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Abstract—Just-In-Time Software Defects Prediction (JIT-SDP)
plays a critical role in software engineering by enabling the
early identification of potential defects before they impact system
performance. This study investigates the effectiveness of Boolean
Combination of Classifiers (BCC) in building effective JIT-SDP
models. We propose the JITBoost framework, which leverages
three BCC algorithms, namely Brute-force Boolean Combination
(BBC), Iterative Boolean Combination (IBC), and Weighted
Pruning Iterative Boolean Combination (WPIBC). JITBoost com-
bines the decisions of six traditional machine learning algorithms
and one deep learning algorithm. When applied to 259K commits
of 34 projects, we show that JITBoost models perform better than
traditional machine learning and deep learning algorithms when
used individually. Specifically, JITBoost-BBC, JITBoost-IBC, and
JITBoost-WPIBC achieve mean AUCs of 0.891, 0.879, and
0.886, respectively, with cross-validation. With a time-aware data-
splitting approach, they achieve mean AUCs of 0.863, 0.854, and
0.857, respectively. Overall, the findings suggest that combining
machine learning models within the JITBoost framework can
lead to improved performance in JIT-SDP models.

Index Terms—Just-In-Time Software Defects Prediction, Ma-
chine Learning, Deep Learning, Boolean Combination of Classi-
fiers, Software Reliability.

I. INTRODUCTION

Identifying software defects in a timely manner is vital for
ensuring optimal system performance and reliability [1]–[3].
Just-In-Time Software Defects Prediction (JIT-SDP) models
have emerged as a promising approach in the field of software
engineering [1], [3]. These models employ Machine Learning
(ML) [4]–[6] and Deep Learning (DL) [7]–[9] techniques to
build models using normal and buggy code commits in order
to predict bugs at the code commit level, enabling developers
to identify problematic code changes before they reach the
central code repository [1], [3].

By integrating JIT-SDP models with continuous code qual-
ity tools, developers receive immediate feedback on potentially
flawed code [1]. This allows them to address and rectify issues
before they are incorporated into the main code base. As
a result, the adoption of JIT-SDP models reduces the cost
and effort associated with software quality assurance practices
[10]. Furthermore, by providing timely insights into defect-
prone areas, these models empower developers to prioritize
testing efforts, allocate resources efficiently, and enhance the
overall software quality [3].

In this study, we propose a framework, called JITBoost,
which uses Boolean Combination of Classifiers (BCC) [11]

for the prediction of buggy commits. BCC leverages Boolean
functions to create classifiers that combine the decisions of
individual classifiers with the aim to improve the overall
prediction accuracy. Specifically, we investigate the use of
three BCC algorithms (discussed in more details in Section
III): Brute-force Boolean Combination (BBC) [11], Iterative
Boolean Combination (IBC) [12], and Weighted Pruning Iter-
ative Boolean Combination (WPIBC) [13]. These algorithms
are used in the field of anomaly detection (e.g., [13] [12])
and have shown to perform better than single classifiers. We
propose JITBoost-BBC, JITBoost-IBC, and JITBoost-WPIBC
and compare their performance with individual JIT-SDP algo-
rithms.

To evaluate the performance of the JITBoost framework, we
conduct experiments using a dataset comprising 34 projects
and a total of 259k commits. Our objective is to compare
the effectiveness of JITBoost-BBC, JIT-Boost-IBC, and JIT-
Boost-WPIBC algorithms against existing JIT-SDP techniques,
which use individual traditional ML methods as well as DL
algorithms.

Our research aims to address the following three research
questions:

• RQ1: How does the performance of JITBoost algorithms
compare to JIT-SDP models that use traditional machine
learning algorithms?

• RQ2: How does the performance of JITBoost algorithms
compare to a deep learning JIT-SDP algorithm?

• RQ3: How does the combination of traditional JIT-SDP
models and deep learning models affect the performance
of the JITBoost algorithms?

For RQ1, we combine the decisions of six traditional
classifiers (see Section III) using BBC, IBC, and WPIBC and
compare the results with that of each individual classifier.
We found that all Boolean combination algorithms perform
better than the single ML algorithms. For RQ2, we compare
the Boolean combination classifiers of RQ1 with the newly
proposed JIT-SDP DL algorithm DeepJIT [9]. We found that
the combination of traditional ML algorithms performs better
than when using DeepJIT. In the last question, RQ3, we
compare the combination of six traditional classifiers and
another combination of the same classifiers and DeepJIT. The
objective is to see if the DL algorithm improves the accuracy
of the combination. Our findings show that the accuracy is



only improved when using JITBoost-WPIBC.
These findings have important implications for practitioners

in software development, as they suggest that simpler ML
models may be just as effective as more complex DL models.
This is also inline with the recent finding of Zeng et al. [9],
which showed a simple ML method can outperform CC2Vec
[8] and DeepJIT [7] when applied to very large datasets.

This study can benefit researchers and practitioners by
proposing a JIT-SDP framework that can improve the accuracy
of predicting buggy commits, leading to more reliable and
accurate tools for defect prediction at the commit level.

