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Abstract 
The behavior of real-time systems depends not only 

on their interaction with the environment but also on 
very rigid time constraints that puts restrictions on 
when these interactions take place. The timing aspect 
of such systems renders the testing process difficult 
without defining adequate test selection criteria that 
ensure good coverage of the system while keeping the 
number of needed test cases considerably low. In this 
paper, we propose a method for testing real-time 
systems, formally modeled as Timed Input Output 
Automata (TIOA), which aims at generating a set of 
test cases that would allow us to check every transition 
of the TIOA as soon as possible, as late as possible, 
and at the middle between these two executions. The 
execution times of every transition are determined 
based on the minimum and maximum delays between 
the source state of the transition and its clock guards.  
 
1. Introduction 

Modern society increasingly depends on complex 
real-time software systems for operating its critical 
infrastructures including telecommunication networks, 
health care devices, transportation, etc. Unlike other 
types of systems, the behavior of real-time systems 
depends not only on their interactions with the 
environment but also on the time at which these 
interactions take place, which renders testing such 
applications harder compared to their counterparts.   

The normal testing process consists of generating 
test cases from the specification of the system, which 
are then applied to the implementation under test 
(IUT).  If the reactions of the IUT match the expected 
outputs (i.e., those derived from the specification), the 
implementation is considered correct, otherwise the 

implementation is declared faulty and the diagnosis 
process should be started in order to locate and fix the 
fault. In the case of real-time systems, a test case 
consists of not only a sequence of inputs and outputs, 
but also the times of occurrence of these events. The 
goal is to ensure that the implementation of the IUT 
respects the timing constraints described in the 
problem specification at both input and output levels.  

An important aspect in testing a software system is 
to carefully design test cases that would uncover as 
many faults as possible. The power of a test cases 
generation technique is referred to as fault coverage. In 
the case of real-time systems, the fault model consists 
of four types of faults: output faults, transfer faults, 
clock guard restriction faults, and clock guard 
widening faults.  

In this paper, we present a new approach for black-
box testing of real-time systems that achieves the 
aforementioned fault coverage while minimizing the 
number of test cases that are needed. Our approach is 
based on modeling a real-time system as a Timed Input 
Output Automata (TIOA), which is a variant of timed 
automaton in which clocks, real-valued variables, 
increase synchronously at the same speed, and measure 
the amount of time elapsed since last initialization [1]. 
In our approach, we generate test cases from the TIOA, 
which allow every transition to be tested at three 
different instants, namely: immediately when the 
transition becomes executable, immediately before the 
transition is complete, and between these two points of 
executions.  

In our approach, time is represented using a dense 
time model [2]. Unlike discrete time models that 
require the time sequence to be a monotonically 
increasing sequence of integers (i.e., input and output 
messages take place at time instants, which are integer 



values), dense time models require input and output 
messages to take place at time instants, which are real 
number values [2]. 

The remainder of this paper is structured as follows.  
Section 2 introduces the TIOA model and related 
concepts. Section 3 presents the proposed approach for 
timed test cases, followed with related work. In Section 
4, we conclude the paper and point out to key future 
directions. 

2. Background 
This section presents the definitions and the 

theoretical ingredients related to TIOA. 

Definition 1: TIOA 

A TIOA is a 6−tuple (I, O, L, l0, C, T), where : 

 I is a finite set of inputs. Inputs represent the 
messages received by the system from the 
environment. In this paper, inputs are preceded by 
“?”.  

 O is a finite set of outputs. Outputs represent the 
messages sent by the system to the environment. 
In this paper, outputs are preceded by “!”. 

 L is a finite set of locations. A location represents 
the “status” of the system after the execution of a 
transition. The term location is used instead of the 
term “state”’ because the latter is used to define 
the operational semantics of TIOA (see def. 3).  

 Ll ∈0 is the initial location. 

 C is a finite set of clocks, all initialized to zero in 
l0. A clock is a time variable that counts how 
much time has elapsed since the clock was 
initialized. The time domain of these clocks is 
dense, which means that the values of the clocks 
are non-negative real numbers. 

