
1

An Approach for Detecting Execution Phases of a

System for the Purpose of Program Comprehension

Heidar Pirzadeh, Akanksha Agarwal, Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering

Concordia University
1455 de Maisonneuve West
Montréal, Québec, Canada

{s_pirzad, a_agarw, abdelw}@ece.concordia.ca

 Abstract – Understanding the behavioural aspects of a
software system is an important activity in many software
engineering activities including program comprehension and
reverse engineering. The behaviour of software is typically
represented in the form of execution traces. Traces, however,
tend to be considerably large which makes analyzing their
content a complex task. There is a need for trace simplification
techniques that can help software engineers make sense of the
content of a trace despite the trace being massive. In this
paper, we present a novel algorithm that aims to simplify the
analysis of a large trace by detecting the execution phases that
compose it. An example of a phase could be an initialization
phase, a specific computation, etc. Our algorithm processes a
trace generated from running the program under study and
divides it into phases that can be later used by software
engineers to understand where and why a particular
computation appears. We also show the effectiveness of our
approach through a case study.

Index Terms – Program comprehension, dynamic analysis, trace
analysis, trace phase detection.

I. INTRODUCTION

Software maintenance is perhaps one of the most
difficult tasks in software engineering. Existing systems
usually suffer from poor to non-existent documentation
which complicates the task of software maintainers. They
often need ways to understand the system before they can
make any modification that preserves the system reliability.
Research in the area of program comprehension and reverse
engineering aims to reduce the impact of this problem by
investigating techniques that can help software engineers
understand large systems which has undergone several years
of ad hoc maintenance [1].

There exist two types of system analysis techniques: static
and dynamic analysis. Static analysis relies on the source
code to recover high level views of the system that can be
used by a software engineer to understand what the system
does and why it does it this way. The second approach,
which is the focus of this paper, is based on the analysis of
the behavioural aspects of a system by first executing it and
then analyzing the generated run-time information.

Run-time information is typically represented in the form of
execution traces. There are several techniques for generating
execution traces including instrumenting the system or the
execution environment. Traces, however, have been
historically difficult to work with since they can be
overwhelmingly large. Recently, there has been an increase
in the number of trace analysis tools that can help engineers
make sense of large traces. These tools rely on some sort of
abstraction techniques that vary significantly from one study
to another but with a common objective being to extract
high-level views from raw traces (e.g. [2, 3, 4]). These
techniques suffer from many drawbacks including the fact
that they rely heavily on users to distinguish important trace
content from noise. This is usually a complex task,
especially when applied to large traces.

In this paper, we present a novel technique for simplifying
the analysis of execution traces by devising an algorithm
that can divide a trace content into various fragments that
correspond to the execution phases of a program. We define
an execution phase as part of a program that implements a
specific task such as initializing variables, performing a
particular computation, etc. It is expected that a typical run
of a program will include several phases that correspond to
the task being performed. An execution phase has also been
defined in other areas such as in program optimization as
any stable period in which the execution of a program uses
the same amount of resources [10, 11, 12].

In this paper, we focus on traces of routine (method) calls,
which are commonly used for the purpose of program
comprehension [5, 6]. We use the terms method, routine,
and function to mean the same thing. Our phase detection
algorithm is based on the fact that a phase shift within a
trace appears when a certain set of methods responsible for
implementing a particular task and which are prevalent in
one phase starts to “fade” as the program enters a new
phase, where new methods start taking place. The algorithm
operates on the trace while it is generated (i.e. on the fly),
which is usually preferable to offline processing since it

2

eliminates the need to save the entire trace even if only part
of it is needed.

We have not come across any study in the area of trace
analysis for program comprehension that deals with
execution phase detection. Perhaps, the closest studies to
ours are the ones proposed by Cornelissen et al. [7] and
Reiss et al. [13, 14] where the user can visually discern
major phases in the execution scenario in execution mural
views that help outline the system’s general functionality.
These techniques can be further explored to detect phases
and where phase transitions appear.