The structure of the paper is as follows: The next section
provides a review of software defect prediction techniques
using ML and DL. In Section III, we present the Boolean
combination algorithms. Section IV describes the study setup
including the datasets, features, evaluation metrics, and the
algorithms. In Section V, we present the results that address
the research questions. Section VI outlines potential threats
to validity and the actions taken to mitigate them. Finally,
the paper concludes with Section VIII, which presents the
conclusions and highlights future research directions.

II. RELATED WORK

Code changes in software development can introduce bugs
and costly mistakes. Researchers have used ML and DL tech-
niques to build predictive models that analyze code changes
and identify potential issues. Traditional metrics-based fea-
tures have limitations in capturing the true meaning of code
changes. To address this, Hoang et al. [7] proposed DeepJIT,
a Deep Learning Framework for JIT-SDP. DeepJIT combines
metrics-based on syntactic and semantic features to improve
defect prediction accuracy. These features extracted from
Commit Message (CM) and Code Changes (CC). Hoang et al.
[7] tested DeepJIT on the QT and OpenStack projects, achiev-
ing the best AUC values of 0.788 and 0.814, respectively. They
used different data splitting methods (cross-validation, long
periods, short periods) but found no significant differences in
the results with data splitting approaches.

In addition to DeepJIT, Hoang et al. [8] also proposed a
CC2Vec framework for deep JIT-SDP. Like DeepJIT, CC2Vec
uses natural language processing techniques to extract syn-
tactic and semantic features from the commit message’s and
code changes. In addition to the these features, two vectors
are created from the added and deleted lines in the commit
as additional features. These two vectors are then used to en-
hance the classification process, a step known as Hierarchical
Attention Network (HAN). HAN is utilized for training the
Neural Tensor Network, a form of deep learning architecture.
To achieve the best results for CC2Vec, six parameters must be
tuned. Finally, the output of CC2Vec is used as input features
for JIT-SDP, such as SVM. The proposed method increases
AUC by 4%. Note, the CC2Vec is not end-to-end deep learning
framework such as DeepJIT.

However, Pornprasit and Tantithamthavorn [4] proposed
JITLine as an alternative approach for predicting risky code

changes and identifying buggy code. In comparison to two ex-
isting models (DeepJIT [7] and CC2Vec [8]), JITLine achieved
the highest AUC at 82%. JITLine differs from DeepJIT and
CC2Vec models in that it employs ML algorithms that are
less complex and more computationally efficient. Rather than
relying on deep learning techniques, JITLine provides faster
and simpler ML models for building JIT-SDP, such as those
used in DeepJIT and CC2Vec. These results suggest that
JITLine may be a promising alternative to more complex
models for predicting risky code changes and identifying
potential bugs.

Zeng et al. [9] explored the effectiveness and limitations
of modern deep JIT-SDP techniques, specifically DeepJIT and
CC2Vec. The authors created a larger dataset with over 310k
commits and used it to evaluate the performance of DeepJIT,
CC2Vec, and two traditional JIT-SDP methods. They discov-
ered that CC2Vec does not consistently outperform DeepJIT,
and neither technique can be guaranteed to outperform tra-
ditional JIT-SDP methods. Also, they found that all studied
ML and DL JIT-SDP methods experienced a decrease in per-
formance during cross-project validation and that increasing
the training data size did not necessarily enhance prediction
accuracy. Interestingly, Zeng et al. [9] demonstrated that a
straightforward JIT-SDP approach (e.g., LA predict) which
employs a traditional classifier with the added-line-number
feature, could already surpass CC2Vec and DeepJIT in terms
of both effectiveness and efficiency for most projects.

A semi-supervised learning approach, called Effort-Aware
Training (EATT), has been proposed by Li et al. [14] to
address the challenges of labeling data and reducing its noise.
EATT uses a small amount of labeled data and the same
features and projects as Kamei et al. [3]. Popt and AUC
metrics were used to evaluate the EATT model, as well as the
supervised and unsupervised models, with EATT achieving an
average of 0.73 AUC and 0.89 Popt, while the supervised and
unsupervised models achieved lower average scores.

Nayrolles and Hamou-Lhadj [1] proposed a JIT-SDP ap-
proach called CLEVER that combines commits from video
game systems built on the same game engines. This training
model uses clone detection techniques to make predictions,
and extracts the corresponding code block for each suspected
buggy commit, comparing it to a database of known defects.
However, CLEVER may be too dependent on how Ubisoft
systems are developed, as specific code segments may be
reused across systems.

Lomio et al. [15] conducted a study to compare different
approaches for detecting anomalies in Fine-Grained Just-in-
Time Defect Prediction models. These models label commits
into three classes proposed by Pascarella et al. [16], where
the commits are labeled into three main classes (risky, partial-
risky, and normal) rather than (risky and normal). The re-
searchers used a modified SZZ algorithm to label the dataset.
Then they compared three One-Class Classification (OCC)
models with three binary classifiers and found that the OCC
models performed better on imbalanced datasets, but not as
well as binary classifiers in terms of AUC. The best performing
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binary model was Extremely Randomized Trees with an AUC
mean of 71%, followed by k-NN with an AUC mean of 60%,
and Support SVM with the worst results at 31% AUC. The
OCC models achieved a mean AUC of 50%. Lomio et al. [15]
approach used at file level rather than commit level.