 LCPCOI ×××∪×⊆ )()()(LT φ is the set of 
transitions. 

A transition in TIOA, denoted 

by ',,: lRGmlt ⎯⎯⎯ →⎯ , consists of a source location l 
(i.e., source(t) = l), an input or output message m, a 
clock guard (or time constraint) G, which should hold 
to execute the transition, a subset of clocks R to be 
reset when the transition is fired, and a destination 
location l′ (i.e., destination(t) = l′). Each clock in R is 
used to record, when not reinitialized to zero, how 
much time has elapsed since the execution of the 
transition. Such clocks are mainly used to set clock 
guards between the transition where they are reset and 
future transitions. We assume that transitions in TIOA 
are instantaneous (i.e., they don’t take time to execute). 

Also, transitions on inputs are supposed to be guarded 
with conjunctions of atomic formulas of the form x op 
b, where },,,,{, ≥>=≤<∈∈ opCx and b is a natural 
number, while transitions on outputs are supposed to 
be guarded with conjunctions of atomic formulas of the 
form x op b, where },,{, ≥=≤∈∈ opCx and b is a 
natural. The tester needs to know the exact time when 
outputs are expected because they are not controllable 
by him. In definition 1 above, Φ(C) and P(C) denote 
the set of clock guards and the power set of C, 
respectively. Multiple clocks are used in TIOA to 
express time constraints between more than two 
transitions. Moreover, we suppose that each clock 

Cx ∈ has a bounded domain }{],0[ ∞∪xB  [3], where 
Bx is the largest integer constant appearing in time 
constraints over x in the automaton. This means that 
each clock x is relevant only under the integer constant 
Bx, and all the values of x greater than Bx are 
represented by ∞ . Hence, the following equations 
hold: 

∞=+>∀ εε xB,0 and .,0 ∞=+∞>∀ εε  

For a clock x and a clock guard G of a transition in 
TIOA, we define the projection of G over x, denoted 
by Proj(G, x), by the condition (x op b) in G, obtained 
by removing the conditions over all clocks except x; if 
clock x is not involved in G then Proj(G, x) = true. 

In Figure 1, we show an example of a TIOA that 
describes the behavior of a simple multimedia system. 
The system receives an image, followed by its sound 
within two time units, sends an acknowledgment, 
ackAll, in no more than three time units after the 
reception of the image and no more than two time units 
after sound, and then accepts the message reset and 
goes back to its initial location to await another image. 
If the input sound does not follow the input image 
within two time units, the system times out, issues the 
message error, and goes back to its initial location. The 
TIOA that describes the system has four locations (l0, 
l1, l2, and l3), five transitions and two clocks x and y. 
The initial location of the system is l0. The transition 

10
},{,20,? lyxximagel ⎯⎯⎯⎯⎯⎯⎯ →⎯ <≤ is executed when the 

system receives the message image and the value of 
clock x is less than 2. When the transition is fired, 
clocks x and y are both set to 0. In this example, the 
time domains of clocks x and y are ( }{]2,0[ ∞∪ ) and 
( }{]3,0[ ∞∪ ), respectively. The projection of the clock 
guard ( 20 <≤ x ) over clock x is ( 20 ≤≤ x ) while its 
projection over clock y is true (i.e., the clock y is not 
involved in the clock guard). However, the projection 



of the clock guard (( 20 <≤ x ) && ( 21 ≤≤ y )) over 
clock x is ( 20 ≤≤ x ), while its projection over clock y 
is ( 21 ≤≤ y ) (here, both clocks x and y are involved 
in the clock guard).�

 
Figure 1. An Example of TIOA 

The TIOA model introduced thus far is an abstract 
model because it does not explain the execution of the 
system it describes. The execution, also called the 
operational semantics of TIOA, can be informally 
stated as follows. The TIOA starts at its initial location 
with all clocks initialized to zero. Then, the values of 
the clocks increase at the same speed and measure the 
amount of time elapsed since the last initialization. At 
any time, the TIOA can execute a transition 

',, lRGml ⎯⎯⎯ →⎯ if the input/output message m takes 
place, its current location is l, and the values of its 
clocks satisfy the clock guard G. After this transition, 
all the clocks in R are reset and the TIOA changes its 
location to l′. To formalize the operational semantics of 
TIOA, we need to define the concepts of clock 
valuations and states for TIOA. 

