
Investigating the Capability of Agile Processes to
Support Life-Science Regulations: The Case of XP and

FDA Regulations with a Focus on Human Factor
Requirements

Hossein Mehrfard, Heidar Pirzadeh, Abdelwahab Hamou-Lhadj

Department of Electrical and Computer Engineering,

Concordia University, Montreal, QC, Canada,
{h_mehrfa, s_pirzad, abdelw}@ece.concordia.ca

Abstract Recently, there has been a noticeable increase of attention to
regulatory compliance. As a result, more and more organizations are
required to comply with the laws and regulations that apply to their
industry sector. An important aspect of these regulations is directly
related to the way by which software systems, used by regulated
companies, are built, tested, and maintained. While some of these
regulations require from these systems to support a very specific set of
requirements, others, the focus of this paper, are concerned with the
process by which the system has been built. The Food and Drug
Administration (FDA) regulations, for example, impose stringent
requirements on the process by which software systems used in medical
devices are developed. One particular focus of the FDA regulations is
on having a user-centered approach for building software for medical
devices through the use of well-known concepts in the area of human
factor engineering. In this paper, we discuss these requirements in
detail and show how Extreme Programming, an agile process, lacks the
necessary practices to support them. We also propose an extension to
XP, that if adopted, we believe it will address this particular need of the
FDA regulations for medical device software.

Keywords: Regulatory Compliance, FDA Regulations, Extreme
Programming, Software Engineering

1 Introduction

For many regulated companies, regulatory compliance has become an important
part of their business regardless of geography and industry sector. There are a
number of factors behind the recent increase of attention to regulatory compliance
including corporate scandals and the need for accountability, the reliance on
Information Technology (IT) solutions and the necessity to protect and secure
sensitive information [1]. As a result, more and more authoritative rules (i.e.,
regulations, laws, standards, and guidelines) are introduced every year putting
further constraints on the way companies are operated, managed, controlled, and
governed. Examples of these authoritative rules include Sarbanes-Oxley Act
(SOX), the Health Insurance Portability and Accountability Act (HIPAA), the
Food and Drug Administration (FDA) regulations, etc. Many of these authoritative
rules have a direct impact on the way software systems, used by regulated
companies, are developed and maintained. For example, a data records
management tool, used by a health institution which is required to comply with
HIPAA, must support many data security features such as a password-based
protection mechanism, different levels of data access control, and frequent
backups and data reliability techniques.

The overall objective of our research is to study ways to help software
companies cope with the increasing customer demand for software systems that
satisfy a large set of regulatory rules. These rules impact software development in
many ways. Some of them manifest themselves as functional requirements that
need to be supported by the final product. Many other regulations such as life-
science regulations, and particularly FDA (the focus of this paper), are concerned
with the process by which the software has been built. They define a set of
artefacts, which vary significantly in coverage and depth that the process needs to
produce in order for the resulting system to be compliant. Producing such artefacts
would normally be feasible if one adopts a traditional process. However,
traditional processes come with their own set of challenges such as a lack of
flexibility to react to changing requirements. Agile software processes, which are
popular alternatives, favour flexible development mechanisms but suffer from lack
of documentation [2, 3].

The objective of this paper is three-fold:

� Discuss the human factors requirements that FDA regulations impose
on software processes for building software for medical devices.

� Discuss how agile processes, in particular XP, lack the necessary
mechanisms to satisfy the FDA requirements for human factors
requirements.

� Propose an extension to XP that can be used in software projects that
require FDA compliance.

3

Organization of the paper: We review XP in Section 2. In Section 3, we
propose a generic framework for extending software development methodologies
to support life science regulations. In Section 4, we describe the application of our
framework to the FDA medical device regulations against XP with the focus on
Human Factors Engineering (HFE), which is one of the most important focuses of
the FDA regulations. In Section 5, we discuss related work. Finally, in Section 6,
we conclude the paper and show future directions.

2 Extreme Programming (XP)

Many practitioners consider XP as the symbol of the agile methodology. This is,
perhaps, because it is one of the first agile processes that has been proposed. In
general, XP consists of a set of individual practices that when put together can
yield a successful software process [4].

