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ABSTRACT 

 
An Approach towards Feature Location Based on Impact Analysis 

 

Abhishek Rohatgi 
 

 
System evolution depends greatly on the ability of a maintainer to locate these parts of 

the source code that implement specific features. Until recently, quite a number of feature 

location techniques have been proposed. These techniques suffer from a number of 

limitations. They either require exercising several features of the system, or rely heavily 

on domain experts to guide the feature location process.  

 

In this thesis, we present a novel approach for feature location that combines static and 

dynamic analysis techniques. An execution trace is generated by exercising the feature 

under study (dynamic analysis). A component dependency graph (static analysis) is used 

to rank the components invoked in the trace according to their relevance to the feature. 

Our ranking technique is based on the impact of a component modification on the rest of 

the system. We hypothesize that the smaller the impact of a component modification, the 

more likely it is that this component is specific to the feature. The proposed approach is 

automatic to a large extent relieving the user from any decision that would otherwise 

require extensive knowledge of the system.   

We present a case study involving features from two software systems to evaluate the 

applicability and effectiveness of our approach. 
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Chapter 1  Introduction 

  
Feature location has long been recognized as an important reverse engineering activity to 

identify the implementation of a given system functionality in the source code. In this 

thesis, we present a powerful approach for solving the feature location problem using 

impact analysis. The presented approach combines two different sources of information: 

an execution trace that corresponds to the software feature under study and a static 

component dependency graph (CDG). Using the CDG, we rank the components invoked 

in the trace by measuring the impact of a component modification on the rest of the 

system. Our hypothesis is that the smaller the impact of a component modification, the 

more likely it is that the component is specific to the feature under study.  

In the remainder of this chapter, we describe the main motivations behind the thesis, our 

contributions, and the thesis outline.     

1.1 Problem and Motivation  

System evolution, an important aspect of the software life cycle, depends on the ability of 

a maintainer to identify the parts of the source code that implement specific features. 

Software maintainers typically do not need to analyze an entire system before making 

modifications or adding new functionality, since required software changes often relate 

directly to features implementations [Wilde 03]. Instead, they apply an as needed 
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approach, by locating the most relevant code with respect to the feature or source code to 

be modified, understand it, and make the necessary changes. Due to a lack of traceability 

between documentation and source code locating these features in the source code 

becomes a major challenges for maintainers. This lack of feature traceability is caused by 

the unavailability of roundtrip engineering tools, lack of adequate processes in 

organizations to enforce consistent and up-to-date documentation, etc.  

In an ideal situation, there should be a clear mapping between a system’s features and the 

corresponding code segments. However, this is not the case for many existing systems 

where bad design decisions and/or excessive ad-hoc maintenance activities complicate 

this mapping. As a result, a feature is often distributed over several different modules that 

interact in complex ways, making, in particular for large systems, the identification of the 

source code implementing a particular feature inherently difficult. 

One approach to support maintainers during activities like feature evolution, 

maintenance, reverse engineering and program comprehension is based on the use of 

feature location techniques that aim to provide maintainers with guidance in identifying 

and locating features in the source code [Brooks 83].  

This idea of location of features in source code is not new. Existing feature location 

techniques can be grouped into two main categories depending on the use of static and 

dynamic analysis techniques. The first category, pure dynamic approaches, require the 

generation of execution traces that are then clustered or compared in order to identify the 

components of a single feature. An example of these techniques is the one proposed by 

Wiled and Scully [Wilde 95] and known as Software Reconnaissance. The major 
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limitation with these methods is that they require as input execution traces for all (most) 

system features to be generated and processed. 

The second category relies on a combination of static and dynamic analysis. These 

approaches utilize static information to further process the execution trace that 

corresponds to the feature under study. For this purpose, several approaches were 

presented such as the ones based on concept analysis [Eisenbarth 03], latent semantic 

indexing [Deerwester 90], etc. The major limitation of these techniques is that they 

require from the user to indicate what parts of the source code to analyze, a task that can 

be tedious for software engineers who have little knowledge of the system. 

In this thesis, we present a novel technique for feature location in source code that 

combines both static and dynamic analysis. Our technique operates on only one trace, 

which is generated by exercising the feature under consideration. In addition, the 

proposed approach is automatic to a large extent and therefore does not require users to 

have extensive system knowledge.  

1.2  Research Contributions 

The main contributions of this thesis are as follows: 

• A novel idea of using impact analysis to solve the feature location problem is 

presented. The feature location techniques used in the presented approach are 

based on impact analysis. More precisely, components invoked in the execution 

trace for a given feature are ranked based on measuring the impact of component 

modifications on the rest of the system. Our hypothesis is that the smaller the 



 4 

impact set of a component modification, the more likely it is that the component 

is specific to a feature. Conversely, we expect a component affecting many parts 

of a system to be invoked in multiple traces and therefore rendering it as less 

specific to a particular feature. 

• As part of this research we introduce four feature location algorithms that vary 

depending on the way the impact of a component modification is measured. The 

first impact metric considers only the impact due to modification of a component 

on the rest of the software. The second metric improves over the first metric by 

considering additionally information about the system architecture. The third 

metric considers both the impact due to the modification of a component on rest 

of the system as well as the number of components that affect this component. 

The fourth metric refines the previous metric by adding information about the 

system architecture.    

• We applied the algorithms to traces generated from two object-oriented software 

systems to show the applicability of our approach. 

1.3 Thesis Outline 

The rest of the thesis is structured as follows: 

• In Chapter 2, we present background information, including a brief overview of 

related topics, namely, software maintenance, program comprehension, and 

reverse engineering.  A detailed survey of existing feature location techniques is 

presented along with their advantages and limitations.   
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• The feature location algorithms are presented in Chapter 3. The chapter starts by 

presenting our definition of what constitutes in the context of our research a 

software feature. It continues with an overview of the feature location process. 

Next, we present impact analysis and how it is applied to locate features in source 

code. The four impact metrics are then presented and explained through an 

example and concludes with a discussion on the applicability of the presented 

metrics 

• The evaluation of our approach is presented in Chapter 4. The chapter introduces 

the target systems used in the case study and describes the features on which we 

apply the algorithms. The chapter also covers the trace generation process and 

results of applying the feature location algorithms are described and discussed in 

details.  

• We conclude the thesis in Chapter 5 with a summary of the main contributions, 

some future directions, and a concluding remark.  
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Chapter 2  Background 

Feature location research pertains to three inter-related software engineering topics, 

namely, software maintenance, program comprehension and reverse engineering. In this 

chapter, we briefly describe these topics and discuss how they relate to feature location. 

We also present a survey of existing feature location techniques, followed with a 

discussion on the advantages and disadvantages of these techniques. 

2.1  Related Topics 

2.1.1 Software Maintenance 

“Programs, like people, get old.  We can’t prevent aging, but we can understand its 

causes, take steps to limit its effects, temporarily reverse some of the damage it has 

caused, and prepare for the day when the software is no longer viable.  ... (We must) lose 

our preoccupation with the first release and focus on the long term health of our 

products.” 

D. L. Parnas [Parnas 94]  

Software aging is one of the major reasons that trigger the need for software 

maintenance. Although software aging is inevitable, effective software maintenance can 

help slow down the aging process. According to IEEE Standard 1219, software 

maintenance is defined as a modification process that takes place after the delivery of 
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software in order to correct faults, improve performance or other attributes, or to make 

the program adaptable to new surroundings. The importance of software maintenance is 

evidenced from the fact that it constitutes of a major part of the overall software life cycle 

as shown by Lientz and Swanson in the late 1970’s [Lientz 80].  

Software evolution is often used as a substitute term for software maintenance. 

According to Bennett and Rajlich, the software maintenance phase starts after the 

software development phase. That is, maintenance activities generally take place after the 

software system is released. They further introduced the concept of a staged software 

lifecycle model in which development and maintenance were considered different phases 

in the software life cycle [Bennett 00].  

Lientz and Swanson classified maintenance activities into four categories [Lientz 80]: 

• Adaptive Maintenance: This type of maintenance includes user enhancements and 

modification to the existing software system to meet new user requirements. 

 

• Perfective Maintenance: This involves making changes to the structure of the 

system in order to make it easier to extend, modify, and maintain.   

 

• Corrective Maintenance: This type of maintenance deals with fixing software 

bugs in existing system functionality. 

 

• Preventive Maintenance: This type of maintenance focuses on restructuring the 

existing system to prevent the system from bugs that may occur in the future. 
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Most of the above types of software maintenance activities require feature location 

techniques since changes to an existing system often relate to a particular feature. For 

example, Feature location techniques can be used to identify the source code components 

implementing a particular feature that led to a software defect. Knowing such 

components can help software engineers narrow down the space of components that need 

to be explored in order to repair the defective feature.    

2.1.2  Program Comprehension 

Rugaber defines program comprehension as a process of gaining knowledge about the 

system under study for the purpose of fixing a system’s defect, enhancing the system, 

reusing and improving system’s documentation [Rugaber 95]. According to a survey 

conducted by Fjeldstad and Hamlen, program comprehension accounts for 50% of the 

time spent on software maintenance activities [Fjeldstad 83].  

According to Mayrhauser et al., program comprehension requires existing knowledge of 

a software system in order to acquire new knowledge [Mayrhauser 95]. Any newly 

acquired knowledge becomes then an integrated part of the system knowledge that is 

essential to support the understanding the program code. Based on their study, the authors 

conclude that software engineers possess two types of knowledge: 

• General Knowledge: This type of knowledge is gained from past experience in the 

software engineering domain and is independent of the software under 

consideration. 
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• Software-Specific Knowledge: This knowledge represents their level of 

understanding of the software application under consideration.   

A software engineer comprehending a system uses general software engineering 

knowledge together with the knowledge obtained from exploring the system under 

consideration in order to understand the system completely [Mayrhauser 95]. 

Program comprehension is not an easy task. This is partly attributable to the fact that 

existing documentation represents high-level views of the system whereas the 

implementation of the system contains many low-level programming details that are not 

necessary captured at a higher level [Rugaber 95]. The software engineer comprehending 

the system must map the high-level design elements to these low-level implementation 

details. This task is very challenging especially in situations where the initial high-level 

design documents have not been updated for a long time, which is commonly the case in 

practice [Rugaber 95]. Due to a lack of traceability between documentation and source 

code, it becomes a major challenge for a maintainer to identify a system’s components 

that need to be analyzed in order to enhance an existing feature. This lack of feature 

traceability is caused by the unavailability of roundtrip engineering tools, lack of 

adequate processes in organizations to enforce consistent and up-to-date documentation, 

etc. The situation is further complicated by the fact that it is very common to have 

features spread across many system components that are not even tightly coupled. One of 

the main objectives of this thesis is to assist software engineers in the program 

comprehension process by allowing them to map automatically high-level software 

features to the specific components that implement them.  
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2.1.3  Reverse Engineering 

Chicofsky and Cross define reverse engineering as “the process of analyzing a subject 

system to identify the system’s components and their interrelationships and create 

representations of the system in another form or at a higher level of abstraction” 

[Chicofsky 90].   

Reverse engineering tools can be used by software engineers to facilitate the program 

comprehension process, and hence improve their productivity when performing software 

maintenance tasks.  

Figure 2.1 (taken from [Chicofsky 90]), shows the relationship between forward and 

reverse engineering. 

