented
in Algorithm 1, given K soft detectors that assign scores or
probabilities to the input samples, (which can be converted
to a crisp detector by setting a threshold on the scores as
further detailed in section III) , the IBC algorithm starts by
combining the outputs of the first two detectors (in the order
of input), and then proceeds sequentially by combining the
resulting combinations with the outputs of third detector, and
so on, until the Kth detector is combined. It can then re-
iterate to combine the resulting combinations with the original
detectors.

The IBC technique provides a practical way for combining

relatively large number of detectors while avoiding the expo-
nential explosion of Boolean combinations. As detailed in Sec-
tion IV-D, applying all Boolean functions using an exhaustive
brute-force search to determine optimal combinations leads to
an exponential number of combinations, which is prohibitive
even for a small number of detectors [1]. Even the pairwise
Bruteforce Boolean Combination (BBC2), which is used as a
baseline reference in our experiments, requires an exponential
number of combinations, which is equal to the square of the
number of detectors (see Algorithm 2 without the pruning
mechanisms).

However, the sequential combinations of soft detectors
according to IBC still faces challenges, when a large number of
detectors (K) is presented for combinations. First, it produces
a sequence of combination rules that grows linearly with K
(and the number of iterations), which becomes difficult to
analyse and understand. Furthermore, it makes the algorithm
sensitive to the order in which the detectors are input for
combinations, which increases the effort required to find best
subset for operations. In any case, combining all available
detectors without any pruning mechanism may be inefficient
due to the redundancy in their outputs.

In this work, we propose an ADS based on a Pruned
Boolean Combination (PBC) algorithm, which employs two
novel pruning techniques to select a subset of diverse and accu-
rate detectors for combination, while discarding the remaining
ones. Although both pruning techniques are based on Cohen’s
Kappa [5] measure, they differ in the way they compute the
diversity and accuracy of the selected detectors for combina-
tions. While the first technique relies only on Kappa measure
(MinMax-Kappa), the second uses both Kappa and the ROC
convex hull (ROCCH-Kappa). Therefore, our proposed PBC
approach provides an efficient way to prune and combine large
number of detectors, which avoids the exponential explosion
of combinations of brute-force techniques, and reduces the
sequence of combinations provided by IBC.

We evaluate our PBC-based ADS using ADFA Linux
Dataset (ADFA-LD)1, which has been recently made publicly
available on the website of the University of New South
Wales [6]. The performance of the PBC using both pruning
techniques are compared to that of IBC and BBC2 in terms
of ROC analysis and time complexity. The results show that
PBC with both pruning techniques are capable of maintaining
similar overall accuracy as measured by the ROC curves to that
of IBC and BBC2. However, the time required for searching
and selecting (or pruning) the subset of detectors from the same
ensemble of detectors is on average three magnitudes lower
for PBC with MinMax-Kappa pruning than that of BBC2.
Furthermore, the experimental results show that PBC with both
pruning techniques always provides two crisp detectors for
combination (during the operations), while IBC provided an
average of 11 detectors to achieve the same operating point.

The remaining of this paper is organized as follows. The
next section reviews anomaly detection systems based on
system call traces with a focus on hidden Markov models
detectors. In Section III, we provide background information
about ROC analysis and a summary of the Boolean com-
bination techniques in the ROC space. Section IV presents

1http://www.cybersecurity.unsw.adfa.edu.au/ADFA IDS Datasets/

our novel PBC approach for pruning and combination of
anomaly detectors, describes our efficient pruning techniques,
and provides a comparative complexity analysis for all Boolean
combination techniques discussed in the paper. Section V
describes the dataset, the experimental protocol, and the evalu-
ation metrics used in our experiments. The results are provided
and discussed in Section VI, followed by the threats to validity
in Section VII, as well as the conclusion and future work in
Section VIII.

II. HMM-BASED ANOMALY DETECTION USING SYSTEM
CALL SEQUENCES

The temporal order of system calls has been shown con-
sistent with the normal behavior of a privileged process,
while an unusual burst will occur during an attack [11],
[41]. The authors proposed a host-based ADS using a simple
sequence matching techniques for detecting anomalous system
call sequences generated by UNIX privileged processes [11].
System call traces provided for training are first segmented into
fixed-length contiguous sequences, using a fixed-size sliding
window, shifted by one symbol to build the normal profile.
These sequences are then stored in a database that represents
the normal process behavior. During operations, a sliding
window (having the same size used to construct the normal
profile) to scan the system calls generated by the monitored
process for anomalies – sequences that are not found in the
normal database.

Several statistical and machine learning techniques have
been investigated over the last two decades for detecting
system call anomalies [12]. Application of machine learning
techniques include neural network [15], k-nearest neighbors
[29], Markov models or n-grams [19], [31], Bayesian models
[24]. Among these, techniques based on discrete HMMs have
been shown to produce a high level of detection accuracy [4],
[8], [13], [14], [17], [18], [20], [39]–[41], [43].

A discrete HMM is a stochastic process for sequential
data [22], [36]. An HMM is determined by two interrelated
mechanisms – a latent Markov chain having a finite number
of states N , and a set of observation probability distributions,
each one associated with a state. Starting from an initial state
Si ∈ {S1, ..., SN}, determined by the initial state probability
distribution πi, at each discrete-time instant, the process tran-
sits from state Si to state Sj according to the transition prob-
ability distribution aij . The process then emits a symbol vk,
from a finite alphabet V = {v1, . . . , vM} of size M symbols,
according to the discrete-output probability distribution bj(vk)
of the current state Sj . HMM is commonly parametrized by
λ = (π,A,B), where the vector π = {πi} is the initial
state probability distribution, matrix A = {aij} is the state
transition probability distribution, and matrix B = {bj(vk)}
is the state output probability distribution, (1 ≤ i, j ≤ N and
1 ≤ k ≤M).