Shehab et al. [6] came up with approach to JIT-SDP
with their ClusterCommit model. This model brings together
commit data from various projects, grouping them into a larger
cluster using a community detection algorithm. By building
the JIT-SDP model using all project data of the cluster and
evaluating each project separately, the ClusterCommit model
achieved an impressive F1 score of 73% and 0.44 MCC.
Using the same 14 code metrics proposed by Kamei et al.
[3], ClusterCommit is a promising JIT-SDP model that could
revolutionize the way we approach defect prediction.

III. BOOLEAN COMBINATION OF CLASSIFIERS

The Boolean combination of classifiers is an approach that
uses Boolean logic operators, such as AND, OR, and NOT,
to combine the decision of multiple classifiers into a single
classifier. These classifiers can be of any type, including
decision trees, Support Vector Machines, logistic regression,
etc. The approach works by first generating a set of classifier
predictions based on the available features in the dataset.
Then, it combines these predictions on the Receiver Operator
Characteristics (ROC) curve space using Boolean operators to
form the final new classifier.

Consider the decision vectors of two classifiers A and B.
We can combine the decisions using six Boolean operators:
∧, ∨, ¬, ⊕, ¬∧, ¬∨, ≡. There exist 10 possible ways to
combine these decisions, namely A ∧ B, ¬A ∧ B, A ∧ ¬B,
¬(A ∧ B), A ∨ B, ¬A ∨ B, A ∨ ¬B, ¬(A ∨ B), A ⊕ B,
and A ≡ B. Each of these combinations results in a new
classifier, which may or may not improve the accuracy of
the individual classifiers. The idea of Boolean combination of
classifiers is to explore the space of all possible combinations
in order to find the combination that provide best accuracy on
the ROC curve [11]. Doing so, however, may result in compu-
tational overhead as the number of classifiers increase. In this
study, we experiment with three different Boolean combination
algorithms, namely Brute-force Boolean Combination (BBC)
[11], Iterative Boolean Combination (IBC) [17], and Weighted
Pruning Iterative Boolean Combination (WPIBC) [13].

Figure 1 illustrates an example of two models, A and B, in
the context of Boolean combination of classifiers. The dashed
line in the plot represents the result of combining the two
models using a Boolean function. Each point on the dashed
line corresponds to the combination of a point from model A
and another point from model B. The BBC algorithm explores
all possible Boolean combinations to plot the dashed line
in the ROC space. This approach allows for optimizing the
performance of the combined classifier and finding the best
trade-offs between true positive and false positive rates.

1) Brute-force Boolean Combination (BBC): The Brute-
force Boolean Combination algorithm is an exhaustive search
algorithm that generates all possible combinations of Boolean

Fig. 1: Example of combining two models in the ROC space

operators. This approach tests all combinations of the individ-
ual classifier outputs to find the combination with the highest
classification accuracy [18].

Suppose we have three individual classifiers, each classifier
produces a binary output (either 0 or 1) for a given input.
The BBC approach explores all 23 = 8 possible combinations
of the three binary outputs (000, 001, 010, 011, 100, 101,
110, 111) to see which combination results in the highest
classification accuracy. Boolean logic operators are applied
to the outputs (predictions) to create a final prediction. Then
evaluate the classification accuracy of each combination by
comparing the predicted output to the true output for a set of
test labels [18].

The combinations produce the highest classification ac-
curacy to be selected as the optimal combination for the
given classifiers. However, this approach can become com-
putationally expensive as the number of individual classifiers
increases since the number of possible combinations grows
exponentially with the number of classifiers [18].

2) Iterative Boolean Combination (IBC): Iterative Boolean
Combination (IBC) is another approach for combining multi-
ple classifiers into a single classifier using Boolean operators.
Unlike the BBC approach that tries all possible combinations
of classifiers, IBC combines classifiers iteratively until a
satisfactory level of accuracy is achieved [19].

The IBC algorithm operates by first selecting an initial
subset of classifiers, such as the top-performing classifiers in
terms of AUC or accuracy. Then, IBC iteratively combines
this subset of classifiers using Boolean operators (such as
AND, OR, and NOT) to generate a new complex classifier.
The performance of the new classifier is evaluated using a
validation set, and the process is repeated until a satisfactory
level of performance is achieved [19].

The main difference between IBC and BBC is that IBC is
more efficient as it does not try all possible combinations of
classifiers. Instead, it starts with an initial subset of classifiers
and iteratively combines them until a satisfactory level of
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performance is achieved. Suppose we want to synthesize a
boolean function that satisfies the following properties: 1) It
has three input variables (A, B, and C). 2) It outputs 1 if
and only if exactly two of its inputs are 1. Using the BBC
method, we would need to consider all possible combinations
of the input variables (23 = 8 combinations) and evaluate
the output of the function for each combination. We could
then use these evaluations to construct a truth table and derive
the boolean expression that satisfies the desired properties.
This approach can be time-consuming and impractical for
larger functions with many input variables [11], [17]. On the
other hand, the IBC algorithm could be used to synthesize
the function more efficiently [19]. We can start with a set of
initial functions that satisfy some of the desired properties,
such as: (A ∧ B,A ∧ B,B ∧ C). We can then iteratively
combine these functions to generate larger functions that
satisfy more of the desired properties. For example, we can
combine the first two functions using the OR operator to
obtain: (A ∧ B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (¬A ∧ B ∧ C).
This function satisfies two of the desired properties: it outputs
1 if and only if exactly two of its inputs are 1, and it outputs
0 if all inputs are 0.