 

Figure 2.1. Relationship between forward and reverse engineering 
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• Forward Engineering: The process of taking higher-level design elements as input 

and transforming them into low-level implementation details. As shown in Figure 

2.1, forward engineering involves a sequence of steps that map the requirements 

to design, and finally to implementation [Chicofsky 90]. 

 

• Reverse Engineering: It is the reverse of forward engineering, where high-level 

design elements are extracted from lower-level implementation details. As 

depicted in Figure 2.1, reverse engineering involves a sequence of recovery stages 

starting from implementation to design. Reverse engineering can be applied at any 

abstraction level of the system under consideration [Chicofsky 90].  

 

• Re-documentation: Re-documentation is the creation of alternative views within 

the same abstraction level to assist the process of comprehending the lower level 

software details [Chicofsky 90].  

 

• Design Recovery: This is one of the main activities of reverse engineering, and 

involves a combination of knowledge gained by analyzing the system and domain 

knowledge. The objective is to recover design views from low-level 

implementation details [Chicofsky 90]. 

 

• Restructuring: This process consists of making a change to the system at the same 

abstraction level (e.g., migrating an existing system from C to Java). The changes 

should not alter the external behaviour of the system [Chicofsky 90]. 
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• Re-engineering: The basic goal of re-engineering is to renovate an existing 

software system to improve code comprehension, performance, etc. It involves a 

combination of reverse engineering to help the software engineers understand an 

existing system, and forward engineering for the purpose of reexamining the 

functionalities that need to be deleted, added or modified [Chicofsky 90].  

The feature location techniques presented in this thesis can be easily embedded into a 

reverse engineering tool to support many reverse engineering activities. For example by 

re-documenting a system’s functionality by identifying and locating the source 

implementing the particular feature. Similarly, design recovery can take advantage of 

feature location techniques to recover behavioural design models that represent the high-

level components that are specific to a given feature and its interaction with other parts of 

the system. 

 2.2  A Survey of Existing Feature Location Techniques 

In this section, we present a survey of the most cited feature location techniques. We did 

not attempt to include all studies that exist in the literature. However, we believe that the 

ones presented in this section reflect the current state of the art in feature location 

research.     

Wilde and Scully [Wilde 95] introduced the concept of Software Reconnaissance, which 

relies on dynamic analysis to locate source code components that implement a specific 

feature. The authors’ approach necessitates two main steps. The first step consists of 

generating multiple execution traces by exercising several features of the system, which 

are then compared during the second step. The components specific to the feature under 
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study are the ones that are only invoked in its corresponding trace. One of the drawbacks 

of this technique is that it requires exercising several features of the system although the 

objective is to identify the components of only one feature. In addition, it is not clear how 

many features need to be considered for the approach to be effective. For example, there 

might be situations where a particular component is invoked by chance in only one trace 

and would therefore be considered as specific to the corresponding feature using software 

reconnaissance. Finally, it is very important to select a balanced set of features (i.e., 

features that cover different parts of the system) for the software reconnaissance approach 

to be effective. This requires from the software engineers using this technique to be 

knowledgeable of the system under study. 

In [Wong 99, Wong 05], Wong et al. improved the results of applying software 

reconnaissance by measuring the extent to which a particular component belongs to a 

feature. To achieve this, they computed several metrics that aim at determining the 

component dedication to a feature. They proposed three metrics. Their first metrics is 

called Disparity. This metric measures how close is a feature to a given program 

component. According to them disparity is equal to set of blocks in either a component or 

a feature under consideration but not in both divided by the union of set of blocks in a 

feature and component under consideration. They define blocks as an execution slice or 

code statements. Their second metrics is called Concentration. This metrics measures 

how much a feature is concentrated into a program component. They calculate 

concentration as the intersection of the set of blocks in a component (under 

consideration) and set of blocks in a feature (under consideration) divided by set of 

blocks in the feature under consideration. Their third metrics is called Dedication which 
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is a measure about how much a program component is concentrated in a feature. They 

calculate this as the intersection of the set of blocks in the component under consideration 

and the set of blocks in the feature under consideration divided by the set of blocks in this 

component.    

The reconnaissance approach was also extended by Antoniol and Gael-Gueheneuc 

[Antoniol 06]. Their main contribution was to filter out unwanted events from the 

execution traces prior to comparing them. Examples of such events included unwanted 

mouse motion events, frequently occurring events, automatically generated code, etc. For 

this purpose, the authors used a combination of knowledge based filtering and 

probabilistic ranking techniques. Another contribution of their work is the application of 

software reconnaissance to traces generated from multi-threaded applications.  

Eisenberg and De Volder [Eisenberg 05] proposed a feature location technique based on 

ranking the components invoked in the trace. According to them, a component occurring 

several times in the execution of a feature under different situations (i.e., normal and 

exceptional scenarios) should be regarded as an important component, whereas a 

component that occurs in traces of several features should be considered as a utility 

component and should be ranked lower in comparison with other components. In 

addition, the authors used the call depth of a method in execution of different test cases.   

Eisenbarth et al. [Eisenbarth 03] proposed a feature location approach that combines 

static and dynamic analysis techniques. They used dynamic analysis to gather traces that 

correspond to software features of the system, similar to Wilde and Scully’s technique 

[Wilde 95]. They combined the content of traces with a static dependency graph to build 
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a concept lattice that maps features to components. One of the shortcomings of this 

approach is that the concept lattice shows also overlapping components, i.e., the ones that 

implement several features. To overcome this issue, users of this approach are required to 

navigate the concept lattice and identify manually the components specific to each 

feature. This process necessitates a considerable effort from the users and a good 

understanding of the source code as well as the domain of the application.  

Poshyvanyk et al. [Poshyvanyk 07a, Poshyvanyk 07b], their approach is based on 

processing one trace only, which is the one that corresponds to the feature under 

investigation. They used information retrieval techniques to extract knowledge from the 

source code that describes the components invoked in the trace. Using this approach, a 

user needs to formulate queries that contain key terms describing the feature. The query 

terms are then compared to the knowledge gathered from the source code in order to 

identify the corresponding components of the trace. The user may need to write several 

queries before the system can detect any component. The advantage of this approach is 

that it uses only one trace instead of many traces as it is case in the previous approaches. 

The disadvantage is that it relies on informal knowledge such as source code comments, 

identifiers, etc. to extract knowledge about the trace components.    

Greevy et al. [Greevy 05] exploited the relationship between features and classes to 

analyze the way features of a system evolve and to detect changes in the code from a 

feature perspective. Rather than detecting feature specific components, the main focus of 

the authors’ approach is on studying how the classes may change their roles during 

software evolution, for example, by understanding the number of features they participate 

in as the system evolves.  
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Kothari et al. [Kothari 06] worked on computing canonical features of a system and 

understanding their implementation. A canonical feature set is a set of a small number of 

features that implement different parts of the system. To compute the canonical feature 

set, they first built test cases to exercise all the features of the system. The features were 

executed under the supervision of a dynamic analysis tool that captures the objects, 

functions, and variables involved. A call graph tool was also used with each test case to 

produce a dynamic call graph for each feature of the system. Using a similarity 

measurement tool, they computed the pair wise similarity between the call graphs that 

were generated in the previous step and created a similarity matrix. Call graph similarity 

can be measured using simple metrics such as (a) the number of function nodes the call 

graphs have in common, (b) the number of call edges they have in common, or (c) a more 

sophisticated approximate graph matching algorithm. In their approach, to measure the 

similarity among subgraphs they computed the degree to which features share common 

significant amount of code. The dynamic call graphs of two similar features should have 

several vertices (functions) and edges (function call relations) in common. The amount of 

code of a particular feature that is not shared with the other features (i.e., through their 

dynamic call graphs) is deemed to be the most specific to this particular feature. One of 

the main drawbacks of this technique is that it requires computing the similarity matrix 

by exercising each and every feature of the system under consideration. 

Salah et al. [Salah 04] proposed a feature location approach that combines three views of 

a system, namely, an object interaction view, a class interaction view, and a feature 

interaction view. The object interaction view is constructed from the execution traces of 

the program by exercising a subset of its features. This view shows how objects interact 
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with each through method invocation. The class interaction view is simply an abstraction 

of the object view by grouping objects by their class type. The feature interaction view 

shows the relationships between the features based on the objects (or classes) invoked in 

their corresponding traces. The mapping between the feature interaction view and the 

object (or class) interaction view enables the analyst to uncover the components 

implementing a specific feature. To reduce the number of components invoked in 

multiple traces, the authors proposed using marked traces, which are traces where an 

analyst needs to manually indicate the beginning and the end of the trace generation 

process. However, marked traces do not guarantee that the resulting traces will contain 

only the components that are most relevant to a traced feature.  

Robillard et al. proposed a technique to locate concerns in source code [Robillard 03]. A 

concern, also called a software aspect, can be considered as a particular feature where the 

implementing components crosscut many modules of the system. The authors introduced 

the concept of a concern graph, which abstracts the implementation details of a particular 

concern. The vertices of the graph consist of the components (e.g., routines) involved in 

the implementation of this particular software aspect. The edges represent the 

relationships among these components. The process of creating a concern graph 

encompasses two steps. In the first step, the software engineer builds a component 

dependency graph from the system. This step is usually performed automatically. The 

second step consists of iteratively querying the component dependency graph to identify 

the components specific to a particular concern. This step requires from the developer to 

have some knowledge of the system under study. The authors have also developed a tool 

called FEAT (Feature Analysis and Exploration Tool) that partially automate the tasks of 
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creating a program model from the source code, formulating queries, extracting concern 

graphs, and displaying the concern graphs to the developer in a convenient and 

manageable form. Using this tool the developer can also view the implementation details 

of a concern graph in to source code. 

2.3  Discussion 

Feature location is a process of identifying the specific components that implement a 

given feature. This requires mapping high-level features to low-level implementation 

details. Feature location is considered as an important reverse engineering activity that 

can enable software engineers to perform software maintenance and evolution tasks in a 

more efficient manner. This is due to the fact that changes to a system usually relate to a 

particular software feature.  

Recently, there has been an increase in the number of feature location techniques. These 

techniques are based on either dynamic analysis, static analysis, or a combination of both. 

Static analysis techniques rely on analyzing the relationships among the source code 

components, whereas dynamic analysis focuses on the study of the execution traces 

generated from a running system.  

An analysis of these techniques reveals that they suffer from two major limitations. First, 

most techniques require exercising several features of the system to identify the 

components of only one feature. Exercising several features requires determining the 

appropriate input data for each feature, setting the execution environment, etc. In 

addition, there is usually a need to pre-process the generated traces to filter out unwanted 
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events such as unnecessary repetitions due to loops, recursion, or the way the system is 

used during the trace generation process. In addition, it is difficult to determine in 

advance the features that need to be used in order to obtain a balanced set of features that 

would lead to unbiased results.  

The second drawback of most existing techniques is that they require as part of their 

analysis significant human intervention which results in a significant cost and effort 

overhead. Therefore, there is a clear need for more automated techniques to allow for a 

reduction of the cost and effort associated with these interactive approaches. In addition, 

many existing techniques require that users have already a good understanding of the 

system to be analyzed, which contradicts the high-level goal of feature location 

techniques: To help software engineers understand how a particular feature is 

implemented.  