As illustrated in Figure 1, XP starts with an Exploration phase. In collaboration
with the programmer, the customer writes stories about the system features that he
expects to be available for the first release. Programmer leads the customer in this
process by raising specific questions (e.g., “is the story testable?”) [5, 6]. The
Planning phase prioritizes the collected stories based on their business values for
the following small release. The required time and efforts for a release is estimated
on a release plan in this phase [5].

At the beginning of developing a release, customer picks up stories based on
the business values that he assigns to those stories. Then programmers break down
those prioritized stories to a number of tasks and estimate the required time and
efforts for each task. Based on this estimation and the structural stories, the story
cards are reprioritized again to produce an iteration plan for whole iterations [6].
For the first iteration, it is important to choose the stories that mandate the system
structure (architecture) for consequent iterations [5]. During each iteration, the
specific set of selected stories are implemented by pair of programmers and tested
by performing acceptance testing (functional testing). The iteration is not
considered successfully implemented until it passes the acceptance test, which is
normally written by the customer for verifying that the system functionalities
satisfy the customer’s needs. Moreover, during the productionizing phase, a set of
additional performance and quality tests are conducted for the current release.
Then, the approved release is documented and deployed to the customer [5, 6].
After deploying the first release to the customer, in the maintenance phase, the
project should keep the release running for the customer by enhancing it and
fixing its existing bugs while producing new iterations simultaneously [5].

Fig. 1. XP Process Life Cycle (adapted from [5])

As Table 1 shows, XP consists of a number of roles, a set of practices, and
work products. In the table, each role is composed of a number of sub-roles. For
instance, the role “XP programmer” could be broke down to “XP architect”, “XP
interaction designer”, “XP implementer”, “XP programmer”, and “XP integrator”.
However, this classification is not rigid and like many other software processes, it
could be characterized based on the requirements of the project at hand. In our
approach, we used the main references of XP [5, 6, 7] and the Eclipse Process
Framework (EPF) model library for XP [8] to provide this table.

Table 1. The roles, practices and generated artefacts in XP

5

3 A Framework to Extend Software Methodologies to
Support Life-Science Regulations

Many Life-Science Regulations (LSRs) establish guidelines for software
development in variety of products. External auditors (e.g., FDA auditors) seek for
evidence that shows that the development team has complied with those
guidelines during the development process.

Fig. 2. A framework on how to meet life-science regulations for medical device software

LSRs often define the guidelines in a holistic way that is generic enough to be
applied to various development methodologies. Unfortunately, this can cause lots
of ambiguity for software developers as no specific development methodology can
abide by the provided guidelines. For example, the FDA requests the medical de
vice software developers to build safe and reliable software while no specific
quality criteria are explicitly provided by the FDA.

Furthermore, LSRs often use terms that are not specific to software
engineering. That is, a single term can be used in more than one field while having
many completely different meanings. For instance, “risk analysis” can refer to an
activity in both software requirements engineering and project management. This
also can cause confusion in the intended meaning of a term making it difficult for
development companies to comply with medical device guidelines as the
developers do not know what they specifically have to follow.

In our approach, we alleviate the stated problems by following a framework
through which we can extend a software development methodology of interest in a
way that it can support a life science regulation. This framework (Figure 2) is
composed of the following steps:

1. We visit the LSR guidelines and extract the guidelines related to software
development.

2. We study these requirements from the software process engineering
perspective and present typical software practices and documentation that
can help developers follow the LSR guidelines.

3. According to the suggested practices and documentation for the LSR
compliance, we investigate the capabilities of our desired software
development methodology for supporting the LSR requirements.

4. Based on our evaluation on how well our desired software development
methodology can support the extracted requirements, we propose a possible
extension of the methodology to support the missing requirements.

4 FDA and XP

The Food and Drug Administration (FDA) regulations, is a LSR that imposes
stringent requirements on the process by which software systems used in medical
devices are developed [9, 10, 11, 12, 13]. These requirements translate into
various software artefacts that must be made available for the software to be FDA-
compliant. In this paper, we discuss these requirements in detail and show its
possible lack of capability of an agile process such as XP to meet these
requirements. For this we took the steps mentioned in our generic framework.
First, we went through the FDA guidelines associated with medical devices and
extracted the guidelines related to software development. Then, we studied these
guidelines from the software engineering processes perspective and presented
typical software practices and documentation that can help developers follow FDA
guidelines. For this, we took the following three steps to extract the software
development requirements from the FDA:

1. We went through the guidelines for FDA medical devices and extracted the
related software development requirements.

2. Among those extracted requirements, we collected software process related
requirements.

3. We clarified each of FDA software process requirements by proposing a set

of software practices and documentations for each of them. This
requirements clarification is done by looking at the FDA requirements from
a software engineering perspective.