A well trained HMM provides a compact detector that
captures the underlying structure of a process based on the
temporal order of system calls, and detects deviations from
normal system call sequences with high accuracy and tolerance
to noise. Training an HMM from a sequence (or a block)
of observation symbols, o1:T , aims at estimating HMM pa-
rameters λ to best fit the training data. Typically, parameters

estimation consists of maximizing the likelihood of the training
data over HMM parameters space, P (o1:T | λ). Since this
likelihood depends on the latent states, there is no known ana-
lytical solution to the learning problem. Iterative optimization
techniques, such as the Baum-Welch (BW) algorithm [2], are
applied to estimate the HMM parameters over several training
iterations, until the likelihood function is maximized. During
operation, the likelihood of a new observation sequence o1:T
given a trained HMM λ, P (o1:T | λ) is typically evaluated by
using the Forward-Backward (FB) algorithm [22], [36]. Setting
a threshold on the output probabilities of HMM, provides a
decision whether the sequence is normal or anomalous.

Few researchers tried to investigate the effect of the number
of states on the performance of HMM detectors, and found that
N value may have a great impact on the overall performance
[20], [42]. In particular, combining the outputs from multiple
HMMs, each trained with a different N value, in the ROC
space according to the IBC technique (as described in the next
section), has been shown to provide a significant improvement
in the detection accuracy of system call anomalies [21].

III. BOOLEAN COMBINATION OF DETECTORS IN THE
ROC SPACE

This section provides information about ROC analysis and
summarizes the Boolean combination in the ROC space [21].
A crisp detector outputs a decision or a class label (e.g.,
normal or anomaly) while a soft detector such as HMM assigns
scores to the input samples, which can be converted to a
crisp detector by setting a decision threshold on the scores.
Given the responses of a crisp detector on a validation set, the
true positive rate (tpr) is the proportion of positives correctly
classified over the total number of positive samples. The false
positive rate (fpr) is the proportion of negatives incorrectly
classified over the total number of negative samples. The
positive (or target) class is typically the class of interest, which
is the anomalous class for an ADS.

A ROC curve is a plot of tpr against fpr [9]. A crisp
detector produces a single data point in the ROC space, while
a soft detector produces a ROC curve by varying the decision
thresholds. In practice, an empirical ROC plot is obtained by
connecting the observed (tpr, fpr) pairs of a soft detector at
each decision threshold. A point a is superior to another point
b in the ROC space, if fpr(a) ≤ fpr(b) and tpr(a) ≥ tpr(b).
The ROC convex hull (ROCCH) is therefore the outer envelope
connecting superior points in the ROC space. A ROC curve
allows to visualize the performance of detectors and to select
optimal operational points, without committing to a single
decision threshold or to fixed error costs. The area under the
ROC curve (AUC), or under the ROCCH, provides a general
measure for evaluation and selection of detectors [9].

The IBC is a general decision-level combination technique
that attempts to select the decision thresholds (from each input
detector) and the Boolean functions that maximize the overall
ROCCH of the combined ensemble [21]. The core of IBC
(only for the first iteration) is described in Algorithm 1.

The IBC applies each Boolean function to combine the
responses corresponding to each decision threshold from the
first detector to those from the second detector. Fused re-
sponses are then mapped to vertices in the ROC space, and

Algorithm 1: IBC(D1, D2, . . . , DK ,V): Iterative Boolean Combination

input : K soft detectors (D1, D2, . . . , DK) and a validation set V of size
|V|

output: ROCCH of combined detectors.
- Each vertex is the result of 2 to K combination of crisp detectors.
- Each combination selects the best decision thresholds from different

detectors (Di, tj) and Boolean function (stored in the set S)
1 nk ← number of decision thresholds of Dk using V // num. of vertices on

ROC(Dk).

2 BooleanFunctions←
{a∧b,¬a∧b, a∧¬b,¬(a∧b), a∨b,¬a∨b, a∨ ¬b,¬(a∨b), a⊕b, a ≡ b}

3 compute ROCCH1 of the first two detectors (D1 and D2)
4 allocate F an array of size: [2, n1 × n2] // temporary storage of combination results.

5 foreach bf ∈ BooleanFunctions do
6 for i← 1 to n1 do
7 R1 ← (D1, ti) // responses of D1 at decision threshold ti using V .

8 for j ← 1 to n2 do
9 R2 ← (D2, tj) // responses of D2 at decision threshold tj using V .

10 Rc ← bf(R1,R2) // combine responses using current Boolean

func.

11 compute (tpr, fpr) of Rc using V // map combination to ROC

plane

12 push (tpr, fpr) onto F

13 compute ROCCH2 of all ROC points in F
14 nev ← number of emerging vertices
15 S2 ← {(D1, ti), (D2, tj), bf} // set of selected decision thresholds from

each detector and Boolean functions for emerging vertices.

16 for k ← 3 to K do
17 allocate F of size: [2, nk × nev]
18 foreach bf ∈ BooleanFunctions do
19 for i← 1 to nev do
20 Ri ← Sk−1(i) // responses from previous combinations.

21 for j ← 1 to nk do
22 Rk ← (Dk, tj)
23 Rc ← bf(Ri,Rk)
24 compute (tpr, fpr) of Rc using V
25 push (tpr, fpr) onto F

26 compute ROCCHk of all ROC points in F
27 nev ← number of emerging vertices
28 Sk ← {Sk−1(i), (Dk, tj), bf}

// Sk is the set of the selected subsets from the previous combinations; the decision

thresholds from the newly-combined detector; and the Boolean functions that yields to the

emerging vertices on the ROCCH.

