
 i

An Approach towards Feature Location Based on Impact Analysis

Abhishek Rohatgi

A Thesis

In

The Department

Of

Computer Science

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

August 2008

© Abhishek Rohatgi, 2008

 ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Abhishek Rohatgi

Entitled: An Approach towards Feature Location Based on Impact Analysis

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 ___Chair

 Dr. Constantinos Constantinides

 ___Examiner

 Dr. Patrice Chalin

 ___Examiner

 Dr. Olga S. Ormandjieva

 ___Co-Supervisor

 Dr. Juergen Rilling

 ___Supervisor

 Dr. Abdelwahab Hamou-Lhadj

Approved by: ___

 Chair of Department or Graduate Program Director

________20__ ___

 Dr. Robin Drew, Dean

 Faculty of Engineering and Computer Science

 iii

ABSTRACT

An Approach towards Feature Location Based on Impact Analysis

Abhishek Rohatgi

System evolution depends greatly on the ability of a maintainer to locate these parts of

the source code that implement specific features. Until recently, quite a number of feature

location techniques have been proposed. These techniques suffer from a number of

limitations. They either require exercising several features of the system, or rely heavily

on domain experts to guide the feature location process.

In this thesis, we present a novel approach for feature location that combines static and

dynamic analysis techniques. An execution trace is generated by exercising the feature

under study (dynamic analysis). A component dependency graph (static analysis) is used

to rank the components invoked in the trace according to their relevance to the feature.

Our ranking technique is based on the impact of a component modification on the rest of

the system. We hypothesize that the smaller the impact of a component modification, the

more likely it is that this component is specific to the feature. The proposed approach is

automatic to a large extent relieving the user from any decision that would otherwise

require extensive knowledge of the system.

We present a case study involving features from two software systems to evaluate the

applicability and effectiveness of our approach.

 iv

Acknowledgements

During my Masters of Computer Science, I had the privilege to work with some expert

and experienced professionals, which was truly an enriching experience.

My heartiest thanks to Dr. Abdelwahab Hamou-Lhadj, my supervisor, for showing

confidence in me, providing me with initial spark for the topic, listening to my ideas no

matter how vague they were and for constantly providing me support from his vast source

of knowledge.

Many thanks to Dr. Juergen Rilling, my co-supervisor for giving me a positive response

whenever I approached him, for extensively reviewing my research documents and also

for providing me with incredible ideas on the topic.

In addition, I would like to thank my lab mates for their help. They took time out of their

research to discuss with me about my topic and sometimes providing me useful tips and

tricks to get the work done.

Lastly, I would like to thank my family in India. Although, they do not have much of an

understanding about what I do but they always backed me up emotionally and had been

supportive throughout the course of my studies.

 v

Table of Contents

List of Figures vii

List of Tables viii

Chapter 1. Introduction 1

1.1. Problem and Motivation 1

1.2. Research Contributions 3

1.3. Thesis Outline 4

Chapter 2. Background 6

2.1. Related Topics 6

2.1.1. Software Maintenance 6

2.1.2. Program Comprehension 8

2.1.3. Reverse Engineering 10

2.2. A Survey of Existing Feature Location Techniques 12

2.3. Discussion 18

Chapter 3. Feature Location Methodology 20

3.1. What is a Software feature? 20

3.2. Overall Approach 21

3.3. Feature Trace Generation 24

3.4. Impact Analysis 25

3.4.1. Building a Component Dependency Graph 25

3.4.2. Impact Metrics 26

3.4.2.1. Definitions 27

3.4.2.2. The One Way Impact Metric (OWI) 28

3.4.2.3. The Two Way Impact Metric(TWI) 30

3.4.2.4. The Weighted One Way Impact Metric(WOWI) 33

3.4.2.5. The Weighted Two Way Impact Metric(WTWI) 35

3.5. Summary 36

Chapter 4. Evaluation 38

4.1. Target Systems 38

 vi

4.2. Applying Feature Locations Algorithms 39

4.2.1. Feature Selection 39

4.2.2. Generation Features-Traces 39

4.2.3. Applying the Impact Metrics 40

4.2.3.1. The One Way Impact Metric (OWI) 42

4.2.3.2. The Weighted One Way Impact Metric (WOWI) 48

4.2.3.3. The Two Way Impact Metric (TWI) 51

4.2.3.4. The Weighted Two Way Impact Metric (WTWI) 55

4.3. Discussion 57

Chapter 5. Conclusions 61

5.1. Research Contributions 61

5.2. Opportunities for Further Research 62

5.3. Closing Remarks 63

Bibliography 72

Appendix A: The detailed results of the case study 78

 vii

List of Figures

Figure Description

Figure 2.1. Relationship between forward and reverse engineering. 10

Figure 3.1. Relationship between software feature, scenario and computational

units.

\

 unit.

20

Figure 3.2. Overall approach. 22

Figure 3.3. Example of a class dependency graph. 26

Figure 3.4. A class dependency graph. 29

Figure 3.5. The difference between Fan-in and CAI. 31

Figure 4.1. Example of a package dependency graph generated using SA4J. 41

Figure 4.2. OWI distribution for M5 feature. 43

Figure 4.3. OWI distribution for CheckCode feature. 47

Figure 4.4. WOWI distribution for M5 feature. 49

Figure 4.5. WOWI distribution for CheckCode feature. 51

Figure 4.6. TWI distribution for M5 feature. 53

Figure 4.7. TWI distribution for CheckCode feature. 55

Figure 4.8. WTWI distribution for M5 feature. 56

Figure 4.9. WTWI distribution for CheckCode feature. 59

 viii

List of Tables

Table Description

Table 3.1. Applying OWI to example of Figure 3.4. 30

Table 3.2. Applying TWI to example of Figure 3.4. 33

Table 3.3. Applying WOWI to example of Figure 3.4. 35

Table 3.4. Applying WTWI to example of Figure 3.4. 36

Table 4.1. Distinct classes in the traces for M5 and CheckCode. 40

Table 4.2. Applying OWI to M5 feature. 42

Table 4.3. Applying OWI to CheckCode feature. 46

Table 4.4. Applying WOWI to M5 feature. 48

Table 4.5. Applying WOWI to CheckCode feature. 50

Table 4.6. Applying TWI to M5 feature. 52

Table 4.7. Applying TWI to CheckCode feature. 54

Table 4.8. Applying WTWI to M5 feature. 56

Table 4.9. Applying WTWI to CheckCode feature. 58

Table A.1.1. Applying OWI to M5 feature. 64

Table A.1.2. Applying OWI to CheckCode feature. 65

Table A.2.1. Applying WOWI to M5 feature. 67

Table A.2.2. Applying WOWI to CheckCode feature. 68

Table A.3.1. Applying TWI to M5 feature. 70

Table A.3.2. Applying TWI to CheckCode feature. 71

Table A.4.1. Applying WTWI to M5 feature. 73

Table A.4.2. Applying WTWI to CheckCode feature. 74

 1

Chapter 1 Introduction

Feature location has long been recognized as an important reverse engineering activity to

identify the implementation of a given system functionality in the source code. In this

thesis, we present a powerful approach for solving the feature location problem using

impact analysis. The presented approach combines two different sources of information:

an execution trace that corresponds to the software feature under study and a static

component dependency graph (CDG). Using the CDG, we rank the components invoked

in the trace by measuring the impact of a component modification on the rest of the

system. Our hypothesis is that the smaller the impact of a component modification, the

more likely it is that the component is specific to the feature under study.

In the remainder of this chapter, we describe the main motivations behind the thesis, our

contributions, and the thesis outline.

1.1 Problem and Motivation

System evolution, an important aspect of the software life cycle, depends on the ability of

a maintainer to identify the parts of the source code that implement specific features.

Software maintainers typically do not need to analyze an entire system before making

modifications or adding new functionality, since required software changes often relate

directly to features implementations [Wilde 03]. Instead, they apply an as needed

 2

approach, by locating the most relevant code with respect to the feature or source code to

be modified, understand it, and make the necessary changes. Due to a lack of traceability

between documentation and source code locating these features in the source code

becomes a major challenges for maintainers. This lack of feature traceability is caused by

the unavailability of roundtrip engineering tools, lack of adequate processes in

organizations to enforce consistent and up-to-date documentation, etc.

In an ideal situation, there should be a clear mapping between a system’s features and the

corresponding code segments. However, this is not the case for many existing systems

where bad design decisions and/or excessive ad-hoc maintenance activities complicate

this mapping. As a result, a feature is often distributed over several different modules that

interact in complex ways, making, in particular for large systems, the identification of the

source code implementing a particular feature inherently difficult.

One approach to support maintainers during activities like feature evolution,

maintenance, reverse engineering and program comprehension is based on the use of

feature location techniques that aim to provide maintainers with guidance in identifying

and locating features in the source code [Brooks 83].

This idea of location of features in source code is not new. Existing feature location

techniques can be grouped into two main categories depending on the use of static and

dynamic analysis techniques. The first category, pure dynamic approaches, require the

generation of execution traces that are then clustered or compared in order to identify the

components of a single feature. An example of these techniques is the one proposed by

Wiled and Scully [Wilde 95] and known as Software Reconnaissance. The major

 3

limitation with these methods is that they require as input execution traces for all (most)

system features to be generated and processed.

The second category relies on a combination of static and dynamic analysis. These

approaches utilize static information to further process the execution trace that

corresponds to the feature under study. For this purpose, several approaches were

presented such as the ones based on concept analysis [Eisenbarth 03], latent semantic

indexing [Deerwester 90], etc. The major limitation of these techniques is that they

require from the user to indicate what parts of the source code to analyze, a task that can

be tedious for software engineers who have little knowledge of the system.

In this thesis, we present a novel technique for feature location in source code that

combines both static and dynamic analysis. Our technique operates on only one trace,

which is generated by exercising the feature under consideration. In addition, the

proposed approach is automatic to a large extent and therefore does not require users to

have extensive system knowledge.

1.2 Research Contributions

The main contributions of this thesis are as follows:

• A novel idea of using impact analysis to solve the feature location problem is

presented. The feature location techniques used in the presented approach are

based on impact analysis. More precisely, components invoked in the execution

trace for a given feature are ranked based on measuring the impact of component

modifications on the rest of the system. Our hypothesis is that the smaller the

 4

impact set of a component modification, the more likely it is that the component

is specific to a feature. Conversely, we expect a component affecting many parts

of a system to be invoked in multiple traces and therefore rendering it as less

specific to a particular feature.

• As part of this research we introduce four feature location algorithms that vary

depending on the way the impact of a component modification is measured. The

first impact metric considers only the impact due to modification of a component

on the rest of the software. The second metric improves over the first metric by

considering additionally information about the system architecture. The third

metric considers both the impact due to the modification of a component on rest

of the system as well as the number of components that affect this component.

The fourth metric refines the previous metric by adding information about the

system architecture.

• We applied the algorithms to traces generated from two object-oriented software

systems to show the applicability of our approach.

1.3 Thesis Outline

The rest of the thesis is structured as follows:

• In Chapter 2, we present background information, including a brief overview of

related topics, namely, software maintenance, program comprehension, and

reverse engineering. A detailed survey of existing feature location techniques is

presented along with their advantages and limitations.

 5

• The feature location algorithms are presented in Chapter 3. The chapter starts by

presenting our definition of what constitutes in the context of our research a

software feature. It continues with an overview of the feature location process.

Next, we present impact analysis and how it is applied to locate features in source

code. The four impact metrics are then presented and explained through an

example and concludes with a discussion on the applicability of the presented

metrics

• The evaluation of our approach is presented in Chapter 4. The chapter introduces

the target systems used in the case study and describes the features on which we

apply the algorithms. The chapter also covers the trace generation process and

results of applying the feature location algorithms are described and discussed in

details.

• We conclude the thesis in Chapter 5 with a summary of the main contributions,

some future directions, and a concluding remark.

 6

Chapter 2 Background

Feature location research pertains to three inter-related software engineering topics,

namely, software maintenance, program comprehension and reverse engineering. In this

chapter, we briefly describe these topics and discuss how they relate to feature location.

We also present a survey of existing feature location techniques, followed with a

discussion on the advantages and disadvantages of these techniques.

2.1 Related Topics

2.1.1 Software Maintenance

“Programs, like people, get old. We can’t prevent aging, but we can understand its

causes, take steps to limit its effects, temporarily reverse some of the damage it has

caused, and prepare for the day when the software is no longer viable. ... (We must) lose

our preoccupation with the first release and focus on the long term health of our

products.”

D. L. Parnas [Parnas 94]

Software aging is one of the major reasons that trigger the need for software

maintenance. Although software aging is inevitable, effective software maintenance can

help slow down the aging process. According to IEEE Standard 1219, software

maintenance is defined as a modification process that takes place after the delivery of

 7

software in order to correct faults, improve performance or other attributes, or to make

the program adaptable to new surroundings. The importance of software maintenance is

evidenced from the fact that it constitutes of a major part of the overall software life cycle

as shown by Lientz and Swanson in the late 1970’s [Lientz 80].