This function satisfies all of the desired properties and can
be expressed using only three Boolean operators. The IBC
algorithm is able to synthesize this function much more effi-
ciently than the BBC, which would have required evaluating
all possible input combinations [19].

3) Weighted Pruning Iterative Boolean Combination
(WPIBC): Weighted Pruning Iterative Boolean Combination
(WPIBC) is an extension of IBC that aims to improve the
performance of the model. WPIBC uses a weighted kappa
score. The weighted kappa score takes into account the simi-
larity between the predictions of the classifiers, as well as the
degree of difficulty in making the prediction. The kappa score
is measured using Equation 1.

kp =
2 ∗ (TP ∗ TN − FN ∗ FP )

(TP + FP ) ∗ (FP + TN) ∗ (TP + FN) ∗ (FN + TN)
(1)

The WPIBC algorithm starts by generating an initial set
of classifiers using IBC. Then, for each classifier in the
ensemble, the weighted kappa score is calculated using the
similarity predictions. The classifiers with the similar weighted
kappa scores are pruned from the ensemble steps, then the
process is repeated iteratively until no more classifiers can
be pruned. The remaining classifiers are then combined using
boolean operators to generate the final classifier. The main
advantage of WPIBC over previous algorithms is its ability to
identify and remove classifiers that are not contributing to the
performance of the ensemble. By using the weighted kappa
score as a pruning metric, WPIBC can identify classifiers
that are making poor predictions and remove them from the
ensemble, improving the overall performance of the model
[13].

In comparison, the BBC algorithm generates all possible
combinations of classifiers, which can lead to a large number

of classifiers and computational complexity. On the other hand,
IBC generates classifiers iteratively, which can be compu-
tationally efficient but may not identify and remove poorly
performing classifiers [13]. WPIBC combines the benefits of
both approaches by generating classifiers iteratively while also
identifying and removing poorly performing classifiers using
the weighted kappa score, resulting in a more effective and
efficient ensemble model [13].

IV. STUDY SETUP

This section represents the overall configuration for our
study. First, we present the dataset description and feature
extraction. Next, we discuss the data labeling and splitting
approaches. After that, the evaluation metrics that are used to
measure accuracy. Then, the algorithms used to build JITBoost
are presented.

A. Datasets Description and Features Extraction

To assess the effectiveness of our approach, we conducted a
study on 34 open-source projects from the Apache Foundation.
Our focus was on projects written in Java programming
language, and we only considered projects with a minimum of
1,000 commits to ensure sufficient historical data for predictive
purposes. These projects are available on GitHub and operate
Jira as a bug-tracking system. A comprehensive overview of
the dataset is provided in Table I, which includes project
names, normal and buggy commit counts, following by defects
ratio, with a total of commits. The total size of dataset is 259k
of commits.

We performed feature extraction from each project in Table
I using the GIT version control system. We extract 14 features
proposed by Kamei et al. [3], which are widely used in
the JIT-SDP area (e.g., [20] [9] [21] [15]), were extracted
alongside 2 additional features, Code Change (CC) and Code
Message (CM), proposed by Hoang et al. [7]. These features
capture semantic information and syntactic structure, both
hidden within the source code, and were used to construct and
evaluate the DeepJIT model. Table II presents the 16 features
we extracted from the projects. All the data used in this paper
is made available online1.

B. Data Labeling

To label the commits into normal and buggy commits,
we used the Refactoring Aware SZZ Implementation (RA-
SZZ) algorithm, introduced by Campos Neto et al. [22]. This
algorithm extracts bug reports and the corresponding code
changes from a version control system, such as GIT, to identify
the code changes related to the bug. It determines the code
version where the bug originated, identifies the source code
changes between that version and the fix, and detects any
code refactorings performed. The RA-SZZ algorithm improves
bug localization accuracy by considering code refactoring
effects, reducing false positives compared to the original SZZ
algorithm [23].

1https://doi.org/10.5281/zenodo.8206280
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TABLE I: Description of the Datasets

Project Name Normal Buggy Defects % Total

Accumulo 9,541 552 5.5% 10,093
Airavata 6,729 497 6.9% 7,226
Ambari 24,477 110 0.4% 24,587
Avro 2,151 235 9.8% 2,386
Bigtop 2,567 31 1.2% 2,598
Bookkeeper 2,289 84 3.5% 2,373
Camel 9,032 3,990 30.6% 13,022
Carbondata 4,249 552 11.5% 4,801
Cayenne 6,365 285 4.3% 6,650
Cocoon 13,094 66 0.5% 13,160
Curator 2,690 28 1.0% 2,718
Derby 7,795 473 5.7% 8,268
Drill 2,288 1,643 41.8% 3,931
Falcon 2,096 130 5.8% 2,226
Flink 20,369 4,613 18.5% 24,982
Flume 1,151 661 36.5% 1,812
Gora 1,314 52 3.8% 1,366
Hadoop 9,881 627 6.0% 10,508
Hbase 16,721 1,058 6.0% 17,779
Helix 3,672 56 1.5% 3,728
Hive 11,759 518 4.2% 12,277
Ignite 13,969 1,609 10.3% 15,578
Jackrabbit 8,488 370 4.2% 8,858
Oodt 2,006 85 4.1% 2,091
Oozie 2,244 114 4.8% 2,358
Openjpa 3,404 1,706 33.4% 5,110
Parquet-mr 2,126 114 5.1% 2,240
Phoenix 3,284 168 4.9% 3,452
Reef 3,813 60 1.5% 3,873
Spark 19,591 376 1.9% 19,967
Storm 10,178 239 2.3% 10,417
Tez 2,426 232 8.7% 2,658
Zeppelin 4,259 543 11.3% 4,802
Zookeeper 1,453 577 28.4% 2,030

