
A Boundary Checking Technique for Testing Real-Time Systems
Modeled as Timed Input Output Automata

Abdeslam En-Nouaary1 and Abdelwahab Hamou-Lhadj

Department of Electrical and Computer Engineering
Concordia University

1515 Sainte Catherine West
Montréal, Québec H3G 2W1, Canada

{ennouaar, abdelw}@ece.concordia.ca

1 This author is on leave at Institut National des Postes et Télécommunication, Rabat, Morocco.

Abstract
The behavior of real-time systems depends not only

on their interaction with the environment but also on
very rigid time constraints that puts restrictions on
when these interactions take place. The timing aspect
of such systems renders the testing process difficult
without defining adequate test selection criteria that
ensure good coverage of the system while keeping the
number of needed test cases considerably low. In this
paper, we propose a method for testing real-time
systems, formally modeled as Timed Input Output
Automata (TIOA), which aims at generating a set of
test cases that would allow us to check every transition
of the TIOA as soon as possible, as late as possible,
and at the middle between these two executions. The
execution times of every transition are determined
based on the minimum and maximum delays between
the source state of the transition and its clock guards.

1. Introduction

Modern society increasingly depends on complex
real-time software systems for operating its critical
infrastructures including telecommunication networks,
health care devices, transportation, etc. Unlike other
types of systems, the behavior of real-time systems
depends not only on their interactions with the
environment but also on the time at which these
interactions take place, which renders testing such
applications harder compared to their counterparts.

The normal testing process consists of generating
test cases from the specification of the system, which
are then applied to the implementation under test
(IUT). If the reactions of the IUT match the expected
outputs (i.e., those derived from the specification), the
implementation is considered correct, otherwise the

implementation is declared faulty and the diagnosis
process should be started in order to locate and fix the
fault. In the case of real-time systems, a test case
consists of not only a sequence of inputs and outputs,
but also the times of occurrence of these events. The
goal is to ensure that the implementation of the IUT
respects the timing constraints described in the
problem specification at both input and output levels.

An important aspect in testing a software system is
to carefully design test cases that would uncover as
many faults as possible. The power of a test cases
generation technique is referred to as fault coverage. In
the case of real-time systems, the fault model consists
of four types of faults: output faults, transfer faults,
clock guard restriction faults, and clock guard
widening faults.

In this paper, we present a new approach for black-
box testing of real-time systems that achieves the
aforementioned fault coverage while minimizing the
number of test cases that are needed. Our approach is
based on modeling a real-time system as a Timed Input
Output Automata (TIOA), which is a variant of timed
automaton in which clocks, real-valued variables,
increase synchronously at the same speed, and measure
the amount of time elapsed since last initialization [1].
In our approach, we generate test cases from the TIOA,
which allow every transition to be tested at three
different instants, namely: immediately when the
transition becomes executable, immediately before the
transition is complete, and between these two points of
executions.

In our approach, time is represented using a dense
time model [2]. Unlike discrete time models that
require the time sequence to be a monotonically
increasing sequence of integers (i.e., input and output
messages take place at time instants, which are integer

values), dense time models require input and output
messages to take place at time instants, which are real
number values [2].

The remainder of this paper is structured as follows.
Section 2 introduces the TIOA model and related
concepts. Section 3 presents the proposed approach for
timed test cases, followed with related work. In Section
4, we conclude the paper and point out to key future
directions.

2. Background
This section presents the definitions and the

theoretical ingredients related to TIOA.

Definition 1: TIOA

A TIOA is a 6−tuple (I, O, L, l0, C, T), where :

 I is a finite set of inputs. Inputs represent the
messages received by the system from the
environment. In this paper, inputs are preceded by
“?”.

 O is a finite set of outputs. Outputs represent the
messages sent by the system to the environment.
In this paper, outputs are preceded by “!”.

 L is a finite set of locations. A location represents
the “status” of the system after the execution of a
transition. The term location is used instead of the
term “state”’ because the latter is used to define
the operational semantics of TIOA (see def. 3).