Software evolution is often used as a substitute term for software maintenance.

According to Bennett and Rajlich, the software maintenance phase starts after the

software development phase. That is, maintenance activities generally take place after the

software system is released. They further introduced the concept of a staged software

lifecycle model in which development and maintenance were considered different phases

in the software life cycle [Bennett 00].

Lientz and Swanson classified maintenance activities into four categories [Lientz 80]:

• Adaptive Maintenance: This type of maintenance includes user enhancements and

modification to the existing software system to meet new user requirements.

• Perfective Maintenance: This involves making changes to the structure of the

system in order to make it easier to extend, modify, and maintain.

• Corrective Maintenance: This type of maintenance deals with fixing software

bugs in existing system functionality.

• Preventive Maintenance: This type of maintenance focuses on restructuring the

existing system to prevent the system from bugs that may occur in the future.

 8

Most of the above types of software maintenance activities require feature location

techniques since changes to an existing system often relate to a particular feature. For

example, Feature location techniques can be used to identify the source code components

implementing a particular feature that led to a software defect. Knowing such

components can help software engineers narrow down the space of components that need

to be explored in order to repair the defective feature.

2.1.2 Program Comprehension

Rugaber defines program comprehension as a process of gaining knowledge about the

system under study for the purpose of fixing a system’s defect, enhancing the system,

reusing and improving system’s documentation [Rugaber 95]. According to a survey

conducted by Fjeldstad and Hamlen, program comprehension accounts for 50% of the

time spent on software maintenance activities [Fjeldstad 83].

According to Mayrhauser et al., program comprehension requires existing knowledge of

a software system in order to acquire new knowledge [Mayrhauser 95]. Any newly

acquired knowledge becomes then an integrated part of the system knowledge that is

essential to support the understanding the program code. Based on their study, the authors

conclude that software engineers possess two types of knowledge:

• General Knowledge: This type of knowledge is gained from past experience in the

software engineering domain and is independent of the software under

consideration.

 9

• Software-Specific Knowledge: This knowledge represents their level of

understanding of the software application under consideration.

A software engineer comprehending a system uses general software engineering

knowledge together with the knowledge obtained from exploring the system under

consideration in order to understand the system completely [Mayrhauser 95].

Program comprehension is not an easy task. This is partly attributable to the fact that

existing documentation represents high-level views of the system whereas the

implementation of the system contains many low-level programming details that are not

necessary captured at a higher level [Rugaber 95]. The software engineer comprehending

the system must map the high-level design elements to these low-level implementation

details. This task is very challenging especially in situations where the initial high-level

design documents have not been updated for a long time, which is commonly the case in

practice [Rugaber 95]. Due to a lack of traceability between documentation and source

code, it becomes a major challenge for a maintainer to identify a system’s components

that need to be analyzed in order to enhance an existing feature. This lack of feature

traceability is caused by the unavailability of roundtrip engineering tools, lack of

adequate processes in organizations to enforce consistent and up-to-date documentation,

etc. The situation is further complicated by the fact that it is very common to have

features spread across many system components that are not even tightly coupled. One of

the main objectives of this thesis is to assist software engineers in the program

comprehension process by allowing them to map automatically high-level software

features to the specific components that implement them.

 10

2.1.3 Reverse Engineering

Chicofsky and Cross define reverse engineering as “the process of analyzing a subject

system to identify the system’s components and their interrelationships and create

representations of the system in another form or at a higher level of abstraction”

[Chicofsky 90].

Reverse engineering tools can be used by software engineers to facilitate the program

comprehension process, and hence improve their productivity when performing software

maintenance tasks.

Figure 2.1 (taken from [Chicofsky 90]), shows the relationship between forward and

reverse engineering.

Figure 2.1. Relationship between forward and reverse engineering

 11

• Forward Engineering: The process of taking higher-level design elements as input

and transforming them into low-level implementation details. As shown in Figure

2.1, forward engineering involves a sequence of steps that map the requirements

to design, and finally to implementation [Chicofsky 90].

• Reverse Engineering: It is the reverse of forward engineering, where high-level

design elements are extracted from lower-level implementation details. As

depicted in Figure 2.1, reverse engineering involves a sequence of recovery stages

starting from implementation to design. Reverse engineering can be applied at any

abstraction level of the system under consideration [Chicofsky 90].

• Re-documentation: Re-documentation is the creation of alternative views within

the same abstraction level to assist the process of comprehending the lower level

software details [Chicofsky 90].

• Design Recovery: This is one of the main activities of reverse engineering, and

involves a combination of knowledge gained by analyzing the system and domain

knowledge. The objective is to recover design views from low-level

implementation details [Chicofsky 90].

• Restructuring: This process consists of making a change to the system at the same

abstraction level (e.g., migrating an existing system from C to Java). The changes

should not alter the external behaviour of the system [Chicofsky 90].

 12

• Re-engineering: The basic goal of re-engineering is to renovate an existing

software system to improve code comprehension, performance, etc. It involves a

combination of reverse engineering to help the software engineers understand an

existing system, and forward engineering for the purpose of reexamining the

functionalities that need to be deleted, added or modified [Chicofsky 90].

The feature location techniques presented in this thesis can be easily embedded into a

reverse engineering tool to support many reverse engineering activities. For example by

re-documenting a system’s functionality by identifying and locating the source

implementing the particular feature. Similarly, design recovery can take advantage of

feature location techniques to recover behavioural design models that represent the high-

level components that are specific to a given feature and its interaction with other parts of

the system.

 2.2 A Survey of Existing Feature Location Techniques

In this section, we present a survey of the most cited feature location techniques. We did

not attempt to include all studies that exist in the literature. However, we believe that the

ones presented in this section reflect the current state of the art in feature location

research.

Wilde and Scully [Wilde 95] introduced the concept of Software Reconnaissance, which

relies on dynamic analysis to locate source code components that implement a specific

feature. The authors’ approach necessitates two main steps. The first step consists of

generating multiple execution traces by exercising several features of the system, which

are then compared during the second step. The components specific to the feature under

 13

study are the ones that are only invoked in its corresponding trace. One of the drawbacks

of this technique is that it requires exercising several features of the system although the

objective is to identify the components of only one feature. In addition, it is not clear how

many features need to be considered for the approach to be effective. For example, there

might be situations where a particular component is invoked by chance in only one trace

and would therefore be considered as specific to the corresponding feature using software

reconnaissance. Finally, it is very important to select a balanced set of features (i.e.,

features that cover different parts of the system) for the software reconnaissance approach

to be effective. This requires from the software engineers using this technique to be

knowledgeable of the system under study.

In [Wong 99, Wong 05], Wong et al. improved the results of applying software

reconnaissance by measuring the extent to which a particular component belongs to a

feature. To achieve this, they computed several metrics that aim at determining the

component dedication to a feature. They proposed three metrics. Their first metrics is

called Disparity. This metric measures how close is a feature to a given program

component. According to them disparity is equal to set of blocks in either a component or

a feature under consideration but not in both divided by the union of set of blocks in a

feature and component under consideration. They define blocks as an execution slice or

code statements. Their second metrics is called Concentration. This metrics measures

how much a feature is concentrated into a program component. They calculate

concentration as the intersection of the set of blocks in a component (under

consideration) and set of blocks in a feature (under consideration) divided by set of

blocks in the feature under consideration. Their third metrics is called Dedication which

 14

is a measure about how much a program component is concentrated in a feature. They

calculate this as the intersection of the set of blocks in the component under consideration

and the set of blocks in the feature under consideration divided by the set of blocks in this

component.

The reconnaissance approach was also extended by Antoniol and Gael-Gueheneuc

[Antoniol 06]. Their main contribution was to filter out unwanted events from the

execution traces prior to comparing them. Examples of such events included unwanted

mouse motion events, frequently occurring events, automatically generated code, etc. For

this purpose, the authors used a combination of knowledge based filtering and

probabilistic ranking techniques. Another contribution of their work is the application of

software reconnaissance to traces generated from multi-threaded applications.

Eisenberg and De Volder [Eisenberg 05] proposed a feature location technique based on

ranking the components invoked in the trace. According to them, a component occurring

several times in the execution of a feature under different situations (i.e., normal and

exceptional scenarios) should be regarded as an important component, whereas a

component that occurs in traces of several features should be considered as a utility

component and should be ranked lower in comparison with other components. In

addition, the authors used the call depth of a method in execution of different test cases.

Eisenbarth et al. [Eisenbarth 03] proposed a feature location approach that combines

static and dynamic analysis techniques. They used dynamic analysis to gather traces that

correspond to software features of the system, similar to Wilde and Scully’s technique

[Wilde 95]. They combined the content of traces with a static dependency graph to build

 15

a concept lattice that maps features to components. One of the shortcomings of this

approach is that the concept lattice shows also overlapping components, i.e., the ones that

implement several features. To overcome this issue, users of this approach are required to

navigate the concept lattice and identify manually the components specific to each

feature. This process necessitates a considerable effort from the users and a good

understanding of the source code as well as the domain of the application.

Poshyvanyk et al. [Poshyvanyk 07a, Poshyvanyk 07b], their approach is based on

processing one trace only, which is the one that corresponds to the feature under

investigation. They used information retrieval techniques to extract knowledge from the

source code that describes the components invoked in the trace. Using this approach, a

user needs to formulate queries that contain key terms describing the feature. The query

terms are then compared to the knowledge gathered from the source code in order to

identify the corresponding components of the trace. The user may need to write several

queries before the system can detect any component. The advantage of this approach is

that it uses only one trace instead of many traces as it is case in the previous approaches.

The disadvantage is that it relies on informal knowledge such as source code comments,

identifiers, etc. to extract knowledge about the trace components.

Greevy et al. [Greevy 05] exploited the relationship between features and classes to

analyze the way features of a system evolve and to detect changes in the code from a

feature perspective. Rather than detecting feature specific components, the main focus of

the authors’ approach is on studying how the classes may change their roles during

software evolution, for example, by understanding the number of features they participate

in as the system evolves.

 16

Kothari et al. [Kothari 06] worked on computing canonical features of a system and

understanding their implementation. A canonical feature set is a set of a small number of

features that implement different parts of the system. To compute the canonical feature

set, they first built test cases to exercise all the features of the system. The features were

executed under the supervision of a dynamic analysis tool that captures the objects,

functions, and variables involved. A call graph tool was also used with each test case to

produce a dynamic call graph for each feature of the system. Using a similarity

measurement tool, they computed the pair wise similarity between the call graphs that

were generated in the previous step and created a similarity matrix. Call graph similarity

can be measured using simple metrics such as (a) the number of function nodes the call

graphs have in common, (b) the number of call edges they have in common, or (c) a more

sophisticated approximate graph matching algorithm. In their approach, to measure the

similarity among subgraphs they computed the degree to which features share common

significant amount of code. The dynamic call graphs of two similar features should have

several vertices (functions) and edges (function call relations) in common. The amount of

code of a particular feature that is not shared with the other features (i.e., through their

dynamic call graphs) is deemed to be the most specific to this particular feature. One of

the main drawbacks of this technique is that it requires computing the similarity matrix

by exercising each and every feature of the system under consideration.

Salah et al. [Salah 04] proposed a feature location approach that combines three views of

a system, namely, an object interaction view, a class interaction view, and a feature

interaction view. The object interaction view is constructed from the execution traces of

the program by exercising a subset of its features. This view shows how objects interact

 17

with each through method invocation. The class interaction view is simply an abstraction

of the object view by grouping objects by their class type. The feature interaction view

shows the relationships between the features based on the objects (or classes) invoked in

their corresponding traces. The mapping between the feature interaction view and the

object (or class) interaction view enables the analyst to uncover the components

implementing a specific feature. To reduce the number of components invoked in

multiple traces, the authors proposed using marked traces, which are traces where an

analyst needs to manually indicate the beginning and the end of the trace generation

process. However, marked traces do not guarantee that the resulting traces will contain

only the components that are most relevant to a traced feature.

Robillard et al. proposed a technique to locate concerns in source code [Robillard 03]. A

concern, also called a software aspect, can be considered as a particular feature where the

implementing components crosscut many modules of the system. The authors introduced

the concept of a concern graph, which abstracts the implementation details of a particular

concern. The vertices of the graph consist of the components (e.g., routines) involved in

the implementation of this particular software aspect. The edges represent the

relationships among these components. The process of creating a concern graph

encompasses two steps. In the first step, the software engineer builds a component

dependency graph from the system. This step is usually performed automatically. The

second step consists of iteratively querying the component dependency graph to identify

the components specific to a particular concern. This step requires from the developer to

have some knowledge of the system under study. The authors have also developed a tool

called FEAT (Feature Analysis and Exploration Tool) that partially automate the tasks of

 18

creating a program model from the source code, formulating queries, extracting concern

graphs, and displaying the concern graphs to the developer in a convenient and

manageable form. Using this tool the developer can also view the implementation details

of a concern graph in to source code.