The remaining part of this paper is organized as
follows: The phase detection algorithm is presented in
Section 2. In Section 3, we show the effectiveness of our
approach when applied to a case study. We conclude the
paper in Section 4.

II. PHASE FINDING

The idea behind our phase detection approach is to
detect when and where during the execution of a program,
the methods that implement a particular phase start to
disappear as new methods begin to emerge, indicating the
beginning of another phase. Our proposed phase detection
algorithm operates on a trace while it is generated (i.e., on
the fly). This is contrasted with an offline approach, where
the entire trace is first collected before applying the
algorithm. Online processing of traces is usually more
desirable than an offline approach since the users can see
the results early and may need to make decisions based on
this early feedback without having to wait until the entire
trace is generated.

Our algorithm is composed of two key steps which are:

1. Phase Change Detection: In this step, we detect if there

an execution phase shift. In other words, we detect
when a large number of methods of the first phase
disappear and that new methods are invoked.

2. Phase Shift Location: Once a phase change is detected,

we need to know the exact location in the trace where
the phase shift has taken place, i.e., at which point in
the trace the methods of the previous phase start to
disappear and that new ones start to appear.

A. Phase Change Detection

In order to detect the phase changes of a program, it is
required to capture a set of distinct methods that have been
invoked as the program is executing. We refer to this set as
a working set (WS). We sort in an ascending manner the
methods of a working set based on their prevalence. This is
used to detect the phase change (Step 1) by detecting when
the most frequent methods become less frequent as the
program enters a new phase. It is also used to indicate when
the phase change has started to take effect (Step 2). As the
program executes, its working set is subsequently updated

so that it can reflect the changes in program’s behavior.
Updating the working set after each new method invocation
can be computationally expensive. Instead, the update can
be done after a certain number of method calls (i.e., a chunk
of methods calls). This way, the chunk size can specify the
update rate of the working set. The chunk size is provided as
input. Determining an appropriate chunk size that balances
the computation overhead with the accuracy of the approach
is a topic that we intend to tackle in the future. As shown in
Figure 1 (lines 1 - 15), at the beginning of our phase finder
algorithm, we make a new working set and keep a snapshot
of the working set every time we update it until a phase
change is detected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

phaseFinder(Chunki: chunk of methods, T:threshold)
{
 if (i == 1)
 WS = new workingset()
 for each m in Chunki
 { // Building working sets (WS)
 if WS.contains(m)==False
 {
 WS.add(m)
 }
 WS.rank_methods() // ranking method within a WS
 }
 Snapshoti = WS
 if (i == 1)
 Snapshoto = Snapshoti
 Distance = compare (Snapshoto, Snapshoti)
 if (Distance < T)
 {
 for each candidate m
 { // Detection of the shift location with voting
 for chunk correspond to (Snapshoto . . Snapshoti)
 if m.rank(chunk) is close to mid-rank
 chunk.vote()

 return (chunk with maximum votes)
 }
 Snapshoto = Snapshoti
 }
}

Fig. 1. The pseudo code of phase finding algorithm

Figure 2 shows an example of a routine call trace.
Assuming that the chunk size is set to 3, the working set WS
will contain the first three methods A, B, and C, sorted in a
descending order based on their ranking.

The rank of a method directly related to its prevalence.
That is, the rank of each method is the number of methods
with a better prevalence plus one. The prevalence function
takes into account the frequency of a method in part of the

3

trace that has been processed so far (frequency(m)), the
chunk number in which the method was first introduced
(first_chunk(m)), the current chunk number (curr_chunk),
and the chunk size (chunk_size) as shown in the following
equation:

sizechunkmchunkfirstchunkcurrent
mfrequency

mP
_*)1)(__(

)(
)(

+−
=

The rationale behind this function is to keep track of the

prevalence of the methods as the algorithm goes through the
trace chunks. If a set of methods keep appearing relatively at
the similar rate after each chunk is processed, then this is a
good indicator that the program is still in the same phase.
On the contrary, if some of the methods start “fading” (i.e.
appearing less frequently) according to a certain threshold,
then this suggests that a new phase is taking place. We
anticipate that the threshold is application specific and that a
tool that supports our approach should allow enough
flexibility to vary the threshold.