Our feature location approach also combines static and dynamic analysis. It operates on 

only one trace, i.e., the one corresponding to the feature under study. However, the main 

difference between our approach and existing work is that it facilitates the identification 

of feature-specific components to a great extent, by utilizing a ranking technique that will 

allow software engineers to quickly spot feature-specific components without having to 

be very knowledgeable of the system under study.  



 20 

Chapter 3  Feature Location Methodology 

In this chapter, we present our methodology for solving the feature location, which 

combines static and dynamic analysis techniques. We use dynamic analysis to generate a 

trace that corresponds to the feature under study. Static analysis is used to rank the 

components invoked in the generated trace according to their relevance to the feature. 

The ranking technique presented in this thesis is based on impact analysis, i.e., by 

measuring the impact of a component modification on the rest of the system.  

3.1 What is a Software Feature? 

Perhaps the most popular definition of the concept of software feature in the context of 

feature location research is the one proposed by Eisenbarth et al. in [Eisenbarth 03]. The 

authors define a software feature as a behavioural aspect of the system that represents a 

particular functionality, triggered by an external user [Eisenbarth 03].  

 

Figure 3.1. Relationship between software feature, scenario, and computational units 
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In [Eisenbarth 03], Eisenbarth et al discuss the relationship between a software feature, a 

scenario, and a computation unit (Figure 3.1). A scenario is an instance of a software 

feature where the user needs to specify a series of inputs to trigger that feature. A 

scenario can invoke a number of features at the same time. A computational unit refers to 

the source code that is executed by exercising the feature on the system. A feature is 

implemented by many computational units, and at the same time a given computational 

unit can be used in the implementation of multiple features. 

In the context of our research, we also define a software feature as any specific scenario 

of a system that is triggered by an external user. However, we further extend the previous 

definition by adding, that a software feature is similar to the concept of use cases found in 

UML [UML 2.0]. As a result, in our context, a particular instance of a feature (based on a 

selected data input) corresponds to a scenario. Furthermore, we do not distinguish 

between primary and exceptional scenarios although it is advisable to include at least the 

primary scenario, since these scenarios tend to correspond to the most common program 

execution associated with a particular feature. 

3.2 Overall Approach  

Figure 3.2 provides a general overview of our approach for identifying the components 

that implement a specific feature. In our research, we limit the components of interest to 

classes in the system. However, we believe that the approach in this thesis can also be 

easily adaptable to other modules of the system such as methods or packages.  
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Figure 3.2.  Overall Approach 

Our approach for locating features in code, we apply a combination of static and dynamic 

analysis. An execution trace is generated by exercising the feature under study (dynamic 

analysis). For this purpose, we use code instrumentation to insert probes at various 

locations in the source code. More discussion on the trace generation process is presented 

in Section 3.3.1. Next a class dependency graph (static analysis) is used to rank the 

distinct classes invoked during the feature execution to identify their relevance to the 

feature. The ranking technique itself is based on the impact of a component (class) 

modification on the rest of the system. We hypothesize that the smaller the impact of a 

component modification is, the more likely it is that this component is specific to the 

particular feature. The rationale behind this is as follows: classes that impact many other 

parts of the system will most likely be invoked in many other feature traces, making them 

non-feature specific. They often correspond to utility classes that help implementing the 

core functionality of the system [Hamou-Lhadj 04, Hamou-Lhadj 06]. On the other hand, 

we would expect a feature-specific class to be self-contained (i.e., low coupling and high 
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cohesion), and a modification to such a class should result in a very low impact on the 

remaining parts of the system. In addition, we anticipate that there will be situations 

where the impact set of a class is in between these two cases, indicating classes that 

implement functionality shared by similar features. 

Based on the above discussion, we propose to characterize the components invoked in a 

feature-trace according to the following three categories: 

• Relevant Components: These are the components that are most relevant to the 

feature at hand. In other words, these components should not be invoked in any 

other trace that implements a different feature. 

• Related Components: These are the components that are involved in the 

implementation of related features, and therefore, are expected to appear in traces 

that represent these features. 

• Utility Components: These components are mere utilities and are used by most 

features of the system.  

The remaining part of the chapter is organized as follows: The trace generation process is 

discussed in detail in Section 3.3. In Section 3.4, we discuss the applicability of impact 

analysis to the feature location problem. In particular, we introduce four impact metrics 

to measure the degree to which a specific component can be deemed relevant to the 

studied feature.  
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3.3 Feature Trace Generation 

The first step of our approach consists of generating a feature trace that corresponds to 

the software feature under study. We use the term feature trace to refer to a trace that 

corresponds to a particular feature. There exist various techniques for generating traces. 

The first technique is based on instrumenting the source code, which consists of inserting 

print statements at selected locations in the source code. To generate a trace of method 

calls, for example, one needs to insert a print-out statement at least at each entry and exit 

of a method. The second technique consists of instrumenting the execution environment 

in which the system runs (e.g., the Java Virtual Machine). Unlike source code 

instrumentation, this technique does not require the modification of the source code. 

Finally, it is also possible to run the system under the control of a debugger. In this case, 

breakpoints are set at locations of interest. This technique has the advantage of modifying 

neither the source code nor the environment but has been shown to slow down 

considerably the execution of the system, which makes it impractical for large systems. 

We have used source code instrumentation for its simplicity and the abundance of tool 

support. Once the system is instrumented, we execute the instrumented version by 

exercising the feature to be analyzed. From this feature trace, we extract the distinct 

classes invoked, while executing the particular feature (i.e., on the fly). We call the 

distinct classes invoked in a feature trace the execution profile of the feature. It should be 

noted that the trace does not need to be saved.  
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3.4  Impact Analysis 

Impact analysis is the process of determining the parts of a program that are potentially 

affected by a change made to the program. Impact analysis has been shown to be useful 

for planning system changes, making changes, accommodating certain types of software 

changes, and tracing through the effects of changes [Law 03, Turver 94].  

As previously mentioned, we apply in our approach impact analysis to identify feature 

specific classes, by measuring at a class dependency graph level, the potential impact that 

a modification of each distinct class in the feature trace has on the rest of the system. The 

four metrics presented in this thesis measure the impact of a class modification on the 

other parts of the system. Dependencies among system components are computed based 

on a static class dependency graph. Building class dependencies graphs is discussed in 

the next subsection. The impact metrics are presented in Section 3.3.2.2.  

3.4.1 Building a Class Dependency Graph 

Impact analysis is based on the exploration of the class dependency graph (CDG) of a 

system. A CDG is a directed graph where the nodes are the system’s classes and the 

edges represent a dependency relationship among the classes as shown in Figure 3.3.  

The construction of a class dependency graph typically requires parsing of the source 

code. Several types of relationships may exist between two classes such as the ones based 

on method calls, generalization and realization relationships, etc. It should be noted that 

the accuracy of the impact analysis depends greatly on the types of dependency relations 

supported by the analysis. One of the important dependencies that exist between classes 
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is method invocation. These function calls are traced using a static call graph. The 

construction of call graphs from object-oriented systems requires the resolution of 

polymorphic calls. There exist various techniques in the literature that achieve this 

including Unique Name (UN) [Calder 94], Class Hierarchy Analysis (CHA) [Bacon 96, 

Dean 95], and Rapid Type Analysis (RTA). Each algorithm has its own advantages and 

imitations. In this thesis, we use RTA for its simplicity, efficiency, and tool support 

[Bacon 96]. 

C1

C6

C7C5

C4C2

C3

 

Figure 3.3. Example of a class dependency graph 

3.4.2 Impact Metrics 

We have developed four metrics for measuring the impact of a class modification on the 

other parts of the system. These metrics vary depending on the way impact of a 

component modification on the rest of the system is computed.  
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3.4.2.1  Definitions 

Definition 1: Impact Set 

We define the impact set of modifying a component C as a set of components that depend 

directly or indirectly on C. More formally, a class dependency graph can be represented 

using a directed graph G = (V, E) where V is a set of classes and E a set of directed edges 

between classes. The impact set of C consists of the set of predecessors of C. A 

predecessor of a node is defined as follows: Consider an edge e = (x, y) from node x to y, 

If there is a path in the graph that leads from x to y, then x is said to be a predecessor of y. 

For example, the impact set of class C5 in Figure 3.3 consists of the classes C6, C7 C4, 

C3, and C1 (i.e., the predecessors of node C5) since there exist a path between each of 

these classes and the class C5. Note that the same class may occur in multiple paths. In 

this case, such a class is considered only once in the impact set. 

Definition 2: Class Afferent Impact 

The Class Afferent Impact (CAI) of a class C consists of the number of classes that are 

affected (directly or indirectly) when C is modified (i.e., the cardinality of the impact set 

of C). 

Definition 3: Class Efferent Impact 

The Class Efferent Impact (CEI) of a class C is the number of classes that will affect 

(directly or indirectly) C if they change. These are the classes in the directed graph that 

can be reached through C, also called the descendants of C in the class dependency 

graph. It should be noted that the intersection between CAI and CEI is not necessarily 
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empty, since some components can be affected by a change to C while at the same time 

they can affect C. 

Definition 4: Package Afferent Impact 

We define the Package Afferent Impact (PAI) of a class C as the number of packages that 

are affected by a modification of C. The package afferent impact will be used to weigh 

some of the metrics presented in this section. It should be note that we consider all 

packages of the system as separate packages no matter if they belong to another package 

or not. 

The class (and package) afferent and efferent impact should not be confused with the 

afferent and efferent couplings proposed by Robert Martin [Martin 95], used to assess the 

quality of a design by analyzing the stability of its subsystems. The afferent and afferent 

couplings focus on measuring fan-in and fan-out of a subsystem using a subsystem 

dependency graph, whereas in this thesis, we focus on measuring the impact of a 

component change on the rest of the system. 

3.4.2.2 The One Way Impact Metric (OWI) 

There exists several metrics in the literature that measure the relationship among the 

system components (e.g., the MOOSE metrics presented in [Lanza 2006]). These metrics 

are used to assess the overall quality of a design and do not necessarily measure the 

impact of a component on the rest of the system. In this thesis, we propose four simple 

and yet powerful metrics that achieve this goal. 
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The first metric is called the one way impact metric and considers exclusively the impact 

modification of a class on the system, i.e., CAI.   

We define the one way impact metric of a class C as: 

• S = A set that contains all the classes of the system under study. We assume 

in this thesis that the system under study has more than one class. That is the 

cardinality of set S is always greater than 1. 

||

|)(|
 )(

S

cCAI
cOWI =  

OWI ranges from 0 to 1. It converges to 0 if the class has a small impact on the rest of the 

system which is a good indicator that it is specific to the feature in question according to 

our hypothesis. On the other hand, a class with an OWI value reaching 1 indicates that a 

change in this class causes many parts of the systems to change. This indicates that this 

class is used to support the implementation of various features.  

 

Figure 3.4. A class dependency graph 
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The example in Figure 3.4 will be revisited throughout this section to illustrate how our 

impact analysis metrics can identify feature related components. In this example, we 

assume that the classes that are relevant to the specific feature all located in package P1. 

However, the feature profile created from this specific feature trace also contains 

additionally the classes C6, C7, and C8. 

Table 3.1 shows the result of applying the one way impact metric to classes of Figure 3.4.  

The table is sorted in an ascending order based on the OWI column. From the table one 

can see that the metric was able to group successfully all P1 classes (the most relevant 

classes) in the top of the table. The class C6 is used by many other classes of the system, 

which suggests that it is a utility class. In this example, it was ranked among the last 

classes along with C7and C8 on which it depends.  

