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Abstract. Software maintenance accounts for a significant proportion
of the cost of the software life cycle. Software engineers must spend a
considerable amount of time understanding the software system func-
tional attributes and non-functional (e.g., availability, security, etc.) as-
pects prior to performing a maintenance task. In this paper, we propose
a dynamic analysis approach to recover availability requirements from
system execution traces. Availability requirements are described and vi-
sualized using the Use Case Maps (UCM) language of the ITU-T User
Requirements Notation (URN) standard, extended with availability an-
notations. Our UCM-based approach allows for capturing availability re-
quirement at higher levels of abstraction from low-level execution traces.
The resulting availability UCM models can then be analyzed to reveal
system availability shortcomings. In order to illustrate and demonstrate
the feasibility of the proposed approach, we apply it to a case study
of a network implementing the HSRP (Hot Standby Router Protocol)
redundancy protocol.

1 Introduction

Software comprehension is an essential part of software maintenance. Gaining a
sufficient level of understanding of a software system to perform a maintenance
task, is a time consuming and requires studying various software artifacts (e.g.,
source code, documentation, etc)[1]. However, in practice most of the existing
systems have a poor and outdated documentation, if it exists at all. One of the
common approaches in getting to understand a software is the study of its run-
time behavior, also known as dynamic analysis [2]. Dynamic analysis typically
comprises the analysis of system behavioral aspects based on data gathered from
a running software (e.g., through instrumentation). Dynamic analysis, however,
suffers from the size explosion problem of typical execution traces [3]. In fact,
executing even a small system may generate a considerably large set of events.
Hence, there is a need to find ways to create higher abstractions from low-level
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traces that can later be mapped to system requirements. To tackle this issue,
many abstraction-based techniques have been proposed [4-6], allowing for the
grouping of execution points that share certain properties, which results in a
more abstract representation of software.

The widespread interest in dynamic analysis techniques provides the major
motivation of this research. We, in particular, focus on recovering non-functional
requirements, such as availability requirements, from system execution traces.
This is particularly important for critical systems to verify that the running
implementation supports availability requirements, especially after the system
has undergone several ad-hoc maintenance tasks. Avizienis et al. [7] have defined
the availability of a system as being the readiness for a correct service. Jalote [8]
deemed system availability is built upon the concept of system reliability by
adding the notion of recovery, which may be accomplished by fault masking,
repair, or component redundancy.

In this paper, we propose the use of to Use Case Maps [9] language, part
of the ITU-T User Requirements Notation (URN) standard, as a visual mean
to facilitate the capturing of system availability features from execution traces.
Previous work [10-14] have considered availability tactics, introduced by Bass
et al. [15], as a basis for extending the UCM [9] language with availability an-
notations. Bass et al. [15] have introduced the notion of tactics as architectural
building blocks of architectural patterns. These tactics address fault detection,
recovery, and prevention.

This paper serves the following purposes:

— It provides an approach based on the high level visual requirements descrip-
tion language Use Case Maps [9] to recover system availability features from
execution logs. Using our approach, an analyst can select a particular feature
of interest, exercise the system with this feature and analyze the resulting
execution trace to determine whether or not availability is taken into ac-
count. Although, other visualization techniques can be employed, we have
selected the UCM language as our visualization method because it allows
for an abstract description of scenarios, that can be allocated to a set of
components. Furthermore, through the UCM stub/plugin concept, different
levels of abstractions can be considered. The resulting UCM can be later
analyzed using the UCM-based availability evaluation technique introduced
in [14].

— It extends the set of UCM-based availability features introduced in [12-14]
by introducing UCM-based distributed redundancy modeling. The proposed
extensions are implemented using metadata within the jJUCMNav [16] tool.

— It demonstrates the feasibility of our proposed approach using a case study of
a network implementing the Cisco Hot Standby Router Protocol (HSRP) [17].