Definition 2: Clock valuations 

Let A = (I, O, L, l0, C, T) be a n−clocks TIOA (i.e., 
an TIOA with n clocks), R ≥ 0 be the set of non-
negative real numbers. 

 A clock valuation of A (or over C) is an 
application nRCv }]{0[: ∞∪≥→ , which 
assigns a value (non-negative real number or ∞ ) 
to each clock Cx ∈ . Clock valuation is simply 
the binding of clocks to their actual values. In this 
paper, a clock valuation is represented by a vector 
(vx1, vx2, ..., vxn), where v(xi) = vxi is the value of 
clock nixi ≤≤1, . The set of all clock valuations 
for A is referred to by V (C). 

 For any clock valuation )(CVv ∈ and any non-
negative real number d, v + d is a clock valuation 
that assigns the value v(x) + d to each 
clock Cx ∈ . v + d is the clock valuation reached 
from v by letting time elapse by d time units. 

 For any clock valuation )(CVv ∈ and any subset 
of clocks R ⊆ C, [R := 0]v is a clock valuation 

that assigns the value 0 to each clock x∈R and 
v(x) to any other clock y such that y∈C and y∉R. 
[R := 0]v is the clock valuation obtained from v 
by resetting the clocks in R when a transition 

',, lRGal ⎯⎯⎯ →⎯ is executed. 

 A clock valuation v∈V(C) satisfies the clock 

guard G of a transition ',, lRGal ⎯⎯⎯ →⎯ , denoted 
by v |= G, if and only if G holds (i.e., G evaluated 
to true) under v. 

Notice that a clock valuation is used to determine 
how much time has elapsed since the execution of each 
transition that has recently reinitialized a clock. The 
combination of a clock valuation and a location defines 
a state in TIOA. The formal definition of such states 
follows. 

Definition 3: States of TIOA 

Let A = (I, O, L, l0, C, T) be a TIOA. 

 A state of A is a pair (l, v) consisting of a location 
l∈L and a clock valuation v∈V(C). Intuitively, a 
state of A is a configuration that indicates the 
current location of A and the current value of each 
clock used in A. 

 The initial state of A is the pair (l0, v0), where 
v0(x) = 0 for each clock x∈C. Intuitively, the 
initial state of A is the configuration of A in the 
beginning of its execution (i.e., the location is l0 
and all clocks are set to 0 as stated in definition 
1). 

 The set of states of A is denoted by S(A). 

Formally, the operational semantics of TIOA is 
described by a state machine M = (S, s0, A, T), where S 
is the set of states of TIOA, s0 is the initial state, A is 
the set of actions, and T is the set of transitions. The 
actions of M are made up of the input and output 
messages of TIOA as well as time delays. There are 
two categories of transitions in M: explicit transitions 
on input and output messages, and implicit transitions 
on time delays. The explicit transitions are obtained 
from the transitions of TIOA and they describe the 
interactions of the system with its environment. The 
explicit transitions do not contain time constraints 
because the clock valuations of their source states do 
satisfy their clock guards. On the other hand, the delay 
transitions describe the progression of time but they do 
not appear in the transitions of TIOA. In the rest of this 
paper, we need the following notations. 



 For a state (l, v) in M and a real-valued time delay 
δ, M contains the time delay transition 
on ).,(),(: δδ δ +⎯→⎯ vlvl  

 For a state (l, v) in M and a transition 

',, lRGml ⎯⎯⎯ →⎯  in TIOA such that v |= G, M 
contains the explicit transition (l, v) ⎯→⎯m (l′, 
[R:=0]v). 