Table 3.1. Applying OWI to Example of Figure 3.4 

Package Class CAI OWI 

P1 C1 0 0.000 

P1 C2 1 0.083 

P1 C3 1 0.083 

P1 C5 1 0.083 

P1 C12 2 0.167 

P1 C4 5 0.417 

P2 C6 7 0.583 

P2 C8 8 0.667 

P2 C7 9 0.750 

3.4.2.3 The Two Way Impact Metric (TWI) 
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The two way impact metric considers both, the impact of a class modification on the rest 

of the system (i.e., its afferent impact), as well as the number of classes that impact this 

class if these classes change (i.e., the efferent impact, CEI, of the class).  

The rationale behind using the efferent impact is based on a study conducted by Hamou-

Lhadj et al. to automatically detect utility components that exist in a software system 

[Hamou-Lhadj 05, Hamou-Lhadj 06]. The authors used fan-in analysis to measure the 

extent to which a routine can be considered a utility. According to their findings, a 

routine with high fan-in (incoming edges in the call graph) should be considered a utility 

as long as its fan-out (outgoing edges) is not high. They explained that the more calls a 

routine has from different places then the more purposes it likely has, and hence the more 

likely it is to be a utility. On the other hand, if a routine has many calls (outgoing edges in 

the call graph), this is evidence that it is performing a complex computation and therefore 

it is needed to understand the system.   

The two way impact metric uses a similar approach, except that it considers the impact of 

a component modification rather than its mere fan-in. In other words, we do not only 

considers the direct impact associated with a component change by including all 

components that are directly associated with it, but also the ones that are indirectly 

affected by this component change. This allows us to measure the fact that the afferent 

impact of a component can be very high without necessarily having a high fan-in. For 

example in Figure 3.5, the class C2 has a very low fan-in (one incoming edge) but a high 

afferent impact value (five classes are affected by changing C2).  
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Figure 3.5. The difference between fan-in and CAI  

Fan-in (C2) = 1 and CAI (C2) = 5 

We define the two way impact metric (TWI) of a class C as follows: 
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If the class does not depend on any other class (i.e., CEI = 0) then TWI is the same as the 

one way impact metric. The interesting case is when CEI is different from zero. In this 

case, the formula is divided into two parts. The first part 
||

)(

S

cCAI
 reflects the fact that the 

classes with large CAI  (class afferent impact) are the ones that are most likely to be non-

feature specific classes, as previously discussed. The second part takes into account the 

efferent impact although with a lower weight than the afferent impact using the Log 

function. The reason behind this is that we believe that the afferent impact should be 

weighted more than the efferent impact since a class modification that causes a 
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considerably large number of changes in the system should be classified as utility no 

matter what the value of its efferent impact is.    

We divide the result of both parts by |)(| SLog  to ensure that the entire formula varies 

from 0 to 1, with 0 being a component that is feature specific and not shared by any 

component in the system and 1 being a component that is shared among all components 

in the system. 

When applying to the example in Figure 3.4, the two way impact metric favoured the 

class C6 over the class C4 as being the most relevant to the feature under study. This is 

because C4 does not depend on any other class (CEI = 0), whereas C6 depends on two 

classes (CEI = 2), which might suggest that it is more important than C4. This 

classification is not necessarily incorrect since utility classes might also have a local 

scope. For example, C4 could be a utility class for the P1 package, whereas C6 is a utility 

class for the entire system. Therefore, having these two classes at the bottom of the table 

should be seen as a good outcome of the algorithm. 

Table 3.2. Applying TWI to example of Figure 3.4 

Package Class CAI CEI TWI 

P1 C1 0 11 0.000 

P1 C2 1 6 0.018 

P1 C5 1 5 0.023 

P1 C3 1 2 0.046 

P1 C12 2 1 0.120 

P2 C6 7 2 0.325 

P1 C4 5 0 0.417 
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P2 C8 8 1 0.481 

P2 C7 9 0 0.750 

Next, we introduce our Weighted OWI and Weighted TWI metrics to improve on the 

OWI and TWI metric by also considering the package afferent impact as part of the 

measurement.  

3.4.2.4 The Weighted One Way Impact Metric (WOWI) 

The weighted one way impact metric uses available information about the system 

architecture to further enhance the already introduced one way impact metric. More 

specifically, for the WOWI metric, also the number of packages are considered that are 

affected by a class modification (i.e., the package afferent impact, PAI). The rationale 

behind this is that a class affecting more packages (that is affecting classes belonging to 

majority of packages in the system) is more likely to be a feature irrelevant class in 

comparison to a class affecting less number of packages. For example, a class that affects 

five classes from three different packages, it is more likely that this class will be included 

in the execution profile of several features than a class that affects five classes of the 

same package. In other words, two classes that have the same OWI value may be ranked 

differently if they affect a different number of packages, and in such a case, the 

component that crosses the least number of packages will be given more importance than 

the one that affects a larger number of packages.  

Taking the above rationale into account, we introduce the following metric: 

||
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The range for the )(cWOWI is from 0 to 1, with 0 being a component that is feature 

specific and not shared by any other component or package in the system, and 1 being a 

component that is shared among all components and packages of the system.  

In the earlier example we saw that our metric worked fine according to our hypothesis 

but if the system was rather complex and packaged the previous metrics would not had 

been that accurate.  We enhance the previous example by introducing packages to show 

the effectiveness of our new metric in comparison to the pervious example.  

The weighted one way impact metric results in a similar outcome as the non-weighted 

one way metric when applied to the example in Figure 3.4 (see Table 3.3). However, it 

should be noticed that the gap between the relevant classes (P1 classes) and the non-

relevant classes (P2 classes) is considerably larger than the gap between these two 

categories of classes when we applied the non weighted OWI.  

Table 3.3. Applying WOWI on the example of Figure 3.4 

Package Class CAI PAI WOWI 

P1 C1 0 1 0.000 

P1 C2 1 1 0.017 

P1 C5 1 1 0.017 

P1 C3 1 1 0.017 

P1 C12 2 1 0.033 

P1 C4 5 1 0.083 

P2 C6 7 5 0.583 

P2 C8 8 5 0.667 

P2 C7 9 5 0.750 
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3.4.2.5  The Weighted Two Way Impact (WTWI) 

Similar to the weighted one way impact metric, the weighted two way impact (WTWI) 

can be seen as a further improvement over the two way impact metric by also considering 

the number of packages affected due to a component modification.  

The WTWI metrics therefore corresponds to: 
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Table 3.4 shows the result after applying the WTWI to the example in Figure 3.4. As a 

result of using the WTWI metric, class C4 was placed back in the pool of relevant 

classes. This is because it only affects one package as opposed to the classes of P2 

package which affect 5 packages. In addition, the WTWI improves over the non-

weighted TWI by enlarging the gap between the relevant and non-relevant classes.  

Table 3.4. Applying WTWI on the example of figure 3.4 

Package Class CAI CEI PAI WTWI 

P1 C1 0 11 1 0.000 

P1 C2 1 6 1 0.004 

P1 C5 1 5 1 0.005 

P1 C3 1 2 1 0.009 

P1 C12 2 1 1 0.024 

P1 C4 5 0 1 0.083 

P2 C6 7 2 5 0.325 

P2 C8 8 1 5 0.481 

P2 C7 9 0 5 0.750 
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3.5  Summary 

In this chapter, we presented our approach for solving the feature location problem with a 

focus on identifying the classes that are the most relevant to the feature to be analyzed.  

Our approach combines both static and dynamic analysis. A trace is generated by 

exercising a feature under study. The invoked classes in the trace are ranked based on 

identifying the impact of a class modification on the rest of the system. Our hypothesis is 

that the higher the impact, the less relevant the component. To measure the impact of a 

component modification on the rest of the system, we proposed four impact metrics that 

operate on the class dependency graph. The first metric, the one way impact metric 

(OWI), considers only the impact of a class modification on the rest of the system. The 

second metric, the two way impact metric (TWI), considers both, the impact of a class 

modification on the rest of the system (i.e., its afferent impact), as well as the number of 

classes that impact this class if these classes change (i.e., the efferent impact, CEI, of the 

class). The two other metrics, the weighted one way impact metric and the weighted two 

way impact metric, use architectural information to further enhance the previous metrics.  
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Chapter 4  Evaluation  

In this chapter, we evaluate the applicability of our feature location techniques by 

applying them to traces generated from two object-oriented software systems.  

4.1 Target Systems 

We have applied the proposed feature location techniques to traces generated from two 

Java-based system called Weka1 (version 3.0), and Checkstyle2 (version 3.3). Weka has 

been developed in The University of Waikato, New Zealand. It is a machine learning tool 

that supports several algorithms such as classification algorithms, regression techniques, 

clustering and association rules. It has 10 packages, 142 classes, and 95 KLOC.  

The second software system used for evaluating our approach is Checkstyle. Checkstyle 

is a development tool that aims to help programmers write Java code that adheres to a 

coding standard. This is a useful tool in projects where enforcing a coding standard is 

important. The tool allows programmers to create XML-based files to represent almost 

any coding standard. Checkstyle uses ANTLR3 (ANother Tool for Language 

Recognition) and the Apache regular expression pattern matching package4. These two 

                                                           

1 http://www.cs.waikato.ac.nz/ml/weka/ 
2 http://checkstyle.sourceforge.net/ 
3 http://www.antlr.org/ 
4 http://jakarta.apache.org/regexp/ 
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packages have been excluded from this analysis. Checkstyle (without ANTLR and the 

Apache module) has 17 packages, 210 classes, and 130 KLOC. 

We selected Weka and Checkstyle because both systems are well documented. Weka 

packages and most important classes are documented in a book dedicated to the tool and 

machine learning in general [Witten 99]. A detailed description of Checkstyle 

architecture can be found on a website dedicated to the tool. Having this documentation 

available will allow us to validate the results obtained from our approach against the 

documented feature implementations. 

4.2 Applying Feature Locations Algorithms 

4.2.1 Feature Selection 

We have applied our feature location techniques to several software features of Weka and 

Checkstyle. In this thesis, we report on the result of applying these techniques to two 

features (one for each system), which reflect the overall result obtained. For the Weka 

system, we wanted to identify the classes that are specific to the implementation of the 

M5 algorithm, which is a classification algorithm based on the so-called model trees 

[Quinlan 92]. For the Checkstyle system, we selected the CheckCode feature that is used 

to check Java code for coding problems such as uninitialized variables, etc.  

4.2.2  Generation of Feature-Traces 

To generate the corresponding traces, we instrumented Weka and CheckStyle using our 

own instrumentation tool based on the Bytecode Instrumentation Toolkit framework [Lee 

97]. Probes were inserted at each entry and exit method (including constructors) of both 
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systems. For each feature discussed in the previous section, we generated two execution 

traces, which correspond to the selected features, by executing the instrumented version 

of Weka and CheckStyle. We used a sample input data provided in the documentation of 

both systems to exercise the M5 and CheckCode features. We saved the distinct classes 

invoked in each trace while the system was executing. It should be noted that we did not 

have to save the entire trace. Table 4.1 shows the number of distinct classes invoked in 

M5 and CheckCode traces.  

Table 4.1. Distinct Classes in the traces for M5 and Checkcode. 