2.3 Discussion

Feature location is a process of identifying the specific components that implement a

given feature. This requires mapping high-level features to low-level implementation

details. Feature location is considered as an important reverse engineering activity that

can enable software engineers to perform software maintenance and evolution tasks in a

more efficient manner. This is due to the fact that changes to a system usually relate to a

particular software feature.

Recently, there has been an increase in the number of feature location techniques. These

techniques are based on either dynamic analysis, static analysis, or a combination of both.

Static analysis techniques rely on analyzing the relationships among the source code

components, whereas dynamic analysis focuses on the study of the execution traces

generated from a running system.

An analysis of these techniques reveals that they suffer from two major limitations. First,

most techniques require exercising several features of the system to identify the

components of only one feature. Exercising several features requires determining the

appropriate input data for each feature, setting the execution environment, etc. In

addition, there is usually a need to pre-process the generated traces to filter out unwanted

 19

events such as unnecessary repetitions due to loops, recursion, or the way the system is

used during the trace generation process. In addition, it is difficult to determine in

advance the features that need to be used in order to obtain a balanced set of features that

would lead to unbiased results.

The second drawback of most existing techniques is that they require as part of their

analysis significant human intervention which results in a significant cost and effort

overhead. Therefore, there is a clear need for more automated techniques to allow for a

reduction of the cost and effort associated with these interactive approaches. In addition,

many existing techniques require that users have already a good understanding of the

system to be analyzed, which contradicts the high-level goal of feature location

techniques: To help software engineers understand how a particular feature is

implemented.

Our feature location approach also combines static and dynamic analysis. It operates on

only one trace, i.e., the one corresponding to the feature under study. However, the main

difference between our approach and existing work is that it facilitates the identification

of feature-specific components to a great extent, by utilizing a ranking technique that will

allow software engineers to quickly spot feature-specific components without having to

be very knowledgeable of the system under study.

 20

Chapter 3 Feature Location Methodology

In this chapter, we present our methodology for solving the feature location, which

combines static and dynamic analysis techniques. We use dynamic analysis to generate a

trace that corresponds to the feature under study. Static analysis is used to rank the

components invoked in the generated trace according to their relevance to the feature.

The ranking technique presented in this thesis is based on impact analysis, i.e., by

measuring the impact of a component modification on the rest of the system.

3.1 What is a Software Feature?

Perhaps the most popular definition of the concept of software feature in the context of

feature location research is the one proposed by Eisenbarth et al. in [Eisenbarth 03]. The

authors define a software feature as a behavioural aspect of the system that represents a

particular functionality, triggered by an external user [Eisenbarth 03].

Figure 3.1. Relationship between software feature, scenario, and computational units

 21

In [Eisenbarth 03], Eisenbarth et al discuss the relationship between a software feature, a

scenario, and a computation unit (Figure 3.1). A scenario is an instance of a software

feature where the user needs to specify a series of inputs to trigger that feature. A

scenario can invoke a number of features at the same time. A computational unit refers to

the source code that is executed by exercising the feature on the system. A feature is

implemented by many computational units, and at the same time a given computational

unit can be used in the implementation of multiple features.

In the context of our research, we also define a software feature as any specific scenario

of a system that is triggered by an external user. However, we further extend the previous

definition by adding, that a software feature is similar to the concept of use cases found in

UML [UML 2.0]. As a result, in our context, a particular instance of a feature (based on a

selected data input) corresponds to a scenario. Furthermore, we do not distinguish

between primary and exceptional scenarios although it is advisable to include at least the

primary scenario, since these scenarios tend to correspond to the most common program

execution associated with a particular feature.

3.2 Overall Approach

Figure 3.2 provides a general overview of our approach for identifying the components

that implement a specific feature. In our research, we limit the components of interest to

classes in the system. However, we believe that the approach in this thesis can also be

easily adaptable to other modules of the system such as methods or packages.

 22

Figure 3.2. Overall Approach

Our approach for locating features in code, we apply a combination of static and dynamic

analysis. An execution trace is generated by exercising the feature under study (dynamic

analysis). For this purpose, we use code instrumentation to insert probes at various

locations in the source code. More discussion on the trace generation process is presented

in Section 3.3.1. Next a class dependency graph (static analysis) is used to rank the

distinct classes invoked during the feature execution to identify their relevance to the

feature. The ranking technique itself is based on the impact of a component (class)

modification on the rest of the system. We hypothesize that the smaller the impact of a

component modification is, the more likely it is that this component is specific to the

particular feature. The rationale behind this is as follows: classes that impact many other

parts of the system will most likely be invoked in many other feature traces, making them

non-feature specific. They often correspond to utility classes that help implementing the

core functionality of the system [Hamou-Lhadj 04, Hamou-Lhadj 06]. On the other hand,

we would expect a feature-specific class to be self-contained (i.e., low coupling and high

Feature-Trace

Generation

Applying Impact

Analysis

 23

cohesion), and a modification to such a class should result in a very low impact on the

remaining parts of the system. In addition, we anticipate that there will be situations

where the impact set of a class is in between these two cases, indicating classes that

implement functionality shared by similar features.

Based on the above discussion, we propose to characterize the components invoked in a

feature-trace according to the following three categories:

• Relevant Components: These are the components that are most relevant to the

feature at hand. In other words, these components should not be invoked in any

other trace that implements a different feature.

• Related Components: These are the components that are involved in the

implementation of related features, and therefore, are expected to appear in traces

that represent these features.

• Utility Components: These components are mere utilities and are used by most

features of the system.

The remaining part of the chapter is organized as follows: The trace generation process is

discussed in detail in Section 3.3. In Section 3.4, we discuss the applicability of impact

analysis to the feature location problem. In particular, we introduce four impact metrics

to measure the degree to which a specific component can be deemed relevant to the

studied feature.

 24

3.3 Feature Trace Generation

The first step of our approach consists of generating a feature trace that corresponds to

the software feature under study. We use the term feature trace to refer to a trace that

corresponds to a particular feature. There exist various techniques for generating traces.

The first technique is based on instrumenting the source code, which consists of inserting

print statements at selected locations in the source code. To generate a trace of method

calls, for example, one needs to insert a print-out statement at least at each entry and exit

of a method. The second technique consists of instrumenting the execution environment

in which the system runs (e.g., the Java Virtual Machine). Unlike source code

instrumentation, this technique does not require the modification of the source code.

Finally, it is also possible to run the system under the control of a debugger. In this case,

breakpoints are set at locations of interest. This technique has the advantage of modifying

neither the source code nor the environment but has been shown to slow down

considerably the execution of the system, which makes it impractical for large systems.

We have used source code instrumentation for its simplicity and the abundance of tool

support. Once the system is instrumented, we execute the instrumented version by

exercising the feature to be analyzed. From this feature trace, we extract the distinct

classes invoked, while executing the particular feature (i.e., on the fly). We call the

distinct classes invoked in a feature trace the execution profile of the feature. It should be

noted that the trace does not need to be saved.

 25

3.4 Impact Analysis

Impact analysis is the process of determining the parts of a program that are potentially

affected by a change made to the program. Impact analysis has been shown to be useful

for planning system changes, making changes, accommodating certain types of software

changes, and tracing through the effects of changes [Law 03, Turver 94].

As previously mentioned, we apply in our approach impact analysis to identify feature

specific classes, by measuring at a class dependency graph level, the potential impact that

a modification of each distinct class in the feature trace has on the rest of the system. The

four metrics presented in this thesis measure the impact of a class modification on the

other parts of the system. Dependencies among system components are computed based

on a static class dependency graph. Building class dependencies graphs is discussed in

the next subsection. The impact metrics are presented in Section 3.3.2.2.

3.4.1 Building a Class Dependency Graph

Impact analysis is based on the exploration of the class dependency graph (CDG) of a

system. A CDG is a directed graph where the nodes are the system’s classes and the

edges represent a dependency relationship among the classes as shown in Figure 3.3.

The construction of a class dependency graph typically requires parsing of the source

code. Several types of relationships may exist between two classes such as the ones based

on method calls, generalization and realization relationships, etc. It should be noted that

the accuracy of the impact analysis depends greatly on the types of dependency relations

supported by the analysis. One of the important dependencies that exist between classes

 26

is method invocation. These function calls are traced using a static call graph. The

construction of call graphs from object-oriented systems requires the resolution of

polymorphic calls. There exist various techniques in the literature that achieve this

including Unique Name (UN) [Calder 94], Class Hierarchy Analysis (CHA) [Bacon 96,

Dean 95], and Rapid Type Analysis (RTA). Each algorithm has its own advantages and

imitations. In this thesis, we use RTA for its simplicity, efficiency, and tool support

[Bacon 96].

C1

C6

C7C5

C4C2

C3

Figure 3.3. Example of a class dependency graph

3.4.2 Impact Metrics

We have developed four metrics for measuring the impact of a class modification on the

other parts of the system. These metrics vary depending on the way impact of a

component modification on the rest of the system is computed.

 27

3.4.2.1 Definitions

Definition 1: Impact Set

We define the impact set of modifying a component C as a set of components that depend

directly or indirectly on C. More formally, a class dependency graph can be represented

using a directed graph G = (V, E) where V is a set of classes and E a set of directed edges

between classes. The impact set of C consists of the set of predecessors of C. A

predecessor of a node is defined as follows: Consider an edge e = (x, y) from node x to y,

If there is a path in the graph that leads from x to y, then x is said to be a predecessor of y.

For example, the impact set of class C5 in Figure 3.3 consists of the classes C6, C7 C4,

C3, and C1 (i.e., the predecessors of node C5) since there exist a path between each of

these classes and the class C5. Note that the same class may occur in multiple paths. In

this case, such a class is considered only once in the impact set.

Definition 2: Class Afferent Impact

The Class Afferent Impact (CAI) of a class C consists of the number of classes that are

affected (directly or indirectly) when C is modified (i.e., the cardinality of the impact set

of C).

Definition 3: Class Efferent Impact

The Class Efferent Impact (CEI) of a class C is the number of classes that will affect

(directly or indirectly) C if they change. These are the classes in the directed graph that

can be reached through C, also called the descendants of C in the class dependency

graph. It should be noted that the intersection between CAI and CEI is not necessarily

 28

empty, since some components can be affected by a change to C while at the same time

they can affect C.

Definition 4: Package Afferent Impact

We define the Package Afferent Impact (PAI) of a class C as the number of packages that

are affected by a modification of C. The package afferent impact will be used to weigh

some of the metrics presented in this section. It should be note that we consider all

packages of the system as separate packages no matter if they belong to another package

or not.

The class (and package) afferent and efferent impact should not be confused with the

afferent and efferent couplings proposed by Robert Martin [Martin 95], used to assess the

quality of a design by analyzing the stability of its subsystems. The afferent and afferent

couplings focus on measuring fan-in and fan-out of a subsystem using a subsystem

dependency graph, whereas in this thesis, we focus on measuring the impact of a

component change on the rest of the system.

3.4.2.2 The One Way Impact Metric (OWI)

There exists several metrics in the literature that measure the relationship among the

system components (e.g., the MOOSE metrics presented in [Lanza 2006]). These metrics

are used to assess the overall quality of a design and do not necessarily measure the

impact of a component on the rest of the system. In this thesis, we propose four simple

and yet powerful metrics that achieve this goal.

 29

The first metric is called the one way impact metric and considers exclusively the impact

modification of a class on the system, i.e., CAI.

We define the one way impact metric of a class C as:

• S = A set that contains all the classes of the system under study. We assume

in this thesis that the system under study has more than one class. That is the

cardinality of set S is always greater than 1.

||

|)(|
)(

S

cCAI
cOWI =

OWI ranges from 0 to 1. It converges to 0 if the class has a small impact on the rest of the

system which is a good indicator that it is specific to the feature in question according to

our hypothesis. On the other hand, a class with an OWI value reaching 1 indicates that a

change in this class causes many parts of the systems to change. This indicates that this

class is used to support the implementation of various features.

Figure 3.4. A class dependency graph

 30

The example in Figure 3.4 will be revisited throughout this section to illustrate how our

impact analysis metrics can identify feature related components. In this example, we

assume that the classes that are relevant to the specific feature all located in package P1.

However, the feature profile created from this specific feature trace also contains

additionally the classes C6, C7, and C8.

Table 3.1 shows the result of applying the one way impact metric to classes of Figure 3.4.

The table is sorted in an ascending order based on the OWI column. From the table one

can see that the metric was able to group successfully all P1 classes (the most relevant

classes) in the top of the table. The class C6 is used by many other classes of the system,

which suggests that it is a utility class. In this example, it was ranked among the last

classes along with C7and C8 on which it depends.

Table 3.1. Applying OWI to Example of Figure 3.4

Package Class CAI OWI

P1 C1 0 0.000

P1 C2 1 0.083

P1 C3 1 0.083

P1 C5 1 0.083

P1 C12 2 0.167

P1 C4 5 0.417

P2 C6 7 0.583

P2 C8 8 0.667

P2 C7 9 0.750

3.4.2.3 The Two Way Impact Metric (TWI)

 31

The two way impact metric considers both, the impact of a class modification on the rest

of the system (i.e., its afferent impact), as well as the number of classes that impact this

class if these classes change (i.e., the efferent impact, CEI, of the class).

