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 Abstract – Understanding the behavioural aspects of a 
software system is an important activity in many software 
engineering activities including program comprehension and 
reverse engineering. The behaviour of software is typically 
represented in the form of execution traces. Traces, however, 
tend to be considerably large which makes analyzing their 
content a complex task. There is a need for trace simplification 
techniques that can help software engineers make sense of the 
content of a trace despite the trace being massive. In this 
paper, we present a novel algorithm that aims to simplify the 
analysis of a large trace by detecting the execution phases that 
compose it. An example of a phase could be an initialization 
phase, a specific computation, etc. Our algorithm processes a 
trace generated from running the program under study and 
divides it into phases that can be later used by software 
engineers to understand where and why a particular 
computation appears. We also show the effectiveness of our 
approach through a case study.  
 
Index Terms – Program comprehension, dynamic analysis, trace 
analysis, trace phase detection. 
 

I.  INTRODUCTION 

Software maintenance is perhaps one of the most 
difficult tasks in software engineering. Existing systems 
usually suffer from poor to non-existent documentation 
which complicates the task of software maintainers. They 
often need ways to understand the system before they can 
make any modification that preserves the system reliability. 
Research in the area of program comprehension and reverse 
engineering aims to reduce the impact of this problem by 
investigating techniques that can help software engineers 
understand large systems which has undergone several years 
of ad hoc maintenance [1].  

There exist two types of system analysis techniques: static 
and dynamic analysis. Static analysis relies on the source 
code to recover high level views of the system that can be 
used by a software engineer to understand what the system 
does and why it does it this way. The second approach, 
which is the focus of this paper, is based on the analysis of 
the behavioural aspects of a system by first executing it and 
then analyzing the generated run-time information. 

Run-time information is typically represented in the form of 
execution traces. There are several techniques for generating 
execution traces including instrumenting the system or the 
execution environment. Traces, however, have been 
historically difficult to work with since they can be 
overwhelmingly large. Recently, there has been an increase 
in the number of trace analysis tools that can help engineers 
make sense of large traces. These tools rely on some sort of 
abstraction techniques that vary significantly from one study 
to another but with a common objective being to extract 
high-level views from raw traces (e.g. [2, 3, 4]). These 
techniques suffer from many drawbacks including the fact 
that they rely heavily on users to distinguish important trace 
content from noise. This is usually a complex task, 
especially when applied to large traces.  

In this paper, we present a novel technique for simplifying 
the analysis of execution traces by devising an algorithm 
that can divide a trace content into various fragments that 
correspond to the execution phases of a program. We define 
an execution phase as part of a program that implements a 
specific task such as initializing variables, performing a 
particular computation, etc. It is expected that a typical run 
of a program will include several phases that correspond to 
the task being performed. An execution phase has also been 
defined in other areas such as in program optimization as 
any stable period in which the execution of a program uses 
the same amount of resources [10, 11, 12]. 

In this paper, we focus on traces of routine (method) calls, 
which are commonly used for the purpose of program 
comprehension [5, 6]. We use the terms method, routine, 
and function to mean the same thing. Our phase detection 
algorithm is based on the fact that a phase shift within a 
trace appears when a certain set of methods responsible for 
implementing a particular task and which are prevalent in 
one phase starts to “fade” as the program enters a new 
phase, where new methods start taking place. The algorithm 
operates on the trace while it is generated (i.e. on the fly), 
which is usually preferable to offline processing since it 
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eliminates the need to save the entire trace even if only part 
of it is needed. 

We have not come across any study in the area of trace 
analysis for program comprehension that deals with 
execution phase detection. Perhaps, the closest studies to 
ours are the ones proposed by Cornelissen et al. [7] and 
Reiss et al. [13, 14] where the user can visually discern 
major phases in the execution scenario in execution mural 
views that help outline the system’s general functionality. 
These techniques can be further explored to detect phases 
and where phase transitions appear.  

The remaining part of this paper is organized as 
follows: The phase detection algorithm is presented in 
Section 2. In Section 3, we show the effectiveness of our 
approach when applied to a case study. We conclude the 
paper in Section 4.   