Total 237,471 22,454 - 259,925

C. Data Splitting and Preparation

We used two approaches, Cross-Validation (CV) and Time-
aware Validation (TV), for training and evaluating the models
[7]. In CV, the dataset is divided into a training set (70%) and
a testing set (30%), with the testing set kept hidden during
model training. This ratio was chosen to compare the data
sizes between CV and TV approaches. It was observed that
the buggy commits in the dataset occurred in the last 30% of
commits based on sorting by commit time (Figure 2) [9].

For this research, both CV and TV approaches were em-
ployed, following the methodology of Zeng et al. [9]. We
used ten-fold CV to hyper-tune the model parameters, where
nine folds were used for training and one fold for validation.
These steps are done only with the training set (70%). This
procedure was repeated ten times, as suggested by Zeng et
al. [9], to ensure fair testing, and the average of the ten tests
was recorded as the CV output. The best model was then
evaluated using the previously hidden (30%) testing set. The
use of CV is recommended to build more reliable models,
prevent overfitting, and enhance generalization to unseen data

TABLE II: The features used to build the JIT-SDP models.

Dimension Name Description

Diffusion

NS Number of modified sub-systems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across files

Size
LA Added lines
LD Deleted lines
LT Line of code before edit

Purpose of Change Fix Whether or not the change is a defect or fix

History
NDEV Number of developers that changed the file
AGE The average time between file changes
NUC The number of unique changes

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on sub-systems

Commits CC Code changes inside commit
CM Commit message represented by the developer

[24], [25]. In this study, the testing set was randomly selected
without replacement and held out from the training process.

The CV method, as mentioned in Tan et al. [26], does
not take into account the temporal aspect of commits when
selecting samples for training and testing. To address this
limitation, other JIT-SDP studies, such as McIntosh et al.
[20], Hoang et al. [7], and Lomio et al. [15], have adopted
a time sensitive (TV) approach for data splitting. The TV
approach considers the time sensitivity of changes, where JIT-
SDP models are trained using earlier data to predict buggy
commits in later ones.

In our study, we followed a chronological sorting of the
data and employed the TV approach for JIT-SDP models. The
dataset was divided into training and testing sets using a split
point determined by a 70% and 30% ratio, respectively, as
shown in Figure 2. In addition to the TV approach, unlike
previous studies such as McIntosh et al. [20], Hoang et al.
[7], and Lomio et al. [15], we also performed a ten-fold
CV approach using the early 70% of the data, similar to
the approach conducted by Zeng et al. [9]. The number of
repetitions in TV approach is one due to its restrictions. We
applied the same setting as Hoang et al. [7] and Zeng et al.
[9] to our dataset.

Fig. 2: Splitting dataset using time-aware validation

D. Evaluation Metrics

To evaluate the performance of classification models, we
use the Area Under the ROC Curve (AUC) [27], [28]. The
ROC curve is a graphical representation of the True Positive
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Rate (TPR) against the False Positive Rate (FPR) at different
decision thresholds. The TPR and FPR values used to create
the ROC curve are calculated from the confusion matrix [29],
which displays TP, TN, FP, and FN of a classification model
based on the actual and predicted class labels of a dataset as
shown in Table III.

TABLE III: Description of ROC curve and confusion matrix.

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

• True Positive (TP): The number of buggy commits that
are correctly classified as buggy

• False Positive (FP): The number of normal commits,
classified as buggy (a.k.a false alarms)

• False Negative (FN): The number of buggy commits that
are classified as normal

• True Negative (TN): The number of normal commits that
are correctly classified as normal

E. Algorithms

We propose three JITBoost models (JITBoost-BBC,
JITBoost-IBC, JITBoost-WPIBC) that use three different BCC
techniques to enhance the JIT-SDP accuracy. We use six
traditional ML classification methods and one DL algorithm
to create JITBoost (see Figure 3).

The traditional ML algorithms are: Naive Bayes (NB),
Random Forest (RF), Decision Tree (DT), Support Vector Ma-
chine (SVM), Logistics Regression (LR), k-Nearest Neighbors
(k-NN). We chose these algorithms because they are used
extensively in the field of JIT-SDP (e.g., [1], [3]).

We used the end-to-end deep learning framework (DeepJIT)
[9]. Unlike other approaches such as DBN-JIT [7] and CC2Vec
[8], which only employ deep learning models to extract
and build semantic information and syntactic structure from
commit messages and code changes, DeepJIT takes a more
comprehensive approach. DeepJIT not only utilizes a deep
learning model for extracting semantic information and syn-
tactic structure but also trains the model using a Convolutional
Neural Network (CNN) algorithm [9]. Moreover, the DeepJIT
is specifically selected for evaluation because it outperforms
other DL models, such as DBN-JIT and CC2Vec, and its status
as an end-to-end deep learning framework [9].