The remainder of this paper is organized as follows. The next section in-
troduces briefly the availability description features in Use Case Maps. Our
proposed approach for the recovery of availability requirements from execution
traces is presented in Sect. 3. Section 4 demonstrates the applicability of the pro-
posed approach to the Cisco proprietary Hot Standby Router Protocol (HSRP).



A discussion of the benefits of our approach and a presentation of the threats to
validity is provided in Sect. 5. Finally, conclusions and future work are presented
in Sect. 6.

2 Describing Availability Requirements in Use Case
Maps

In this section, we recall the UCM-based availability requirements descriptions
that are relevant to this research. We mainly focus on (1) the implementation of
the exception tactic, part of the UCM fault detection modeling category, and on
(2) the redundancy modeling, part of the UCM fault recovery modeling category.
For a detailed description of UCM-based availability features, interested readers
are referred to [14], where the UCM-based availability extensions are described
using a metamodel.

2.1 Exception Modeling

Ezceptions are modeled and handled at the scenario path level. Exceptions may
be associated with any responsibility along the UCM scenario execution path. A
separate failure scenario path, starting with a failure start point, is used to han-
dle exceptions. The failure path guard condition (e.g., R1-FD-Cond in Fig. 1(a))
can be initialized as part of a scenario definition (i.e., scenario triggering condi-
tion) or can be modified as part of a the responsibility expression. The handling
of the exception, embedded within a static stub (e.g., R1-EzceptionHandling in
Fig. 1(a)), is generally subject to the implementation of fault recovery tactic
through some redundancy means (see Sect. 2.2). Figure 1(c) shows the meta-
data attributes of a responsibility (within the R1-ExceptionHandling stub) im-
plementing the StateResynchronization tactic. After handling R1 exception, the
path continues explicitly with responsibility R2.
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[[R1-FD-Cond]] R1-BxceptionHandiing Tactic Exception AVC.Et FaultRecovery o

TimeStamp  09:49:51.765 Tactic StateResynchronization

(a) C1 exception handling sce-  (b) R1 metadata (c) Fault recovery meta-
nario data

Fig. 1. UCM exception handling tactic

In addition to the three metadata attributes associated with responsibility R1
(AvCat (specifies the availability category, e.g., FaultDetection), Tactic (specifies
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the deployed tactic, e.g., Fxception), and Severity (fault severity, e.g., 1 being
the most severe) that have been introduced in previous research [14,12], we add
a timestamp attribute to be able to capture the occurrence time of the respon-
sibility (extracted from the log files). Other time-based attributes such as delay
and duration, introduced as part of the Timed Use Case Maps language [18], are
not necessary in our context.

2.2 Redundancy Modeling

Fault recovery tactic focuses mainly on redundancy modeling in order to keep
the system available in case of the occurrence of a failure. To model redundancy,
UCM components are annotated with the following attributes: (1) GroupID
(identify the group to which a component belongs in a specific redundancy
model), (2) Role (active or standby role), (3) RedundancyType (specifies the
redundancy type, e.g., hot, warm, or cold, (4) ProtectionType (denotes the re-
dundancy configuration, e.g., 1+1, 1:N, etc.), and (5) Voting (specifies whether
a component plays a voting role in a redundancy configuration).

Cl

P Name Value Name Value

Groupld Gl Groupld G1
ProtecType 1+1 ProtecType 1+1
RedType Hot RedType Hot
Role Active Role Stdby
Voting false Voting false

(a) Two redun- (b) C1 attributes (c) C2 attributes

dant compo-

nents

Fig. 2. UCM node protection

Figure 2 illustrates an example of a system with two components C1 (active)
and C2 (standby) participating in a 141 hot redundancy configuration. It is
worth noting that the above redundancy annotations refer to the initial system
configuration state. The operational implications, in case of failure for instance,
can be described using the UCM scenario path, e.g., as part of an exception
handling path (see Sect. 2.1).