29 store Sk : 2 ≤ k ≤ K
30 return ROCCHK

their ROC convex hull (ROCCH) is computed. Vertices that are
superior to the ROCCH of original detectors are then selected.
The set (S) of decision thresholds from each detector and
Boolean functions corresponding to these vertices is stored,
and the ROCCH is updated to include emerging vertices. The
responses corresponding to each decision threshold from the
third detector are then combined with the responses of each
emerging vertex, and so on, until the last detector in the pool
is combined. The BC technique yields a final ROCCH for
visualization and selection of operating points, and the set of
selected thresholds and Boolean functions, S, for each vertex
on the composite ROCCH to be applied during operations.
Although not shown in Algorithm 1, the original IBC algorithm
can iterate by re-combining the resulting combination (of all
detectors) on the ROCCH with each of the original detectors
(sequentially) until the ROCCH stops improving [21].

However, as stated previously, combining all available
detectors without pruning may be inefficient due to the redun-
dancy in their outputs. The sequential combinations of soft
detectors, illustrated in the loop in line 16 of Algorithm 1,
produces a sequence of combination rules that grows linearly
with K (and the number of iterations), which becomes difficult
to track, analyse and understand when the value of K becomes

Algorithm 2: PBC(D1, D2, . . . , DK ,V): Pruned Boolean Combination

input : K soft detectors (D1, D2, . . . , DK) and a validation set V of size
|V|

output: ROCCH of combined detectors.
- Each vertex is the result of exact 2 combination of crisp detectors.
- Each combination selects the best decision thresholds from different

detectors (Di, tj) and Boolean function (stored in the set S)
1 nk ← number of decision thresholds of Dk using V // num. of vertices on

ROC(Dk).

2 let n =
∑K

k=1 nk

3 BooleanFunctions←
{a∧b,¬a∧b, a∧¬b,¬(a∧b), a∨b,¬a∨b, a∨ ¬b,¬(a∨b), a⊕b, a ≡ b}

4 allocate C an array of size: [|V|, n] // storage of all crisp detectors’ decisons.

5 convert soft detectors to crisp detectors
6 for i← 1 to K do
7 for j ← 1 to ni do
8 R← (Di, tj) // responses of Di at decision threshold tj using V .

9 push R onto C

10 choose Pruning Technique {MinMax-Kappa, ROCCH-Kappa}
11 reduce n to U // U � n: is a user defined max number of detectors

12 return Cselected ← C - Pruned Detectors
// Subset of size U detectors selected from all original detectors and returned for combination

13 allocate F an array of size: [2, U2 × size(BooleanFunctions)]
// temporary storage of combination results.

14 foreach bf ∈ BooleanFunctions do
15 for i← 1 to U do
16 R1 ← Cselected[i] // Retrieve Decision Vector

17 for j ← 1 to U do
18 R2 ← Cselected[j]
19 Rc ← bf(R1,R2) // combine responses using current Boolean

func.

20 compute (tpr, fpr) of Rc using V // map combination to ROC

plane

21 push (tpr, fpr) onto F

22 compute ROCCH of all ROC points in F
23 nev ← number of emerging vertices
24 S ← {(D1, ti), (D2, tj), . . . , (Dk, tk), bf} // set of selected decision

thresholds from each detector and Boolean functions for emerging vertices.

25 store S; return ROCCH

large. In addition, the IBC algorithm is sensitive to the order
in which the detectors are input for combinations, which
increases the effort required to find best subset for operations.

IV. PRUNING BOOLEAN COMBINATION (PBC) APPROACH

In this section we describe our Pruned Boolean Combi-
nation (PBC) algorithm, which is based on two novel pruning
techniques that select a subset of diverse and accurate detectors
for combination, while discarding the remaining ones. PBC can
avoid both the exponential explosion of combinations provided
by the brute-force approach and the sequential combination of
IBC. The main difference is that the PBC algorithm proceeds
by thresholding all available soft detectors into crisp ones. This
step is, in fact, not essential for PBC because thresholding
could be done outside the algorithm and the crisp detectors are
directly input for pruning. In contrast with IBC, all available
crisp detectors are input to one of the proposed pruning
techniques, MinMax-Kappa or ROCCH-Kappa described in
Section IV-B and IV-C, to select the best subset of crisp
detectors for Boolean combination and control its size U (i.e.,
the number of combined detectors). Without pruning brute-
force pairwise combination of all available detectors may not
be feasible for large number of detectors, O(N2) (where
N is number of available detectors), for further details see
Section IV-D.

The boost in performance achieved with an ensemble of
detectors is often attributed to the concept of diversity. While
it is generally accepted that an ensemble should contain diverse
models to improve the performance, there is no clear definition
of diversity neither a consensus about the measure of diversity
and its computation. In practice, several measures of diversity
have been proposed to quantify the level of agreement or
measure the dependency among the ensemble members [26].

A. Kappa Measure

Cohen’s Kappa statistic (or simply Kappa hereafter) is one
of the well-known and widely used measure of agreement
between raters [5]. Kappa has lately gained some popularity for
ensemble combination, especially the Kappa-error diagrams
which help visualizing individual accuracy and diversity in
a two dimensional plot [27], [32]. Our pruning techniques,
described in the next sections, are based on Kappa and inspired
by the Kappa-error diagram only for visualization of Kappa
against the false positives and true positives (as shown in
Figures 1 and 2).