 Ll ∈0 is the initial location.

 C is a finite set of clocks, all initialized to zero in
l0. A clock is a time variable that counts how
much time has elapsed since the clock was
initialized. The time domain of these clocks is
dense, which means that the values of the clocks
are non-negative real numbers.

 LCPCOI ×××∪×⊆)()()(LT φ is the set of
transitions.

A transition in TIOA, denoted

by ',,: lRGmlt ⎯⎯⎯ →⎯ , consists of a source location l
(i.e., source(t) = l), an input or output message m, a
clock guard (or time constraint) G, which should hold
to execute the transition, a subset of clocks R to be
reset when the transition is fired, and a destination
location l′ (i.e., destination(t) = l′). Each clock in R is
used to record, when not reinitialized to zero, how
much time has elapsed since the execution of the
transition. Such clocks are mainly used to set clock
guards between the transition where they are reset and
future transitions. We assume that transitions in TIOA
are instantaneous (i.e., they don’t take time to execute).

Also, transitions on inputs are supposed to be guarded
with conjunctions of atomic formulas of the form x op
b, where },,,,{, ≥>=≤<∈∈ opCx and b is a natural
number, while transitions on outputs are supposed to
be guarded with conjunctions of atomic formulas of the
form x op b, where },,{, ≥=≤∈∈ opCx and b is a
natural. The tester needs to know the exact time when
outputs are expected because they are not controllable
by him. In definition 1 above, Φ(C) and P(C) denote
the set of clock guards and the power set of C,
respectively. Multiple clocks are used in TIOA to
express time constraints between more than two
transitions. Moreover, we suppose that each clock

Cx ∈ has a bounded domain }{],0[∞∪xB [3], where
Bx is the largest integer constant appearing in time
constraints over x in the automaton. This means that
each clock x is relevant only under the integer constant
Bx, and all the values of x greater than Bx are
represented by ∞ . Hence, the following equations
hold:

∞=+>∀ εε xB,0 and .,0 ∞=+∞>∀ εε

For a clock x and a clock guard G of a transition in
TIOA, we define the projection of G over x, denoted
by Proj(G, x), by the condition (x op b) in G, obtained
by removing the conditions over all clocks except x; if
clock x is not involved in G then Proj(G, x) = true.

In Figure 1, we show an example of a TIOA that
describes the behavior of a simple multimedia system.
The system receives an image, followed by its sound
within two time units, sends an acknowledgment,
ackAll, in no more than three time units after the
reception of the image and no more than two time units
after sound, and then accepts the message reset and
goes back to its initial location to await another image.
If the input sound does not follow the input image
within two time units, the system times out, issues the
message error, and goes back to its initial location. The
TIOA that describes the system has four locations (l0,
l1, l2, and l3), five transitions and two clocks x and y.
The initial location of the system is l0. The transition

10
},{,20,? lyxximagel ⎯⎯⎯⎯⎯⎯⎯ →⎯ <≤ is executed when the

system receives the message image and the value of
clock x is less than 2. When the transition is fired,
clocks x and y are both set to 0. In this example, the
time domains of clocks x and y are (}{]2,0[∞∪) and
(}{]3,0[∞∪), respectively. The projection of the clock
guard (20 <≤ x) over clock x is (20 ≤≤ x) while its
projection over clock y is true (i.e., the clock y is not
involved in the clock guard). However, the projection

of the clock guard ((20 <≤ x) && (21 ≤≤ y)) over
clock x is (20 ≤≤ x), while its projection over clock y
is (21 ≤≤ y) (here, both clocks x and y are involved
in the clock guard).�

Figure 1. An Example of TIOA

The TIOA model introduced thus far is an abstract
model because it does not explain the execution of the
system it describes. The execution, also called the
operational semantics of TIOA, can be informally
stated as follows. The TIOA starts at its initial location
with all clocks initialized to zero. Then, the values of
the clocks increase at the same speed and measure the
amount of time elapsed since the last initialization. At
any time, the TIOA can execute a transition

',, lRGml ⎯⎯⎯ →⎯ if the input/output message m takes
place, its current location is l, and the values of its
clocks satisfy the clock guard G. After this transition,
all the clocks in R are reset and the TIOA changes its
location to l′. To formalize the operational semantics of
TIOA, we need to define the concepts of clock
valuations and states for TIOA.