Feature (System) Number of Classes 

M5 (Weka) 26 

CheckCode (Checkstyle) 68 

4.2.3 Applying the Impact Metrics 

We applied the impact analysis metrics to both, the Weka and Checkstyle systems using a 

tool called Structural Analysis for Java (SA4J)5. The tool parses the source code and 

generates a global class dependency table that contains various metrics including the 

class afferent and efferent impacts. SA4J supports a large spectrum of relations among 

classes such as: accesses, calls, contains, extends, implements, instantiates, references, 

etc. 

                                                           

5 http://www.alphaworks.ibm.com/tech/sa4j 

http://www.alphaworks.ibm.com/tech/sa4j
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Figure 4.1. Example of a package dependency graph generated using SA4J 

In addition, the tool provides architectural information of a system such as the number of 

packages, the content of each package, and the relationships between packages. Figure 

4.1, for example, shows a package dependency graph extracted from the Weka system. 

We used the package dependency graphs to compute the package afferent impact, which 

is needed for the computation of the weighted one way impact and weighted two way 

impact metrics. 
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In the following subsections, we present the result of applying OWI, WOWI, TWI, and 

WTWI based feature location approaches to the two selected features. 

4.2.3.1 The One Way Impact Metric (OWI) 

Table 4.2 shows the result of applying the one way impact metric to the Weka feature 

trace M5 (we multiplied OWI by a 1000 to improve the clarity of the presentation of the 

results). The table is sorted in the ascending order of OWI and does not show all classes 

to avoid cluttering. The detailed results are presented in Appendix A.  

Table 4.2.  Applying OWI to M5 feature 

Package Class |CAI| OWI*1000 

weka.classifiers.m5 M5Prime 1 7.04 

10 other classes here of M5 Package OWI*1000 value ranging between 7.04 and 

49.30 

weka.filters ReplaceMissingValuesFilter 7 49.30 

weka.filters NominalToBinaryFilter 7 49.30 

weka.classifiers.m5 M5Utils 10 70.42 

weka.filters Filter 33 232.39 

weka.classifiers Evaluation 33 232.39 

weka.core Queue 34 239.44 

weka.classifiers Classifier 35 246.48 

weka.estimators KernelEstimator 37 260.56 

weka.core Statistics 49 345.07 

5 other classes of core Package OWI*1000 value ranging between 345.07 and 894.37 

The execution profile of the M5 feature (i.e., the distinct classes invoked in the M5 

feature trace) consists of classes that belong to the following packages: m5 (12 classes), 

classifiers (2 classes), filters (3 classes), estimators (1 class), and core 

(8 classes).  
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Figure 4.2. OWI distribution for M5 Feature 

According to the Weka documentation [Witten 99], the package m5 contains the key 

classes that implement the M5 model tree algorithm. The classifiers package 

(excluding its sub-packages) contains common classes that most Weka classifications 

algorithms (including M5) use. The classes defined in the filters package are used to 

extract the data used by the Weka classification algorithms. The classes used by the M5 

algorithm are: NominalToBF and ReplaceMissingVF. The class Filter is a 

superclass from which all filters are inherited. The estimators package contains 

classes that implement various techniques for estimating the machine learning models 



 44 

used by Weka classification algorithms. The class KernelEstimator invoked in the 

M5 trace is used by M5 and many other classification algorithms as well. Finally, the 

core package contains general-purpose utilities used by all Weka algorithms whether 

they are classification algorithms or not. 

By analyzing the Weka documentation we were able to verify that the OWI-based feature 

location technique ranked successfully most of the M5 specific classes (shown in bold) as 

relevant components, except for the class M5Utils. It also grouped at the bottom of the 

table most classes of the utility package core (underlined). The classes shown in Italics 

represent the related components, used by M5 and some other Weka’s classification 

algorithms. 

Although the OWI-based feature location technique produced good results, a closer look 

at the values of OWI revealed that the value for classes Matrix from the m5 package, 

and ReplaceMissingValuesFilter and NominalToBinaryFilter from the 

filterers package are identical (OWI = 49.30/1000). In other words, there is no clear cut 

between the classes that belong to the relevant components category and the ones 

contained in the related components category. Figure 4.2 shows this graphically. 

Although the algorithm succeeded to distinguish between most of the utility classes (on 

the top of the figure) and the other categories of classes, it did not provide a clear cut 

between the relevant and the related components.  

For the CheckCode feature we followed a similar assessment process. The execution 

profile of the CheckCode feature revealed that it consists of classes belonging to the 

following packages: coding (32 classes), checkstyle (12 classes), checks (5 
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classes), grammars (2 classes), and apis (17 classes). As for Weka, we consulted the 

documentation of Checkstyle to understand the most components of the CheckCode 

feature. The package coding is the one that contains the key classes that implement the 

various checking procedures most relevant to this feature.  

Table 4.3, sorted in the ascending order of OWI, shows the result of applying the one 

way impact metric to the Checkstyle feature trace CheckCode. We can observe that the 

OWI-based feature location ranked successfully most of the CheckCode feature specific 

classes (shown in bold). The only major exceptions are the classes: 

AbstractSuperCheck and AbstractNestedDepthCheck. These classes have 

a large class afferent impact (CAI = 3) compared to all other classes of the coding 

package (CAI = 1). This is due to the fact that they are abstract classes, and as such, they 

implement general purpose functions used by many other classes.  
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Table 4.3. Applying OWI to CheckCode Feature 

Package Class |CAI| OWI OWI*1000 

coding ExplicitInitializationCheck 1 0 4.76 

29 other classes of coding package with OWI*1000 value of 4.76 

checkstyle DefaultConfiguration 1 0 4.76 

checks DescendantTokenCheck 2 0.01 9.52 

checks GenericIllegalRegexpCheck 2 0.01 9.52 

checkstyle Checker 3 0.01 14.29 

coding AbstractSuperCheck 3 0.01 14.29 

coding AbstractNestedDepthCheck 3 0.01 14.29 

checkstyle DefaultLogger 3 0.01 14.29 

checkstyle TreeWalker 3 0.01 14.29 

checkstyle ConfigurationLoader 3 0.01 14.29 

checkstyle PropertiesExpander 3 0.01 14.29 

checks AbstractTypeAwareCheck 3 0.01 14.29 

checkstyle PackageNamesLoader 4 0.02 19.05 

checkstyle PropertyCacheFile 4 0.02 19.05 

checkstyle StringArrayReader 4 0.02 19.05 

grammars GeneratedJava14Lexer 4 0.02 19.05 

grammars GeneratedJava14Recognizer 4 0.02 19.05 

checkstyle PackageObjectFactory 5 0.02 23.81 

apis FilterSet 6 0.03 28.57 

checkstyle DefaultContext 7 0.03 33.33 

checkstyle AbstractLoader 7 0.03 33.33 

checks CheckUtils 8 0.04 38.10 

apis AbstractFileSetCheck 8 0.04 38.10 

apis TokenTypes 9 0.04 42.86 

apis AuditEvent 13 0.06 61.90 

checks AbstractFormatCheck 17 0.08 80.95 

apis ScopeUtils 19 0.09 90.48 

12 more classes of apis package here with OWI*1000 value ranging from 90.48 to 714.29 

 

 



 47 

 

 

 

 

 

 

 

 

 

Figure 4.3. OWI distribution for CheckCode feature 
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successfully the utility classes, which are packaged in the apis package, with a few 

exception, such as the class FilterSet, which was misplaced by our approach. 

Similar to Weka, the OWI-based feature location technique did not succeed to have a 

clear cut between the different categories of classes (i.e., relevant components, related 

components, and utilities). For example, the OWI metric value for the classes from the 

coding package and defaultconfiguration from the checkstyle package are 

similar (OWI = 4.76/1000), although these two classes should be in different categories. 

4.2.3.2 The Weighted One Way Impact Metric (WOWI) 

Table 4.4 shows the result of applying the weighted one way impact metric to the M5 

feature in Weka. As shown in the table, this technique can provide better results than the 

non-weighted one way impact metric by improving the grouping of the classes within the 

M5 package by enhancing the gap between the most important classes and the ones which 

are less relevant to the M5 feature as shown graphically in Figure 4.4. 

Table 4.4. Applying WOWI to M5 feature 

Packages Class |CAI| |PAI| WOWI*1000 

weka.classifiers.m5 M5Prime 1 1 0.70 

11 other classes of M5 package with WOWI*1000 value ranging between 0.70 and 7.04  

weka.filters ReplaceMissingValuesFilter 7 3 14.79 

weka.filters NominalToBinaryFilter 7 3 14.79 

weka.filters Filter 33 4 92.96 

weka.classifiers Evaluation 33 4 92.96 

weka.classifiers Classifier 35 4 98.59 

weka.core Queue 34 5 119.72 

weka.estimators KernelEstimator 37 5 130.28 

weka.core Statistics 49 8 276.06 

5 other classes of core package with WOWI*1000 value ranging between 276.06 and 804.93 
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Figure 4.4. WOWI distribution for M5 feature 

Similar to Weka, the weighted OWI provides better results than the non-weighted one 

way impact when applied to the CheckCode feature (Table 4.5). It not only improves the 

grouping of the classes of the coding package but also enlarges the gap between among 

the relevant and the related classes. More precisely, the gap between the misplaced 

classes (AbstractSuperCheck and AbstractNestedDepthCheck) of coding 

package and the rest of the coding package classes has been reduced. However, the 

problem of having the same WOWI metric value for the classes from the coding 

package and defaultconfiguration from the checkstyle package still 

remains, as in the previous technique.  
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Table 4.5. Applying WOWI to CheckCode feature 

Package Class |CAI| |PAI| WOWI*1000 

coding ExplicitInitializationCheck 1 1 0.28 

29 other classes of coding package with WOWI*1000 value of 0.28 

checkstyle DefaultConfiguration 1 1 0.28 

checkstyle Checker 3 1 0.84 

coding AbstractSuperCheck 3 1 0.84 

coding AbstractNestedDepthCheck 3 1 0.84 

checkstyle DefaultLogger 3 1 0.84 

checkstyle ConfigurationLoader 3 1 0.84 

checkstyle PropertiesExpander 3 1 0.84 

checks DescendantTokenCheck 2 2 1.12 

checks GenericIllegalRegexpCheck 2 2 1.12 

checkstyle PackageNamesLoader 4 1 1.12 

checkstyle PackageObjectFactory 5 1 1.40 

checkstyle TreeWalker 3 2 1.68 

checkstyle PropertyCacheFile 4 2 2.24 

checkstyle StringArrayReader 4 2 2.24 

checks AbstractTypeAwareCheck 3 3 2.52 

grammars GeneratedJava14Lexer 4 3 3.36 

grammars GeneratedJava14Recognizer 4 3 3.36 

checkstyle DefaultContext 7 2 3.92 

checkstyle AbstractLoader 7 2 3.92 

apis FilterSet 6 3 5.04 

checks CheckUtils 8 3 6.72 

apis AuditEvent 13 3 10.92 

12 other classes of apis package with WOWI*1000 value ranging from 10.92 to 672.27 
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Figure 4.5. WOWI distribution for CheckCode feature. 

There is also an improvement in the ranking of the classes of the apis package, which 

are now closer to each other at the bottom of the table. However, the approach misplaced 

two classes CheckUtils and AbstractFormatCheck at the end with apis 

package utility classes. 