 For two states s and s′ in M and a sequence of 
input/output messages and time delays σ, we 

write 'ss
σ
⇒ if and only if σ brings M from s to s′. 

3. Approach 
This section introduces our approach for testing the 

TIOA, which ensures the checking of every transition 
of the TIOA at least once. To ensure good fault 
coverage, each transition is tested at three different 
points of time: at the boundaries of the transition (i.e., 
as soon as the transition becomes firable and right 
before the execution of the transition is no longer 
possible) as well as in the middle of the execution of 
the transition.�Consequently, the number of test cases 
generated by the proposed method is at most equal to 
three times the number of transitions in the TIOA, 
which should make our approach scalable to large 
systems. To test a transition in TIOA, the method 
needs: 

 A preamble that brings the TIOA from its initial 
location to the source location of the given 
transition. The preamble should be executable. 
That is, we should find instants in time that make 
it possible for each transition in the preamble to 
be fired. 

 The input or output of the transition provided that 
the clock guard of the given transition is satisfied. 

 A postamble that brings the TIOA from the 
destination location of the given transition back to 
its initial location. Similar to the preamble, the 
postamble should be executable. 

Besides, we are making the following assumptions 
when generating test cases: 

 The TIOA dealt with is deterministic; i.e, at any 
location of the TIOA we cannot find two or more 
transitions whose clock guards can 
simultaneously be satisfied. 

 The implementation refuses any unexpected input 
by displaying an error message and going back to 
its initial state. 

 The TIOA dealt with is connected; i.e., there is a 
path between any two locations in TIOA. If a 
location has no outgoing transition, then an 
implicit reset transition should be added to bring 
the TIOA back to its initial location. 

To formalize the approach, let t be the transition to 
be tested. Preambles(t) denotes the set of preambles for 
t; Preambles(t) = {(t1, t2, ..., tn) such that: source(t1) = 
l0, destination(tn) = source(t), and destination(ti−1) = 
source(ti), 1 < i < n}. Similarly, Postambles(t) denotes 
the set of postambles for t; Postambles(t) = {(t1, t2, ..., 
tm) such that: source(t1) = destination(t), 
destination(tm) = l0, and destination(ti−1) = source(ti), 
1 < i < m}. 

So, to test t we should concatenate in this order the 
execution of a preamble from Preambles(t), the 
input/output of t after satisfying its clock guard, and 
the execution of a postamble from Postambles(t). To 
get the execution of a preamble pr (respectively a 
postamble ps) we put together the input/output 
messages of pr (respectively ps) and the time delays 
used to execute their transitions. The time delay used 
for a transition is the minimum waiting time required 
to execute the transition, which is denoted below by 
delaymin(v,G). It is calculated based on the minimum 
delay between the value of a clock and a constraint on 
that clock, as follows: 
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Where v(x) is the value of clock )(, xx φ is the 
constraint on clock x, and ε is a small positive real 
value chosen by the tester, hence:  

delaymin(v,G)= Maxx∈ C{delaymin(v(x), Proj(G, x))> 0} 

The process of calculating the execution of a 
preamble is as follows. We start at the initial state (l0, 
v0). Then, we determine the minimum time delay 
required to execute the first transition in the preamble. 
After that, we apply the message of this transition and 
update the state of the system. 

Afterward, we determine the minimum delay for the 
second transition in the preamble, and so on until we 
reach the source state of t (which is also the destination 
state of the last transition in the preamble). Likewise, 
the execution of a postamble is computed as follows. 
We start at the destination state of the transition being 
tested. Then, we determine the minimum time delay 
required to execute the first transition in the postamble. 
After that, we apply the message of this transition and 



update the state of the system. Afterward, we 
determine the minimum delay for the second transition 
in the postamble, and so on until we reach the initial 
state of the TIOA (which is also the destination state of 
the last transition in the postamble). 