Figure 3 shows the process of combining these algorithms
to create JITBoost models using BBC, IBC, and WPIBC. For
RQ1 and RQ2, we combine the six traditional algorithms
to create JITBoost algorithms. For RQ1, we compare the
combined algorithms to each traditional ML algorithms. For
RQ2, we compare the combination to Deep JIT. As for RQ3,
we combine the six traditional ML algorithms and DeepJIT
and compare that to a combination of only traditional ML.

V. RESULTS ANALYSIS AND DISCUSSIONS

In this section, we present and discuss the results of the
experiments by providing answers to our research questions
in the subsections.

A. RQ1: How does the performance of JITBoost algorithms
compare to JIT-SDP models that use traditional machine
learning algorithms?

Figure 4 shows the average AUC results of JITBoost models
(JITBoost-BBC, JITBoost-IBC, JITBoost-WPIBC) and that of
the six traditional ML methods (SVM, LR, etc.), using both
CV and TV data splitting approaches. The results indicate that
when using the CV approach, all JITBoost models perform
better than the ML models. JITBoost-BBC, JITBoost-IBC,
and JITBoost-WPIBC achieve average AUC values of 0.891,
0.879, and 0.886, respectively, while the best ML model (RF)
achieves an average AUC of 0.857. When the TV data splitting
approach is used, the performance of all ML models declines
even further. The best ML model (RF) achieves an average
AUC of 0.776, whereas all JITBoost algorithms still maintain
higher average AUC (the worst result is 0.854 by JITBoost-
IBC) results compared to the ML models.

We used the Mann-Whitney U test [30] [31] to determine
the statistical significance of the model’s results. The null
hypothesis (h0) assumes that the results of the models are
not statistically different, while the alternative hypothesis (h1)
suggests that the model’s results are statistically different. The
null hypothesis is rejected when the p-value is less than 0.05
(95% confidence interval) [32].

Additionally, we used the Cliff’s δ effect size to quantify the
magnitude of the difference between the two groups. Cliff’s
δ ranges from -1 to 1, with 0 indicating no effect, negative
values indicating Y values are greater than X, and positive
values indicating X values are greater than Y. Different ranges
are defined for interpreting the effect size: 0.147 < |δ| ≤ 0.33
(small effect), 0.33 < |δ| ≤ 0.474 (moderate effect), and |δ| >
0.474 (large effect) [33], [34]. The calculation of Cliff’s δ

is based on Equation (2), where x and y represent two data
vectors, and n x and n y denote the sizes of these vectors.

Cliff ′s δ =

∑
i

∑
j sign(yi − xj)

ny .nx
(2)

To compare the performance based on the data splitting
approach, the results using CV and TV are examined in Table
IV. The table presents the average and standard deviation of
AUC for all models, the improvement ratio (IM) measured
as (AUCCV − AUCTV )/AUCCV , and the results of the Mann-
Whitney U test and Cliff’s δ. The findings indicate that
JITBoost’s performance is slightly improved by 3% with the
TV approach compared to CV. However, the p-value suggests
that the results of JITBoost models using CV and TV are not
statistically different because p-value > 0.05, so we can not
reject h0, although a small effect size is observed.

On the other hand, the p-value of the ML models is less
than 0.05, indicating statistically different results. The effect
sizes vary, with RF and k-NN exhibiting large effects and NB,
DT, LR, and SVM showing moderate effects. These results
suggest that the data splitting approach (i.e., CV and TV) has
a limited impact on the performance of JITBoost models, but
it significantly affects the performance of ML models, with
some models showing large or moderate effect sizes.
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Fig. 3: The JITBoost Overall Approach

Fig. 4: Comparison of JITBoost models with ML models.

TABLE IV: The statistical analysis for models with different
data splitting approaches (CV and TV).

AUCCV (µ ± σ) AUCTV (µ ± σ) IM% Cliff’s δ p-value

NB 0.742 ± 0.074 0.669 ± 0.136 10% 0.381 0.007
RF 0.857 ± 0.052 0.776 ± 0.056 10% 0.801 0.000
DT 0.767 ± 0.067 0.696 ± 0.146 9% 0.472 0.001
LR 0.783 ± 0.074 0.721 ± 0.082 8% 0.469 0.001
k-NN 0.724 ± 0.085 0.657 ± 0.102 9% 0.482 0.001
SVM 0.733 ± 0.118 0.626 ± 0.156 15% 0.392 0.006
DeepJIT 0.737 ± 0.101 0.774 ± 0.105 -5% 0.230 0.104

JITBoost-BBC 0.891 ± 0.041 0.863 ± 0.071 3% 0.267 0.058
JITBoost-IBC 0.879 ± 0.044 0.854 ± 0.077 3% 0.266 0.060
JITBoost-WPIBC 0.886 ± 0.045 0.857 ± 0.074 3% 0.262 0.063

Next, we examine the differences in performance based on
the classifiers. Specifically, we compare each JITboost model
individually to the other six models, using the same data

splitting approach. The same comparison is performed for all
other models used in this research question. Table V presents
the performance of the models compared to others, using
both the CV and TV approaches. All ML models perform
lower than the JITBoost models. Furthermore, all p-values are
less than 0.05, indicating statistically significant differences in
results for CV and TV data splitting approaches. The effect
size is moderate for models such as NB, RF, DT, and LR,
while the SVM model a large effect size and small for k-
NN with CV approach. Using TV approach, models (NB,
DT, and k-NN) have small size effect, while RF and LR has
moderate effect size and SVM a large effect size. On the other
side, all JITBoost models have p-value less than 0.05, which
also indicating to statistically differences with large effect size
(δ > 0.474). In summary, the results indicate that JITBoost-
BBC models have statistically different results compared to
ML models, with p-values less than 0.05 for CV and TV data
splitting approaches.