7

Table 2 shows the results of taking these steps. As illustrated in this table, we
classified FDA software development requirements into four phases:
Requirement, Design, Coding and Construction, and Testing. For each phase the
required FDA practices are detailed.

Table 2. FDA requirements for medical device software

Next, we investigated the capabilities of XP for supporting FDA requirements
according to the suggested practices documentation for FDA compliance. For this,
considering software process requirements that are extracted from FDA medical

devices’ guidelines, we evaluated XP capability for supporting these requirements.
The result of this evaluation is reflected in Table 3.

Table 3. Level of XP support for FDA requirements for medical device software

As illustrated in Table 3, XP lacks support for many FDA practices and
requirements. Therefore, we extended XP for the missing FDA requirements.
Before starting to extend XP to support FDA requirements we tried to identify
possible challenges. Due to direct or indirect interactions of medical devices’
software with human lives, FDA requires many practices as well as
documentations for verification and validation of developing software. The
importance of documentation for FDA derives from achieving high quality
software for developers and the fact that FDA auditors need some level of
documentation to approve the software. The FDA software process requirements
are more fitted to the type of software processes called plan-driven processes such
as RUP. Plan-driven process is a disciplined process for software development
that relies on heavily documented knowledge and stringent practices [14]. On the
other hand, XP emphasizes on less documentation and formality within the
development life cycle. Thus, in extending XP we tried to reach a trade-off
between keeping the process agile but at the same time inline with FDA. We
extended XP by adding necessary sub-roles and practices that can support the

9

requirements that were missing. Although we studied in detail FDA requirements
and whether they are supported by XP or not, in this paper, we only discuss our
mapping process between FDA and XP by focusing on one important FDA
requirement, which consists of the need for a process to support Human Factors
Engineering practices – This is important for medical software since any error can
cause human lives.

4.1 FDA and HFE

The FDA highlights the importance of Human Factors Engineering (HFE) during
the software design process. The FDA defines human factors engineering as “a
discipline that should be taken during software and hardware design to improve
human performance in using medical equipments”. This improvement should be
in accordance with end users’ abilities [12].

Considering the human factors engineering during the system design can result
in a product which causes fewer design-originated human errors. The FDA
recognizes that the design for safety of medical devices should take into account
human factors. The reason is that according to the FDA Center for Devices and
Radiological Health (CDRH), the lack of attention to human factors during
product development may lead to errors that can potentially cause serious patient
injuries or even death [12].

The FDA medical device guidelines propose a set of requirements for HFE in
medical device projects. In our study, we considered medical device projects as
computer based system projects due to their software and hardware requirements.

In addition to HFE requirements for medical projects, FDA guidelines include
HFE requirements during software development. The FDA highlights “software
usability” as an HFE necessity to reach safety in software [9]. Furthermore, the
FDA requires activities (e.g., usability test, risk analysis, prototyping and review)
and produced documents (e.g., a test plan) during the software development
process to accomplish the HFE requirement.

The FDA also provides a number of advices on how to deal with HFE on
software design. To reach the HFE in software design, the FDA suggests
“following Human Computer Interface (HCI) guidelines”, “improving software
usability”, and “performing software design coordinated with hardware design”.
Here, we only consider the “improving software usability during software design”
requirement as an example. To improve software usability, the FDA suggests a
number of usability tests such as scenario-based testing, and testing the product by
users per iteration of software development [12].

Next, this FDA general guideline needs to be rewritten from a software
engineering point of view. For this, we need to have a concrete explanation of
software usability during software design.

From the software engineering perspective, the usability of software is
considered as a non-functional attribute that should be planed for during the
development process [15]. Software Usability Engineering defines the usability of
software based on seven subjective and objective characteristics:
understandability, learnability, memorability, efficiency, low-error rate,
compliance to standards and guidelines, and user satisfaction [16, 17]. These
software characteristics are evaluated to measure the usability of the final software
product.