The rationale behind using the efferent impact is based on a study conducted by Hamou-

Lhadj et al. to automatically detect utility components that exist in a software system

[Hamou-Lhadj 05, Hamou-Lhadj 06]. The authors used fan-in analysis to measure the

extent to which a routine can be considered a utility. According to their findings, a

routine with high fan-in (incoming edges in the call graph) should be considered a utility

as long as its fan-out (outgoing edges) is not high. They explained that the more calls a

routine has from different places then the more purposes it likely has, and hence the more

likely it is to be a utility. On the other hand, if a routine has many calls (outgoing edges in

the call graph), this is evidence that it is performing a complex computation and therefore

it is needed to understand the system.

The two way impact metric uses a similar approach, except that it considers the impact of

a component modification rather than its mere fan-in. In other words, we do not only

considers the direct impact associated with a component change by including all

components that are directly associated with it, but also the ones that are indirectly

affected by this component change. This allows us to measure the fact that the afferent

impact of a component can be very high without necessarily having a high fan-in. For

example in Figure 3.5, the class C2 has a very low fan-in (one incoming edge) but a high

afferent impact value (five classes are affected by changing C2).

 32

Figure 3.5. The difference between fan-in and CAI

Fan-in (C2) = 1 and CAI (C2) = 5

We define the two way impact metric (TWI) of a class C as follows:

















=

=

=

0
||

)(

0!
|)(|

)
)(

||
(

||

)(

)(

CEIif
S

cCAI

CEIif
SLog

cCEI

S
Log

S

cCAI

cTWI

If the class does not depend on any other class (i.e., CEI = 0) then TWI is the same as the

one way impact metric. The interesting case is when CEI is different from zero. In this

case, the formula is divided into two parts. The first part
||

)(

S

cCAI
 reflects the fact that the

classes with large CAI (class afferent impact) are the ones that are most likely to be non-

feature specific classes, as previously discussed. The second part takes into account the

efferent impact although with a lower weight than the afferent impact using the Log

function. The reason behind this is that we believe that the afferent impact should be

weighted more than the efferent impact since a class modification that causes a

 33

considerably large number of changes in the system should be classified as utility no

matter what the value of its efferent impact is.

We divide the result of both parts by |)(| SLog to ensure that the entire formula varies

from 0 to 1, with 0 being a component that is feature specific and not shared by any

component in the system and 1 being a component that is shared among all components

in the system.

When applying to the example in Figure 3.4, the two way impact metric favoured the

class C6 over the class C4 as being the most relevant to the feature under study. This is

because C4 does not depend on any other class (CEI = 0), whereas C6 depends on two

classes (CEI = 2), which might suggest that it is more important than C4. This

classification is not necessarily incorrect since utility classes might also have a local

scope. For example, C4 could be a utility class for the P1 package, whereas C6 is a utility

class for the entire system. Therefore, having these two classes at the bottom of the table

should be seen as a good outcome of the algorithm.

Table 3.2. Applying TWI to example of Figure 3.4

Package Class CAI CEI TWI

P1 C1 0 11 0.000

P1 C2 1 6 0.018

P1 C5 1 5 0.023

P1 C3 1 2 0.046

P1 C12 2 1 0.120

P2 C6 7 2 0.325

P1 C4 5 0 0.417

 34

P2 C8 8 1 0.481

P2 C7 9 0 0.750

Next, we introduce our Weighted OWI and Weighted TWI metrics to improve on the

OWI and TWI metric by also considering the package afferent impact as part of the

measurement.

3.4.2.4 The Weighted One Way Impact Metric (WOWI)

The weighted one way impact metric uses available information about the system

architecture to further enhance the already introduced one way impact metric. More

specifically, for the WOWI metric, also the number of packages are considered that are

affected by a class modification (i.e., the package afferent impact, PAI). The rationale

behind this is that a class affecting more packages (that is affecting classes belonging to

majority of packages in the system) is more likely to be a feature irrelevant class in

comparison to a class affecting less number of packages. For example, a class that affects

five classes from three different packages, it is more likely that this class will be included

in the execution profile of several features than a class that affects five classes of the

same package. In other words, two classes that have the same OWI value may be ranked

differently if they affect a different number of packages, and in such a case, the

component that crosses the least number of packages will be given more importance than

the one that affects a larger number of packages.

Taking the above rationale into account, we introduce the following metric:

||

)(
)()(

P

cPAI
xcOWIcWOWI =

 35

The range for the)(cWOWI is from 0 to 1, with 0 being a component that is feature

specific and not shared by any other component or package in the system, and 1 being a

component that is shared among all components and packages of the system.

In the earlier example we saw that our metric worked fine according to our hypothesis

but if the system was rather complex and packaged the previous metrics would not had

been that accurate. We enhance the previous example by introducing packages to show

the effectiveness of our new metric in comparison to the pervious example.

The weighted one way impact metric results in a similar outcome as the non-weighted

one way metric when applied to the example in Figure 3.4 (see Table 3.3). However, it

should be noticed that the gap between the relevant classes (P1 classes) and the non-

relevant classes (P2 classes) is considerably larger than the gap between these two

categories of classes when we applied the non weighted OWI.

Table 3.3. Applying WOWI on the example of Figure 3.4

Package Class CAI PAI WOWI

P1 C1 0 1 0.000

P1 C2 1 1 0.017

P1 C5 1 1 0.017

P1 C3 1 1 0.017

P1 C12 2 1 0.033

P1 C4 5 1 0.083

P2 C6 7 5 0.583

P2 C8 8 5 0.667

P2 C7 9 5 0.750

 36

3.4.2.5 The Weighted Two Way Impact (WTWI)

Similar to the weighted one way impact metric, the weighted two way impact (WTWI)

can be seen as a further improvement over the two way impact metric by also considering

the number of packages affected due to a component modification.

The WTWI metrics therefore corresponds to:

||

)(
)()(

P

cPAI
xcTWIcWTWI =

Table 3.4 shows the result after applying the WTWI to the example in Figure 3.4. As a

result of using the WTWI metric, class C4 was placed back in the pool of relevant

classes. This is because it only affects one package as opposed to the classes of P2

package which affect 5 packages. In addition, the WTWI improves over the non-

weighted TWI by enlarging the gap between the relevant and non-relevant classes.

Table 3.4. Applying WTWI on the example of figure 3.4

Package Class CAI CEI PAI WTWI

P1 C1 0 11 1 0.000

P1 C2 1 6 1 0.004

P1 C5 1 5 1 0.005

P1 C3 1 2 1 0.009

P1 C12 2 1 1 0.024

P1 C4 5 0 1 0.083

P2 C6 7 2 5 0.325

P2 C8 8 1 5 0.481

P2 C7 9 0 5 0.750

 37

3.5 Summary

In this chapter, we presented our approach for solving the feature location problem with a

focus on identifying the classes that are the most relevant to the feature to be analyzed.

Our approach combines both static and dynamic analysis. A trace is generated by

exercising a feature under study. The invoked classes in the trace are ranked based on

identifying the impact of a class modification on the rest of the system. Our hypothesis is

that the higher the impact, the less relevant the component. To measure the impact of a

component modification on the rest of the system, we proposed four impact metrics that

operate on the class dependency graph. The first metric, the one way impact metric

(OWI), considers only the impact of a class modification on the rest of the system. The

second metric, the two way impact metric (TWI), considers both, the impact of a class

modification on the rest of the system (i.e., its afferent impact), as well as the number of

classes that impact this class if these classes change (i.e., the efferent impact, CEI, of the

class). The two other metrics, the weighted one way impact metric and the weighted two

way impact metric, use architectural information to further enhance the previous metrics.

 38

Chapter 4 Evaluation

In this chapter, we evaluate the applicability of our feature location techniques by

applying them to traces generated from two object-oriented software systems.

4.1 Target Systems

We have applied the proposed feature location techniques to traces generated from two

Java-based system called Weka1 (version 3.0), and Checkstyle2 (version 3.3). Weka has

been developed in The University of Waikato, New Zealand. It is a machine learning tool

that supports several algorithms such as classification algorithms, regression techniques,

clustering and association rules. It has 10 packages, 142 classes, and 95 KLOC.

The second software system used for evaluating our approach is Checkstyle. Checkstyle

is a development tool that aims to help programmers write Java code that adheres to a

coding standard. This is a useful tool in projects where enforcing a coding standard is

important. The tool allows programmers to create XML-based files to represent almost

any coding standard. Checkstyle uses ANTLR3 (ANother Tool for Language

Recognition) and the Apache regular expression pattern matching package4. These two

1 http://www.cs.waikato.ac.nz/ml/weka/
2 http://checkstyle.sourceforge.net/
3 http://www.antlr.org/
4 http://jakarta.apache.org/regexp/

 39

packages have been excluded from this analysis. Checkstyle (without ANTLR and the

Apache module) has 17 packages, 210 classes, and 130 KLOC.

We selected Weka and Checkstyle because both systems are well documented. Weka

packages and most important classes are documented in a book dedicated to the tool and

machine learning in general [Witten 99]. A detailed description of Checkstyle

architecture can be found on a website dedicated to the tool. Having this documentation

available will allow us to validate the results obtained from our approach against the

documented feature implementations.

4.2 Applying Feature Locations Algorithms

4.2.1 Feature Selection

We have applied our feature location techniques to several software features of Weka and

Checkstyle. In this thesis, we report on the result of applying these techniques to two

features (one for each system), which reflect the overall result obtained. For the Weka

system, we wanted to identify the classes that are specific to the implementation of the

M5 algorithm, which is a classification algorithm based on the so-called model trees

[Quinlan 92]. For the Checkstyle system, we selected the CheckCode feature that is used

to check Java code for coding problems such as uninitialized variables, etc.

4.2.2 Generation of Feature-Traces

To generate the corresponding traces, we instrumented Weka and CheckStyle using our

own instrumentation tool based on the Bytecode Instrumentation Toolkit framework [Lee

97]. Probes were inserted at each entry and exit method (including constructors) of both

 40

systems. For each feature discussed in the previous section, we generated two execution

traces, which correspond to the selected features, by executing the instrumented version

of Weka and CheckStyle. We used a sample input data provided in the documentation of

both systems to exercise the M5 and CheckCode features. We saved the distinct classes

invoked in each trace while the system was executing. It should be noted that we did not

have to save the entire trace. Table 4.1 shows the number of distinct classes invoked in

M5 and CheckCode traces.

Table 4.1. Distinct Classes in the traces for M5 and Checkcode.

Feature (System) Number of Classes

M5 (Weka) 26

CheckCode (Checkstyle) 68

4.2.3 Applying the Impact Metrics

We applied the impact analysis metrics to both, the Weka and Checkstyle systems using a

tool called Structural Analysis for Java (SA4J)5. The tool parses the source code and

generates a global class dependency table that contains various metrics including the

class afferent and efferent impacts. SA4J supports a large spectrum of relations among

classes such as: accesses, calls, contains, extends, implements, instantiates, references,

etc.

5 http://www.alphaworks.ibm.com/tech/sa4j

http://www.alphaworks.ibm.com/tech/sa4j

 41

Figure 4.1. Example of a package dependency graph generated using SA4J

In addition, the tool provides architectural information of a system such as the number of

packages, the content of each package, and the relationships between packages. Figure

4.1, for example, shows a package dependency graph extracted from the Weka system.

We used the package dependency graphs to compute the package afferent impact, which

is needed for the computation of the weighted one way impact and weighted two way

impact metrics.

 42

In the following subsections, we present the result of applying OWI, WOWI, TWI, and

WTWI based feature location approaches to the two selected features.

4.2.3.1 The One Way Impact Metric (OWI)

Table 4.2 shows the result of applying the one way impact metric to the Weka feature

trace M5 (we multiplied OWI by a 1000 to improve the clarity of the presentation of the

results). The table is sorted in the ascending order of OWI and does not show all classes

to avoid cluttering. The detailed results are presented in Appendix A.

Table 4.2. Applying OWI to M5 feature

Package Class |CAI| OWI*1000

weka.classifiers.m5 M5Prime 1 7.04

10 other classes here of M5 Package OWI*1000 value ranging between 7.04 and

49.30

weka.filters ReplaceMissingValuesFilter 7 49.30

weka.filters NominalToBinaryFilter 7 49.30

weka.classifiers.m5 M5Utils 10 70.42

weka.filters Filter 33 232.39

weka.classifiers Evaluation 33 232.39

weka.core Queue 34 239.44

weka.classifiers Classifier 35 246.48

weka.estimators KernelEstimator 37 260.56

weka.core Statistics 49 345.07

5 other classes of core Package OWI*1000 value ranging between 345.07 and 894.37

The execution profile of the M5 feature (i.e., the distinct classes invoked in the M5

feature trace) consists of classes that belong to the following packages: m5 (12 classes),

classifiers (2 classes), filters (3 classes), estimators (1 class), and core

(8 classes).