Definition 2: Clock valuations

Let A = (I, O, L, l0, C, T) be a n−clocks TIOA (i.e.,
an TIOA with n clocks), R ≥ 0 be the set of non-
negative real numbers.

 A clock valuation of A (or over C) is an
application nRCv }]{0[: ∞∪≥→ , which
assigns a value (non-negative real number or ∞)
to each clock Cx ∈ . Clock valuation is simply
the binding of clocks to their actual values. In this
paper, a clock valuation is represented by a vector
(vx1, vx2, ..., vxn), where v(xi) = vxi is the value of
clock nixi ≤≤1, . The set of all clock valuations
for A is referred to by V (C).

 For any clock valuation)(CVv ∈ and any non-
negative real number d, v + d is a clock valuation
that assigns the value v(x) + d to each
clock Cx ∈ . v + d is the clock valuation reached
from v by letting time elapse by d time units.

 For any clock valuation)(CVv ∈ and any subset
of clocks R ⊆ C, [R := 0]v is a clock valuation

that assigns the value 0 to each clock x∈R and
v(x) to any other clock y such that y∈C and y∉R.
[R := 0]v is the clock valuation obtained from v
by resetting the clocks in R when a transition

',, lRGal ⎯⎯⎯ →⎯ is executed.

 A clock valuation v∈V(C) satisfies the clock

guard G of a transition ',, lRGal ⎯⎯⎯ →⎯ , denoted
by v |= G, if and only if G holds (i.e., G evaluated
to true) under v.

Notice that a clock valuation is used to determine
how much time has elapsed since the execution of each
transition that has recently reinitialized a clock. The
combination of a clock valuation and a location defines
a state in TIOA. The formal definition of such states
follows.

Definition 3: States of TIOA

Let A = (I, O, L, l0, C, T) be a TIOA.

 A state of A is a pair (l, v) consisting of a location
l∈L and a clock valuation v∈V(C). Intuitively, a
state of A is a configuration that indicates the
current location of A and the current value of each
clock used in A.

 The initial state of A is the pair (l0, v0), where
v0(x) = 0 for each clock x∈C. Intuitively, the
initial state of A is the configuration of A in the
beginning of its execution (i.e., the location is l0
and all clocks are set to 0 as stated in definition
1).

 The set of states of A is denoted by S(A).

Formally, the operational semantics of TIOA is
described by a state machine M = (S, s0, A, T), where S
is the set of states of TIOA, s0 is the initial state, A is
the set of actions, and T is the set of transitions. The
actions of M are made up of the input and output
messages of TIOA as well as time delays. There are
two categories of transitions in M: explicit transitions
on input and output messages, and implicit transitions
on time delays. The explicit transitions are obtained
from the transitions of TIOA and they describe the
interactions of the system with its environment. The
explicit transitions do not contain time constraints
because the clock valuations of their source states do
satisfy their clock guards. On the other hand, the delay
transitions describe the progression of time but they do
not appear in the transitions of TIOA. In the rest of this
paper, we need the following notations.

 For a state (l, v) in M and a real-valued time delay
δ, M contains the time delay transition
on).,(),(: δδ δ +⎯→⎯ vlvl

 For a state (l, v) in M and a transition

',, lRGml ⎯⎯⎯ →⎯ in TIOA such that v |= G, M
contains the explicit transition (l, v) ⎯→⎯m (l′,
[R:=0]v).

 For two states s and s′ in M and a sequence of
input/output messages and time delays σ, we

write 'ss
σ
⇒ if and only if σ brings M from s to s′.