TABLE I: Contingency table between two detector decisions

D2 correct D2 wrong
D1 correct a b
D1 wrong c d

Consider the contingency table of two detectors, D1 and
D2, presented in Table I, where, for instance, a is the number
of examples on which both detectors agree. The sum of all
element in Table I is equal to the size of validation set, a +
b+c+d = |V|. The Kappa (κ) measure between two detectors
is therefore computed based on the element of the contingency
table according to Equation 1.

κ =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
(1)

Kappa takes on values between −1 and 1; lower values means
a high level of disagreement or more diverse opinions, while
higher values indicate a high level of agreement or similarity
in responses between detectors. When both detectors provide
the same vector of decisions (they agree on every example)
then κ = 1. On the other hand, when κ = 0 the detectors are
independent (any agreement is totally due to chance). Negative
Kappa values can be interpreted as both detectors agrees less
than what would be expected just by chance. More importantly,
negative values account for negative correlations, which can be
useful for combination, but this rarely occurs in practice [32].

B. MinMax-Kappa Pruning

The proposed pruning technique starts by computing the
Kappa values between each detector’s decision vector and the
true decision labels (or ground truth), and then sorting them
in ascending order. Detectors with large Kappa values (κ ≈
κmax) are accurate and hence should be selected; however,
they provide less diverse decisions among themselves. There-
fore, the technique attempts to select complementary detectors
by choosing those with Kappa values close to κ ≈ κmin. In
practice, κmax and κmin values depend on the data and the

detectors. Trivial detectors (providing always either positive
or negative decisions) also reside at κmin ≈ 0. In such
cases, these are filtered out before selected the complementary
detectors. When detectors with negative Kappa values exist, it
is always beneficial to select them since they provide detectors
with negative correlations or complementary errors compared
those with κmax.

The MinMax-Kappa pruning technique takes two parame-
ters, the total number of detectors and the ratio of detectors to
be selected close to κmax and κmin. In our experiments, we
experimented with different parameters sets and presented the
results for 50 selected detectors with a ration of 50% (which
means half of the detectors are selected from the region with
higher values of Kappa, while the remain half are chosen from
the region with lower values). In fact, these are user-defined
parameters that are constrained by the resources available
during operations. Our experiments showed that the results of
the pruning algorithms are not very sensitive to small changes
in these parameters

Figure 1 shows an example of the selected detectors from
our experiment, according to the MinMax-Kappa technique.
The Kappa values (on the X-axis) for the same selected
detectors are plotted against false positive (Figure 1a) and true
positive (Figure 1b) rates. These points (large, blue) are the
selected detectors, Cselected in Algorithm 2. All remaining
detectors (small points) are pruned. For illustration, Figure 3a
map the selected point to the ROC space, which could also be
compared to our second pruning technique.

C. ROCCH-Kappa Pruning

This technique also tries to select accurate detectors and
then find a set of detectors with complimentary errors. In
contrast with MinMax-Kappa, this technique considers the
detectors that are on the facet of the ROCCH in the ROC space.
These detectors are selected since they are the most accurate
available detectors that covers the whole range of fpr and tpr
trade-off. The Kappa measure is then used to select diverse
detectors with reference to those on ROCCH. The technique
computes the Kappa value of each detector on the ROCCH
and all the remaining detectors, sort the resulting values in
ascending order. Detectors with larger values of Kappa are
discarded, since they provide similar decisions (or errors) to
those provided by the select detectors (on the ROCCH).

The most diverse detectors are those that provide negative
or close to zero Kappa values (κ ≤ 0), however are not
trivial detectors (providing always either positive or negative
decisions). The only parameter of the ROCCH-Kappa is the
number of detectors to be selected for each detector on the
ROCCH. In practice, the number of detectors on the ROCCH
is small ([3-20] detectors).

Figure 2 shows an example of the selected detectors from
our experiment, according to the ROCCH-Kappa technique,
where the Kappa values (on the X-axis) for the selected
detectors are plotted against false positive (Figure 2a) and
true positive (Figure 2b) rates. Similarly, these selected points
(large, blue) are the Cselected in Algorithm 2, while all
remaining detectors (small points) can be pruned. Figure 3b
map the detectors selected by ROCCH-Kappa to the ROC

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

(a) κ-fpr diagram

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

(b) κ-tpr diagram

Fig. 1: Illustration of selected detectors (large blue circles)
based on MinMax-Kappa pruning technique. All remaining
detectors (small black dots) are pruned.

space, which could be compared to those selected by MinMax-
Kappa in Figure 3a.

D. Complexity Analysis

Given K soft detectors, let ni be the number of decision
thresholds or crisp detectors produced by each of the soft
detector Di, i = 1, . . . ,K, on the validation set V . Let
n =

∑K
i=1 ni the total number of crisp detectors in the

ensembles, and navg = n/K the average number of crisp
detectors produced by soft detectors.

A brute-force search for optimal combination is infeasible
in practice due to the doubly exponential combinations. In
fact, for n crisp detectors there are 2n possible outcomes
that can be combined in 22

n

ways, which makes the brute-
force combination impractical even for small n values [1].
Even only pairwise combination of n crisp detectors, which

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0
Fa

ls
e
 P

o
si

ti
v
e
 R

a
te

(a) κ-fpr diagram

1.0 0.5 0.0 0.5 1.0

Kappa

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

(b) κ-tpr diagram

Fig. 2: Illustration of selected detectors (large blue circles)
based on ROCCH-Kappa pruning technique. All remaining
detectors (small black dots) are pruned.

requires O(n2) Boolean operations, may not be feasible in
practise for large n values. The sequential combination of
the IBC algorithm reduces its worst-case time complexity to
O(n2avg +Knavg) Boolean operations.