4.2.3.3 The Two Way Impact Metric (TWI) 

Table 4.6 shows the result of applying the two way impact metric to locate the M5 

feature in the Weka system.  
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The overall results achieved using this technique provided no further improvement over 

the previous metrics except for its ability to allow for a grouping of all utility classes 

within one block. As shown in Table 4.6, the core package classes form now one block 

located at the bottom of the table. This approach however did misplace an additional 

relevant component (the class m5.Matrix). The overall TWI distribution presents an 

improvement compared to the previous metrics (see Figure 4.6), where the distribution of 

TWI forms a curve showing the components from the most relevant to the least relevant, 

with a few classes misplaced. 

Table 4.6. Applying TWI to M5 Feature 

Packages Class |CEI| |CAI| TWI*1000 

weka.classifiers.m5 M5Prime 35 1 1.95 

9 other classes of M5 package with TWI*1000 value ranging from 1.95 to 24.23 

weka.filters ReplaceMissingValuesFilter 11 7 24.58 

weka.filters NominalToBinaryFilter 11 7 24.58 

weka.classifiers.m5 Matrix 5 7 31.47 

weka.classifiers.m5 M5Utils 8 10 39.2 

weka.classifiers Evaluation 18 33 94.32 

weka.filters Filter 10 33 119.95 

weka.classifiers Classifier 8 35 137.2 

weka.estimators KernelEstimator 7 37 151.23 

weka.core Queue 1 34 205.95 

6 other classes from package core with TWI*1000 value ranging from 205.95 and 696.1 
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Figure 4.6. TWI distribution for M5 feature 

When applied to the CheckCode feature (see Table 4.7), the results obtained were similar 

to the OWI and WOWI metrics except a better classification of the utility classes (i.e., the 

ones belonging to the apis package). For example, the classes apis.TokenType and 

apis.AuditEvent which were misplaced by OWI and WOWI were rightly placed 

with the other apis classes using TWI. 
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Table 4.7. Applying TWI to CheckCode feature. 

Package Class |CAI| |CEI| TWI*1000 

coding ExplicitInitializationCheck 1 22 1.97 

29 other coding package classes here with TWI* 1000 value ranging from 1.97 to 2.14 

checkstyle DefaultConfiguration 1 2 3.78 

checks DescendantTokenCheck 2 19 4.19 

checks GenericIllegalRegexpCheck 2 19 4.19 

checkstyle TreeWalker 3 32 4.94 

checkstyle Checker 3 21 6.03 

checks AbstractTypeAwareCheck 3 20 6.15 

coding AbstractSuperCheck 3 20 6.15 

coding AbstractNestedDepthCheck 3 18 6.42 

checkstyle DefaultLogger 3 11 7.65 

checkstyle ConfigurationLoader 3 3 10.58 

checkstyle PropertiesExpander 3 2 11.35 

checkstyle PackageNamesLoader 4 4 13.31 

grammars GeneratedJava14Lexer 4 3 14.11 

checkstyle PropertyCacheFile 4 2 15.13 

grammars GeneratedJava14Recognizer 4 2 15.13 

checkstyle StringArrayReader 4 1 16.58 

checkstyle PackageObjectFactory 5 2 18.92 

apis FilterSet 6 5 19 

apis AbstractFileSetCheck 8 13 19.29 

checkstyle DefaultContext 7 2 26.48 

checks CheckUtils 8 3 28.22 

checkstyle AbstractLoader 7 1 29.01 

checks AbstractFormatCheck 17 18 36.38 

apis TokenTypes 9 1 37.3 

14 other apis package classes here with TWI*1000 value ranging from 37.3 to 621.69 
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Figure 4.7. TWI distribution for CheckCode feature 
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Table 4.8. Applying WTWI  to M5 feature 

Packages Class |CEI| |CAI| |PAI| WTWI*1000 

weka.classifiers.m5 M5Prime 35 1 1 0.2 

11 other classes of M5 package here with WTWI*1000 value ranging from 0.2 to 3.92 

weka.filters ReplaceMissingValuesFilter 11 7 3 7.37 

weka.filters NominalToBinaryFilter 11 7 3 7.37 

weka.classifiers Evaluation 18 33 4 37.73 

weka.filters Filter 10 33 4 47.98 

weka.classifiers Classifier 8 35 4 54.88 

weka.estimators KernelEstimator 7 37 5 75.62 

weka.core Queue 1 34 5 102.97 

6 other classes from core package with WTWI*1000 value ranging from 102.97 and 626.49 
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Figure 4.8.  WTWI Distribution for M5 feature 
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The results of applying the WTWI-based feature location technique to the CheckCode 

feature are shown in Table 4.9. WTWI shows similar results as achieved by WOWI-

based technique. However, the WTWI approach misplaced some classes of the checks 

package such at the classes AbstractLoader, AbstractFormatCheck (two 

abstract classes), and CheckUtils with the apis classes. As mentioned previously, 

abstract classes seem to behave differently from the other classes of the same packages. 

As for CheckUtils, it is a utility class whose scope is within the checks package, 

unlike the classes of the apis package, which are system-level utilities. The distribution 

of WTWI is also better than the TWI distribution as shown in Figure 4.9. 

4.3 Discussion  

The overall results achieved by our feature location techniques depict that our proposed 

hypothesis has proven to be effective in the detection of components most relevant to the 

feature in question. More specifically to test our hypothesis stating we used on two 

features: M5 from Weka and CheckCode from Checkstyle software.  

In terms of features, M5 feature showed more accurate results over CheckCode feature. 

However the advantages and disadvantages of each proposed feature location techniques 

in terms of Impact metric utilized are as follows: 
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Table 4.9. Applying WTWI to CheckCode feature 

Package Class |CAI| |CEI| |PAI| WTWI*1000 

coding ExplicitInitializationCheck 1 22 1 0.12 

29 classes  from coding package with WTWI*1000 value ranging from 0.12 and 0.13 

checkstyle DefaultConfiguration 1 2 1 0.22 

checkstyle Checker 3 21 1 0.35 

coding AbstractSuperCheck 3 20 1 0.36 

coding AbstractNestedDepthCheck 3 18 1 0.38 

checkstyle DefaultLogger 3 11 1 0.45 

checks DescendantTokenCheck 2 19 2 0.49 

checks GenericIllegalRegexpCheck 2 19 2 0.49 

checkstyle TreeWalker 3 32 2 0.58 

checkstyle ConfigurationLoader 3 3 1 0.62 

checkstyle PropertiesExpander 3 2 1 0.67 

checkstyle PackageNamesLoader 4 4 1 0.78 

checks AbstractTypeAwareCheck 3 20 3 1.09 

checkstyle PackageObjectFactory 5 2 1 1.11 

checkstyle PropertyCacheFile 4 2 2 1.78 

checkstyle StringArrayReader 4 1 2 1.95 

grammars GeneratedJava14Lexer 4 3 3 2.49 

grammars GeneratedJava14Recognizer 4 2 3 2.67 

checkstyle DefaultContext 7 2 2 3.12 

apis FilterSet 6 5 3 3.35 

checkstyle AbstractLoader 7 1 2 3.41 

checks CheckUtils 8 3 3 4.98 

apis AbstractFileSetCheck 8 13 6 6.81 

apis AuditEvent 13 3 3 8.09 

checks AbstractFormatCheck 17 18 4 8.56 

apis TokenTypes 9 1 5 10.97 

13 other classes of apis package with WTWI*1000 value ranging from 10.97 to 585.12 
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Figure 4.9.  WTWI distribution for CheckCode feature. 

Feature location technique based on One Way Impact Metric:  This technique worked 

quite well in detecting most important components for the feature M5 and CheckCode. 

More specifically it misplaced just one specific class of M5 feature and two specific 

classes of CheckCode feature. However one of the major disadvantage of this approach is 

its inability to detect a clear-cut difference between the categories of classes (relevant, 

related and utilities). Secondly this technique also misplaced a few classes of relatively 

high degree of importance with the utility classes. 

Feature location technique based on Weighted One way Impact Metric:  Using this 

technique an improvement in the grouping of the classes was achieved. Specifically it 

ranked all the most important classes of M5 feature rightly at the top, it further reduced 
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the gap between the misplaced CheckCode feature classes and the rest of the important 

classes. This validates the effectiveness of weighting the previous metric by a factor of 

|PAI|/ |P|.  

Feature location technique based on Two Way Impact Analysis:  This technique showed 

no further improvement over the last two techniques. The classes that were initially 

misplaced by OWI Metric remained misplaced using this technique. However this 

technique showed an improvement in grouping the utility classes at the end together as 

one block. All the utility classes of Core package were placed at the end and this 

technique also reduced the gap between misplaced Apis package classes of CheckCode 

feature. 

Feature location Technique based on Weighted Two Way Impact Analysis:  For the 

feature M5 this technique showed the best results in comparison with the previous 

techniques. A clear cut difference was achieved between the different categories 

(relevant, related and utilities) of classes involved in the feature- trace of M5 feature. In 

case of CheckCode feature some classes still remained misplaced and this technique 

showed results similar to those achieved by WOWI Metric.  
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Chapter 5  Conclusion  

In this chapter we conclude our thesis by summarizing our research contributions in 

Section 5.1, which also includes a discussion about the results achieved by our approach 

and its effectiveness. In Section 5.2, we elaborate on opportunities for future research to 

further improve the effectiveness and accuracy of the present approach. Finally in section 

5.3 we provide our closing remarks for this thesis. 

5.1  Research Contributions  

In this dissertation, we presented a new approach towards solving the feature location 

problem – mapping features to code. In particular, we focused on identifying these 

classes that are most relevant to the feature being analyzed. 

Our approach is based on a combination of static and dynamic analysis. A trace is 

generated by exercising the feature under study (dynamic analysis). A static class 

dependency graph (static analysis) is used to rank the classes invoked in the trace 

according to their relevance to the feature. We ranked the classes invoked by measuring 

the impact of each component modification on the rest of the system. The rationale is that 

classes with small impact are likely specific to the feature at hand, whereas classes that 

have a large impact have many purposes, and hence they are less specific.  

Based on our hypothesis we introduced four new techniques that measure the impact of a 

class modification on the rest of a system. Common to these metrics is their fundamental 



 62 

assumption that the lower the impact of a modification on the remaining parts of the 

system, the more relevant the class is towards a specific feature. Each technique has its 

own criterion based on the software architecture for measuring the impact of a 

component on rest of the system in order to acquire the degree of its relevance to the 

feature of interest. 

We applied our techniques to several features of the software systems Weka and 

Checkstyle. The overall results were very satisfactory. We were not only able to identify 

the most important components but also rank these components according to their 

relevance to the traced features. In addition, our approach is very simple and does not 

require a lot of human intervention. Further, on comparing our techniques we came to the 

conclusion that our weighted techniques ( WOWI and WTWI) showed better results as 

compared to the non- weighted ones (OWI and TWI).  

5.2  Opportunities for Further Research 

The immediate future work consists of conducting further experimentation on other 

feature traces. In particular, we intend to target larger systems with poor architecture.  

There is also a need to determine a threshold above which to consider classes as relevant 

to the feature. We anticipate that each system might have its own threshold, and that 

software engineers will dynamically change the threshold depending on their expertise of 

the system. Therefore, an analysis tool that would support the techniques presented in this 

thesis should allow enough flexibility for the users to change the threshold.  
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Finally, during the analysis of the results of the case study, we noticed that abstract 

classes do not behave the same way as other classes. They tend to have a higher afferent 

impact. There is a need to investigate this and propose other means to rank abstract 

classes. 