3. Approach
This section introduces our approach for testing the

TIOA, which ensures the checking of every transition
of the TIOA at least once. To ensure good fault
coverage, each transition is tested at three different
points of time: at the boundaries of the transition (i.e.,
as soon as the transition becomes firable and right
before the execution of the transition is no longer
possible) as well as in the middle of the execution of
the transition.�Consequently, the number of test cases
generated by the proposed method is at most equal to
three times the number of transitions in the TIOA,
which should make our approach scalable to large
systems. To test a transition in TIOA, the method
needs:

 A preamble that brings the TIOA from its initial
location to the source location of the given
transition. The preamble should be executable.
That is, we should find instants in time that make
it possible for each transition in the preamble to
be fired.

 The input or output of the transition provided that
the clock guard of the given transition is satisfied.

 A postamble that brings the TIOA from the
destination location of the given transition back to
its initial location. Similar to the preamble, the
postamble should be executable.

Besides, we are making the following assumptions
when generating test cases:

 The TIOA dealt with is deterministic; i.e, at any
location of the TIOA we cannot find two or more
transitions whose clock guards can
simultaneously be satisfied.

 The implementation refuses any unexpected input
by displaying an error message and going back to
its initial state.

 The TIOA dealt with is connected; i.e., there is a
path between any two locations in TIOA. If a
location has no outgoing transition, then an
implicit reset transition should be added to bring
the TIOA back to its initial location.

To formalize the approach, let t be the transition to
be tested. Preambles(t) denotes the set of preambles for
t; Preambles(t) = {(t1, t2, ..., tn) such that: source(t1) =
l0, destination(tn) = source(t), and destination(ti−1) =
source(ti), 1 < i < n}. Similarly, Postambles(t) denotes
the set of postambles for t; Postambles(t) = {(t1, t2, ...,
tm) such that: source(t1) = destination(t),
destination(tm) = l0, and destination(ti−1) = source(ti),
1 < i < m}.

So, to test t we should concatenate in this order the
execution of a preamble from Preambles(t), the
input/output of t after satisfying its clock guard, and
the execution of a postamble from Postambles(t). To
get the execution of a preamble pr (respectively a
postamble ps) we put together the input/output
messages of pr (respectively ps) and the time delays
used to execute their transitions. The time delay used
for a transition is the minimum waiting time required
to execute the transition, which is denoted below by
delaymin(v,G). It is calculated based on the minimum
delay between the value of a clock and a constraint on
that clock, as follows:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤<≤
=−

≤<
<<+−

=

trueisxif
mxmormxm

ormxisxifxvm
mxm

ormxmisxifxvm

xxvdelay

)(0
)()(

)()()(
)(
)()()(

))(),((

2121

11

21

211

min

φ

φ

φε

φ

Where v(x) is the value of clock)(, xx φ is the
constraint on clock x, and ε is a small positive real
value chosen by the tester, hence:

delaymin(v,G)= Maxx∈ C{delaymin(v(x), Proj(G, x))> 0}

The process of calculating the execution of a
preamble is as follows. We start at the initial state (l0,
v0). Then, we determine the minimum time delay
required to execute the first transition in the preamble.
After that, we apply the message of this transition and
update the state of the system.

Afterward, we determine the minimum delay for the
second transition in the preamble, and so on until we
reach the source state of t (which is also the destination
state of the last transition in the preamble). Likewise,
the execution of a postamble is computed as follows.
We start at the destination state of the transition being
tested. Then, we determine the minimum time delay
required to execute the first transition in the postamble.
After that, we apply the message of this transition and

update the state of the system. Afterward, we
determine the minimum delay for the second transition
in the postamble, and so on until we reach the initial
state of the TIOA (which is also the destination state of
the last transition in the postamble).

Next, to make it possible for a transition to execute,
the clock guard of the transition should be satisfied by
the current values of the clocks. This means that during
test generation, the value of each clock should be
chosen to satisfy the condition on the clock in the
transition. In other words, we should find states in the
state machine describing the operational semantics of
the TIOA that make it possible for the transition to
execute. As mentioned earlier, each transition is tested
three different points of time:

 As soon as the transition becomes firable,

 Right before the execution of the transition is no
longer possible, and

 In the middle of the execution of the transition.