 43

OWI Distribution for M5 Feature

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

900.00

950.00

0 5 10 15 20 25 30

M5 Classes

O
W

I*
10

00

M5Prime
Matrix

M5Utils

Filter

Statistics

Figure 4.2. OWI distribution for M5 Feature

According to the Weka documentation [Witten 99], the package m5 contains the key

classes that implement the M5 model tree algorithm. The classifiers package

(excluding its sub-packages) contains common classes that most Weka classifications

algorithms (including M5) use. The classes defined in the filters package are used to

extract the data used by the Weka classification algorithms. The classes used by the M5

algorithm are: NominalToBF and ReplaceMissingVF. The class Filter is a

superclass from which all filters are inherited. The estimators package contains

classes that implement various techniques for estimating the machine learning models

 44

used by Weka classification algorithms. The class KernelEstimator invoked in the

M5 trace is used by M5 and many other classification algorithms as well. Finally, the

core package contains general-purpose utilities used by all Weka algorithms whether

they are classification algorithms or not.

By analyzing the Weka documentation we were able to verify that the OWI-based feature

location technique ranked successfully most of the M5 specific classes (shown in bold) as

relevant components, except for the class M5Utils. It also grouped at the bottom of the

table most classes of the utility package core (underlined). The classes shown in Italics

represent the related components, used by M5 and some other Weka’s classification

algorithms.

Although the OWI-based feature location technique produced good results, a closer look

at the values of OWI revealed that the value for classes Matrix from the m5 package,

and ReplaceMissingValuesFilter and NominalToBinaryFilter from the

filterers package are identical (OWI = 49.30/1000). In other words, there is no clear cut

between the classes that belong to the relevant components category and the ones

contained in the related components category. Figure 4.2 shows this graphically.

Although the algorithm succeeded to distinguish between most of the utility classes (on

the top of the figure) and the other categories of classes, it did not provide a clear cut

between the relevant and the related components.

For the CheckCode feature we followed a similar assessment process. The execution

profile of the CheckCode feature revealed that it consists of classes belonging to the

following packages: coding (32 classes), checkstyle (12 classes), checks (5

 45

classes), grammars (2 classes), and apis (17 classes). As for Weka, we consulted the

documentation of Checkstyle to understand the most components of the CheckCode

feature. The package coding is the one that contains the key classes that implement the

various checking procedures most relevant to this feature.

Table 4.3, sorted in the ascending order of OWI, shows the result of applying the one

way impact metric to the Checkstyle feature trace CheckCode. We can observe that the

OWI-based feature location ranked successfully most of the CheckCode feature specific

classes (shown in bold). The only major exceptions are the classes:

AbstractSuperCheck and AbstractNestedDepthCheck. These classes have

a large class afferent impact (CAI = 3) compared to all other classes of the coding

package (CAI = 1). This is due to the fact that they are abstract classes, and as such, they

implement general purpose functions used by many other classes.

 46

Table 4.3. Applying OWI to CheckCode Feature

Package Class |CAI| OWI OWI*1000

coding ExplicitInitializationCheck 1 0 4.76

29 other classes of coding package with OWI*1000 value of 4.76

checkstyle DefaultConfiguration 1 0 4.76

checks DescendantTokenCheck 2 0.01 9.52

checks GenericIllegalRegexpCheck 2 0.01 9.52

checkstyle Checker 3 0.01 14.29

coding AbstractSuperCheck 3 0.01 14.29

coding AbstractNestedDepthCheck 3 0.01 14.29

checkstyle DefaultLogger 3 0.01 14.29

checkstyle TreeWalker 3 0.01 14.29

checkstyle ConfigurationLoader 3 0.01 14.29

checkstyle PropertiesExpander 3 0.01 14.29

checks AbstractTypeAwareCheck 3 0.01 14.29

checkstyle PackageNamesLoader 4 0.02 19.05

checkstyle PropertyCacheFile 4 0.02 19.05

checkstyle StringArrayReader 4 0.02 19.05

grammars GeneratedJava14Lexer 4 0.02 19.05

grammars GeneratedJava14Recognizer 4 0.02 19.05

checkstyle PackageObjectFactory 5 0.02 23.81

apis FilterSet 6 0.03 28.57

checkstyle DefaultContext 7 0.03 33.33

checkstyle AbstractLoader 7 0.03 33.33

checks CheckUtils 8 0.04 38.10

apis AbstractFileSetCheck 8 0.04 38.10

apis TokenTypes 9 0.04 42.86

apis AuditEvent 13 0.06 61.90

checks AbstractFormatCheck 17 0.08 80.95

apis ScopeUtils 19 0.09 90.48

12 more classes of apis package here with OWI*1000 value ranging from 90.48 to 714.29

 47

Figure 4.3. OWI distribution for CheckCode feature

The packages checkstyle, checks, and grammars contain classes that implement

common functionality used by most checks performed by Checkstyle. For example the

classes of the grammars package contain operations that build a grammar from the code

inputted for analysis. Most of these classes, represented in Italics, are ranked after classes

of the coding package with a few exceptions. For example, the class

checkstyle.DefaultConfiguration, checks.DescendantTokenCheck,

checks.GenericIllegalRegexpCheck and checkstyle.checker were

ranked among the most important classes. These classes are not as important as those of

the coding package as they are used by many features of the Checkstyle tool. In Table

4.3, these classes are shown in Italics, indicating that they are neither specific to the

CheckCode feature nor utility classes. The One Way Impact metrics also detected

OWI Distribution for CheckCode Feature

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00
550.00
600.00
650.00
700.00
750.00

0 10 20 30 40 50 60 70 80

CheckCode Classes

OWI *1000

ExplicitInitializationCheck
DescendantTokenCheck

PackageNamesLoader

Checker

FullIdent

AuditEvent

Check

 48

successfully the utility classes, which are packaged in the apis package, with a few

exception, such as the class FilterSet, which was misplaced by our approach.

Similar to Weka, the OWI-based feature location technique did not succeed to have a

clear cut between the different categories of classes (i.e., relevant components, related

components, and utilities). For example, the OWI metric value for the classes from the

coding package and defaultconfiguration from the checkstyle package are

similar (OWI = 4.76/1000), although these two classes should be in different categories.

4.2.3.2 The Weighted One Way Impact Metric (WOWI)

Table 4.4 shows the result of applying the weighted one way impact metric to the M5

feature in Weka. As shown in the table, this technique can provide better results than the

non-weighted one way impact metric by improving the grouping of the classes within the

M5 package by enhancing the gap between the most important classes and the ones which

are less relevant to the M5 feature as shown graphically in Figure 4.4.

Table 4.4. Applying WOWI to M5 feature

Packages Class |CAI| |PAI| WOWI*1000

weka.classifiers.m5 M5Prime 1 1 0.70

11 other classes of M5 package with WOWI*1000 value ranging between 0.70 and 7.04

weka.filters ReplaceMissingValuesFilter 7 3 14.79

weka.filters NominalToBinaryFilter 7 3 14.79

weka.filters Filter 33 4 92.96

weka.classifiers Evaluation 33 4 92.96

weka.classifiers Classifier 35 4 98.59

weka.core Queue 34 5 119.72

weka.estimators KernelEstimator 37 5 130.28

weka.core Statistics 49 8 276.06

5 other classes of core package with WOWI*1000 value ranging between 276.06 and 804.93

 49

Weighted OWI Distribution for the M5 Feature

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

0 5 10 15 20 25 30

M5 Classes

W
O

W
I*

10
00

M5Prime M5Utils

Filter

Queue

Statistics

Figure 4.4. WOWI distribution for M5 feature

Similar to Weka, the weighted OWI provides better results than the non-weighted one

way impact when applied to the CheckCode feature (Table 4.5). It not only improves the

grouping of the classes of the coding package but also enlarges the gap between among

the relevant and the related classes. More precisely, the gap between the misplaced

classes (AbstractSuperCheck and AbstractNestedDepthCheck) of coding

package and the rest of the coding package classes has been reduced. However, the

problem of having the same WOWI metric value for the classes from the coding

package and defaultconfiguration from the checkstyle package still

remains, as in the previous technique.

 50

Table 4.5. Applying WOWI to CheckCode feature

Package Class |CAI| |PAI| WOWI*1000

coding ExplicitInitializationCheck 1 1 0.28

29 other classes of coding package with WOWI*1000 value of 0.28

checkstyle DefaultConfiguration 1 1 0.28

checkstyle Checker 3 1 0.84

coding AbstractSuperCheck 3 1 0.84

coding AbstractNestedDepthCheck 3 1 0.84

checkstyle DefaultLogger 3 1 0.84

checkstyle ConfigurationLoader 3 1 0.84

checkstyle PropertiesExpander 3 1 0.84

checks DescendantTokenCheck 2 2 1.12

checks GenericIllegalRegexpCheck 2 2 1.12

checkstyle PackageNamesLoader 4 1 1.12

checkstyle PackageObjectFactory 5 1 1.40

checkstyle TreeWalker 3 2 1.68

checkstyle PropertyCacheFile 4 2 2.24

checkstyle StringArrayReader 4 2 2.24

checks AbstractTypeAwareCheck 3 3 2.52

grammars GeneratedJava14Lexer 4 3 3.36

grammars GeneratedJava14Recognizer 4 3 3.36

checkstyle DefaultContext 7 2 3.92

checkstyle AbstractLoader 7 2 3.92

apis FilterSet 6 3 5.04

checks CheckUtils 8 3 6.72

apis AuditEvent 13 3 10.92

12 other classes of apis package with WOWI*1000 value ranging from 10.92 to 672.27

 51

Weighted OWI Distribution for CheckCode Feature

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

0 10 20 30 40 50 60 70 80

CheckCode Classes

W
O

W
I*

10
00

ExplicitInitializationCheck

Checker

GeneratedJava14Lexer FilterSet ScopeUtils

Check

Figure 4.5. WOWI distribution for CheckCode feature.

There is also an improvement in the ranking of the classes of the apis package, which

are now closer to each other at the bottom of the table. However, the approach misplaced

two classes CheckUtils and AbstractFormatCheck at the end with apis

package utility classes.

4.2.3.3 The Two Way Impact Metric (TWI)

Table 4.6 shows the result of applying the two way impact metric to locate the M5

feature in the Weka system.

 52

The overall results achieved using this technique provided no further improvement over

the previous metrics except for its ability to allow for a grouping of all utility classes

within one block. As shown in Table 4.6, the core package classes form now one block

located at the bottom of the table. This approach however did misplace an additional

relevant component (the class m5.Matrix). The overall TWI distribution presents an

improvement compared to the previous metrics (see Figure 4.6), where the distribution of

TWI forms a curve showing the components from the most relevant to the least relevant,

with a few classes misplaced.

Table 4.6. Applying TWI to M5 Feature

Packages Class |CEI| |CAI| TWI*1000

weka.classifiers.m5 M5Prime 35 1 1.95

9 other classes of M5 package with TWI*1000 value ranging from 1.95 to 24.23

weka.filters ReplaceMissingValuesFilter 11 7 24.58

weka.filters NominalToBinaryFilter 11 7 24.58

weka.classifiers.m5 Matrix 5 7 31.47

weka.classifiers.m5 M5Utils 8 10 39.2

weka.classifiers Evaluation 18 33 94.32

weka.filters Filter 10 33 119.95

weka.classifiers Classifier 8 35 137.2

weka.estimators KernelEstimator 7 37 151.23

weka.core Queue 1 34 205.95

6 other classes from package core with TWI*1000 value ranging from 205.95 and 696.1

 53

TWI Distribution for the M5 Feature

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

0 5 10 15 20 25 30

M5 Classes

O
W

I*
10

00

M5Prime Values
ReplaceMissingValuesFilter

Evaluation

Queue

Figure 4.6. TWI distribution for M5 feature

When applied to the CheckCode feature (see Table 4.7), the results obtained were similar

to the OWI and WOWI metrics except a better classification of the utility classes (i.e., the

ones belonging to the apis package). For example, the classes apis.TokenType and

apis.AuditEvent which were misplaced by OWI and WOWI were rightly placed

with the other apis classes using TWI.

 54

Table 4.7. Applying TWI to CheckCode feature.