5.3 Closing Remarks  

The architecture of the system degrades with time and the documentations becomes 

outdated. This leaves the maintainer with no other option but to reverse engineer the 

complete system exhaustively. This process utilizes plenty of time and resources. Here 

feature location technique comes handy. The main objective of feature location activities 

is to assist maintainer in order to save time and resources. We have designed our 

proposed technique “Feature location based on Impact analysis” to fulfil this objective. 

The technique is simple, easy to use and yet powerful. Our technique operates on one 

trace only, which is generated by exercising the feature under consideration. In addition, 

the proposed approach is automatic to a large extent relieving the user from any decision 

that would otherwise require extensive knowledge of the system. 
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Appendix A: The Detailed Result of the Case 

Study.  

A.1. Applying OWI 

Table A.1.1.  Applying OWI to M5 Feature 

Package Class |CAI| OWI*1000 

weka.classifiers.m5 M5Prime 1 7.04 

weka.classifiers.m5 Node 2 14.08 

weka.classifiers.m5 Options 3 21.13 

weka.classifiers.m5 SplitInfo 3 21.13 

weka.classifiers.m5 Function 3 21.13 

weka.classifiers.m5 Errors 4 28.17 

weka.classifiers.m5 Ivector 4 28.17 

weka.classifiers.m5 Dvector 4 28.17 

weka.classifiers.m5 Impurity 4 28.17 

weka.classifiers.m5 Values 5 35.21 

weka.classifiers.m5 Matrix 7 49.30 

weka.filters ReplaceMissingValuesFilter 7 49.30 

weka.filters NominalToBinaryFilter 7 49.30 

weka.classifiers.m5 M5Utils 10 70.42 

weka.filters Filter 33 232.39 

weka.classifiers Evaluation 33 232.39 

weka.core Queue 34 239.44 

weka.classifiers Classifier 35 246.48 

weka.estimators KernelEstimator 37 260.56 

weka.core Statistics 49 345.07 

weka.core Instances 108 760.56 

weka.core Instance 108 760.56 

weka.core Attribute 109 767.61 

weka.core Utils 126 887.32 

weka.core FastVector 127 894.37 
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Table A.1.2. Applying OWI to CheckCode Feature 

Package Class |CAI| OWI OWI*1000 

coding ExplicitInitializationCheck 1 0 4.76 

coding MagicNumberCheck 1 0 4.76 

coding IllegalTokenTextCheck 1 0 4.76 

coding IllegalTypeCheck 1 0 4.76 

coding NestedIfDepthCheck 1 0 4.76 

coding RedundantThrowsCheck 1 0 4.76 

coding SuperCloneCheck 1 0 4.76 

coding SuperFinalizeCheck 1 0 4.76 

coding DeclarationOrderCheck 1 0 4.76 

coding HiddenFieldCheck 1 0 4.76 

coding IllegalCatchCheck 1 0 4.76 

coding JUnitTestCaseCheck 1 0 4.76 

coding MissingSwitchDefaultCheck 1 0 4.76 

coding CovariantEqualsCheck 1 0 4.76 

coding IllegalInstantiationCheck 1 0 4.76 

coding IllegalTokenCheck 1 0 4.76 

coding NestedTryDepthCheck 1 0 4.76 

coding ArrayTrailingCommaCheck 1 0 4.76 

coding AvoidInlineCondCheck 1 0 4.76 

coding DoubleCheckedLockCheck 1 0 4.76 

coding EmptyStatementCheck 1 0 4.76 

coding EqualsHashCodeCheck 1 0 4.76 

coding FinalLocalVariableCheck 1 0 4.76 

coding InnerAssignmentCheck 1 0 4.76 

coding PackageDeclarationCheck 1 0 4.76 

coding ParameterAssignmentCheck 1 0 4.76 

coding ReturnCountCheck 1 0 4.76 

coding SimplifyBooleanExpCheck 1 0 4.76 

coding SimplifyBooleanReturnCheck 1 0 4.76 

coding StringLiteralEqualityCheck 1 0 4.76 

checkstyle DefaultConfiguration 1 0 4.76 

checks DescendantTokenCheck 2 0.01 9.52 
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checks GenericIllegalRegexpCheck 2 0.01 9.52 

checkstyle Checker 3 0.01 14.29 

coding AbstractSuperCheck 3 0.01 14.29 

coding AbstractNestedDepthCheck 3 0.01 14.29 

checkstyle DefaultLogger 3 0.01 14.29 

checkstyle TreeWalker 3 0.01 14.29 

checkstyle ConfigurationLoader 3 0.01 14.29 

checkstyle PropertiesExpander 3 0.01 14.29 

checks AbstractTypeAwareCheck 3 0.01 14.29 

checkstyle PackageNamesLoader 4 0.02 19.05 

checkstyle PropertyCacheFile 4 0.02 19.05 

checkstyle StringArrayReader 4 0.02 19.05 

grammars GeneratedJava14Lexer 4 0.02 19.05 

grammars GeneratedJava14Recognizer 4 0.02 19.05 

checkstyle PackageObjectFactory 5 0.02 23.81 

apis FilterSet 6 0.03 28.57 

checkstyle DefaultContext 7 0.03 33.33 

checkstyle AbstractLoader 7 0.03 33.33 

checks CheckUtils 8 0.04 38.10 

apis AbstractFileSetCheck 8 0.04 38.10 

apis TokenTypes 9 0.04 42.86 

apis AuditEvent 13 0.06 61.90 

checks AbstractFormatCheck 17 0.08 80.95 

apis ScopeUtils 19 0.09 90.48 

apis Scope 20 0.1 95.24 

apis FullIdent 21 0.1 100.00 

apis Check 126 0.6 600.00 

apis FileContents 127 0.6 604.76 

apis DetailAST 131 0.62 623.81 

apis AbstractViolationReporter 132 0.63 628.57 

apis LocalizedMessages 132 0.63 628.57 

apis Utils 136 0.65 647.62 

apis AutomaticBean 140 0.67 666.67 

apis StrArrayConverter 141 0.67 671.43 

apis LocalizedMessage 148 0.7 704.76 

apis SeverityLevel 150 0.71 714.29 
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A.2. Applying WOWI 

Table A.2.1. Applying WOWI to M5 Feature 

Packages Class |CAI| |PAI| WOWI*1000 

weka.classifiers.m5 M5Prime 1 1 0.70 

weka.classifiers.m5 Node 2 1 1.41 

weka.classifiers.m5 Options 3 1 2.11 

weka.classifiers.m5 SplitInfo 3 1 2.11 

weka.classifiers.m5 Function 3 1 2.11 

weka.classifiers.m5 Errors 4 1 2.82 

weka.classifiers.m5 Ivector 4 1 2.82 

weka.classifiers.m5 Dvector 4 1 2.82 

weka.classifiers.m5 Impurity 4 1 2.82 

weka.classifiers.m5 Values 5 1 3.52 

weka.classifiers.m5 Matrix 7 1 4.93 

weka.classifiers.m5 M5Utils 10 1 7.04 

weka.filters ReplaceMissingValuesFilter 7 3 14.79 

weka.filters NominalToBinaryFilter 7 3 14.79 

weka.filters Filter 33 4 92.96 

weka.classifiers Evaluation 33 4 92.96 

weka.classifiers Classifier 35 4 98.59 

weka.core Queue 34 5 119.72 

weka.estimators KernelEstimator 37 5 130.28 

weka.core Statistics 49 8 276.06 

weka.core Instances 108 8 608.45 

weka.core Instance 108 8 608.45 

weka.core Attribute 109 8 614.08 

weka.core Utils 126 9 798.59 

weka.core FastVector 127 9 804.93 
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Table A.2.2. Applying WOWI to CheckCode Feature 

Package Class |CAI| |PAI| WOWI*1000 

coding ExplicitInitializationCheck 1 1 0.28 

coding MagicNumberCheck 1 1 0.28 

coding IllegalTokenTextCheck 1 1 0.28 

coding IllegalTypeCheck 1 1 0.28 

coding NestedIfDepthCheck 1 1 0.28 

coding RedundantThrowsCheck 1 1 0.28 

coding SuperCloneCheck 1 1 0.28 

coding SuperFinalizeCheck 1 1 0.28 

coding DeclarationOrderCheck 1 1 0.28 

coding HiddenFieldCheck 1 1 0.28 

coding IllegalCatchCheck 1 1 0.28 

coding JUnitTestCaseCheck 1 1 0.28 

coding MissingSwitchDefaultCheck 1 1 0.28 

coding CovariantEqualsCheck 1 1 0.28 

coding IllegalInstantiationCheck 1 1 0.28 

 fcoding IllegalTokenCheck 1 1 0.28 

coding NestedTryDepthCheck 1 1 0.28 

coding ArrayTrailingCommaCheck 1 1 0.28 

coding AvoidInlineCondCheck 1 1 0.28 

coding DoubleCheckedLockCheck 1 1 0.28 

coding EmptyStatementCheck 1 1 0.28 

coding EqualsHashCodeCheck 1 1 0.28 

coding FinalLocalVariableCheck 1 1 0.28 

coding InnerAssignmentCheck 1 1 0.28 

coding PackageDeclarationCheck 1 1 0.28 

coding ParameterAssignmentCheck 1 1 0.28 

coding ReturnCountCheck 1 1 0.28 

coding SimplifyBooleanExpCheck 1 1 0.28 

coding SimplifyBooleanReturnCheck 1 1 0.28 

coding StringLiteralEqualityCheck 1 1 0.28 

checkstyle DefaultConfiguration 1 1 0.28 

checkstyle Checker 3 1 0.84 

coding AbstractSuperCheck 3 1 0.84 

coding AbstractNestedDepthCheck 3 1 0.84 
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checkstyle DefaultLogger 3 1 0.84 

checkstyle ConfigurationLoader 3 1 0.84 

checkstyle PropertiesExpander 3 1 0.84 

checks DescendantTokenCheck 2 2 1.12 

checks GenericIllegalRegexpCheck 2 2 1.12 

checkstyle PackageNamesLoader 4 1 1.12 

checkstyle PackageObjectFactory 5 1 1.40 

checkstyle TreeWalker 3 2 1.68 

checkstyle PropertyCacheFile 4 2 2.24 

checkstyle StringArrayReader 4 2 2.24 

checks AbstractTypeAwareCheck 3 3 2.52 

grammars GeneratedJava14Lexer 4 3 3.36 

grammars GeneratedJava14Recognizer 4 3 3.36 

checkstyle DefaultContext 7 2 3.92 

checkstyle AbstractLoader 7 2 3.92 

apis FilterSet 6 3 5.04 

checks CheckUtils 8 3 6.72 

apis AuditEvent 13 3 10.92 

apis TokenTypes 9 5 12.61 

apis AbstractFileSetCheck 8 6 13.45 

checks AbstractFormatCheck 17 4 19.05 

apis ScopeUtils 19 7 37.25 

apis Scope 20 7 39.22 

apis FullIdent 21 8 47.06 

apis Check 126 14 494.12 

apis FileContents 127 14 498.04 

apis DetailAST 131 14 513.73 

apis AbstractViolationReporter 132 15 554.62 

apis LocalizedMessages 132 15 554.62 

apis StrArrayConverter 141 15 592.44 

apis Utils 136 16 609.52 

apis AutomaticBean 140 16 627.45 

apis LocalizedMessage 148 16 663.31 

apis SeverityLevel 150 16 672.27 
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A.3. Applying TWI 