TABLE V: Effect size by type of classifier

CV TV

Classifier Cliff’s δ p-value Cliff’s δ p-value

NB -0.408 0.000 -0.017 0.000
RF -0.453 0.000 -0.413 0.000
DT -0.325 0.002 -0.050 0.000
LR -0.320 0.002 -0.341 0.001
k-NN -0.197 0.009 -0.262 0.012
SVM -0.524 0.000 -0.552 0.000
DeepJIT -0.368 0.000 -0.015 0.000

JITBoost-BBC 0.577 0.000 0.531 0.000
JITBoost-IBC 0.473 0.000 0.477 0.000
JITBoost-WPIBC 0.529 0.000 0.494 0.000
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Finding RQ1: Our findings show that JITBoost models
outperform ML models by 18%, 17%, and 17% for
JITBoost-BBC, JITBoost-IBC, and JITBoost-WPIBC,
respectively, when using CV. Additionally, when us-
ing TV, JITBoost models show even a better perfor-
mance with improvements of 36%, 35%, and 35% for
JITBoost-BBC, JITBoost-IBC, and JITBoost-WPIBC,
respectively, compared to ML models. While the
choice of data splitting approach had small impact on
JITBoost’s performance, it had a significant effect on
ML models, with improvements of at least of 8%.

B. RQ2: How does the performance of JITBoost algorithms
compare to a deep learning JIT-SDP algorithm?

This research question compares JITBoost models to Deep-
JIT models. Figure 5 visualizes the results of JITBoost models
created using six ML models only and a model created using
DeppJIT. It can be seen that all JITBoost Models outperform
DeepJIT. The JITBoost-BBC, JITBoost-IBC, and JITBoost-
WPIBC achieve an average AUC of 0.890, 0.880, and 0.890,
respectively, with the CV approach compared to an average
AUC of 0.737 for DeepJIT. Also, they achieve an average AUC
of 0.860, 0.850, and 0.860, respectively, with the TV approach,
compared to 0.774 for DeepJIT. The JITBoost models not only
achieve better results, but also result in lower variance (see the
standard deviation in Table VI. In other words, JITBoost lead
to a more confident prediction, reducing prediction errors that
may be caused by overfitting [27].

Fig. 5: Comparison between JITBoost models and DeepJIT
models using both data splitting approaches CV and TV.

We used the Mann-Whitney U test and Cliff’s δ size with the
results of JITBoost and DeepJIT models. As shown in Table
IV, DeepJIT using TV performs better than when using the CV

data splitting approach (an improvement of 5%). However, the
p-value of DeepJIT is greater than 0.05, so we can not reject
the h0. It means the results are not statistically different with
small effect size. Therefore, we cannot claim that the DeepJIT
model is affected by the data splitting approaches. This also
applies to JITBoost models.

We statistically analyze the results of JITBoost models
with DeepJIT models. Table V shows the effect size and p-
value for each JITBoost model compared to DeepJIT. The
p-value of all models is less than 0.05 with CV and TV
data splitting approaches, meaning that there is a significant
difference between JITBoost accuracy and that of DeepJIT.
The effect size of DeepJIT is moderate using CV and small
with TV.

Finding RQ2: Our findings show that JITBoost mod-
els exhibit superior performance compared to Deep-
JIT. Using CV, JITBoost-BBC, JITBoost-IBC, and
JITBoost-WPIBC outperform the accuracy of DeepJIT
by 16%, 15%, and 15%, respectively. Similarly, with
the TV approach, JITBoost models surpass DeepJIT
model by 10%. It is worth noting that both JIT-
Boost models and DeepJIT show only small effects
in performance based on the choice of data splitting
approach. These results indicate that JITBoost models
consistently outperform DeepJIT, regardless of the data
splitting method employed.

C. RQ3: How does the combination of traditional JIT-SDP
models and deep learning models affect the performance of
the JITBoost algorithms?

This research question examines the impact of integrating
DeepJIT predictions into JITBoost models to enhance their
performance. The predictions generated by DeepJIT are com-
bined with ML models for this purpose. However, it is worth
noting that previous discussions have already addressed the
influence of data-splitting approaches on JITBoost models.
Hence, our objective is to measure the extent of improvement
achieved by incorporating DeepJIT.

The overall performance of JITBoost models, with and
without DeepJIT, is presented in Figure 6. We found that
including DeepJIT as the seventh classifier into JITBoost does
not affect JITBoost-BBC models using both CV and TV
techniques. The JITBoost-IBC models improved by 1% when
we include DeepJIT with CV, but the performance decreased
by -1% using TV. Finally, The JITBoost-WPIBC is improved
by 4% and 2% using both CV and TV, respectively, when the
DeepJIT predictions are included. The p-value for all models
is greater than 0.05, leading us to not reject the null hypothesis
(h0) and indicating no statistically significant differences in the
results. Additionally, the effect size, as indicated by Cliff’s δ,
is observed to be small.