This is done by using the minimum delay
introduced above as well as the maximum delay
defined below. The maximum delay between a clock
valuation and a clock guard is written delaymax(v,G),
and is calculated based on the maximum delay between
the value of a clock and a constraint on that clock:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∞
≤≤≤<

=−
<≤

<<−−

=

trueisxif
mxmormxm

ormxisxifxvm
mxm

ormxmisxifxvm

xxvdelay

)(
)()(

)()()(
)(

)()()(

))(),((

2121

22

21

212

max

φ

φ

φε

φ

Where v(x) is the value of clock)(, xx φ is the
constraint on clock x, and ε is a small positive real
value chosen by the tester, hence:

delaymax(v,G)= Minx∈ C{delaymax(v(x), Proj(G, x))> 0}

The minimum delay is used to execute the transition
as soon as the transition is ready to execute while the
maximum delay is used to test the transition at its latest
convenience. The execution of the transition in the
middle of its execution is determined by taking the
average of the minimum and maximum delays between
the clock valuation in the source state of the transition
and its clock guard.

More formally, to test a transition ': ,, llt RGm ⎯⎯ →⎯ in
TIOA, we need three test sequences:
exec(pr).δmin.m.exec(ps), exec(pr).δavg.m.exec(ps), and
exec(pr).δmax.m.exec(ps) such that:

 pr∈Preambles(t), ps∈Postambles(t), δmin > 0,
δavg > 0 and δmax > 0,

 (l0, v0)
exec(pr)
⇒ (l,

nt
v),

 (l,
nt

v) ⎯⎯ →⎯ minδ (l,
nt

v + δmin),

 (
nt

v + δmin) |= G,

 (l,
nt

v) ⎯⎯→⎯ avgδ (l,
nt

v + δavg),

 (
nt

v + δavg) |= G,

 (l,
nt

v) ⎯⎯ →⎯ maxδ (l,
nt

v + δmax),

 (
nt

v + δmax) |= G,
 δmin = delaymin(v, G),
 δmax = delaymax(v, G),

 δavg =
2

G)(v,mindelayG)(v,maxdelay +

 (l′,
nt

v + δmin)[R := 0])
exec(ps)
⇒ (l0, v0),

 (l′,
nt

v + δavg)[R := 0])
exec(ps)
⇒ (l0, v0),

 (l′,
nt

v + δmax)[R := 0])
exec(ps)
⇒ (l0, v0).

To illustrate the approach, let us consider again the

TIOA in Figure 1. Every transition requires three test
cases. The first one tests the transition as soon as it
becomes executable. The second test case is for testing
the transition in the middle, while the third one is for
checking the transition at its latest point of execution.
For instance, the transition 2

}{,20,?
1:2 llt xxsound ⎯⎯⎯⎯⎯ →⎯ <≤ is

tested with the following test cases:

 resetackAllsoundimage ?..!2.?.?

 resetackAllsoundimage ?..!2.?.
4
3.?

 resetackAllsoundimage ?..!
2
3.?.

2
3.?

Here, the preamble used to reach the transition is t1
while the postamble used to go back to the initial
location of the TIOA is t3.t4. The three test cases are
obtained by taking the execution of the preamble to
reach the source state of the transition, the
minimum/average/maximum delay between the state
(l1, (0, 0)) and the clock guard of the transition (i.e., 0
≤ x < 2), and the execution of the postamble to go from
the destination state of the transition back to the initial
state of the TIOA. For all of the three test cases, the
execution of the preamble is the same, namely ?image.
The minimum delay and the execution of the
postamble for the first test cases are 0 and
2.!ackAll.?reset, respectively; the average delay and
the execution of the postamble for the second test case

are
4
3 and 2.!ackAll.?reset, respectively; The

maximum delay and the execution of the postamble for

the third test case are
2
3 and

2
3 .!ackAll.?reset,

respectively. It should be noted that the minimum and

maximum delays are calculated here with ε =
2
1 .