2.3 UCM Distributed Redundancy Modeling

The generic UCM-based annotations describing redundancy [14, 12], presented in
the previous section, can be refined to cover redundancy of components that are
not physically collocated. Two or more components can be part of a redundancy
configuration without being physically on the same device. Such a redundancy



can be achieved through a redundancy protocol such as HSRP (Hot Standby
Router Protocol) [19] and VRRP (Virtual Router Redundancy Protocol) [20] in
[P-based networks.

C1 Mame Value Mame Value
" C1-1 €1-2 £p RedundancyProtocol HSRP RedundancyProtocol HSRP
RedundancyProtecelGroup 1 RedundancyProtocelGroup 2
..-""" B / —‘ RedundancyProtocolState  active RedundancyProtocolState  active
VirtuallP 1111 VirtuallP 2222
| C1-1 Metadata C2-1 Metadata
L2 ’ Name Value Mame Value
€2-1 , C2-2 RedundancyProtecol HSRP RedundancyProtocol HSRP
RedundancyProtecolGroup 1 RedundancyProtocelGroup 2
RedundancyProtocolState  standby  RedundancyProtocolState  standby
VirtuallP 1111 VirtuallP 2222
C1-2 Metadata C2-2 Metadata
(a) Distributed UCM Architecture (b) Component Metadata Attributes

Fig. 3. Distributed UCM architecture implementing more than one redundancy con-
figuration

In order to describe redundancy protocols in UCM, additional metadata at-
tributes need to be incorporated:

— RedundancyProtocol: denotes the protocol name, e.g., HSRP, VRRP, etc.
RedundancyProtocolGroup: denotes the redundancy group associated with
the redundancy protocol).

— VirtualIP: denotes the virtual IP address shared by one or more distributed
components.

RedundancyProtocolState: denotes the redundancy protocol state, e.g., ac-
tive, standby, init, etc.).

Depending on the targeted abstraction level, other relevant metadata attributes
may be added like MacAddress. Figure 3(a) illustrates a generic UCM architec-
ture with 2 main components C1 and C2. Two HSRP redundancy configurations
are described, one for group 1 that involves subcomponents C1-1 (active state)
and C2-1 (standby state), and the other for group 2 that involves subcomponents
C1-2 (standby state) and C2-2 (active state). More details about HSRP can be
found in Sect. 4.

3 Recovey of Availability Requirements from Execution
Traces

Figure 4 illustrates our proposed approach. The first step consists on collecting
system logs (from a single or multiple systems). Typically, a log file is composed
of individual log entries ordered in chronological order. Each entry is described
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as a single line in plain text format and may contain one or more of the follow-
ing attributes: a time-stamp, the process ID generating the event/error, opera-
tion/event prefix, severity of the error, and a brief description of the event/error.
Some systems (e.g., Apache and IIS) generate separate log files for access and
error.

Identification of a set of interacting components
with respect to one or many features

l

Log of Component C1 | | Log of Component Ci |

Collect log from a single
component

Merging logs

K

Feature(s) keywords (e.g., protocol/feature name)

User actions (e.g., new configurations, shutdown an interface, etc.)
Events to monitor (e.g., new/lost neighbor, session timeout, etc.)
Application ID, thread ID, Database name, etc.

Log Customization

| Phase 1 |+I Phase 2 |*>

* Exception path triggers and

their respective severity Extraction and refinement of execution phases
* Exception path actions/events T
Phases correlation aids A4

{ Creation of correlations between execution phases }

A 4

UCM normal path + Components Responsibilities
UCM exception path metadata metadata

Construction of a UCM with availability annotations

Fig. 4. Recovery of Availability Requirements from Execution Traces Approach

In case, we are targeting systems with more than one component, a prior
knowledge of the possible interactions between the involved components (e.g.,
protocols used to coordinate the interacting components) is required. After iden-
tifying the interacting components, their respective log files are merged and
sorted based on timestamps. In order to have a focused analysis of the resulting
log, we may reduce its size by applying analyst-defined customization criteria. An
analyst may reduce or extend a log window, include or exclude log entries based
on features/protocols names, administrator operator actions (e.g., add/remove
configuration, shut / unshut network interfaces, etc.), events to monitor (e.g.7 ses-
sion timeout, network interfaces state changes, neighbors up/down, etc.). To



make an insightful decision, these criteria are applied to the merged log rather
than individual logs.