Most of the existing usability techniques are suitable for the complete software
system and do not measure usability in software architecture during development
[17]. Based on usability definition, there should be techniques that are capable of
assessing the usability of software during the design process. In addition, the
usability of software is not limited to user interface design, rather depends on
functionality of software such as undo functionality [17].

Moreover, there are sets of design solutions such as usability patterns and
usability properties that increase usability of a software application, but these
design solutions may cause changes to the software architecture [18]. To consider
usability in software architecture design, numbers of architecture sensitive
usability patterns are created that can be applied in high-level design such as
actions on multiple objects, multiple views, and user profiles [18]. Moreover,
there is a software architecture assessment technique called scenario-based
assessment technique that provides early assessment of software architecture from
usability point of view [18].

4.2 XP and HFE

The FDA requires high quality of usable software to reach HFE in software
design. As mentioned before, the FDA suggests following HCI guidelines and
usability engineering in software design. The XP is concerned about end users of
software product by defining the role interaction designer. Interaction designer as
the sub-role of XP programmer is responsible for evaluating usage of the deployed
system. This evaluation results in to specify future functionalities of system by
defining additional possible user stories. In addition, interaction designer refines
the user interface according to usage evaluation which is developed during several
iterations to release [7, 19].

During exploration phase, XP does not mention how to deal with usability in
the architectural design. To design the software system architecture, XP suggests
building system prototype in exploration phase to evaluate possible architectures

11

of software, create the high level design (architecture) of software in exploration
and planning phases, and finally the architecture is consolidated in first release [5,
7]. There are two practices in XP that affect the design of architecture: system
metaphor and simple design. System metaphors are shared story to describe how
the system works and simple design makes easier to understand each design
component [20]. But there is nothing in XP about following architectural patterns
and assessing usability in architecture.

Constantine and Lockwood [21] believe that XP advocate a user-centered
design because of the dependency of XP on customer feedback, setting goals
based on what customers want, and getting iterative rapid prototype makes the
development team design a system that the customer wishes, but not necessarily
what he really needs. One of the drawbacks of this approach is that it is not
possible to satisfy all stakeholders when the project has many stakeholders. This is
due to the complexity of dealing with multiple stakeholder requests that might be
conflicting.

As a result we conclude that XP does not satisfy FDA expectations to provide
enough practices to back up usability in software design. Despite the existence of
interaction designer, XP practices are not enough to handle usability in software
projects that they need considerable amount of design due to scale of project.

4.3 Extending XP to Support HFE

As mentioned earlier, the most important aspect of HFE is usability. Thus, we
propose an extension of XP abided by usability inside process. We base our efforts
on providing major user stories on exploration phase. Based on the work done by
Obendorf et al., they defined sub phases during the XP exploration phase to meet
software usability in design [22].

Fig. 3. The extended XP exploration phase

As illustrated in Figure 3, the exploration phase contains following sub-phases
before prioritizing stories for each iteration: contextual investigation, requirements
scenario, vision/use scenario and stories. Contextual investigation is the method
for understanding application domain. This method comes from Contextual

Inquiry with less emphasis on completeness and modeling of gathered
information. Contextual investigation uses interview and workplace observation to
understand the use context, responsibilities and relationships of end users [23].
Requirement Scenario gets its basics from Problem Scenario in Scenario-Based-
Engineering [24]. Requirement scenarios give details about the use of tools and
their functionality which are already developed in specified workplace. The
Vision or Use Scenario provides a consistent system look with problem statement
and its corresponding solution for the specified system [23]. Additional
investigation and feedback from users in each increment enhances the requirement
scenarios and vision. The first three sub-phases result in to reach XP stories for
that increment. In other words, the prioritization of stories for each increment is
performed in the exploration phase of the extended XP.

Fig. 4. The Extended XP Iterations to Release Phase

Besides extending the exploration phase in XP to handle usability in design, the
extended XP could contain practices such as prototyping and redesigning in the
Iterations to Release phase [23].