Both pruning techniques are capable of reducing the size of
the selected subset of detectors (for Boolean combination) up
to a user defined maximum number (U). The worst-case time
complexity required by MinMax-Kappa technique to select U
crisp detectors (and prune the rest) is O(n(log n+ 1) + U2).
It requires about n(log n + 1) operations for computing and
sorting the Kappa values for all crisp detectors, and U2 for the
pairwise Boolean combinations of the U retained detectors.
For ROCCH-Kappa technique however the worst-case time
complexity is of the order O(n(log n + nev) + U2), where
nev is the number of emerging vertices which is typically
around ten. The additional nev factor is due to the computation
of Kappa is repeated nev times for each emerging point on

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

Selected Crisp Classifiers

(a) MinMax-Kappa pruning

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

Selected Crisp Classifiers

(b) ROCCH-Kappa pruning

Fig. 3: Illustration of the selected detectors for combination
mapped onto the ROC space (large blue circles). All other
detectors (small black dots) can be pruned.

the ROCCH. For numerical comparison, Table III shows the
average time for each combination and pruning technique used
in our experiments.

V. EXPERIMENTS ON SYSTEM CALL DATASET

We evaluate the accuracy and efficiency of our pruning
techniques using a modern system call dataset, called ADFA
Linux Dataset (ADFA-LD), which has been recently made
publicly available on the website of the University of New
South Wales [6]. The ADFA-LD dataset is generated by ex-
ploiting various security vulnerabilities in a Ubuntu operating
system (OS) hosting a web server. The systems consists of a
fully patched Ubuntu Linux 11.04 OS with an Apache 2.2.17
web server, PHP 5.3.5 server side scripting engine, TikiWiki
8.1 content management system, FTP server, MySQL 14.14
database management system and an SSH server. First they
collect normal system call traces by letting users perform

basic operations, such as web browsing and Latex docu-
ment preparations under controlled situations. The anomalous
system call traces are collected while the system is being
under six types of attack vectors resulting in a total of 60
attacks. These attacks were launched by a certified penetration
tester against the system and included web-based exploitation,
simulated social engineering, poisoned executable, remotely
triggered vulnerabilities, remote password brute-force attacks
and system manipulation. The authors of the ADFA-LD have
organized the dataset into 833 normal traces for training the
anomaly detectors, and 4373 normal traces and 60 anomalous
traces for testing.

In our experiments we used the following experimental
setup. First, we trained 20 HMMs with different numbers of
states (i.e., K = 20 soft detectors), using the 833 normal traces
provided for training in the ADFA-LD dataset. On average,
the output of each HMM is thresholded into navg = 100
thresholds or crisp detectors, which provides n = K×navg =
20× 100 = 2000 crisp detectors in the ensemble.

The objective is to choose the most accurate subset from
this ensemble for combination while pruning the remaining
detectors according to our MinMax-Kappa or ROCCH-Kappa
technique. Then, the ROC curves and AUC results are com-
pared to those of IBC and the pairwise Bruteforce Boolean
Crisp combination (BBC2). BBC2 is another baseline, which
is the PBC Algorithm 2, but without any pruning mechanism.

For evaluation of performance, a 5-fold cross-validation
(5FCV) is applied to the test set comprising the 4373 normal
and the 60 anomalous traces. Since the number of anomalous
traces is relatively small with reference to the normal ones,
we applied the cross validation to partition the normal and
anomalous sets separately, such that we keep the same ratio
(normal to anomalous) and guarantee that all folds include the
anomalies. Accordingly, each fold contains 874 traces selected
at random from the 4373 normal traces and 12 attacks traces
selected at random from the 60 attack traces.

In contrast with the standard way of applying the 5FCV,
we used one fold for computing the Boolean combination
according to each of the combination technique, and the
remaining four folds (i.e., 3498 normal traces and 48 attack
traces) are used for evaluating and benchmarking the detection
performance. This is because we wanted to test the boost in
performance while using a small number of anomalies during
combination.

TABLE II: Average AUC values and their standard deviations
over the 5FCV for each techniques. Design on one folds and
evaluated on four fold.

Method Name Mean Std

BBC2 0.97426 0.001
IBC 0.97276 0.001
MinMax-Kappa 0.97074 0.003
ROCCH-Kappa 0.97051 0.003

6

5

7

8

9
10

11

12

1

2

3

4

Fig. 4: One of the ROC curves results of 5-folds cross-
validation of Boolean combination on one fold and evaluated
on four folds. The numbers represent the crisp detectors
selected for combination (by each technique) to achieve about
the same operational point as denoted by the large black circle

VI. RESULTS

Figure 4 shows the ROC curves and the AUC performance
for both pruning techniques proposed in this paper (MinMax-
and ROCCH-Kappa) compared to those of IBC and BBC2
(PBC with no pruning mechanism). These results are for one
of the 5FCV experiments (the combinations are computed on
one fold and evaluated on four) as described in Section V.
As shown in the figure the results are comparable both in
term of AUC values and the shape of the ROC curves. This
is also confirmed in Table II, where the AUC values of each
combination technique is averaged over the 5FCV experiments.

Table III shows the average over the 5FCV of the pruning
time (for MinMax-Kappa and ROCCH-Kappa), combination
time, and number of Boolean operations required by each tech-
nique to achieve the final ROCCH (as shown in Figure 4 for
one fold). We set the maximum number of selected detectors
to U = 50 for both MinMax-Kappa and ROCCH-Kappa (this
can be further optimized, but gave good trade-off between
performance and time complexity). Therefore, the input to

TABLE III: Comparison of pruning and combination time (sec-
onds) and number of Boolean operations required to achieve
the final ROCCH during the design phase, and the number of
selected detectors during the operational phase. All values are
averaged over 5FCV.