II. PHASE FINDING 

The idea behind our phase detection approach is to 
detect when and where during the execution of a program, 
the methods that implement a particular phase start to 
disappear as new methods begin to emerge, indicating the 
beginning of another phase. Our proposed phase detection 
algorithm operates on a trace while it is generated (i.e., on 
the fly). This is contrasted with an offline approach, where 
the entire trace is first collected before applying the 
algorithm. Online processing of traces is usually more 
desirable than an offline approach since the users can see 
the results early and may need to make decisions based on 
this early feedback without having to wait until the entire 
trace is generated. 

Our algorithm is composed of two key steps which are: 
 
1. Phase Change Detection: In this step, we detect if there 

an execution phase shift. In other words, we detect 
when a large number of methods of the first phase 
disappear and that new methods are invoked.   

 
2. Phase Shift Location: Once a phase change is detected, 

we need to know the exact location in the trace where 
the phase shift has taken place, i.e., at which point in 
the trace the methods of the previous phase start to 
disappear and that new ones start to appear.  

 
A.  Phase Change Detection 

In order to detect the phase changes of a program, it is 
required to capture a set of distinct methods that have been 
invoked as the program is executing. We refer to this set as 
a working set (WS). We sort in an ascending manner the 
methods of a working set based on their prevalence. This is 
used to detect the phase change (Step 1) by detecting when 
the most frequent methods become less frequent as the 
program enters a new phase. It is also used to indicate when 
the phase change has started to take effect (Step 2). As the 
program executes, its working set is subsequently updated 

so that it can reflect the changes in program’s behavior. 
Updating the working set after each new method invocation 
can be computationally expensive. Instead, the update can 
be done after a certain number of method calls (i.e., a chunk 
of methods calls). This way, the chunk size can specify the 
update rate of the working set. The chunk size is provided as 
input. Determining an appropriate chunk size that balances 
the computation overhead with the accuracy of the approach 
is a topic that we intend to tackle in the future. As shown in 
Figure 1 (lines 1 - 15), at the beginning of our phase finder 
algorithm, we make a new working set and keep a snapshot 
of the working set every time we update it until a phase 
change is detected.  
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phaseFinder(Chunki: chunk of methods, T:threshold) 
{ 
  if  (i == 1)  
    WS = new workingset() 
  for each m in Chunki 
  { // Building working sets (WS) 
      if WS.contains(m)==False 
      { 
            WS.add(m) 
      } 
      WS.rank_methods()  // ranking method within a WS 
  } 
  Snapshoti  = WS 
  if  (i == 1) 
        Snapshoto = Snapshoti 
  Distance = compare (Snapshoto, Snapshoti) 
  if (Distance < T) 
  { 
     for each candidate m  
     { // Detection of the shift location with voting 
        for chunk correspond to (Snapshoto . . Snapshoti) 
            if m.rank(chunk) is close to mid-rank 
                chunk.vote() 

    return (chunk with maximum votes) 
      } 
      Snapshoto = Snapshoti 
   } 
} 

Fig. 1. The pseudo code of phase finding algorithm 
 

Figure 2 shows an example of a routine call trace. 
Assuming that the chunk size is set to 3, the working set WS 
will contain the first three methods A, B, and C, sorted in a 
descending order based on their ranking.  

The rank of a method directly related to its prevalence. 
That is, the rank of each method is the number of methods 
with a better prevalence plus one. The prevalence function 
takes into account the frequency of a method in part of the 
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trace that has been processed so far (frequency(m)), the 
chunk number in which the method was first introduced 
(first_chunk(m)), the current chunk number (curr_chunk), 
and the chunk size (chunk_size) as shown in the following 
equation: 
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The rationale behind this function is to keep track of the 

prevalence of the methods as the algorithm goes through the 
trace chunks. If a set of methods keep appearing relatively at 
the similar rate after each chunk is processed, then this is a 
good indicator that the program is still in the same phase. 
On the contrary, if some of the methods start “fading” (i.e. 
appearing less frequently) according to a certain threshold, 
then this suggests that a new phase is taking place. We 
anticipate that the threshold is application specific and that a 
tool that supports our approach should allow enough 
flexibility to vary the threshold.  