As mentioned before, in the first iteration during a release, the structural stories
are chosen to consolidate architecture. Based on the achieved feedbacks by the
end of each iteration, design could be refined or redesigned according to the
significance of feedbacks. Since XP design models are informal like drawing on
whiteboard, we suggest recording all informal design models to be able to
redesign later. In addition, as we mentioned earlier in Section 4.1, using
prototyping techniques during design increases the chance of developing usable
software. Therefore, by doing paper prototyping after design in XP Iterations to
release, the design model could be evaluated for its usability. The extended
Iterations to Release phase is showed in Figure 4. We also suggest XP architect as
the sub-role of programmer to become the main role who is responsible for
applying usability disciplines for story card writing during exploration phase. XP
architect can do so with high customer involvement. During exploration phase,
this is the responsibility of customer to write use scenario and finally writing story
card. In original XP, interaction designer is responsible for evaluating usage of

13

system during iterations to release phase. We suggest interaction designer (XP
programmer sub-role) uses paper prototyping as a technique to facilitate usage
evaluation of system. As a result of usage evaluation, he is redesigning the already
designed features in next iteration according to this evaluation. This redesigning
software does not need to change architecture. If XP interaction designer learned
that existing architecture does not have the capability for redesign and architecture
has to change, this is the responsibility of XP architect to change software
architecture to state usability issues. Therefore, we suggest redesigning software
features are being done under supervision of XP architect to not violate specified
architecture.

5 Related Work

Kent Beck, one of the leading voices of XP, discussed the use of XP for
developing secure and safe software in [7]. He points out that features such as
safety and security have become the first priority requirements in developing
software in areas like avionics and medical systems. He suggests that XP has
sufficient capability to support developing such software systems only if
additional practices for security or safety are incorporated into XP. He also argues
that XP can be adapted to developing software for FDA medical devices by
putting the emphasis on the audit process during the XP life cycle. He considers
auditing as a continuous practice that starts early in the XP life cycle instead of
having it as a separate phase at the end of project. However, it is not explained
how XP can be extended to consider the FDA audit process, which is the concern
of this paper.

In [25, 26], McCaffery et al. try to address the issue of compliance of medical
devices with FDA regulations in process improvement level. For this they
suggested the application of a software process improvement process like CMMI
can ensure FDA regulatory compliance. Our work differs significantly from their
in several respects: our generic framework is not limited to a specific Life-Science
regulation. Furthermore, we address the same issue in the level of software
development processes by practically extending XP as an important software
development methodology.

In [27], Wright explained how he achieved ISO 9001 certification [28] using
XP in a software development company. ISO 9001 requires having a quality
management framework where business processes of the organization are
documented and monitored. Wright proposed a light-weight extension to XP that
meets ISO 9001 requirements. He first mapped ISO 9001 process requirements to
XP practices. Then, he proposed a way to monitor and measure the process
activities. For instance, he created virtual white board to add more features to XP
stories and record them. In addition, he related integration, system, and acceptance

tests to their corresponding virtual stories. The difference between Wright’s work
and this paper is that FDA requirements vary significantly from those of ISO
9001. The FDA is concerned with every single activity of a process.

6 Conclusion and Future Work

In this paper, we assessed the ability of XP to meet FDA regulations, which
impose stringent requirements on the way software is built. These requirements
are in the form of artefacts that a software process must produce for the software
system to be FDA-compliance.

Although, we studied the complete set of FDA requirements, we chose in this
paper to discuss our mapping process between FDA and XP by focusing on
Human Factor Engineering requirements that must be met by any software process
that claims to be FDA-compliant. We showed how XP does not support this
aspect, and proposed an extension to it.

We intend to work on a larger version of this paper where we discuss every
FDA requirement and if and how XP supports it or does not support it. For these
activities that are not supported by XP, we intend to propose extension that will
consist of adding new roles, practices and artefacts.

References

1. Paul N. Otto, and Annie I. Antón. Addressing legal requirements in requirements
engineering, In Proc. of the Requirements Engineering Conference, pp. 5-14, 2007.

2. Gianpaolo Cugola, and Carlo Ghezzi. Software Processes: a Retrospective and a
Path to the Future, In Proc. of the Software Process Improvement and Practice
Conference, pp. 101-123, 1998.

3. Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Challenges of
migrating to agile methodologies, Communications of the ACM, 48(5), pp. 72-78,
2005.

4. Malik Qasaimeh, Hossein Mehrfard, and Abdelwahab Hamou-Lhadj. Comparing
Agile Software Processes Based on the Software Development Project
Requirements, In Proc. of the International Conference on Innovation in Software
Engineering, pp. 49-54, 2008.

5. Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile Software
Development Methods, VTT Publications, 2002.

6. Craig Larman. Agile and iterative development: A manager’s guide, Addison-
Wesley, Boston, MA, 2003.

7. Kent Beck. Extreme Programming Explained: Embrace Change, Second Edition,
Addison-Wesley, 2005.

15

8. Eclipse Process Framework, XP model Library, URL:
http://www.eclipse.org/epf/downloads/xp/xp_downloads.php

9. FDA Guideline: General Principles of Software Validation; Final Guidance for
Industry and FDA Staff, 2002, URL:
http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocumen
ts/ucm085281.htm

10. Glossary of Computer Systems Software Development Terminology, URL:
http://www.fda.gov/ICECI/Inspections/InspectionGuides/ucm074875.htm

11. FDA Guideline: Design Control Guidance for Medical Device Manufacturers, 1997,
URL:
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Gui
danceDocuments/UCM070642.pdf

12. FDA Guideline: Do It by Design: An Introduction to Human Factors in Medical
Devices,1996, URL:
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Gui
danceDocuments/UCM095061.pdf

13. FDA Guideline: Medical Device Use-Safety: Incorporating Human Factors
Engineering into Risk Management, 2000. URL:
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Gui
danceDocuments/ucm094461.pdf

14. Barry Boehm, and Richard Turner. Balancing Agility and Discipline: A Guide for
the Perplexed, Addison Wesley Professional, pp. 26-37, 2003.

15. Jakob Nielsen. Usability Engineering, Academic Press, Boston, 1993.
16. Andreas Holzinger. Usability Engineering Methods for Software Developers,

Communications of the ACM, 48(1), pp. 71-74, 2005.
17. Elke Folmer, and Jan Bosch. Architecting for Usability; a Survey, The Journal of

Systems & Software, Elsevier, 70(1),pp. 61-78, 2004.
18. Elke Folmer, Jilles van Gurp, and Jan Bosch. Software Architecture Analysis of

Usability, Lecture Notes in Computer Science, Springer, pp. 38-58, 2005.
19. Jason Chong Lee, and Scott McCrickard. Towards Extreme(ly) Usable Software:

Exploring Tensions between Usability and Agile Software Development, In Proc. of
Agile Conference, pp. 59-71, 2007.

20. Robert L. Nord, James E. Tomayko, and Rob Wojcik. Integrating Software-
Architecture-Centric Methods into Extreme Programming (XP), Technical Note,
CMU/SEI, 2004.

21. Larry L. Constantine, and Lucy A. D. Lockwood. Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley,
1999.

22. Hartmut Obendorf, Axel Schmolitzky, and Matthias Finck. XPnUE – Defining and
Teaching a Fusion of eXtreme Programming and Usability Engineering, In Proc. of
HCI Educators Workshop, inventively: Teaching theory, design and innovation in
HCI, 2006.

23. Hartmut Obendorf, and Matthias Finck. Scenario-Based Usability Engineering
Techniques in Agile Development Processes, In Proc. of the International
Conference on Human Factors in Computing Systems, pp. 2159-2166, 2008.

24. Mery Beth Rosson, and John M. Carroll. Usability Engineering: Scenario-based
Development of Human-Computer Interaction, Morgan Kaufmann, 2001.

25. Fergal McCaffery, Donald McFall, Peter Donnelly, Frederick George Wilkie, and
Roy Sterritt. A software process improvement lifecycle framework for the medical
device industry, In Proc. of the 12th IEEE International Conference and Workshops
on Engineering of Computer-Based Systems, pp. 273-280, 2005.

26. Fergal McCaffery, Peter Donnelly, Donald McFall, and Frederick George Wilkie.
Software Process Improvement for Medical Industry, Studies in Health Technology
and Informatics, IOS Press, pp. 117-124, 2005.

27. Graham Wright. Achieving ISO 9001 Certification for an XP Company, In Proc. of
Extreme Programming and Agile Methods - XP/Agile Universe 2003, pp. 43-50,
2003.

28. The International Standard for Quality Management, ISO, URL:
http://www.isoqarinc.com/ISO-9001-Quality-Management-Standard.aspx