Design Phase Operations
Method Pruning Combination # Boolean # Combined
Name Time Time operations detectors

BBC2 N/A 16364 4, 000, 000 2
IBC N/A 11 11, 000 11
MinMax-Kappa 1.6 15 19, 701 2
ROCCH-Kappa 11.8 38 37, 701 2

these pruning techniques is n = 2000 crisp detectors, while the
output is a subset of a maximum size of 50 detectors provided
for Boolean combination (in PBC Algorithm). MinMax-Kappa
took about 1.6 seconds in average to select the best subset,
while ROCCH-Kappa took about ten times more due the
nev factor, which is described in Section IV-D, to prune the
ensemble of n = 2000 detectors. Furthermore, MinMax-Kappa
is able to select a smaller number of detectors than U = 50 on
average and computes the Kappa values once, which explains
the reduction in combination time and number of Boolean
operations compared to those of ROCCH-Kappa, as shown in
Table III. Thereby, although both techniques provide similar
AUC performance, MinMax-Kappa is slightly preferred due to
its improved efficiency compared to ROCCH-Kappa.

Table III also shows that our MinMax-Kappa techniques
was able to achieve the same AUC performance of BBC2
(the pairwise Boolean combination of the 2000 detectors), by
selecting less than 50 detectors out of the 2000 ones. More
interestingly, MinMax-Kappa achieved these results with an
average time of three magnitudes lower than that of BBC2,
and about 200 times fewer Boolean operations.

Compared to IBC, MinMax-Kappa requires, on average,
slightly more combination time and a larger number of
Boolean operations to achieve the same AUC performance.
However, the number of selected detectors and Boolean func-
tions required to realize each vertex on the ROCCH is on
average five times more according to our experiments. For
instance, to achieve the final operating points denoted with
a large black circle on Figure 4, MinMax-Kappa uses two
detectors and one Boolean function according to the following
formula:

¬D1 ⊕D2

Note that in Figure 4, we only shown the number of crisp
detectors not to clutter the figures (i.e., 1 means D1)
Similarly, ROCCH-Kappa uses the following detectors and
Boolean function to achieve similar operating point:

¬D3 ⊕D4

However to achieve similar point of operations, IBC requires
eight detectors combined according to the following Boolean
operations:

(((((((D5 ⊕D6)∧¬D11)∧D7)⊕D8) ≡ D9)∨D10)∧D12)

The average number of combined detectors on the final
ROCCH over the 5FCV is about 10 detectors when using IBC
compared to two detectors when using PBC with MinMax-
Kappa pruning as shown in the last column of Table III. This
sequence of combination rules grows linearly with the number
of soft detector K, which makes IBC results difficult to analyse
and understand for large K values. In contrast to IBC, the
combination of two detectors according to combination of
PBC with MinMax-Kappa are insensitive to order in which
detectors are input to the algorithm, which makes the search for
the best subset of detectors easier. However, MinMax-Kappa
requires an optimization of the maximum number of detectors
U that trades off the complexity and the accuracy. Setting
an ADS based on two HMMs into operations, requires less
time and memory resources to provide the output probabilities
of the input system call sequences. In addition, operating a
small number of detectors becomes critical in application of

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Original Crisp Classifiers

MinMax-Kappa, AUC = 0.988

ROCCH-Kappa, AUC = 0.983

BBC2, AUC = 0.990

IBC, AUC = 0.994

Fig. 5: One of the ROC curves results of 5-folds cross-
validation of Boolean combination on four folds and evaluated
on one fold.

anomaly detection mobile security, due to the constraint on
power resources.

We conducted an alternative case study to check the impact
on ROC and AUC performance of all Boolean techniques,
when the number of anomalies is increased during the design
phase. Therefore, instead of using one fold (comprising 12
attack traces and 874 normal traces) for selecting the crisp de-
tectors and the corresponding Boolean functions, as described
in Section V, we used 4 folds (48 attack traces and 3498
normal traces) and one fold for evaluation of performance.

Figure 5 shows the ROC curves and the AUC performance
for all techniques, PBC with MinMax-Kappa and ROCCH-
Kappa, IBC and BBC2. Again, the presented results are for one
of the 5FCV experiments (but the combinations are computed
on four folds and evaluated on one). As shown in the figure, all
techniques provide comparable results; however, with a large
improvement in detection accuracy over those presented in
Figure 4. For instance, for detecting all attacks (tpr = 100%)
the false positive rate is now fpr ≈ 2% compared to
fpr ≈ 16% in Figure 4. This boost in performance can be
also seen in Table IV in terms of average AUC values for each
combination technique over the 5FCV experiments. The results
of this experiments show, as expected, that when the system
is provided with more normal or attack traces, the overall

TABLE IV: Average AUC values and their standard deviations
over the 5FCV for each techniques. Design on four folds and
evaluated on one fold.

Method Name Mean Std

BBC2 0.98177 0.00636
IBC 0.98003 0.01127
MinMax-Kappa 0.97806 0.00640
ROCCH-Kappa 0.97578 0.00585

performance of all Boolean combination techniques improves.
In such cases, there is no need to retrain the original detectors
(HMMs in our case), which is a time consuming process, but
the design phase of Boolean combination techniques must be
repeated. This provides an advantage for IBC and PBC, since
they are efficient in selecting the detectors for final operations.
However, our PBC approach will always provide two detectors
for each emerging point on the ROCCH, which is less costly
to operate and easier to analyse in real-world setting.

VII. THREATS TO VALIDITY

A threat to internal validity exists in the implementation of
the IBC, BBC2 and PBC algorithms as well as in conducting
the experiments for anomaly detection. We have mitigated this
threat by manually verifying the outputs.