 
Fig. 2.An example of a routine (method) call trace 

Applying the prevalence function to the methods of 
Chunk 1 in the trace of Figure 2 returns P(A) = 1/{(1-
1)+1}*3 = 1/3. Similarly, the prevalence of B and C is also 
the same, i.e. 1/3, since A, B, and C are invoked at the same 
prevalence within the first chunk. Since for each of these 
methods in the first chunk there is no method with a better 
prevalence they are all ranked 1. The working set that is 
formed after processing the first chunk is {A, B, C}. We call 
the content of the first working set, an original working set 
and we will use it as a baseline against which new updates 
of the working sets are compared. 

As the algorithm processes the upcoming chunks, it 
updates the working set by adding the newly encountered 
methods and by computing their prevalence. For example, 
the next trace chunk of the trace in Figure 2 is composed of 
the methods C, D, and B. This triggers the update of the 
working set by adding the method D and recomputing the 
prevalence of all methods. The new frequencies are 
computed as follows: 
 
P(A) = 1 / {(2-1) + 1}*3 = 1/6. 
P(B) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3. 
P(C) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3. 
P(D) = 1 / {(2-2) + 1}*3 = 1/3. 
 

This way, the content of the working set is updated to 
{B, C, D, A}. This shows that the method A, which occupies 
now the last position, has gradually started to fade, whereas 
B and C are still present. Each time we update the working 
set, we compare it with the original snapshot of the working 
set and if there is a significant change between the original 
and the current one, then this suggests that there is a new 
phase. 

In order to detect this change, we compare the methods 
of the current working set with the ones contained in the 
original working set (lines 16-18 of the algorithm). If less 
than a certain threshold, T, of the methods of the original 
working set appears in the current new working set, then 
this suggests that a phase change has taken place. 
Determining the threshold T in advance might not be 
possible since it might be application specific. We anticipate 
that a tool that supports this technique will allow enough 
flexibility to the users to vary the threshold according to 
their needs. 

However, instead of comparing all the methods of the 
current working set, one possible optimization is to compare 
only a few of them that have high ranking (i.e. the ones that 
appear in the beginning of the set). The number of methods 
can be equal to the chunk size since, in the worst case 
scenario, the number of new distinct methods that can be 
found in a new chunk is less than or equal to the chunk size.  

When applied to the previous example and by having 
the threshold randomly set to 20%, we can see that the first 
three methods of the original working set also appear in the 
beginning of the working set formed after processing the 

Original Working Set 
(Update 1) 

 
Update 2 

 
Update 3 ......... 

Chunk4 

Chunk5 

Chunk6 

Chunk7 

Chunk8 

Chunk9 
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content of Chunk 2. We continue the process of updating the 
working set and comparing the new one to the original set as 
new chunks are processed. Table 1 shows the snapshots of 
the working sets that correspond to each chunk. Using a 
20% threshold, a new phase will be detected after Chunk 8 
is processed, where none of A, B or C appear.  
 
B.  Phase Shift Location 
 

Once a new phase has been detected in the trace, the 
next step is to find the exact location of the phase transition. 
This is the objective of the phase shift location step. We 
achieve this by locating the chunk from which many 
methods have started to fade by observing the positions of 
these methods in different snapshots of the working set. We 
add the distinct methods invoked in all working sets up to 
the one in which a phase has been detected to what we call 
an observation set. The observation set resulting from 
adding the methods of previous example is: {A, B, C, D, H, 
M, N, L, P}.  

Next, we need to find the chunk where many of these 
methods start to fade. If we consider the fading of a method 
m as it is going from its best rank (somewhere in one phase) 
to its worst rank (somewhere in another phase), then the 
starting point where the ranking of the method m starts to 
decline is in the middle. We call this point a mid-rank point 
and we compute it as follows: 
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Table 2 shows the methods in the observation set and 
their mid-rank points. For example, the method A has the 
highest ranking in Chunk 1 and the lowest ranking in Chunk 
8. Its mid-rank point is therefore 4.5 (i.e., (8+1)/2).  It 
maintains a ranking close to 4.5 when Chunk 2, Chunk 5, or 
Chunk 6 are being processed (see Figure 3). For each 

method in the observation set, we list the chunks in which 
the method reaches its mid-rank point (as shown in Table 2). 