4. Related Work
Over the last two decades, several algorithms have

been developed for testing real-time systems. These
methods differ from one another depending on the
formal specification model used, the technique adopted
for test generation, and the number of resulting test
cases. In what follows, we give an overview of each of
these methods and we compare them to the approach
proposed in this paper.

In [5], Mandrioli et al. propose a tool for the
generation of test cases from specifications given as
temporal logic formulas extended with time measures.
But, the generated test cases cover only integer values.

In [6], Clarke et al. introduce a framework for
testing time constraints in real-time systems. They
derive test cases from a specification described in the
form of a constraint graph. These test cases satisfy
some test criteria for real-time systems. However, the
constraint graph is restricted to the description of the
minimum and maximum allowable delays between the
input/output events in the execution of a system,
following Taylor’s and Dasarathy’s classification of
timing requirements [13, 14].

In [9, 4], we presented a method for testing real-
time systems modeled as timed automata. The
proposed method (called the Timed Wp-Method) is an
adaptation of the Wp-Method [17] for generating timed
test cases from timed automata based on the state
characterization technique. The test cases generated by
this method have full fault coverage with regard to the
fault model presented in [18]. However, the number of
test cases generated by the timed Wp-Method is quite
large for broader specifications. In [10, 11, 12], we
presented another method for testing time input output
automata with an acceptable number of test cases. The
proposed method is based on sampling the TIOA of the
specification to come up with a testable automaton,
called Grid Automaton (GA). Although the approach is
scalable, the construction of the GA and its traversal
are quite time consuming.

In [7], Cardell et al. propose a technique to generate
timed test cases from timed transition systems (TTSs).

A TTS is a pair of values consisting of an initial state
and a set of transition rules. To generate test cases, the
authors first transform the TTS into a labeled transition
system containing all the observable traces of the
system, and then apply an adapted version of the W-
method [15] to the resulting automaton. This approach
has two drawbacks. First, the authors adopt a discrete
time model that does not allow specification of a
system with clocks assuming continuous values.
Secondly, the number of generated test cases may be
very large if the implementation has more states than
the specification.

In [8], Khoumsi et al. present an approach and an
architecture to test real-time protocols specified by
timed input-output automata with discrete time
domains (an extension to the continuous time domain
is presented in [19]). Their approach consists of two
steps. First, the timed specification is transformed into
an equivalent untimed one using the established timer
operations Set(T, d) and Exp(T). Then, the Wp-method
[17] is applied to the resulting automaton. The major
drawback of this approach is that it may introduce
undesirable non-determinism during testing and it may
produce non-executable test cases.

5. Conclusion
In this paper, we presented an approach for testing

real-time systems modeled as Timed Input Output
Automata. Our approach ensures good fault coverage
of the system by testing each transition of the system at
least once. Indeed, for each transition, we generated
test cases so as to test the transition at three different
points of time: At each boundary of the transition (i.e.,
as soon as the transition is ready to be execute and
right before its execution is completed) as well as in
the middle of the execution of the transition. We
believe that this approach does not only allow good
coverage of the system but it will also help uncover
faulty behaviors that occur at the boundaries of the
transition and that go usually undetected.

As future directions, we intend to implement the
approach proposed in this paper and experiment with it
using real-world systems. The objective is to assess its
effectiveness to detect faulty behaviors as well as its
scalability when applied to large systems.

6. References
[1] R. Alur and D. Dill, “A Theory of Timed
Automata”, Journal of Theoretical Computer Science,
1994, pp. 183–235.

[2] D. Dill., “Timing Assumptions and Verification
of Finite-State Concurrent Systems”, In Proc. of the

International Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France,
1990, pp. 197–212.