Package Class |CAI| |CEI| TWI*1000

coding ExplicitInitializationCheck 1 22 1.97

29 other coding package classes here with TWI* 1000 value ranging from 1.97 to 2.14

checkstyle DefaultConfiguration 1 2 3.78

checks DescendantTokenCheck 2 19 4.19

checks GenericIllegalRegexpCheck 2 19 4.19

checkstyle TreeWalker 3 32 4.94

checkstyle Checker 3 21 6.03

checks AbstractTypeAwareCheck 3 20 6.15

coding AbstractSuperCheck 3 20 6.15

coding AbstractNestedDepthCheck 3 18 6.42

checkstyle DefaultLogger 3 11 7.65

checkstyle ConfigurationLoader 3 3 10.58

checkstyle PropertiesExpander 3 2 11.35

checkstyle PackageNamesLoader 4 4 13.31

grammars GeneratedJava14Lexer 4 3 14.11

checkstyle PropertyCacheFile 4 2 15.13

grammars GeneratedJava14Recognizer 4 2 15.13

checkstyle StringArrayReader 4 1 16.58

checkstyle PackageObjectFactory 5 2 18.92

apis FilterSet 6 5 19

apis AbstractFileSetCheck 8 13 19.29

checkstyle DefaultContext 7 2 26.48

checks CheckUtils 8 3 28.22

checkstyle AbstractLoader 7 1 29.01

checks AbstractFormatCheck 17 18 36.38

apis TokenTypes 9 1 37.3

14 other apis package classes here with TWI*1000 value ranging from 37.3 to 621.69

 55

Figure 4.7. TWI distribution for CheckCode feature

4.2.3.4 The Weighted Two Way Impact Metric (WTWI)

Table 4.8 shows the result of applying the feature location techniques based on the

weighted two way impact metric. The results achieved by this metric are considerably

better than the ones obtained by the previous approaches. One can observe that the

classes of the m5 package were all identified and grouped together as the most relevant

classes to the M5 feature. In addition, the core package utility classes were grouped

together at the end showing that these classes are least important for this feature. Using

the WTWI, none of the classes has been misplaced. As shown in Figure 4.8, WTWI also

results in a better distribution compared to the other metrics.

TWI Distribution for the CheckCode Feature

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

 CheckCode Classes

ExplicitInitializationCheck DefaultConfiguration

Checker

ConfigurationLoader

DefaultContext

TokenTypes

Check

TWI*1000

 56

Table 4.8. Applying WTWI to M5 feature

Packages Class |CEI| |CAI| |PAI| WTWI*1000

weka.classifiers.m5 M5Prime 35 1 1 0.2

11 other classes of M5 package here with WTWI*1000 value ranging from 0.2 to 3.92

weka.filters ReplaceMissingValuesFilter 11 7 3 7.37

weka.filters NominalToBinaryFilter 11 7 3 7.37

weka.classifiers Evaluation 18 33 4 37.73

weka.filters Filter 10 33 4 47.98

weka.classifiers Classifier 8 35 4 54.88

weka.estimators KernelEstimator 7 37 5 75.62

weka.core Queue 1 34 5 102.97

6 other classes from core package with WTWI*1000 value ranging from 102.97 and 626.49

Weighted TWI Distribution for the M5 Feature

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0 5 10 15 20 25 30

M5 Classes

W
T

W
I*

1
0

0
0

M5Prime
M5Utils

Evaluation

Queue

Statistics

Figure 4.8. WTWI Distribution for M5 feature

 57

The results of applying the WTWI-based feature location technique to the CheckCode

feature are shown in Table 4.9. WTWI shows similar results as achieved by WOWI-

based technique. However, the WTWI approach misplaced some classes of the checks

package such at the classes AbstractLoader, AbstractFormatCheck (two

abstract classes), and CheckUtils with the apis classes. As mentioned previously,

abstract classes seem to behave differently from the other classes of the same packages.

As for CheckUtils, it is a utility class whose scope is within the checks package,

unlike the classes of the apis package, which are system-level utilities. The distribution

of WTWI is also better than the TWI distribution as shown in Figure 4.9.

4.3 Discussion

The overall results achieved by our feature location techniques depict that our proposed

hypothesis has proven to be effective in the detection of components most relevant to the

feature in question. More specifically to test our hypothesis stating we used on two

features: M5 from Weka and CheckCode from Checkstyle software.

In terms of features, M5 feature showed more accurate results over CheckCode feature.

However the advantages and disadvantages of each proposed feature location techniques

in terms of Impact metric utilized are as follows:

 58

Table 4.9. Applying WTWI to CheckCode feature

Package Class |CAI| |CEI| |PAI| WTWI*1000

coding ExplicitInitializationCheck 1 22 1 0.12

29 classes from coding package with WTWI*1000 value ranging from 0.12 and 0.13

checkstyle DefaultConfiguration 1 2 1 0.22

checkstyle Checker 3 21 1 0.35

coding AbstractSuperCheck 3 20 1 0.36

coding AbstractNestedDepthCheck 3 18 1 0.38

checkstyle DefaultLogger 3 11 1 0.45

checks DescendantTokenCheck 2 19 2 0.49

checks GenericIllegalRegexpCheck 2 19 2 0.49

checkstyle TreeWalker 3 32 2 0.58

checkstyle ConfigurationLoader 3 3 1 0.62

checkstyle PropertiesExpander 3 2 1 0.67

checkstyle PackageNamesLoader 4 4 1 0.78

checks AbstractTypeAwareCheck 3 20 3 1.09

checkstyle PackageObjectFactory 5 2 1 1.11

checkstyle PropertyCacheFile 4 2 2 1.78

checkstyle StringArrayReader 4 1 2 1.95

grammars GeneratedJava14Lexer 4 3 3 2.49

grammars GeneratedJava14Recognizer 4 2 3 2.67

checkstyle DefaultContext 7 2 2 3.12

apis FilterSet 6 5 3 3.35

checkstyle AbstractLoader 7 1 2 3.41

checks CheckUtils 8 3 3 4.98

apis AbstractFileSetCheck 8 13 6 6.81

apis AuditEvent 13 3 3 8.09

checks AbstractFormatCheck 17 18 4 8.56

apis TokenTypes 9 1 5 10.97

13 other classes of apis package with WTWI*1000 value ranging from 10.97 to 585.12

 59

Weighted TWI Distribution for the CheckCode Feature

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 10 20 30 40 50 60 70 80

CheckCode Classes

W
T

W
I*

10
00

ExplicitInitializationCheck
DefaultConfiguration

AbstractTypeAwareCheck

FullIdent

AbstractFileSetCheck

Check

Figure 4.9. WTWI distribution for CheckCode feature.

Feature location technique based on One Way Impact Metric: This technique worked

quite well in detecting most important components for the feature M5 and CheckCode.

More specifically it misplaced just one specific class of M5 feature and two specific

classes of CheckCode feature. However one of the major disadvantage of this approach is

its inability to detect a clear-cut difference between the categories of classes (relevant,

related and utilities). Secondly this technique also misplaced a few classes of relatively

high degree of importance with the utility classes.

Feature location technique based on Weighted One way Impact Metric: Using this

technique an improvement in the grouping of the classes was achieved. Specifically it

ranked all the most important classes of M5 feature rightly at the top, it further reduced

 60

the gap between the misplaced CheckCode feature classes and the rest of the important

classes. This validates the effectiveness of weighting the previous metric by a factor of

|PAI|/ |P|.

Feature location technique based on Two Way Impact Analysis: This technique showed

no further improvement over the last two techniques. The classes that were initially

misplaced by OWI Metric remained misplaced using this technique. However this

technique showed an improvement in grouping the utility classes at the end together as

one block. All the utility classes of Core package were placed at the end and this

technique also reduced the gap between misplaced Apis package classes of CheckCode

feature.

Feature location Technique based on Weighted Two Way Impact Analysis: For the

feature M5 this technique showed the best results in comparison with the previous

techniques. A clear cut difference was achieved between the different categories

(relevant, related and utilities) of classes involved in the feature- trace of M5 feature. In

case of CheckCode feature some classes still remained misplaced and this technique

showed results similar to those achieved by WOWI Metric.

 61

Chapter 5 Conclusion

In this chapter we conclude our thesis by summarizing our research contributions in

Section 5.1, which also includes a discussion about the results achieved by our approach

and its effectiveness. In Section 5.2, we elaborate on opportunities for future research to

further improve the effectiveness and accuracy of the present approach. Finally in section

5.3 we provide our closing remarks for this thesis.

5.1 Research Contributions

In this dissertation, we presented a new approach towards solving the feature location

problem – mapping features to code. In particular, we focused on identifying these

classes that are most relevant to the feature being analyzed.

Our approach is based on a combination of static and dynamic analysis. A trace is

generated by exercising the feature under study (dynamic analysis). A static class

dependency graph (static analysis) is used to rank the classes invoked in the trace

according to their relevance to the feature. We ranked the classes invoked by measuring

the impact of each component modification on the rest of the system. The rationale is that

classes with small impact are likely specific to the feature at hand, whereas classes that

have a large impact have many purposes, and hence they are less specific.

Based on our hypothesis we introduced four new techniques that measure the impact of a

class modification on the rest of a system. Common to these metrics is their fundamental

 62

assumption that the lower the impact of a modification on the remaining parts of the

system, the more relevant the class is towards a specific feature. Each technique has its

own criterion based on the software architecture for measuring the impact of a

component on rest of the system in order to acquire the degree of its relevance to the

feature of interest.

We applied our techniques to several features of the software systems Weka and

Checkstyle. The overall results were very satisfactory. We were not only able to identify

the most important components but also rank these components according to their

relevance to the traced features. In addition, our approach is very simple and does not

require a lot of human intervention. Further, on comparing our techniques we came to the

conclusion that our weighted techniques (WOWI and WTWI) showed better results as

compared to the non- weighted ones (OWI and TWI).

5.2 Opportunities for Further Research

The immediate future work consists of conducting further experimentation on other

feature traces. In particular, we intend to target larger systems with poor architecture.

There is also a need to determine a threshold above which to consider classes as relevant

to the feature. We anticipate that each system might have its own threshold, and that

software engineers will dynamically change the threshold depending on their expertise of

the system. Therefore, an analysis tool that would support the techniques presented in this

thesis should allow enough flexibility for the users to change the threshold.

 63

Finally, during the analysis of the results of the case study, we noticed that abstract

classes do not behave the same way as other classes. They tend to have a higher afferent

impact. There is a need to investigate this and propose other means to rank abstract

classes.

5.3 Closing Remarks

The architecture of the system degrades with time and the documentations becomes

outdated. This leaves the maintainer with no other option but to reverse engineer the

complete system exhaustively. This process utilizes plenty of time and resources. Here

feature location technique comes handy. The main objective of feature location activities

is to assist maintainer in order to save time and resources. We have designed our

proposed technique “Feature location based on Impact analysis” to fulfil this objective.

The technique is simple, easy to use and yet powerful. Our technique operates on one

trace only, which is generated by exercising the feature under consideration. In addition,

the proposed approach is automatic to a large extent relieving the user from any decision

that would otherwise require extensive knowledge of the system.

 64

Bibliography

Antoniol 06 G. Antoniol, and Y. G. Gueheneuc, "Feature Identification: An

Epidemiological Metaphor,” IEEE Transactions on Software

Engineering, 32(9), pp.627-641, 2006.

Bacon 96 D. F. Bacon, and P. F. Sweeney, “Fast static analysis of C++

Virtual function calls,” In Proc. of the 10th Conference on Object-

Oriented Programming Systems, Languages, and Applications,

ACM Press, pp. 324-341, 1996.

Bennett 00 K. H. Bennett , V. T. Rajlich, “Software maintenance and

evolution: a roadmap,” In Proc. of the Conference on the Future

of Software Engineering, pp.73-87, 2000.

Brooks 83 R. Brooks, “Towards a theory of the comprehension of computer

programs,” International Journal of Man-Machine Studies, 18(6),

pp. 542-554, 1983.

Calder 94 B. Calder, and D. Grijnwald, “Reducing indirect function call

overhead in C++ programs”. In Proc. of the 21st ACM Symposium

on Principles of Programming Languages (POPL), ACM Press,

pp. 397-408, 1994.

 65

Chicofsky 90 E. J. Chicofsky and J. H. Cross, “Reverse engineering and design

recovery: A taxonomy,” IEEE Software, 7(1), pp. 13–17, 1990.

Dean 95 J. Dean, D. Grove, and Chambers, “Optimization of Object-

Oriented Programs using Static Class Hierarchy Analysis,” In

Proc. of the 9th European Conference on Object-Oriented

Programming, LNCS 952, Springer-Verlag, pp. 77-101, 1995.

Deerwester 90 S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.

Harshman, “Indexing by Latent Semantic Analysis,” Journal of

the American Society for Information Science, 41(6), pp. 391-407,

1990.

Eisenbarth 03 T. Eisenbarth, R. Koschke, and D. Simon, “Locating Features in

Source Code,” IEEE Transactions on Software Engineering,

29(3), pp. 210 – 224, 2003.

Eisenberg 05 A. D. Eisenberg, and K. De Volder, "Dynamic feature traces:

finding features in unfamiliar code,” In Proc. of the 21st IEEE

International Conference on Software Maintenance, pp. 337-346,

2005.

Fjeldstad 83 K. Fjeldstad and W. T. Hamlen., ‘‘Application Program

Maintenance Study: Report to Our Respondents,” In Proc. of

GUIDE 48, The GUIDE Corporation, Philadelphia, pp. 13-30,

1983.