The next step deals with the extraction of the system execution phases. An
execution phase is a grouping of a set of log entries (into clusters) based on a
predefined set of criteria, such as functionality, component ID, system events,
user actions, etc. Our ultimate goal is to be able to map log traces into UCMs
(the final step of our approach) using the availability annotations presented
in Sect. 2. Given the sequential nature of log file structures, additional analyst
input is required in order to distinguish a normal scenario path from an exception
path, and to construct correlations between execution phases. Analyst input may
include:

— List of potential events/actions/errors/failures triggering the exception path
and their respective severity (optional), e.g., shut/unshut a network inter-
face, protocol state changes (down/up), etc. These triggers should be placed
in the normal scenario path.

— List of potential events that should be placed in the exception path, e.g.,
failover, rollback, process restart, HSRP state changes, etc. Typically, an
exception path describes the system reaction to an error/failure (i.e., system
recovery). Hence, administrator actions should not be placed in the exception
path.

Furthermore, an analyst may specify the format and keywords that would
help the extraction of components metadata attributes. Section 4 provides an
example of component metadata recovery from HSRP log traces. In addition,
the following guidelines are developed in order to construct the execution phases
and to promote separation of concerns:

— Log entries from different components should be placed into separate phases
(i.e., an execution phase cannot span more than one component unless it is
part of a component containment configuration).

— Log entries describing different features’ events/errors should be placed into
separate phases.

— Log entries relative to user actions should be separated from system response
log.

It is worth noting that the segmentation of a log into execution phases should
not break the causality between different log entries. Finally, the last step con-
sists of mapping the execution phases into UCM models and generating the
UCM component related attributes. The following recommendations guide the
mapping process:

— Each log entry is mapped to one responsibility.

— An execution phase with more than one responsibility is described using a
plugin enclosed within a static stub (named with the name of the execution
phase).

— A phase, part of the exception path, having a single responsibility should be
enclosed within a static stub.
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— Depending on the targeted level of abstraction, sequential stubs bound to
the same component and belonging to one path (regular or exception), may
be refactored into a static stub.

— Component related information such as the redundancy protocol, the redun-
dancy group, etc., are mapped to component metadata attributes.

— In case two log entries have the same time stamp, their corresponding re-
sponsibilities should be enclosed within an AND-Fork and an AND-Join.

4 Case Study: Hot Standby Router Protocol (HSRP)

In what follows, we apply our proposed approach to the HSRP [17] redundancy
protocol.

4.1 Hot Standby Router Protocol (HSRP)

Hot Standby Router Protocol (HSRP) is a Cisco proprietary protocol that pro-
vides network redundancy for IP networks [17]. By sharing an IP address and a
MAC (Layer 2) address, two or more routers can act as a single “virtual” router,
known as an HSRP group or a standby group. A single router (i.e., Active router)
elected from the group is responsible for forwarding the packets that hosts send
to the virtual router. If the Active router fails, the Standby router takes over
as the Active router. If the Standby router fails or becomes the Active router,
then another router is elected as the Standby router. HSRP has the ability to
trigger a fail-over if one or more interfaces on the router go down. For detailed
information about HSRP, the reader is referred to RFC 2281 [19].