Fig. 2.An example of a routine (method) call trace

Applying the prevalence function to the methods of
Chunk 1 in the trace of Figure 2 returns P(A) = 1/{(1-
1)+1}*3 = 1/3. Similarly, the prevalence of B and C is also
the same, i.e. 1/3, since A, B, and C are invoked at the same
prevalence within the first chunk. Since for each of these
methods in the first chunk there is no method with a better
prevalence they are all ranked 1. The working set that is
formed after processing the first chunk is {A, B, C}. We call
the content of the first working set, an original working set
and we will use it as a baseline against which new updates
of the working sets are compared.

As the algorithm processes the upcoming chunks, it
updates the working set by adding the newly encountered
methods and by computing their prevalence. For example,
the next trace chunk of the trace in Figure 2 is composed of
the methods C, D, and B. This triggers the update of the
working set by adding the method D and recomputing the
prevalence of all methods. The new frequencies are
computed as follows:

P(A) = 1 / {(2-1) + 1}*3 = 1/6.
P(B) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3.
P(C) = 2 / {(2-1) + 1}*3 = 2/6 = 1/3.
P(D) = 1 / {(2-2) + 1}*3 = 1/3.

This way, the content of the working set is updated to
{B, C, D, A}. This shows that the method A, which occupies
now the last position, has gradually started to fade, whereas
B and C are still present. Each time we update the working
set, we compare it with the original snapshot of the working
set and if there is a significant change between the original
and the current one, then this suggests that there is a new
phase.

In order to detect this change, we compare the methods
of the current working set with the ones contained in the
original working set (lines 16-18 of the algorithm). If less
than a certain threshold, T, of the methods of the original
working set appears in the current new working set, then
this suggests that a phase change has taken place.
Determining the threshold T in advance might not be
possible since it might be application specific. We anticipate
that a tool that supports this technique will allow enough
flexibility to the users to vary the threshold according to
their needs.

However, instead of comparing all the methods of the
current working set, one possible optimization is to compare
only a few of them that have high ranking (i.e. the ones that
appear in the beginning of the set). The number of methods
can be equal to the chunk size since, in the worst case
scenario, the number of new distinct methods that can be
found in a new chunk is less than or equal to the chunk size.

When applied to the previous example and by having
the threshold randomly set to 20%, we can see that the first
three methods of the original working set also appear in the
beginning of the working set formed after processing the

Original Working Set
(Update 1)

Update 2

Update 3

Chunk4

Chunk5

Chunk6

Chunk7

Chunk8

Chunk9

4

content of Chunk 2. We continue the process of updating the
working set and comparing the new one to the original set as
new chunks are processed. Table 1 shows the snapshots of
the working sets that correspond to each chunk. Using a
20% threshold, a new phase will be detected after Chunk 8
is processed, where none of A, B or C appear.

B. Phase Shift Location

Once a new phase has been detected in the trace, the
next step is to find the exact location of the phase transition.
This is the objective of the phase shift location step. We
achieve this by locating the chunk from which many
methods have started to fade by observing the positions of
these methods in different snapshots of the working set. We
add the distinct methods invoked in all working sets up to
the one in which a phase has been detected to what we call
an observation set. The observation set resulting from
adding the methods of previous example is: {A, B, C, D, H,
M, N, L, P}.

Next, we need to find the chunk where many of these
methods start to fade. If we consider the fading of a method
m as it is going from its best rank (somewhere in one phase)
to its worst rank (somewhere in another phase), then the
starting point where the ranking of the method m starts to
decline is in the middle. We call this point a mid-rank point
and we compute it as follows:

2
)()(

)(
mkhighestranmlowestrank

mmidrank
+=

Table 2 shows the methods in the observation set and
their mid-rank points. For example, the method A has the
highest ranking in Chunk 1 and the lowest ranking in Chunk
8. Its mid-rank point is therefore 4.5 (i.e., (8+1)/2). It
maintains a ranking close to 4.5 when Chunk 2, Chunk 5, or
Chunk 6 are being processed (see Figure 3). For each

method in the observation set, we list the chunks in which
the method reaches its mid-rank point (as shown in Table 2).