We have conducted experiments using only one system
call dataset derived from the Linux operating system, which
consists a threat to external validity of this study. More
experiments are therefore required to generalize the presented
results to other datasets, operating systems and other software
vulnerabilities.

Evasion attacks could also pose a threat to validity. For
instance, mimicry attacks try to mimic the normal system
behavior will go undetected with the ADSs that are based on
individual system calls or their temporal order [38]. Mimicry
attacks could be conducted by an attacker who is able to
launch his attack without tempering the normal order of system
calls by, for instance, replacing foreign system call sequences
(which can be easily detected) with normal ones or by using
system call arguments [38].

The manifestations of such mimicry attacks could be
detected by including additional features, such as system call
arguments [3], return values extracted from the call stack in-
formation [10], and the user identity [28]. An added advantage
of multiple detector systems, combined without our PBC, is
that they can combine different detectors trained on various
features, such as system call arguments, return values and
other information flow features to help mitigating such evasion
attacks.

VIII. CONCLUSION

In this paper, we proposed PBC, an efficient approach
for selecting and combining anomaly detectors, which relies
on two novel pruning techniques. During the design phase,
the PBC is able to select a small subset of diverse and
accurate detectors for Boolean combinations, while discarding
the remaining ones. The pruning techniques we developed at
the core of PBC rely on Kappa measure (MinMax-Kappa)
and on the ROC convex hull (ROCCH-Kappa) to aggressively
prune redundant and trivial detectors.

The results on ADFA-LD system call datasets show that
PBC with both pruning techniques are capable of maintaining
similar overall accuracy as measured by the ROC curves
to that of IBC and BBC2. Therefore, our proposed PBC-
based ADS is able to prune and combine large number of
detectors without suffering from the exponential explosion in
number of combinations provided with the pairwise brute-
force Boolean combination techniques. This has been shown

analytically (in the time complexity analysis) and confirmed
in the experimental results.

During the operational phase, PBC with both pruning
techniques always provides two crisp detectors for each com-
bination, while IBC requires an average of 11 detectors to
achieve the same operating point (in terms of true and false
positive rates). The proposed PBC approach is also general and
can be applied to combine any soft or crisp detectors or two-
class classifiers in a wide range of applications that requires
combination of decisions.

Future work involves conducting more experiments using
different real-world datasets. Another interesting direction is
to investigate the potential improvement by re-combining the
resulting combinations with the selected detectors, and explore
other measures of diversity. We also intend to implement the
new techniques in TotalADS [35], a tool we have developped
to support multiple anomaly detectors. Finally, we need to
investigate how we can reduce the size of traces to enable
better scalability. Example of trace abstraction techniques are
presented in [16], [34].

ACKNOWLEDGMENT

This research is partly supported by a grant from
Natural Sciences and Engineering Research Council of
Canada (NSERC), Defence Research and Development Canada
(DRDC) Valcartier (QC), and Ericsson Canada.

REFERENCES

[1] M. Barreno, A. Cardenas, and D. Tygar, “Optimal roc for a combination
of classifiers,” in Advances in Neural Information Processing Systems
(NIPS) 20, 2008, Jan. 2008.

[2] L. E. Baum, G. S. Petrie, and N. Weiss, “A maximization technique
occuring in the statistical analysis of probabilistic functions of Markov
chains,” The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–
171, 1970.

[3] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,”
in IEEE Symposium on Security and Privacy, 2006.

[4] Y.-S. Chen and Y.-M. Chen, “Combining incremental hidden Markov
model and Adaboost algorithm for anomaly intrusion detection,” in CSI-
KDD ’09: Proceedings of the ACM SIGKDD Workshop on CyberSe-
curity and Intelligence Informatics, (New York, NY, USA), pp. 3–9,
ACM, 2009.

[5] W. W. Cohen, “Fast effective rule induction,” in Proc. of the 12th Inter-
national Conference on Machine Learning (A. Prieditis and S. Russell,
eds.), (Tahoe City, CA), pp. 115–123, Morgan Kaufmann, July 1995.

[6] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to
retire the kdd collection,” in Wireless Communications and Networking
Conference (WCNC), 2013 IEEE, (Shanghai, China), pp. 4487–4492,
Apr. 2013.

[7] T. G. Dietterich, “Ensemble methods in machine learning,” in MCS ’00:
Proceedings of the First International Workshop on Multiple Classifier
Systems, (London, UK), pp. 1–15, Springer-Verlag, 2000.

[8] Y. Du, H. Wang, and Y. Pang, “A hidden Markov models-based anomaly
intrusion detection method,” Proceedings of the World Congress on
Intelligent Control and Automation (WCICA), vol. 5, pp. 4348–4351,
2004.

[9] T. Fawcett, “An introduction to ROC analysis,” Pattern Recogn. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[10] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly
detection using call stack information,” in Security and Privacy, 2003.
Proceedings. 2003 Symposium on, pp. 62–75, 2003.

[11] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of
self for Unix processes,” in Proceedings of the 1996 IEEE Symposium
on Research in Security and Privacy, pp. 120–128, 1996.

[12] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system-
call monitoring,” in Computer Security Applications Conference, 2008.
ACSAC 2008. Annual, pp. 418–430, Dec. 2008.

[13] B. Gao, H.-Y. Ma, and Y.-H. Yang, “HMMs (Hidden Markov Models)
based on anomaly intrusion detection method,” Proceedings of 2002
International Conference on Machine Learning and Cybernetics, vol. 1,
pp. 381–385, 2002.

[14] F. Gao, J. Sun, and Z. Wei, “The prediction role of hidden Markov
model in intrusion detection,” in Canadian Conference on Electrical
and Computer Engineering, vol. 2, (Montreal, Canada), pp. 893–896,
Institute of Electrical and Electronics Engineers Inc., 2003.