4.2 Experimental Setup

Figure 5 illustrates our testbed topology, used to implement and collect router
logs relative to the HSRP feature. The testbed has been built using the Graphical
Network Simulator 3 (GNS3) simulation software [21]. GNS3 allows researchers
to emulate complex networks, since it can combine actual devices and virtual
devices together. GNS3 supports the Cisco IOS by using Dynamips, a software
that emulates Cisco IOS on a PC. In our setup, we have used 4 Cisco c7200
routers (R1, R2, Sitel, and Site2) and two Ethernet switches (SW1 and SW2).
Two networks are configured (10.10.10.0/24 on the left hand side of the topology,
and 10.10.20.0/24 on the right hand side of the topology). Two HSRP groups
are configured: Groupl (virtual IP address: 10.10.10.10) on interfaces f0/0 of R1
and R2, and Group2 (virtual IP address: 10.10.20.20) on interfaces f0/1 on R1
and R2. R1 is the active router for Group 1, while R2 is the active router for
Group 2.
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Fig. 5. HSRP Experimental Setup

4.3 Cisco I0S Logging System

Logs can be collected from Cisco IOS routers through console logging (default
mode), terminal logging (displays the log messages on VTY lines), buffered log-
ging (use the router’s RAM to store logs), syslog server logging (use of external
syslog servers for log storage), and SNMP trap logging (send log messages to an
external SNMP server).

Any collected log may have one or more components from the following three

types:

1. System log messages: They can contain up to 80 characters and a percent

sign (%), which follows the optional sequence number or/and time-stamp
information, if configured [22]. Messages are displayed in this format:

seq no:timestamp: %facility-severity-MNEMONIC:description

The seq no provides sequential identifiers for log messages (it can be enabled
using the command “service sequence-numbers” in configuration mode). The
timestamp is configured using the command service timestamps log date-
time msec in configuration mode. In this case study, we enable timestamp
only. facility refers to the system on the device for which we want to set
logging (e.g., Kern (Kernel), SNMP, etc.). Severity is a single-digit code
from 0 to 7 specifying the severity of the message (e.g., 0:emergencies,
l:alerts, 2:critical, 3:errors, 4:warnings, 5:notifications, 6:informational, 7:de-
bugging). MNEMONIC is a text string that uniquely describes the mes-
sage. description is a text string containing detailed information about the
event being reported.

. User actions: Cisco IOS stores configuration commands entered by users
(e.g., configuring an interface or a protocol) using the config logger. For
example, the following log shows that the user has shut down the FastEth-
ernet0/0 interface:

*May 27 09:04:37.227: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged
command:interface FastEthernet0/0

*May 27 09:04:38.475: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged
command:shutdown
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3. Debug messages: They should only be used to troubleshoot specific prob-
lems because debugging output is assigned high priority in the CPU process.
Hence, it can render the system unusable. The following debug output is pro-
duced after enabaling debugging for the HSRP feature (using the command
“debug standby events”). It illustrates a state change from Speak to Standby
on interface Fa0/0 for Group 1:

*May 24 11:15:41.255: HSRP: Fa0/0 Grp 1 Redundancy ”hsrp-Fa0/0-1" state
Speak -> Standby

4.4 Log Collection and Segmentation

Figure 6 illustrates the collected log from router R1 (without enabling the se-
quence number and debugging options). Following the guidelines introduced in
Sect. 3, the log has been decomposed into 10 execution phases, where each
phase target a single component and describes one and only one type of ac-
tions/events. We distinguish two sub-components R1-FO/0 and R1-F0/1, de-
noting the FastEthernet interfaces within router R1. Phase numbering follows
sequential order and provided for each component separately. For instance, the
first phase, named R1-F0/0, in Fig 6 illustrates system log messages describing
the state of the interface FastEthernet0/0, while the second phase of R1-F0/0
component describes an HSRP state change (i.e., %HSRP-5-STATECHANGE)
from Standby to Active. Phase 3 of R1-F0/0 shows that the user has entered
the config mode and shut down the interface F0/0.