 66

Greevy 05 O. Greevy, S. Ducasse, and T. Girba, "Analyzing Feature Traces to

Incorporate the Semantics of Change in Software Evolution

Analysis,” In Proc. of 21st IEEE International Conference on

Software Maintenance, pp. 347-356, 2005.

Hamou-Lhadj 06 A. Hamou-Lhadj, and T. Lethbridge, "Summarizing the Content

of Large Traces to Facilitate the Understanding of the Behaviour of

a Software System,” In Proc. of the 12th International Conference

on Program Comprehension, pp. 181-190, 2006.

Hamou-Lhadj 04 A. Hamou-Lhadj, and T. Lethbridge, “Reasoning About the

Concept of Utilities,” ECOOP International Workshop on

Practical Problems of Programming in the Large, Lecture Notes in

Computer Science (LNCS), Vol 3344, pp. 10-22, 2004.

Hamou-Lhadj 05 A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge,

“Recovering Behavioral Design Models from Execution Traces,”

In Proc. of the IEEE European Conference on Software

Maintenance and Reengineering, pp. 112-121, 2005.

Kothari 06 J. Kothari, T. Denton, S. Mancoridis, and A. Shokoufandeh, "On

Computing the Canonical Features of Software Systems,” In Proc.

of the 13th IEEE Working Conference on Reverse Engineering, pp.

93-102, 2006.

Lanza 06 M. Lanza, R. Marinescu. Object-Oriented Metrics in Practice.

Springer, 2006.

 67

Law 03 J. Law, G. Rothermel, “Whole program Path-Based dynamic

impact analysis,” In Proc. of the 25th International Conference on

Software Engineering, pp. 308-318, 2003.

Lee 97 H. Lee, B. G. Zorn, BIT, “A tool for Instrumenting Java

Bytecodes,” In Proc. of the USENIX Symposium on Internet

technologies and Systems, pp. 73-82, 1997.

Lientz 80 B. P. Lientz and E. B. Swanson. Software Maintenance

Management. Addison Wesley, 1980.

Martin 95 R. Martin, "Object Oriented Design Quality Metrics: An Analysis

of dependencies,” ROAD, Vol. 2, No. 3, Sep-Oct, 1995.

Mayrhauser 95 A. V. Mayrhauser and A. M. Vans, "Program Comprehension

During Software Maintenance and Evolution,” IEEE Computer,

28(8), pp. 44-55, 1995.

Parnas 94 D. L. Parnas, “Software Aging,” In Proc. of the 16th International

Conference on Software Engineering, pp. 279-287, 1994.

Poshyvanyk 07a D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol, and V.

Rajlich, “Feature Location using Probabilistic Ranking of Methods

based on Execution Scenarios and Information Retrieval,” IEEE

Transactions on Software Engineering, 33(6), pp.420-432, 2007.

Poshyvanyk 07b D. Poshyvanyk, and D. Marcus, “Combining Formal Concept

Analysis with Information Retrieval for Concept Location in

 68

Source Code,” In Proc. of 15th IEEE International Conference on

Program Comprehension, pp. 37-48, 2007.

Quinlan 92 J. R. Quinlan, “Learning with continuous classes,” In Proc. of the

5th Australian Joint Conference on Artificial Intelligence, pp 343-

348, 1992.

Robillard 03 M. P. Robillard, and G. C. Murphy, "FEAT: A tool for locating,

describing, and analyzing concerns in source code," In Proc. of the

25th International Conference on software Engineering, pp. 822-

823, 2003.

Rugaber 95 S. Rugaber, “Program comprehension,” In Encyclopaedia of

Computer Science and Technology, 35(20), pp 341-368, 1995.

Salah 04 M. Salah, and S. Mancoridis, "A hierarchy of dynamic software

views: from object-interactions to feature-interactions,” In Proc.

of the 20th IEEE International Conference on Software

Maintenance, pp. 72-81, 2004.

Turver 94 R. J. Turver and M. Malcolm, “An Early Impact Analysis

Technique for Software Maintenance,” Journal of Software

Maintenance: Research and Practice, 6(1), pp. 35-52, 1994.

UML 2.0 UML 2.0 Specification: www.omg.org/uml.

 69

Wilde 03 N. Wilde , M. Buckellew , H. Page , V. Rajlich , L. Pounds, “A

comparison of methods for locating features in legacy software,”

Journal of Systems and Software, 65(2), pp.105-114, 2003.

Wilde 95 N. Wilde, and M. Scully, “Software Reconnaissance: Mapping

Program Features to Code,” Journal of Software Maintenance:

Research and Practice, 7(1), pp. 49-62, 1995.

Witten 99 I. H. Witten, and E. Frank.Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations.

Morgan Kaufmann, 1999.

Wong 05 W. E. Wong, and S. Gokhale, “Static and dynamic distance metrics

for feature-based code analysis,” Journal of Systems and Software,

74(3), pp. 283-295, 2005.

Wong 99 W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi,

“Locating program features using execution slices,” In Proc. of

Application-Specific Systems and Software Engineering and

Technology, pp. 194 – 203, 1999.

 70

Appendix A: The Detailed Result of the Case

Study.