We call the chunks in which a method m reaches its
mid-rank point as the voting chunk set of this method. This
set indicated possible places where the method might start
fading. For example, the voting chunk set of A is {Chunk2,
Chunk5, Chunk6}. In other words, “A” could have started to
disappear in either of these chunks (see Figure 3). Similarly
the voting chunk set of the method B is {Chunk3, Chunk4,
Chunk5, Chunk6, Chunk7} since the mid-rank of B is 2.5
(see Figure 4). The voting chunk set of C is {Chunk5,
Chunk6, Chunk7} as shown in Figure 5.

To find the phase transition, we simply need to compute
the voting chunk sets for all the methods of the observation
set and locate the chunk that receives the highest vote. This
is the chunk in which most methods of a phase have started
to disappear and therefore the chunk most likely to be the

TABLE 1.
PHASE CHANGE DETECTION

Chunk
no. Working set name Methods introduced in

chunk Snapshots Phase Shift
Detected

1 Original working set (Snapshot 1) A, B, C {A, B, C} �
2 Snapshot 2 D {B, C, D, A} �

3 Snapshot 3 H {C, H, A, B, D} �

4 Snapshot 4 No new methods {C, A, B, H, D} �

5 Snapshot 5 M {M, B, C, H, A, D} �

6 Snapshot 6 N, L {N, L, B, C, M, H, A, D} �

7 Snapshot 7 No new methods {N, B, H, C, L, A, M, D} �

8 Current working set (Snapshot 8) P {N, P, L, B, H, C, M, A, D} �

TABLE 2.
METHODS VOTING FOR CHUNKS BASED ON MID-RANK VALUES

Method
call

Mid-
rank

Chunks where the rank of the method is
close to the mid-rank value

A 4.5 Chunk2, Chunk5, Chunk6

B 2.5 Chunk3, Chunk4, Chunk5, Chunk6, Chunk7

C 3 Chunk5, Chunk6, Chunk7

D 6 Chunk3, Chunk4

H 4 Chunk7

M 5 Chunk6, Chunk8

N 1 Chunk6, Chunk7, Chunk8

L 3 Chunk8

P 1 Chunk8

5

phase transition location.

Following the previous example, the result of voting is
shown in Table 3. The chunk which obtained the most votes
is Chunk 6, meaning that the phase transition has started
from this chunk. If we look at the trace of Figure 2, we can
see that from this chunk, many methods like A, B, and C
start appearing less frequently and the new methods like H,
M, and N start to emerge, therefore invoking a new phase.

III. CASE STUDY

A. Target System

In order to evaluate the effectiveness of our algorithm,

which we implemented in Java, we have applied it to a trace
generated from JHotDraw 5.2 system [8]. JHotDraw is a
GUI framework implemented in Java for technical and
structured graphics. It consists of 9 packages, 148 classes
and 1963 methods. JHotDraw 5.2 has 17,819 lines of code.

B. Scenario Description

To generate a simple execution trace, we used an

execution scenario that involves a major activity for which
we wanted to detect the phases. We applied our approach to
identify the phases when exercising the scenario “draw a
rectangle”. The resulting trace contained 2259 calls. Since
JHotDraw registers all mouse movements, and mouse
movements are required while drawing a rectangle, the trace
that resulted from our scenario was bound to contain a lot of
noise. We have therefore filtered these mouse movements to
obtain a trace that is cleaner.

We have applied our approach to the execution trace
with the following parameter setting: The chunk size is 10
and the threshold value is 20%.