Next, to make it possible for a transition to execute, 
the clock guard of the transition should be satisfied by 
the current values of the clocks. This means that during 
test generation, the value of each clock should be 
chosen to satisfy the condition on the clock in the 
transition. In other words, we should find states in the 
state machine describing the operational semantics of 
the TIOA that make it possible for the transition to 
execute. As mentioned earlier, each transition is tested 
three different points of time: 

 As soon as the transition becomes firable, 

 Right before the execution of the transition is no 
longer possible, and 

 In the middle of the execution of the transition. 

This is done by using the minimum delay 
introduced above as well as the maximum delay 
defined below. The maximum delay between a clock 
valuation and a clock guard is written delaymax(v,G), 
and is calculated based on the maximum delay between 
the value of a clock and a constraint on that clock: 
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Where v(x) is the value of clock )(, xx φ is the 
constraint on clock x, and ε is a small positive real 
value chosen by the tester, hence:  

delaymax(v,G)= Minx∈ C{delaymax(v(x), Proj(G, x))> 0} 

The minimum delay is used to execute the transition 
as soon as the transition is ready to execute while the 
maximum delay is used to test the transition at its latest 
convenience. The execution of the transition in the 
middle of its execution is determined by taking the 
average of the minimum and maximum delays between 
the clock valuation in the source state of the transition 
and its clock guard. 

More formally, to test a transition ': ,, llt RGm ⎯⎯ →⎯ in 
TIOA, we need three test sequences: 
exec(pr).δmin.m.exec(ps), exec(pr).δavg.m.exec(ps), and 
exec(pr).δmax.m.exec(ps) such that: 
 

 pr∈Preambles(t), ps∈Postambles(t), δmin > 0, 
δavg > 0 and δmax > 0, 

 (l0, v0) 
exec(pr)
⇒ (l, 

nt
v ), 

 (l, 
nt

v ) ⎯⎯ →⎯ minδ   (l, 
nt

v  + δmin), 

 (
nt

v  + δmin) |= G, 

 (l, 
nt

v ) ⎯⎯→⎯ avgδ  (l, 
nt

v  + δavg), 

 (
nt

v  + δavg) |= G, 

 (l, 
nt

v ) ⎯⎯ →⎯ maxδ  (l, 
nt

v  + δmax), 

 (
nt

v + δmax) |= G, 
 δmin = delaymin(v, G), 
 δmax = delaymax(v, G), 

 δavg = 
2

G)(v,mindelayG)(v,maxdelay +
 

 (l′, 
nt

v  + δmin)[R := 0]) 
exec(ps)
⇒  (l0, v0), 

 (l′, 
nt

v  + δavg)[R := 0]) 
exec(ps)
⇒  (l0, v0), 

 (l′, 
nt

v  + δmax)[R := 0]) 
exec(ps)
⇒  (l0, v0). 

 
To illustrate the approach, let us consider again the 

TIOA in Figure 1. Every transition requires three test 
cases. The first one tests the transition as soon as it 
becomes executable. The second test case is for testing 
the transition in the middle, while the third one is for 
checking the transition at its latest point of execution. 
For instance, the transition 2

}{,20,?
1:2 llt xxsound ⎯⎯⎯⎯⎯ →⎯ <≤ is 

tested with the following test cases:  

 resetackAllsoundimage ?..!2.?.?  

 resetackAllsoundimage ?..!2.?.
4
3.?  

 resetackAllsoundimage ?..!
2
3.?.

2
3.?  

Here, the preamble used to reach the transition is t1 
while the postamble used to go back to the initial 
location of the TIOA is t3.t4. The three test cases are 
obtained by taking the execution of the preamble to 
reach the source state of the transition, the 
minimum/average/maximum delay between the state 
(l1, (0, 0)) and the clock guard of the transition (i.e., 0 
≤ x < 2), and the execution of the postamble to go from 
the destination state of the transition back to the initial 
state of the TIOA. For all of the three test cases, the 
execution of the preamble is the same, namely ?image. 
The minimum delay and the execution of the 
postamble for the first test cases are 0 and 
2.!ackAll.?reset, respectively; the average delay and 
the execution of the postamble for the second test case 



are 
4
3  and 2.!ackAll.?reset, respectively; The 

maximum delay and the execution of the postamble for 

the third test case are 
2
3  and 

2
3 .!ackAll.?reset, 

respectively. It should be noted that the minimum and 

maximum delays are calculated here with ε =
2
1 . 