We call the chunks in which a method m reaches its 
mid-rank point as the voting chunk set of this method. This 
set indicated possible places where the method might start 
fading. For example, the voting chunk set of A is {Chunk2, 
Chunk5, Chunk6}. In other words, “A” could have started to 
disappear in either of these chunks (see Figure 3). Similarly 
the voting chunk set of the method B is {Chunk3, Chunk4, 
Chunk5, Chunk6, Chunk7} since the mid-rank of B is 2.5 
(see Figure 4). The voting chunk set of C is {Chunk5, 
Chunk6, Chunk7} as shown in Figure 5.  

To find the phase transition, we simply need to compute 
the voting chunk sets for all the methods of the observation 
set and locate the chunk that receives the highest vote. This 
is the chunk in which most methods of a phase have started 
to disappear and therefore the chunk most likely to be the 

TABLE  1.  
PHASE CHANGE DETECTION 

 

Chunk 
no. Working set name Methods introduced in 

chunk Snapshots Phase Shift 
Detected 

1 Original working set (Snapshot 1) A, B, C {A, B, C} � 
2 Snapshot 2 D {B, C, D, A} � 

3 Snapshot 3 H {C, H, A, B, D} � 

4 Snapshot 4 No new methods {C, A, B, H, D} � 

5 Snapshot 5 M {M, B, C, H, A, D} � 

6 Snapshot 6 N, L {N, L, B, C, M, H, A, D} � 

7 Snapshot 7 No new methods {N, B, H, C, L, A, M, D} � 

8 Current working set (Snapshot 8) P {N, P, L, B, H, C, M, A, D} � 
 
 

TABLE  2. 
METHODS VOTING FOR CHUNKS BASED ON MID-RANK VALUES 

 

Method 
call 

Mid-
rank 

Chunks where the rank of the method is 
close to the mid-rank value 

A 4.5 Chunk2, Chunk5, Chunk6 

B 2.5 Chunk3, Chunk4, Chunk5, Chunk6, Chunk7 

C 3 Chunk5, Chunk6, Chunk7 

D 6 Chunk3, Chunk4 

H 4 Chunk7 

M 5 Chunk6, Chunk8 

N 1 Chunk6, Chunk7, Chunk8 

L 3 Chunk8 

P 1 Chunk8 
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phase transition location.  

 
 

 
 

 

 
 

 

 

Following the previous example, the result of voting is 
shown in Table 3. The chunk which obtained the most votes 
is Chunk 6, meaning that the phase transition has started 
from this chunk. If we look at the trace of Figure 2, we can 
see that from this chunk, many methods like A, B, and C 
start appearing less frequently and the new methods like H, 
M, and N start to emerge, therefore invoking a new phase. 
 

 
III.  CASE STUDY 

A.  Target System 
 
In order to evaluate the effectiveness of our algorithm, 

which we implemented in Java, we have applied it to a trace 
generated from JHotDraw 5.2 system [8]. JHotDraw is a 
GUI framework implemented in Java for technical and 
structured graphics. It consists of 9 packages, 148 classes 
and 1963 methods. JHotDraw 5.2 has 17,819 lines of code. 

 
B.  Scenario Description 

  
To generate a simple execution trace, we used an 

execution scenario that involves a major activity for which 
we wanted to detect the phases. We applied our approach to 
identify the phases when exercising the scenario “draw a 
rectangle”. The resulting trace contained 2259 calls. Since 
JHotDraw registers all mouse movements, and mouse 
movements are required while drawing a rectangle, the trace 
that resulted from our scenario was bound to contain a lot of 
noise. We have therefore filtered these mouse movements to 
obtain a trace that is cleaner.  

We have applied our approach to the execution trace 
with the following parameter setting: The chunk size is 10 
and the threshold value is 20%.  