[3] J. Springintveld and F. Vaandrager, “Minimizable
Timed Automata”, In Proc. of the 4th International
School and Symposium on Formal Techniques in Real
Time and Fault Tolerant Systems, Uppsala, Sweden,
1996, pp. 130–147.

[4] A. En-Nouaary, R. Dssouli, F. Khendek, and A.
Elqortobi, “Timed Test Cases Generation Based on
State Characterisation Technique” In Proc. of the 19th
Real-Time Systems Symposium, Madrid, Spain, 1998,
pp. 220–230.

[5] D. Mandrioli, S. Morasca, and A. Morzenti,
“Generating Test Cases for Real-Time Systems from
Logic Specifications”, ACM Transactions on
Computer Systems, 13(4), 1995, pp. 365–398.

[6] D. Clarke and I. Lee, “Automatic Generation of
Tests for Timing Constraints from Requirements”, In
Proc. of the 3th International Workshop on Object-
Oriented Real-Time Dependable Systems, Newport
Beach, California, 1997, pp. 199-206.

[7] Rachel Cardell-Oliver and T. Glover, “A Practical
and Complete Algorithm for Testing Real-Time
Systems”, In Proc. of the International Conference on
Formal Techniques for Real-Time Fault Tolerant
Systems, Lyngby, Denmark, 1998, pp. 251–261.

[8] A. Khoumsi, M. Akalay, R. Dssouli, A. En-
Nouaary, and L. Granger, “An Approach for Testing
Real-Time Protocols”, In Proc. of the the 12th IFIP
International Conference on Testing of
Communicating Systems, Ottawa, Canada, 2000.

[9] A. En-Nouaary, R. Dssouli, and F. Khendek,
“Timed Wp-Method: Testing Real-Time Systems”,
IEEE Transactions on Software Engineering, 28(11),
2002, pp. 1023–1038.

[10] A. En-Nouaary and R. Dssouli, “A Guided
Method for Testing Timed Automata”, In Proc. of the
the 15th IFIP International Conference on Testing of
Communicating Systems, Nice, France, 2003.

[11] A. En-Nouaary, “A Scalable Method For Testing
Real-Time Systems”, Software Quality Journal, 16(1),
2008, pp. 3-22.

[12] A. En-Nouaary, “A Test Purpose Based Approach
for Testing Timed Input Output Automata”, Journal of
Software Testing, Verification, and Reliability, 2008.

[13] B. Taylor, “Introducing Real-time Constraints
into Requirements and High Level Design of Operating
Systems”, In Proc. of the National

Telecommunications Conference, Houston, TX, 1980,
pp. 18.5.1–18.5.5.

[14] B. Dasarathy, “Timing Constraints of Real-Time
Systems: Constructs for Expressing Them, Methods of
Validating Them”, IEEE transactions on Software
Engineering, 11(1), 1985, pp. 80–86.

[15] T. S. Chow, “Testing Software Design Modeled
by Finite State Machine”, IEEE Transactions Software
Engineering, 4(3), 1978, pp. 178–187.

[16] K. Čerāns, “Decidability of Bisimulation
Equivalences for Parallel Timer Processes”, In Proc. of
the 4th International Workshop on Computer Aided
Verification, Montreal, Canada, 1992, pp. 302–315.

[17] S. Fujiwara, G. V. Bochmann, F. Khendek, M.
Amalou, and A. Ghedamsi, “Test Selection Based on
Finite-State Models”, IEEE Transactions Software
Engineering, 17(6), 1991, pp. 591–603.

[18] A. En-Nouaary, F. Khendek, and R. Dssouli,
“Fault Coverage in Testing Real-Time Systems”, In
Proc. of the International Conference on Real-Time
Systems Computing Systems and Applications, Hong
Kong, 1999, pp. 13-15.

[19] A. Khoumsi, A. En-Nouaary, R. Dssouli, and M.
Akalay, “A New Method for Testing Real-Time
Systems”, In Proc. of the Seventh International
Conference on Real-Time Systems and Applications,
Cheju Island, South Korea, 2000, pp. 441–451.