4. Related Work 
Over the last two decades, several algorithms have 

been developed for testing real-time systems. These 
methods differ from one another depending on the 
formal specification model used, the technique adopted 
for test generation, and the number of resulting test 
cases. In what follows, we give an overview of each of 
these methods and we compare them to the approach 
proposed in this paper. 

In [5], Mandrioli et al. propose a tool for the 
generation of test cases from specifications given as 
temporal logic formulas extended with time measures. 
But, the generated test cases cover only integer values. 

In [6], Clarke et al. introduce a framework for 
testing time constraints in real-time systems. They 
derive test cases from a specification described in the 
form of a constraint graph. These test cases satisfy 
some test criteria for real-time systems. However, the 
constraint graph is restricted to the description of the 
minimum and maximum allowable delays between the 
input/output events in the execution of a system, 
following Taylor’s and Dasarathy’s classification of 
timing requirements [13, 14]. 

In [9, 4], we presented a method for testing real-
time systems modeled as timed automata. The 
proposed method (called the Timed Wp-Method) is an 
adaptation of the Wp-Method [17] for generating timed 
test cases from timed automata based on the state 
characterization technique. The test cases generated by 
this method have full fault coverage with regard to the 
fault model presented in [18]. However, the number of 
test cases generated by the timed Wp-Method is quite 
large for broader specifications. In [10, 11, 12], we 
presented another method for testing time input output 
automata with an acceptable number of test cases. The 
proposed method is based on sampling the TIOA of the 
specification to come up with a testable automaton, 
called Grid Automaton (GA). Although the approach is 
scalable, the construction of the GA and its traversal 
are quite time consuming. 

In [7], Cardell et al. propose a technique to generate 
timed test cases from timed transition systems (TTSs). 

A TTS is a pair of values consisting of an initial state 
and a set of transition rules. To generate test cases, the 
authors first transform the TTS into a labeled transition 
system containing all the observable traces of the 
system, and then apply an adapted version of the W-
method [15] to the resulting automaton. This approach 
has two drawbacks. First, the authors adopt a discrete 
time model that does not allow specification of a 
system with clocks assuming continuous values. 
Secondly, the number of generated test cases may be 
very large if the implementation has more states than 
the specification. 

In [8], Khoumsi et al. present an approach and an 
architecture to test real-time protocols specified by 
timed input-output automata with discrete time 
domains (an extension to the continuous time domain 
is presented in [19]). Their approach consists of two 
steps. First, the timed specification is transformed into 
an equivalent untimed one using the established timer 
operations Set(T, d) and Exp(T). Then, the Wp-method 
[17] is applied to the resulting automaton. The major 
drawback of this approach is that it may introduce 
undesirable non-determinism during testing and it may 
produce non-executable test cases. 

5. Conclusion 
In this paper, we presented an approach for testing 

real-time systems modeled as Timed Input Output 
Automata. Our approach ensures good fault coverage 
of the system by testing each transition of the system at 
least once. Indeed, for each transition, we generated 
test cases so as to test the transition at three different 
points of time: At each boundary of the transition (i.e., 
as soon as the transition is ready to be execute and 
right before its execution is completed) as well as in 
the middle of the execution of the transition. We 
believe that this approach does not only allow good 
coverage of the system but it will also help uncover 
faulty behaviors that occur at the boundaries of the 
transition and that go usually undetected. 

As future directions, we intend to implement the 
approach proposed in this paper and experiment with it 
using real-world systems. The objective is to assess its 
effectiveness to detect faulty behaviors as well as its 
scalability when applied to large systems. 
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