C. Results

Figure 6 shows the phase shift locations resulted from
the application of our approach on the execution trace as it
was generated by exercising the “draw a rectangle”
scenario. It should be noted that the first phase can be
detected as a result of our pre-processing step (i.e. removing
utilities [9]) which gives us a sparse section in the beginning
of the execution trace (the end of this phase is demarcated

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

	

�

� � � � � � � 	 �

�
�
�
�
��
�
��
	

��
�

��

���������

� �

�

� �

�

�

�

�

�

�

�

�

�

�

	

�

� � � � � � � 	 �

�
�
�
�
��
�
��
	

��
�

���

���������

�

� � � �

�

� �

�

�

�

�

�

�

�

�

	

�

� � � � � � � 	 �

�
�
�
�
��
�
��
	
��
�

��

���������

�

Fig. 5 The rank of method C in each snapshot
Ranks of C = (chunk1:1, chunk2: 1, chunk3: 1, chunk4: 1, chunk5:

2, chunk6: 4, chunk7: 4, chunk8: 5) mid-rank(C)= 3

Fig. 4 The rank of method B in each snapshot
Ranks of B = (chunk1:1, chunk2: 1, chunk3: 3, chunk4: 2,

chunk5: 2, chunk6: 3, chunk7: 2, chunk8: 4) mid-rank(B)= 2.5

Fig. 3 The rank of method A in each snapshot
Ranks of A = (chunk1: 1, chunk2: 4, chunk3: 3, chunk4: 2, chunk5: 5,

chunk6: 5, chunk7: 6, chunk8: 8) mid-rank(A) = 4.5.

TABLE 3
PHASE SHIFT LOCATION BASED ON MAJORITY VOTING

Chunk no. Votes Phase Shift

Chunk1 0 �
Chunk2 1 �
Chunk3 2 �
Chunk4 2 �
Chunk5 3 �
Chunk6 5 �
Chunk7 4 �
Chunk8 4 �

6

by a dashed line). This leads us to the assumption that the
first phase is the initialization phase of the program. To
verify this, we checked this phase against the original
execution trace manually. The result of this verification
confirms the correctness of our assumption. The solid lines
on the right-hand side of the dashed line show the phase
shift locations as a result of applying our algorithm on the
filtered trace. Our preliminary assumption is that these
phases are the computational phases of the program. As a
means of verification, we focused on these phases to have a
more detailed view.

Figure 7 shows a focused view of the phases that follow
the initialization phase. This closer investigation against the
documentation of JHotDraw reveals the most important
phases that contribute to the major activities of the program
while drawing a rectangle. For instance, after mapping
Phase P3 to the execution trace, we were able to find that
figures.RectangleFigure.drawBackground and
figures.RectangleFigure.drawFrame are the most
important methods specific to drawing the rectangle. Figure
7 also shows three other major phases and their important
activities resulting from mapping those phases to the
execution trace. Furthermore, we found out that the last
phase is a Finalization phase in which the sheet and then the
application are closed. This confirms the effectiveness of
our approach in detecting the essential phases involved in
the implementation of drawing a rectangle in JHotDraw.

As mentioned earlier, while we locate the phases inside a
trace, the chunk where the phase is located is the chunk that
earns the majority of votes which can also expressed as
follows:

votesmax = max(voteso..votesd)

where, votes0 and votesd correspond to the number of votes
for the original chunk and the chunk where the algorithm
detects that a phase shift has taken place. To be able to
evaluate the obtained phase shift locations are adequate, we
introduce in this case study the metric of confidence. The
confidence of a chunk being a phase transition location is
the strength of its votes relative to the other candidate
chunks. A larger difference between the highest vote and the
average vote shows a stronger vote for the phase transition
chunk: (i.e, a bigger ������)

2
0� ==

d

i i
r

votes
Avg

��	�

� ��
���

�
���

� � � � �

������
 ��
��� �� � ��	�

where, ������ is the difference between the highest vote
(��
��� ��� (which is the number of votes of the phase
transition chunk) and the average vote of a chunk (��	�) as
resulted by the voting.

0 1547

1679

1922

1992

2203

2259

Initialization phase

C
om

p. Phase 1

C
om

p. Phase 2

C
om

p. Phase 3

C
om

p. Phase 4

C
om

p. Phase5

Call counter

1547

1679

1922

1992

2203

2259

Make a new
sheet, maximize
the sheet.

P1

Prepare and activate the sheet, un-select
the pointer button, select the rectangle
drawing button.