[15] A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning program be-
havior profiles for intrusion detection,” in Proceedings of the Workshop
on Intrusion Detection and Network Monitoring, (Berkeley, CA, USA),
pp. 51–62, USENIX Association, 1999.

[16] A. Hamou-Lhadj, “The Concept of Trace Summarization,” in Program
Comprehension through Dynamic Analysis (PCODA), 2005, Proceed-
ings of the 1st International Workshop on, pp. 43–47, 2005.

[17] X. Hoang and J. Hu, “An efficient hidden Markov model training
scheme for anomaly intrusion detection of server applications based on
system calls,” in IEEE International Conference on Networks, ICON,
vol. 2, (Singapore), pp. 470–474, 2004.

[18] J. Hu, “Host-based anomaly intrusion detection,” in Handbook of In-
formation and Communication Security (P. Stavroulakis and M. Stamp,
eds.), pp. 235–255, Springer Berlin Heidelberg, 2010.

[19] S. Jha, K. Tan, and R. Maxion, “Markov chains, classifiers, and intru-
sion detection,” in Proceedings of the Computer Security Foundations
Workshop, pp. 206–219, 2001.

[20] W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining Hidden
Markov Models for anomaly detection,” in International Conference on
Communications (ICC), (Dresden, Germany), pp. 1–6, June 2009.

[21] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Boolean combina-
tion of classifiers in the ROC space,” in 20th International Conference
on Pattern Recognition, (Istanbul, Turkey), pp. 4299–4303, Aug. 23–26
2010.

[22] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “A survey of
techniques for incremental learning of HMM parameters,” Information
Sciences, vol. 197, pp. 105–130, Feb. 2012.

[23] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining
classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3,
pp. 226–239, 1998.

[24] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Bayesian event
classification for intrusion detection,” in Proceedings of the 19th Annual
Computer Security Applications Conference, ACSAC ’03, (Washington,
DC, USA), IEEE Computer Society, 2003.

[25] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algo-
rithms. Hoboken, NJ: Wiley, 2004.

[26] L. Kuncheva, “That elusive diversity in classifier ensembles,” Pattern
Recognition and Image Analysis, vol. 2652, pp. 1126–1138, 2003.

[27] L. I. Kuncheva, “A bound on kappa-error diagrams for analysis of
classifier ensembles,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 3,
pp. 494–501, 2013.

[28] U. Larson, D. Nilsson, E. Jonsson, and S. Lindskog, “Using system
call information to reveal hidden attack manifestations,” in Security
and Communication Networks (IWSCN), 2009 Proceedings of the 1st

International Workshop on, pp. 1–8, May 2009.
[29] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for

intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439–
448, 2002.

[30] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, 2013.

[31] C. Marceau, “Characterizing the behavior of a program using multiple-
length n-grams,” in NSPW ’00: Proceedings of the 2000 workshop on
New security paradigms, (New York, NY, USA), pp. 101–110, ACM
Press, 2000.

[32] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,”
in ICML, pp. 211–218, 1997.

[33] S. S.Murtaza, A. Sultana, A. Hamou-Lhadj, M. Couture, “On the
Comparison of User Space and Kernel Space Traces in Identification
of Software Anomalies,” in Software Maintenance and Reengineering
(CSMR), 2012, Proceedings of the 16th European Conference on,
pp. 127–136, 2012.

[34] S. S.Murtaza, W. Khreich, A. Hamou-Lhadj, M. Couture, “A Host-based
Anomaly Detection Approach by Representing System Calls as States
of Kernel Modules,” in Software Reliability Engineering (ISSRE), 2013,
Proceedings of the 24th IEEE International Symposium on, pp. 431–440,
2013.

[35] S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, M. Couture, “TotalADS:
Automated Software Anomaly Detection System,” in Source Code
Analysis and Manipulation (SCAM), 2014, Proceedings of the 14th IEEE
International Working Conference on, pp. 83–88, 2014.

[36] L. Rabiner, “A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[37] A. Sultana, A. Hamou-Lhadj, M. Couture, “An Improved Hidden
Markov Model for Anomaly Detection Using Frequent Common Pat-
terns,” in Communications, The Communication and Information Sys-
tems Security Symposium, 2012 Proceedings of the IEEE International
Conference on, pp. 1113–1117, 2012.

[38] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in CCS ’02: Proceedings of the 9th ACM conference
on Computer and communications security, (Washington, DC, United
States), pp. 255–264, 2002.

[39] W. Wang, X.-H. Guan, and X.-L. Zhang, “Modeling program behaviors
by hidden Markov models for intrusion detection,” Proceedings of 2004
International Conference on Machine Learning and Cybernetics, vol. 5,
pp. 2830–2835, 2004.

[40] P. Wang, L. Shi, B. Wang, Y. Wu, and Y. Liu, “Survey on HMM based
anomaly intrusion detection using system calls,” in Computer Science
and Education (ICCSE), 2010 5th International Conference on, pp. 102–
105, Aug. 2010.

[41] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: alternative data models,” in Proceedings of the IEEE
Computer Society Symposium on Research in Security and Privacy,
(Oakland, CA, USA), pp. 133–45, 1999.

[42] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dy-
namic and static behavioral models,” Pattern Recognition, vol. 36, no. 1,
pp. 229–243, 2003.

[43] X. Zhang, P. Fan, and Z. Zhu, “A new anomaly detection method
based on hierarchical HMM,” in Parallel and Distributed Computing,
Applications and Technologies, 2003. PDCAT’2003. Proceedings of the
Fourth International Conference on, pp. 249–252, 2003.

[44] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Chapman
& Hall/CRC, 1st ed., 2012.