 
C. Results 
 

Figure 6 shows the phase shift locations resulted from 
the application of our approach on the execution trace as it 
was generated by exercising the “draw a rectangle” 
scenario. It should be noted that the first phase can be 
detected as a result of our pre-processing step (i.e. removing 
utilities [9]) which gives us a sparse section in the beginning 
of the execution trace (the end of this phase is demarcated 
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Fig. 5 The rank of method C in each snapshot 
Ranks of C = (chunk1:1, chunk2: 1, chunk3: 1, chunk4: 1, chunk5: 

2, chunk6: 4, chunk7: 4, chunk8: 5) mid-rank(C)= 3 
 

Fig. 4 The rank of method B in each snapshot 
Ranks of B = (chunk1:1, chunk2: 1, chunk3: 3, chunk4: 2,    

chunk5: 2, chunk6: 3, chunk7: 2, chunk8: 4) mid-rank(B)= 2.5 

Fig. 3 The rank of method A in each snapshot 
Ranks of A = (chunk1: 1, chunk2: 4, chunk3: 3, chunk4: 2, chunk5: 5, 

chunk6: 5, chunk7: 6, chunk8: 8) mid-rank(A) = 4.5. 

TABLE  3 
PHASE SHIFT LOCATION BASED ON MAJORITY VOTING 

 
Chunk no. Votes Phase Shift 

Chunk1 0 � 
Chunk2 1 � 
Chunk3 2 � 
Chunk4 2 � 
Chunk5 3 � 
Chunk6 5 � 
Chunk7 4 � 
Chunk8 4 � 

 



6 
 

by a dashed line). This leads us to the assumption that the 
first phase is the initialization phase of the program. To 
verify this, we checked this phase against the original 
execution trace manually. The result of this verification 
confirms the correctness of our assumption. The solid lines 
on the right-hand side of the dashed line show the phase 
shift locations as a result of applying our algorithm on the 
filtered trace. Our preliminary assumption is that these 
phases are the computational phases of the program. As a 
means of verification, we focused on these phases to have a 
more detailed view.  

Figure 7 shows a focused view of the phases that follow 
the initialization phase. This closer investigation against the 
documentation of JHotDraw reveals the most important 
phases that contribute to the major activities of the program 
while drawing a rectangle. For instance, after mapping 
Phase P3 to the execution trace, we were able to find that 
figures.RectangleFigure.drawBackground and 
figures.RectangleFigure.drawFrame are the most 
important methods specific to drawing the rectangle. Figure 
7 also shows three other major phases and their important 
activities resulting from mapping those phases to the 
execution trace. Furthermore, we found out that the last 
phase is a Finalization phase in which the sheet and then the 
application are closed. This confirms the effectiveness of 
our approach in detecting the essential phases involved in 
the implementation of drawing a rectangle in JHotDraw. 
 

As mentioned earlier, while we locate the phases inside a 
trace, the chunk where the phase is located is the chunk that 
earns the majority of votes which can also expressed as 
follows: 

votesmax = max(voteso..votesd) 
 

where, votes0 and votesd correspond to the number of votes 
for the original chunk and the chunk where the algorithm 
detects that a phase shift has taken place. To be able to 
evaluate the obtained phase shift locations are adequate, we 
introduce in this case study the metric of confidence. The 
confidence of a chunk being a phase transition location is 
the strength of its votes relative to the other candidate 
chunks. A larger difference between the highest vote and the 
average vote shows a stronger vote for the phase transition 
chunk: (i.e, a bigger  ������)  
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where, ������  is the difference between the highest vote 
(��
��� ���  (which is the number of votes of the phase 
transition chunk) and the average vote of a chunk (��	�) as 
resulted by the voting. 

0 1547  

1679 

1922 

1992 

2203 

2259 

Initialization phase 

C
om

p.  Phase 1 

C
om

p.  Phase 2 

C
om

p.  Phase 3 

C
om

p.  Phase 4 

C
om

p.  Phase5 

Call counter 

1547 

1679 

1922 

1992 

2203 

2259 

Make a new 
sheet, maximize 
the sheet. 

 
 

P1 
 

Prepare and activate the sheet, un-select 
the pointer button, select the rectangle 
drawing button. 

 
 

P2 
 

Draw the 
rectangle, 
color 
filling.     .    

 
P3 

Un-select the rectangle 
drawing button, select 
the pointer button. 

 
 

P4 

Finalization 
Phase. 
 