As discussed in Section III-1, the JITBoost-BBC algo-
rithm generates all possible combinations of boolean functions
leading to the best output, which does not effected when
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Fig. 6: Comparison of JITBoost models with DeepJIT to
JITBoost models with and without DeepJIT.

incorporating the DeepJIT model compared to the JITBoost-
IBC and JITBoost-WPIBC models. Also, the DeepJIT does not
outperform the RF model in the preivous results. However, it
is important to acknowledge that the BBC algorithm’s major
drawback is its high processing complexity. On the other hand,
the IBC and WPIBC algorithms optimize their processing time
by pruning possible cases and accelerating the combination of
Boolean functions [11]. This difference in approaches explains
the improvement observed when adding DeepJIT as a classifier
to JITBoost-WPIBC models, because WPIBC drop out the
similar vectors from the predictions.

TABLE VI: The effect size of improvement gain after com-
bining all seven models.

Model IMCV IMTV Cliff’s δ p-value
JITBoost-BBC 0% 0% 0.267 0.058
JITBoost-IBC 1% -1% 0.266 0.060
JITBoost-WPIBC 4% 2% 0.262 0.063

Moreover, it is important to consider the computational
resources required for training DL models. As illustrated in
Table VII, this study uses different hardware configurations,
including 2 CPUs and 3 GPUs, for tuning, training, and testing
the DeepJIT model. The optimal hardware configuration in this
study was identified as C2 and G2. These powerful hardware
setups were specifically employed to accelerate the process-
ing time of the DL model. Conversely, a simpler hardware
configuration, such as C1, was sufficient for the ML model.

TABLE VII: Hardware specifications utilized for deep learning
model.

ID Hardware Specifications Release Date

C1 CPU Ryzen 9 5900X 12 cores, 3.7 GHz, 32GB RAM-DDR4 Nov-2020
C2 CPU Intel Xeon 48 cores, 3.8 GHz, 64GB RAM-DDR4L Jun-2019
G1 GPU GTX 970 1664 CUDA cores, 4 GB GDDR5 RAM Sep-2014
G2 GPU RTX 8000 4608 CUDA cores, 48 GB GDDR6 RAM Aug-2018
G3 GPU A100 NVIDIA 6912 CUDA cores, 40 GB HBM2 RAM May-2020

Finding RQ3: We found that JITBoost models outper-
form DeepJIT when compared to other ML models.
Even when considering DeepJIT as a seventh classifier
alongside the JITBoost models, the observed improve-
ment is not statistically significant. It is important to
note that training the DL model like DeepJIT requires
substantial computing resources and time. While JIT-
Boost models demonstrate better performance without
such resource-intensive training requirements, the dif-
ference in performance between JITBoost and DeepJIT
are not statistical significant.

VI. THREATS TO VALIDITY

In this section, the threats to the validity of our results and
recommendations is discussed.

Internal Validity: Internal validity threats refer to factors that
could potentially influence our findings. One potential threat is
the choice of algorithms. To address this, we employed robust
algorithms that have a strong track record in various classifi-
cation tasks and are widely used in research across different
fields. Another concern relates to the datasets we used. Al-
though we conducted experiments on 34 different Java Apache
projects, incorporating additional datasets comprising different
programming languages would enhance the generalizability
of our results. Furthermore, comparing cross-validation with
time validation might be impacted by the number of tests
conducted. Time validation has certain limitations that prevent
multiple tests similar to cross-validation. Additionally, the
choice of the number of folds in cross-validation can also have
an influence.

External Validity: External validity pertains to the extent
to which our findings can be generalized. Our experiments
encompassed 34 datasets from diverse software projects. How-
ever, it is important to note that we do not make claims
regarding the generalizability of our results to all projects,
especially industrial or proprietary systems to which we did
not have access.

VII. REPLICATION PACKAGE

All the data, scripts, and results discussed in this paper are
available on Zenodo: https://doi.org/10.5281/zenodo.8206280

VIII. CONCLUSION

In this study, we examined the effectiveness of Boolean
Combination Classifiers (BCC) for Just-In-Time Software De-
fects Prediction (JIT-SDP) models. Our experiments involved
three BCC algorithms: Brute-force Boolean Combination
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(BBC), Iterative Boolean Combination (IBC), and Weighted
Pruning Iterative Boolean Combination (WPIBC), using 34
datasets. We compared their performance against state-of-the-
art JIT-SDP models that utilize machine learning (ML) and
deep learning (DL) approaches.

Our findings revealed that, in our specific case, DeepJIT
was unable to outperform certain ML models, such as Random
Forest (RF). However, when combining ML models within the
JITBoost framework, the JITBoost algorithms outperformed
all state-of-the-art JIT-SDP models employing ML and DL
classifiers. Notably, including DL models alongside JITBoost
algorithms enhanced the performance of the JITBoost-WPIBC
algorithm. Furthermore, we observed that the choice of ML
models significantly impacted data-splitting approaches, such
as cross-validation and time-aware validation. In contrast, DL
and JITBoost models exhibited minimal effects in this regard.
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