A.1. Applying OWI

Table A.1.1. Applying OWI to M5 Feature

Package Class |CAI| OWI*1000

weka.classifiers.m5 M5Prime 1 7.04

weka.classifiers.m5 Node 2 14.08

weka.classifiers.m5 Options 3 21.13

weka.classifiers.m5 SplitInfo 3 21.13

weka.classifiers.m5 Function 3 21.13

weka.classifiers.m5 Errors 4 28.17

weka.classifiers.m5 Ivector 4 28.17

weka.classifiers.m5 Dvector 4 28.17

weka.classifiers.m5 Impurity 4 28.17

weka.classifiers.m5 Values 5 35.21

weka.classifiers.m5 Matrix 7 49.30

weka.filters ReplaceMissingValuesFilter 7 49.30

weka.filters NominalToBinaryFilter 7 49.30

weka.classifiers.m5 M5Utils 10 70.42

weka.filters Filter 33 232.39

weka.classifiers Evaluation 33 232.39

weka.core Queue 34 239.44

weka.classifiers Classifier 35 246.48

weka.estimators KernelEstimator 37 260.56

weka.core Statistics 49 345.07

weka.core Instances 108 760.56

weka.core Instance 108 760.56

weka.core Attribute 109 767.61

weka.core Utils 126 887.32

weka.core FastVector 127 894.37

 71

Table A.1.2. Applying OWI to CheckCode Feature

Package Class |CAI| OWI OWI*1000

coding ExplicitInitializationCheck 1 0 4.76

coding MagicNumberCheck 1 0 4.76

coding IllegalTokenTextCheck 1 0 4.76

coding IllegalTypeCheck 1 0 4.76

coding NestedIfDepthCheck 1 0 4.76

coding RedundantThrowsCheck 1 0 4.76

coding SuperCloneCheck 1 0 4.76

coding SuperFinalizeCheck 1 0 4.76

coding DeclarationOrderCheck 1 0 4.76

coding HiddenFieldCheck 1 0 4.76

coding IllegalCatchCheck 1 0 4.76

coding JUnitTestCaseCheck 1 0 4.76

coding MissingSwitchDefaultCheck 1 0 4.76

coding CovariantEqualsCheck 1 0 4.76

coding IllegalInstantiationCheck 1 0 4.76

coding IllegalTokenCheck 1 0 4.76

coding NestedTryDepthCheck 1 0 4.76

coding ArrayTrailingCommaCheck 1 0 4.76

coding AvoidInlineCondCheck 1 0 4.76

coding DoubleCheckedLockCheck 1 0 4.76

coding EmptyStatementCheck 1 0 4.76

coding EqualsHashCodeCheck 1 0 4.76

coding FinalLocalVariableCheck 1 0 4.76

coding InnerAssignmentCheck 1 0 4.76

coding PackageDeclarationCheck 1 0 4.76

coding ParameterAssignmentCheck 1 0 4.76

coding ReturnCountCheck 1 0 4.76

coding SimplifyBooleanExpCheck 1 0 4.76

coding SimplifyBooleanReturnCheck 1 0 4.76

coding StringLiteralEqualityCheck 1 0 4.76

checkstyle DefaultConfiguration 1 0 4.76

checks DescendantTokenCheck 2 0.01 9.52

 72

checks GenericIllegalRegexpCheck 2 0.01 9.52

checkstyle Checker 3 0.01 14.29

coding AbstractSuperCheck 3 0.01 14.29

coding AbstractNestedDepthCheck 3 0.01 14.29

checkstyle DefaultLogger 3 0.01 14.29

checkstyle TreeWalker 3 0.01 14.29

checkstyle ConfigurationLoader 3 0.01 14.29

checkstyle PropertiesExpander 3 0.01 14.29

checks AbstractTypeAwareCheck 3 0.01 14.29

checkstyle PackageNamesLoader 4 0.02 19.05

checkstyle PropertyCacheFile 4 0.02 19.05

checkstyle StringArrayReader 4 0.02 19.05

grammars GeneratedJava14Lexer 4 0.02 19.05

grammars GeneratedJava14Recognizer 4 0.02 19.05

checkstyle PackageObjectFactory 5 0.02 23.81

apis FilterSet 6 0.03 28.57

checkstyle DefaultContext 7 0.03 33.33

checkstyle AbstractLoader 7 0.03 33.33

checks CheckUtils 8 0.04 38.10

apis AbstractFileSetCheck 8 0.04 38.10

apis TokenTypes 9 0.04 42.86

apis AuditEvent 13 0.06 61.90

checks AbstractFormatCheck 17 0.08 80.95

apis ScopeUtils 19 0.09 90.48

apis Scope 20 0.1 95.24

apis FullIdent 21 0.1 100.00

apis Check 126 0.6 600.00

apis FileContents 127 0.6 604.76

apis DetailAST 131 0.62 623.81

apis AbstractViolationReporter 132 0.63 628.57

apis LocalizedMessages 132 0.63 628.57

apis Utils 136 0.65 647.62

apis AutomaticBean 140 0.67 666.67

apis StrArrayConverter 141 0.67 671.43

apis LocalizedMessage 148 0.7 704.76

apis SeverityLevel 150 0.71 714.29

 73

A.2. Applying WOWI

Table A.2.1. Applying WOWI to M5 Feature

Packages Class |CAI| |PAI| WOWI*1000

weka.classifiers.m5 M5Prime 1 1 0.70

weka.classifiers.m5 Node 2 1 1.41

weka.classifiers.m5 Options 3 1 2.11

weka.classifiers.m5 SplitInfo 3 1 2.11

weka.classifiers.m5 Function 3 1 2.11

weka.classifiers.m5 Errors 4 1 2.82

weka.classifiers.m5 Ivector 4 1 2.82

weka.classifiers.m5 Dvector 4 1 2.82

weka.classifiers.m5 Impurity 4 1 2.82

weka.classifiers.m5 Values 5 1 3.52

weka.classifiers.m5 Matrix 7 1 4.93

weka.classifiers.m5 M5Utils 10 1 7.04

weka.filters ReplaceMissingValuesFilter 7 3 14.79

weka.filters NominalToBinaryFilter 7 3 14.79

weka.filters Filter 33 4 92.96

weka.classifiers Evaluation 33 4 92.96

weka.classifiers Classifier 35 4 98.59

weka.core Queue 34 5 119.72

weka.estimators KernelEstimator 37 5 130.28

weka.core Statistics 49 8 276.06

weka.core Instances 108 8 608.45

weka.core Instance 108 8 608.45

weka.core Attribute 109 8 614.08

weka.core Utils 126 9 798.59

weka.core FastVector 127 9 804.93

 74

Table A.2.2. Applying WOWI to CheckCode Feature

Package Class |CAI| |PAI| WOWI*1000

coding ExplicitInitializationCheck 1 1 0.28

coding MagicNumberCheck 1 1 0.28

coding IllegalTokenTextCheck 1 1 0.28

coding IllegalTypeCheck 1 1 0.28

coding NestedIfDepthCheck 1 1 0.28

coding RedundantThrowsCheck 1 1 0.28

coding SuperCloneCheck 1 1 0.28

coding SuperFinalizeCheck 1 1 0.28

coding DeclarationOrderCheck 1 1 0.28

coding HiddenFieldCheck 1 1 0.28

coding IllegalCatchCheck 1 1 0.28

coding JUnitTestCaseCheck 1 1 0.28

coding MissingSwitchDefaultCheck 1 1 0.28

coding CovariantEqualsCheck 1 1 0.28

coding IllegalInstantiationCheck 1 1 0.28

 fcoding IllegalTokenCheck 1 1 0.28

coding NestedTryDepthCheck 1 1 0.28

coding ArrayTrailingCommaCheck 1 1 0.28

coding AvoidInlineCondCheck 1 1 0.28

coding DoubleCheckedLockCheck 1 1 0.28

coding EmptyStatementCheck 1 1 0.28

coding EqualsHashCodeCheck 1 1 0.28

coding FinalLocalVariableCheck 1 1 0.28

coding InnerAssignmentCheck 1 1 0.28

coding PackageDeclarationCheck 1 1 0.28

coding ParameterAssignmentCheck 1 1 0.28

coding ReturnCountCheck 1 1 0.28

coding SimplifyBooleanExpCheck 1 1 0.28

coding SimplifyBooleanReturnCheck 1 1 0.28

coding StringLiteralEqualityCheck 1 1 0.28

checkstyle DefaultConfiguration 1 1 0.28

checkstyle Checker 3 1 0.84

coding AbstractSuperCheck 3 1 0.84

coding AbstractNestedDepthCheck 3 1 0.84

 75

checkstyle DefaultLogger 3 1 0.84

checkstyle ConfigurationLoader 3 1 0.84

checkstyle PropertiesExpander 3 1 0.84

checks DescendantTokenCheck 2 2 1.12

checks GenericIllegalRegexpCheck 2 2 1.12

checkstyle PackageNamesLoader 4 1 1.12

checkstyle PackageObjectFactory 5 1 1.40

checkstyle TreeWalker 3 2 1.68

checkstyle PropertyCacheFile 4 2 2.24

checkstyle StringArrayReader 4 2 2.24

checks AbstractTypeAwareCheck 3 3 2.52

grammars GeneratedJava14Lexer 4 3 3.36

grammars GeneratedJava14Recognizer 4 3 3.36

checkstyle DefaultContext 7 2 3.92

checkstyle AbstractLoader 7 2 3.92

apis FilterSet 6 3 5.04

checks CheckUtils 8 3 6.72

apis AuditEvent 13 3 10.92

apis TokenTypes 9 5 12.61

apis AbstractFileSetCheck 8 6 13.45

checks AbstractFormatCheck 17 4 19.05

apis ScopeUtils 19 7 37.25

apis Scope 20 7 39.22

apis FullIdent 21 8 47.06

apis Check 126 14 494.12

apis FileContents 127 14 498.04

apis DetailAST 131 14 513.73

apis AbstractViolationReporter 132 15 554.62

apis LocalizedMessages 132 15 554.62

apis StrArrayConverter 141 15 592.44

apis Utils 136 16 609.52

apis AutomaticBean 140 16 627.45

apis LocalizedMessage 148 16 663.31

apis SeverityLevel 150 16 672.27

 76

A.3. Applying TWI

Table A.3.1. Applying TWI to M5 Feature

Packages Class |CEI| |CAI| TWI*1000

weka.classifiers.m5 M5Prime 35 1 1.95

weka.classifiers.m5 Node 19 2 5.57

weka.classifiers.m5 Function 12 3 10.19

weka.classifiers.m5 SplitInfo 11 3 10.53

weka.classifiers.m5 Options 9 3 11.31

weka.classifiers.m5 Impurity 10 4 14.54

weka.classifiers.m5 Dvector 9 4 15.08

weka.classifiers.m5 Values 8 5 19.6

weka.classifiers.m5 Errors 1 4 24.23

weka.classifiers.m5 Ivector 1 4 24.23

weka.filters ReplaceMissingValuesFilter 11 7 24.58

weka.filters NominalToBinaryFilter 11 7 24.58

weka.classifiers.m5 Matrix 5 7 31.47

weka.classifiers.m5 M5Utils 8 10 39.2

weka.classifiers Evaluation 18 33 94.32

weka.filters Filter 10 33 119.95

weka.classifiers Classifier 8 35 137.2

weka.estimators KernelEstimator 7 37 151.23

weka.core Queue 1 34 205.95

weka.core Statistics 1 49 296.81

weka.core Instances 7 108 441.43

weka.core Instance 7 108 441.43

weka.core Attribute 5 109 490.08

weka.core Utils 4 126 599.16

weka.core FastVector 2 127 696.1

 77

Table A.3.2. Applying TWI to CheckCode Feature.

Package Class |CAI| |CEI| TWI*1000

coding ExplicitInitializationCheck 1 22 1.97

coding MagicNumberCheck 1 22 1.97

coding IllegalTokenTextCheck 1 21 2.01

coding IllegalTypeCheck 1 21 2.01

coding NestedIfDepthCheck 1 21 2.01

coding RedundantThrowsCheck 1 21 2.01

coding SuperCloneCheck 1 21 2.01

coding SuperFinalizeCheck 1 21 2.01

coding DeclarationOrderCheck 1 20 2.05

coding HiddenFieldCheck 1 20 2.05

coding IllegalCatchCheck 1 20 2.05

coding JUnitTestCaseCheck 1 20 2.05

coding MissingSwitchDefaultCheck 1 20 2.05

coding CovariantEqualsCheck 1 19 2.09

coding IllegalInstantiationCheck 1 19 2.09

coding IllegalTokenCheck 1 19 2.09

coding NestedTryDepthCheck 1 19 2.09

coding ArrayTrailingCommaCheck 1 18 2.14

coding AvoidInlineCondCheck 1 18 2.14

coding DoubleCheckedLockCheck 1 18 2.14

coding EmptyStatementCheck 1 18 2.14

coding EqualsHashCodeCheck 1 18 2.14

coding FinalLocalVariableCheck 1 18 2.14

coding InnerAssignmentCheck 1 18 2.14

coding PackageDeclarationCheck 1 18 2.14

coding ParameterAssignmentCheck 1 18 2.14

coding ReturnCountCheck 1 18 2.14

coding SimplifyBooleanExpCheck 1 18 2.14

coding SimplifyBooleanReturnCheck 1 18 2.14

coding StringLiteralEqualityCheck 1 18 2.14

checkstyle DefaultConfiguration 1 2 3.78

checks DescendantTokenCheck 2 19 4.19

checks GenericIllegalRegexpCheck 2 19 4.19

checkstyle TreeWalker 3 32 4.94

 78

checkstyle Checker 3 21 6.03

checks AbstractTypeAwareCheck 3 20 6.15

coding AbstractSuperCheck 3 20 6.15

coding AbstractNestedDepthCheck 3 18 6.42

checkstyle DefaultLogger 3 11 7.65

checkstyle ConfigurationLoader 3 3 10.58

checkstyle PropertiesExpander 3 2 11.35

checkstyle PackageNamesLoader 4 4 13.31

grammars GeneratedJava14Lexer 4 3 14.11

checkstyle PropertyCacheFile 4 2 15.13

grammars GeneratedJava14Recognizer 4 2 15.13

checkstyle StringArrayReader 4 1 16.58

checkstyle PackageObjectFactory 5 2 18.92

apis FilterSet 6 5 19

apis AbstractFileSetCheck 8 13 19.29

checkstyle DefaultContext 7 2 26.48

checks CheckUtils 8 3 28.22

checkstyle AbstractLoader 7 1 29.01

checks AbstractFormatCheck 17 18 36.38

apis TokenTypes 9 1 37.3

apis AuditEvent 13 3 45.86

apis ScopeUtils 19 3 67.02

apis FullIdent 21 2 79.45

apis Scope 20 1 82.89

apis Check 126 17 275.67

apis AbstractViolationReporter 132 8 370.28

apis FileContents 127 4 422.73

apis AutomaticBean 140 6 424.05

apis LocalizedMessages 132 3 465.61

apis DetailAST 131 1 542.94

apis LocalizedMessage 148 2 559.96

apis Utils 136 1 563.67

apis StrArrayConverter 141 1 584.39

apis SeverityLevel 150 1 621.69

 79

A.4. Applying WTWI

Table A.4.1. Applying WTWI to M5 Feature

Packages Class |CEI| |CAI| |PAI| WTWI*1000

weka.classifiers.m5 M5Prime 35 1 1 0.2

weka.classifiers.m5 Node 19 2 1 0.56

weka.classifiers.m5 Function 12 3 1 1.02

weka.classifiers.m5 SplitInfo 11 3 1 1.05

weka.classifiers.m5 Options 9 3 1 1.13

weka.classifiers.m5 Impurity 10 4 1 1.45

weka.classifiers.m5 Dvector 9 4 1 1.51

weka.classifiers.m5 Values 8 5 1 1.96

weka.classifiers.m5 Errors 1 4 1 2.42

weka.classifiers.m5 Ivector 1 4 1 2.42

weka.classifiers.m5 Matrix 5 7 1 3.15

weka.classifiers.m5 M5Utils 8 10 1 3.92

weka.filters ReplaceMissingValuesFilter 11 7 3 7.37

weka.filters NominalToBinaryFilter 11 7 3 7.37

weka.classifiers Evaluation 18 33 4 37.73

weka.filters Filter 10 33 4 47.98

weka.classifiers Classifier 8 35 4 54.88

weka.estimators KernelEstimator 7 37 5 75.62

weka.core Queue 1 34 5 102.97

weka.core Statistics 1 49 8 237.45

weka.core Instances 7 108 8 353.15

weka.core Instance 7 108 8 353.15

weka.core Attribute 5 109 8 392.06

weka.core Utils 4 126 9 539.24

weka.core FastVector 2 127 9 626.49

 80

Table A.4.2. Applying WTWI to CheckCode Feature

Package Class |CAI| |CEI| |PAI| WTWI*1000

coding ExplicitInitializationCheck 1 22 1 0.12

coding MagicNumberCheck 1 22 1 0.12

coding IllegalTokenTextCheck 1 21 1 0.12

coding IllegalTypeCheck 1 21 1 0.12

coding NestedIfDepthCheck 1 21 1 0.12

coding RedundantThrowsCheck 1 21 1 0.12

coding SuperCloneCheck 1 21 1 0.12

coding SuperFinalizeCheck 1 21 1 0.12

coding DeclarationOrderCheck 1 20 1 0.12

coding HiddenFieldCheck 1 20 1 0.12

coding IllegalCatchCheck 1 20 1 0.12

coding JUnitTestCaseCheck 1 20 1 0.12

coding MissingSwitchDefaultCheck 1 20 1 0.12

coding CovariantEqualsCheck 1 19 1 0.12

coding IllegalInstantiationCheck 1 19 1 0.12

coding IllegalTokenCheck 1 19 1 0.12

coding NestedTryDepthCheck 1 19 1 0.12

coding ArrayTrailingCommaCheck 1 18 1 0.13

coding AvoidInlineCondCheck 1 18 1 0.13

coding DoubleCheckedLockCheck 1 18 1 0.13

coding EmptyStatementCheck 1 18 1 0.13

coding EqualsHashCodeCheck 1 18 1 0.13

coding FinalLocalVariableCheck 1 18 1 0.13

coding InnerAssignmentCheck 1 18 1 0.13

coding PackageDeclarationCheck 1 18 1 0.13

coding ParameterAssignmentCheck 1 18 1 0.13

coding ReturnCountCheck 1 18 1 0.13

coding SimplifyBooleanExpCheck 1 18 1 0.13

coding SimplifyBooleanReturnCheck 1 18 1 0.13

coding StringLiteralEqualityCheck 1 18 1 0.13

checkstyle DefaultConfiguration 1 2 1 0.22

checkstyle Checker 3 21 1 0.35

coding AbstractSuperCheck 3 20 1 0.36

coding AbstractNestedDepthCheck 3 18 1 0.38

checkstyle DefaultLogger 3 11 1 0.45

 81

checks DescendantTokenCheck 2 19 2 0.49

checks GenericIllegalRegexpCheck 2 19 2 0.49

checkstyle TreeWalker 3 32 2 0.58

checkstyle ConfigurationLoader 3 3 1 0.62

checkstyle PropertiesExpander 3 2 1 0.67

checkstyle PackageNamesLoader 4 4 1 0.78

checks AbstractTypeAwareCheck 3 20 3 1.09

checkstyle PackageObjectFactory 5 2 1 1.11

checkstyle PropertyCacheFile 4 2 2 1.78

checkstyle StringArrayReader 4 1 2 1.95

grammars GeneratedJava14Lexer 4 3 3 2.49

grammars GeneratedJava14Recognizer 4 2 3 2.67

checkstyle DefaultContext 7 2 2 3.12

apis FilterSet 6 5 3 3.35

checkstyle AbstractLoader 7 1 2 3.41

checks CheckUtils 8 3 3 4.98

apis AbstractFileSetCheck 8 13 6 6.81

apis AuditEvent 13 3 3 8.09

checks AbstractFormatCheck 17 18 4 8.56

apis TokenTypes 9 1 5 10.97

apis ScopeUtils 19 3 7 27.6

apis Scope 20 1 7 34.13

apis FullIdent 21 2 8 37.39

apis Check 126 17 14 227.02

apis AbstractViolationReporter 132 8 15 326.72

apis FileContents 127 4 14 348.13

apis AutomaticBean 140 6 16 399.11

apis LocalizedMessages 132 3 15 410.83

apis DetailAST 131 1 14 447.13

apis StrArrayConverter 141 1 15 515.64

apis LocalizedMessage 148 2 16 527.02

apis Utils 136 1 16 530.51

apis SeverityLevel 150 1 16 585.12