 

Call counter 

Fig. 6. The phase shift locations of JHotDraw 5.2 (scenario: draw rectangle) 

Fig. 7. Focused view of the computation phases 
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Now to be able to compare the strength of the votes of all 
phase transition chunks with one another the value of  
������  needs to be normalized. For this we need to obtain 
the biggest possible difference between the highest vote and 
the average vote of a chunk which is the case where all 
votes are for our selected phase transition chunk and other 
chunks have zero votes. This can be calculated as follows: 
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where, ��	� is the average of the votes in the special case 
where the chunk with the highest number of votes is 
considered to have 100% of the votes. ������  is the 
difference between the highest vote and the average vote of 
a chunk (��	�) in the stated special case. The ���������� 
is the percentage of ������  over ������. 
 

For example in our case study, the results of voting for 
finding the chunk of phase transition between phase P1 and 
phase P2 is shown in Table 4. In this example, the total 
number of votes is 55 and the highest vote is 15 (Chunk86). 
If these 55 votes were distributed equally between the 11 
chunks, each chunk could have an average of 4.54 votes. 
Thus, Chunk86 with 15 votes has 10.64 votes more than an 
average vote that a chunk could have. If we consider the 
case where the votes of Chunk86 (15 votes) was exactly 
100% of the votes, the average votes of each chunk would 
be 1.34 votes (i.e. 15 / 11) and consequently the biggest 
possible difference between the highest vote and the average 
vote would be 13.64. Therefore, the confidence of the 
Chunk86 to be the phase transition location  
is (10.64 * 100) /(13.64) which is 76.6%. 
 

Table 5 shows the chunk number corresponding to each 
phase location and their confidence level according to the 
equations given above. Based on the results obtained, we 
can notice the high confidence of the first two phase 

locations and the other two confidence levels with 
comparatively less confidence level. 
 

IV.  CONCLUSION AND FUTURE WORK 

To help maintainers understand a program through 
analysis of its execution trace which could be inherently 
large, we present a novel technique for simplifying the 
analysis of execution traces by devising an algorithm that 
can divide a trace content into various fragments that 
correspond to the execution phases of a program that 
implement specific tasks such as initializing variables, 
performing a particular computation, etc.  

The idea behind our phase detection approach is to 
detect when and where during the execution of a program, 
the methods that implement a particular phase start to 
disappear as new methods begin to emerge, indicating the 
beginning of another phase. Therefore, our approach finds 
phases in two distinct and consequent steps: detecting the 
phase change by alerting when the most frequent methods 
become less frequent as the program enters a new phase 
(Step 1) and indicating when the phase change has started to 
take effect  by showing an estimated location of phase 
transition (Step 2). 

Our proposed approach is an online phase detection 
 
 

TABLE  5 
THE RESULTS OF OUR PHASE FINDING APPROACH FOR THE CASE STUDY 

 

Phases Phase-Transition 
Locations 

No. of 
Chunks MaxVotes Avgr Lapser Avgs Lapser Confidence 

P1- P2 Chunk 74 11 15 5.36 9.64 1.36 13.64 70.6% 

P2- P3 Chunk 86 11 15 4.54 10.64 1.36 13.64 76.6% 

P3- P4 Chunk 92 7 12 7.7 4.3 1.71 10.29 41.7% 

P4- P5 Chunk 100 11 11 6.27 10 1 4.73 47.3% 

 
 

TABLE  4 
RESULTS OF VOTING FOR PHASE SHIFT LOCATION BETWEEN  P2 AND P3 

 
Chunk no. Votes 
Chunk 77 1 
Chunk 78 0 
Chunk 79 0 
Chunk 80 3 
Chunk 81 5 
Chunk 82 5 
Chunk 83 6 
Chunk 84 3 
Chunk 85 4 
Chunk 86 15 
Chunk 87 8 
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technique that detects the phases and the locations of phase 
transitions while the trace is being generated. This is 
contrasted with an offline approach, where the entire trace is 
first collected before applying the algorithm. Online 
processing of traces is usually more desirable than an offline 
approach since the users can see the results early and may 
need to make decisions based on this early feedback without 
having to wait until the entire trace is generated.  

There are a number of open questions about the two 
parameters of our phase finder algorithm. For example, 
what chunk size should be used? What is a good threshold 
to find phases in a program? Determining appropriate 
parameter that balances the computation overhead with the 
accuracy of the approach is a topic that we intend to tackle 
in the future. 
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