Table A.3.1. Applying TWI to M5 Feature 

Packages Class |CEI| |CAI| TWI*1000 

weka.classifiers.m5 M5Prime 35 1 1.95 

weka.classifiers.m5 Node 19 2 5.57 

weka.classifiers.m5 Function 12 3 10.19 

weka.classifiers.m5 SplitInfo 11 3 10.53 

weka.classifiers.m5 Options 9 3 11.31 

weka.classifiers.m5 Impurity 10 4 14.54 

weka.classifiers.m5 Dvector 9 4 15.08 

weka.classifiers.m5 Values 8 5 19.6 

weka.classifiers.m5 Errors 1 4 24.23 

weka.classifiers.m5 Ivector 1 4 24.23 

weka.filters ReplaceMissingValuesFilter 11 7 24.58 

weka.filters NominalToBinaryFilter 11 7 24.58 

weka.classifiers.m5 Matrix 5 7 31.47 

weka.classifiers.m5 M5Utils 8 10 39.2 

weka.classifiers Evaluation 18 33 94.32 

weka.filters Filter 10 33 119.95 

weka.classifiers Classifier 8 35 137.2 

weka.estimators KernelEstimator 7 37 151.23 

weka.core Queue 1 34 205.95 

weka.core Statistics 1 49 296.81 

weka.core Instances 7 108 441.43 

weka.core Instance 7 108 441.43 

weka.core Attribute 5 109 490.08 

weka.core Utils 4 126 599.16 

weka.core FastVector 2 127 696.1 
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Table A.3.2. Applying TWI to CheckCode Feature. 

Package Class |CAI| |CEI| TWI*1000 

coding ExplicitInitializationCheck 1 22 1.97 

coding MagicNumberCheck 1 22 1.97 

coding IllegalTokenTextCheck 1 21 2.01 

coding IllegalTypeCheck 1 21 2.01 

coding NestedIfDepthCheck 1 21 2.01 

coding RedundantThrowsCheck 1 21 2.01 

coding SuperCloneCheck 1 21 2.01 

coding SuperFinalizeCheck 1 21 2.01 

coding DeclarationOrderCheck 1 20 2.05 

coding HiddenFieldCheck 1 20 2.05 

coding IllegalCatchCheck 1 20 2.05 

coding JUnitTestCaseCheck 1 20 2.05 

coding MissingSwitchDefaultCheck 1 20 2.05 

coding CovariantEqualsCheck 1 19 2.09 

coding IllegalInstantiationCheck 1 19 2.09 

coding IllegalTokenCheck 1 19 2.09 

coding NestedTryDepthCheck 1 19 2.09 

coding ArrayTrailingCommaCheck 1 18 2.14 

coding AvoidInlineCondCheck 1 18 2.14 

coding DoubleCheckedLockCheck 1 18 2.14 

coding EmptyStatementCheck 1 18 2.14 

coding EqualsHashCodeCheck 1 18 2.14 

coding FinalLocalVariableCheck 1 18 2.14 

coding InnerAssignmentCheck 1 18 2.14 

coding PackageDeclarationCheck 1 18 2.14 

coding ParameterAssignmentCheck 1 18 2.14 

coding ReturnCountCheck 1 18 2.14 

coding SimplifyBooleanExpCheck 1 18 2.14 

coding SimplifyBooleanReturnCheck 1 18 2.14 

coding StringLiteralEqualityCheck 1 18 2.14 

checkstyle DefaultConfiguration 1 2 3.78 

checks DescendantTokenCheck 2 19 4.19 

checks GenericIllegalRegexpCheck 2 19 4.19 

checkstyle TreeWalker 3 32 4.94 
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checkstyle Checker 3 21 6.03 

checks AbstractTypeAwareCheck 3 20 6.15 

coding AbstractSuperCheck 3 20 6.15 

coding AbstractNestedDepthCheck 3 18 6.42 

checkstyle DefaultLogger 3 11 7.65 

checkstyle ConfigurationLoader 3 3 10.58 

checkstyle PropertiesExpander 3 2 11.35 

checkstyle PackageNamesLoader 4 4 13.31 

grammars GeneratedJava14Lexer 4 3 14.11 

checkstyle PropertyCacheFile 4 2 15.13 

grammars GeneratedJava14Recognizer 4 2 15.13 

checkstyle StringArrayReader 4 1 16.58 

checkstyle PackageObjectFactory 5 2 18.92 

apis FilterSet 6 5 19 

apis AbstractFileSetCheck 8 13 19.29 

checkstyle DefaultContext 7 2 26.48 

checks CheckUtils 8 3 28.22 

checkstyle AbstractLoader 7 1 29.01 

checks AbstractFormatCheck 17 18 36.38 

apis TokenTypes 9 1 37.3 

apis AuditEvent 13 3 45.86 

apis ScopeUtils 19 3 67.02 

apis FullIdent 21 2 79.45 

apis Scope 20 1 82.89 

apis Check 126 17 275.67 

apis AbstractViolationReporter 132 8 370.28 

apis FileContents 127 4 422.73 

apis AutomaticBean 140 6 424.05 

apis LocalizedMessages 132 3 465.61 

apis DetailAST 131 1 542.94 

apis LocalizedMessage 148 2 559.96 

apis Utils 136 1 563.67 

apis StrArrayConverter 141 1 584.39 

apis SeverityLevel 150 1 621.69 
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A.4. Applying WTWI 

Table A.4.1. Applying WTWI  to M5 Feature 

Packages Class |CEI| |CAI| |PAI| WTWI*1000 

weka.classifiers.m5 M5Prime 35 1 1 0.2 

weka.classifiers.m5 Node 19 2 1 0.56 

weka.classifiers.m5 Function 12 3 1 1.02 

weka.classifiers.m5 SplitInfo 11 3 1 1.05 

weka.classifiers.m5 Options 9 3 1 1.13 

weka.classifiers.m5 Impurity 10 4 1 1.45 

weka.classifiers.m5 Dvector 9 4 1 1.51 

weka.classifiers.m5 Values 8 5 1 1.96 

weka.classifiers.m5 Errors 1 4 1 2.42 

weka.classifiers.m5 Ivector 1 4 1 2.42 

weka.classifiers.m5 Matrix 5 7 1 3.15 

weka.classifiers.m5 M5Utils 8 10 1 3.92 

weka.filters ReplaceMissingValuesFilter 11 7 3 7.37 

weka.filters NominalToBinaryFilter 11 7 3 7.37 

weka.classifiers Evaluation 18 33 4 37.73 

weka.filters Filter 10 33 4 47.98 

weka.classifiers Classifier 8 35 4 54.88 

weka.estimators KernelEstimator 7 37 5 75.62 

weka.core Queue 1 34 5 102.97 

weka.core Statistics 1 49 8 237.45 

weka.core Instances 7 108 8 353.15 

weka.core Instance 7 108 8 353.15 

weka.core Attribute 5 109 8 392.06 

weka.core Utils 4 126 9 539.24 

weka.core FastVector 2 127 9 626.49 
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Table A.4.2. Applying WTWI to CheckCode Feature 

Package Class |CAI| |CEI| |PAI| WTWI*1000 

coding ExplicitInitializationCheck 1 22 1 0.12 

coding MagicNumberCheck 1 22 1 0.12 

coding IllegalTokenTextCheck 1 21 1 0.12 

coding IllegalTypeCheck 1 21 1 0.12 

coding NestedIfDepthCheck 1 21 1 0.12 

coding RedundantThrowsCheck 1 21 1 0.12 

coding SuperCloneCheck 1 21 1 0.12 

coding SuperFinalizeCheck 1 21 1 0.12 

coding DeclarationOrderCheck 1 20 1 0.12 

coding HiddenFieldCheck 1 20 1 0.12 

coding IllegalCatchCheck 1 20 1 0.12 

coding JUnitTestCaseCheck 1 20 1 0.12 

coding MissingSwitchDefaultCheck 1 20 1 0.12 

coding CovariantEqualsCheck 1 19 1 0.12 

coding IllegalInstantiationCheck 1 19 1 0.12 

coding IllegalTokenCheck 1 19 1 0.12 

coding NestedTryDepthCheck 1 19 1 0.12 

coding ArrayTrailingCommaCheck 1 18 1 0.13 

coding AvoidInlineCondCheck 1 18 1 0.13 

coding DoubleCheckedLockCheck 1 18 1 0.13 

coding EmptyStatementCheck 1 18 1 0.13 

coding EqualsHashCodeCheck 1 18 1 0.13 

coding FinalLocalVariableCheck 1 18 1 0.13 

coding InnerAssignmentCheck 1 18 1 0.13 

coding PackageDeclarationCheck 1 18 1 0.13 

coding ParameterAssignmentCheck 1 18 1 0.13 

coding ReturnCountCheck 1 18 1 0.13 

coding SimplifyBooleanExpCheck 1 18 1 0.13 

coding SimplifyBooleanReturnCheck 1 18 1 0.13 

coding StringLiteralEqualityCheck 1 18 1 0.13 

checkstyle DefaultConfiguration 1 2 1 0.22 

checkstyle Checker 3 21 1 0.35 

coding AbstractSuperCheck 3 20 1 0.36 

coding AbstractNestedDepthCheck 3 18 1 0.38 

checkstyle DefaultLogger 3 11 1 0.45 
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checks DescendantTokenCheck 2 19 2 0.49 

checks GenericIllegalRegexpCheck 2 19 2 0.49 

checkstyle TreeWalker 3 32 2 0.58 

checkstyle ConfigurationLoader 3 3 1 0.62 

checkstyle PropertiesExpander 3 2 1 0.67 

checkstyle PackageNamesLoader 4 4 1 0.78 

checks AbstractTypeAwareCheck 3 20 3 1.09 

checkstyle PackageObjectFactory 5 2 1 1.11 

checkstyle PropertyCacheFile 4 2 2 1.78 

checkstyle StringArrayReader 4 1 2 1.95 

grammars GeneratedJava14Lexer 4 3 3 2.49 

grammars GeneratedJava14Recognizer 4 2 3 2.67 

checkstyle DefaultContext 7 2 2 3.12 

apis FilterSet 6 5 3 3.35 

checkstyle AbstractLoader 7 1 2 3.41 

checks CheckUtils 8 3 3 4.98 

apis AbstractFileSetCheck 8 13 6 6.81 

apis AuditEvent 13 3 3 8.09 

checks AbstractFormatCheck 17 18 4 8.56 

apis TokenTypes 9 1 5 10.97 

apis ScopeUtils 19 3 7 27.6 

apis Scope 20 1 7 34.13 

apis FullIdent 21 2 8 37.39 

apis Check 126 17 14 227.02 

apis AbstractViolationReporter 132 8 15 326.72 

apis FileContents 127 4 14 348.13 

apis AutomaticBean 140 6 16 399.11 

apis LocalizedMessages 132 3 15 410.83 

apis DetailAST 131 1 14 447.13 

apis StrArrayConverter 141 1 15 515.64 

apis LocalizedMessage 148 2 16 527.02 

apis Utils 136 1 16 530.51 

apis SeverityLevel 150 1 16 585.12 

 