*May 27 09:49:51.739: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up ri-Foso| 1
*May 27 09:49:51.763: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up g 1
*May 27 09:49:52.863: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up ri-Fo/1| 1
*May 27 09:49:52.867: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up : 1
*May 27 09:50:33.063: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Standby -> Active R1-FO/0] 2
*May 27 09:50:56.043: %HSRP-5-STATECHANGE: FastEthernet0/1 Grp 2 state Speak -> Standby R1-FO/1] 2
*May 27 09:50:57.315: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:interface FastEthernet0/0 3
*May 27 09:50:58.287: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:shutdown R1-FO/0|
*May 27 09:50:58.295: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Active -> Init R1-FO/0] 4
*May 27 09:51:00.267: %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to administratively down R1-F0/0
*May 27 09:51:01.267: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to down ' N 5
*May 27 09:51:16.447: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:no shutdown R1-FO/0 6
*May 27 09:51:17.931: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Listen -> Active R1-F0/0_ R
*May 27 09:51:18.395: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*May 27 09:51:19.395: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up R1-FO/0 8
R1# T
Component‘ Phase

Fig. 6. Log from Router R1

Next, correlations between the extracted execution phases are identified. In
our context, exception path triggering events/actions/errors include interface
state changes (e.g., up or down) and the administrator shutting/unshutting down
interfaces. Events involving HSRP state changes are considered to be part of ex-
ception paths since they are supposed to implement fault recovery mechanism.
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For example, shutting down the interface FO/0 in phase 3 of R1-F0/0 have trig-
gered an HSRP state change moving the protocol state from Active to Init.
Finally, the correlations between the execution phases are mapped to the UCM
notation as shown in Fig. 7(a). Figures 7(b), 7(c), 7(d), 7(e), and 7(f) illus-
trate examples of UCM plugins corresponding to some execution phases stubs.
Figure 7(g) illustrates metadata attributes relative to the responsibility HSRP-
STATECHANGE-F0/0-Grpl1-Listen-Active, while Fig. 7(h) illustrates the meta-
data attributes relative to the subcomponent F0/0.

To demonstrate the applicability of our approach in the presence of more than
one system log, we have captured the log from router R2. Figure 8 illustrates the
merged log for routers R1 and R2. Sixteen phases, involving 4 subcomponents,
have been identified. The resulting UCM is depicted in Fig. 9.

It is worth noting that our choice to consider the entire log without nei-
ther customization nor chopping some parts is two fold. First, we would like to
demonstrate the UCM visualization of more than one subcomponent. Second,
although the scenario focuses on the HSRP group 1, it is important to show
that actions/events related to this group do not impact group 2 (i.e., absence of
feature interactions).

5 Discussion and Threats to Validity

One important objective of this research is to capture non-functional require-
ments from system execution traces. Our approach uses the high level require-
ment description language Use Case Maps to describe visually and using meta-
data availability requirements. UCMs offers a flexible way to represent such
requirements at different levels of abstractions using the stub/plugin concept.
However, our proposed approach and the experimental case study are subject to
several limitations and threats to validity, categorized here according to three
important types of threats identified by Wright et al. [23].

Regarding internal validity, it might not be sufficient to establish accurate
correlations between execution phases without additional semantic information
about the running system. For example, in our case study, the log entries cor-
responding to stubs R1-F0/0-Ph2 and R1-F0/1-Ph2 take place after both inter-
faces F0/0 and F0/1 came up (Fig. 7(a)). Although, these two events represent
the triggers for the R1-F0/0-Ph2 (HSRP group 1) and R1-F0/1-Ph2 (HSRP
group 2) phases, we cannot refine such correlation with the available information
at hand (i.e., triggers and exception path events). Actually, R1-F0/0-Ph2 and
R1-F0/1-Ph2 should be trigged by R1-F0/0-Ph1 and R1-F0/1-Ph1, respectively.
Additional, semantic rules are needed in order to achieve accurate correlations.
Another possible risk is log complexity. In the presented case study, we have
used routers with simple configuration and limited set of configured interfaces.
In production networks dozens of features and protocols are configured and inter-
acts with each other. This issue can be mitigated by applying log customization
based on a thorough understanding of the deployed protocols and their possible
interactions.
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Fig. 7. R1 UCM and its related plugins and metadata attributes



R1*May 27 09:49:51.739:
R1*May 27 09:49:51.763:
R2*May 27 09:49:52.351:
R2*May 27 09:49:52.371:
R1*May 27 09:49:52.863:
R1*May 27 09:49:52.867:
R2*May 27 09:49:53.595:
R2*May 27 09:49:53.603:
R1*May 27 09:50:33.063:
R2*May 27 09:50:33.979:
R2*May 27 09:50:42.011:
R1*May 27 09:50:56.043:
R1*May 27 09:50:57.315:
R1*May 27 09:50:58.287:
R1*May 27 09:50:58.295:
R2*May 27 09:50:59.199:
R1*May 27 09:51:00.267:
R1*May 27 09:51:01.267:
R1*May 27 09:51:16.447:
R1*May 27 09:51:17.931:
R2*May 27 09:51:17.899:
R2*May 27 09:51:18.395:
R1*May 27 09:51:18.867:
R1*May 27 09:51:19.395:

1

13

%LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
%LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
%LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
%LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
%HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Standby -> Active
%HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Speak -> Standby
%HSRP-5-STATECHANGE: FastEthernet0/1 Grp 2 state Standby -> Active
%HSRP-5-STATECHANGE: FastEthernet0/1 Grp 2 state Speak -> Standby
%PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:interface FastEthernet0/0
%PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:shutdown
%HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Active -> Init
%HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Standby -> Active
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to administratively down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to down
%PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:no shutdown
%HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Listen -> Active
%HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Active -> Speak
%HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Speak -> Standby
%LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

WH W N NNN B
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Fig. 8. Resulting Log from Routers R1 and R2
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Fig. 9. UCM visualization of the recovery of the merged logs from routers R1 and R2
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In terms of external validity, there is some risk related to merging logs coming
from different devices. This issue is more serious when we deal with equipments
from different vendors. Indeed, depending on the devise type and its configura-
tion, discrepancies may arise in terms of the time reference and the event logger
priority (e.g., an event logger can have a low priority on one device and a high
priority on another), which may lead to a merged log with incorrect chrono-
logical order of events. The time reference issue can be mitigated by using the
NTP (Network Time Protocol) protocol, which allows for clock synchronization
between computer systems over packet-switched, variable-latency data networks.

As for the construct validity, scalability represents the most important limi-
tation. As logs becomes more complex, the number of phases becomes difficult to
manage and hence, difficult to visualize and to navigate through. Although, the
UCM language offers a good encapsulation mechanism through the stub/plugin
concept, models can rapidly become messy with overlapping paths and com-
ponents. However, log customization (e.g., using abstraction techniques) and
reduction (e.g., reduce the time stamp window) may help reduce the severity of
the scalability issue.

6 Conclusions and Future Work

In this paper, we have proposed a novel UCM-based approach to recover and
visualize availability requirements from execution traces. To this end, our pro-
posed approach is built upon previous extensions of the UCM language with
availability annotations covering the well-known availability tactics by Bass et
al. [15]. Logs from various interacting components can be merged, customized,
then segmented into execution phases. The resulting execution stages are then
visualized using a combination of UCM regular and exception paths bound to
the set of interacting components. Metadata of responsibilities and components
implementing fault detection and recovery tactics are captured in an integrated
UCM view.

As a future work, we aim at automating the proposed approach. Furthermore,
we plan to investigate the design of semantic rules to better correlate the different
execution phases. This would allow for more accurate UCM availability models.
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