P2

Draw the
rectangle,
color
filling. .

P3

Un-select the rectangle
drawing button, select
the pointer button.

P4

Finalization
Phase.

Call counter

Fig. 6. The phase shift locations of JHotDraw 5.2 (scenario: draw rectangle)

Fig. 7. Focused view of the computation phases

7

Now to be able to compare the strength of the votes of all
phase transition chunks with one another the value of
������ needs to be normalized. For this we need to obtain
the biggest possible difference between the highest vote and
the average vote of a chunk which is the case where all
votes are for our selected phase transition chunk and other
chunks have zero votes. This can be calculated as follows:

��	�

��
��� ��

� � � � �

������
 ��
��� �� � ��	�

����������

������ ! �""

������

where, ��	� is the average of the votes in the special case
where the chunk with the highest number of votes is
considered to have 100% of the votes. ������ is the
difference between the highest vote and the average vote of
a chunk (��	�) in the stated special case. The ����������
is the percentage of ������ over ������.

For example in our case study, the results of voting for
finding the chunk of phase transition between phase P1 and
phase P2 is shown in Table 4. In this example, the total
number of votes is 55 and the highest vote is 15 (Chunk86).
If these 55 votes were distributed equally between the 11
chunks, each chunk could have an average of 4.54 votes.
Thus, Chunk86 with 15 votes has 10.64 votes more than an
average vote that a chunk could have. If we consider the
case where the votes of Chunk86 (15 votes) was exactly
100% of the votes, the average votes of each chunk would
be 1.34 votes (i.e. 15 / 11) and consequently the biggest
possible difference between the highest vote and the average
vote would be 13.64. Therefore, the confidence of the
Chunk86 to be the phase transition location
is (10.64 * 100) /(13.64) which is 76.6%.

Table 5 shows the chunk number corresponding to each
phase location and their confidence level according to the
equations given above. Based on the results obtained, we
can notice the high confidence of the first two phase

locations and the other two confidence levels with
comparatively less confidence level.

IV. CONCLUSION AND FUTURE WORK

To help maintainers understand a program through
analysis of its execution trace which could be inherently
large, we present a novel technique for simplifying the
analysis of execution traces by devising an algorithm that
can divide a trace content into various fragments that
correspond to the execution phases of a program that
implement specific tasks such as initializing variables,
performing a particular computation, etc.

The idea behind our phase detection approach is to
detect when and where during the execution of a program,
the methods that implement a particular phase start to
disappear as new methods begin to emerge, indicating the
beginning of another phase. Therefore, our approach finds
phases in two distinct and consequent steps: detecting the
phase change by alerting when the most frequent methods
become less frequent as the program enters a new phase
(Step 1) and indicating when the phase change has started to
take effect by showing an estimated location of phase
transition (Step 2).

Our proposed approach is an online phase detection

TABLE 5
THE RESULTS OF OUR PHASE FINDING APPROACH FOR THE CASE STUDY

Phases Phase-Transition
Locations

No. of
Chunks MaxVotes Avgr Lapser Avgs Lapser Confidence

P1- P2 Chunk 74 11 15 5.36 9.64 1.36 13.64 70.6%

P2- P3 Chunk 86 11 15 4.54 10.64 1.36 13.64 76.6%

P3- P4 Chunk 92 7 12 7.7 4.3 1.71 10.29 41.7%

P4- P5 Chunk 100 11 11 6.27 10 1 4.73 47.3%

TABLE 4
RESULTS OF VOTING FOR PHASE SHIFT LOCATION BETWEEN P2 AND P3

Chunk no. Votes
Chunk 77 1
Chunk 78 0
Chunk 79 0
Chunk 80 3
Chunk 81 5
Chunk 82 5
Chunk 83 6
Chunk 84 3
Chunk 85 4
Chunk 86 15
Chunk 87 8

8

technique that detects the phases and the locations of phase
transitions while the trace is being generated. This is
contrasted with an offline approach, where the entire trace is
first collected before applying the algorithm. Online
processing of traces is usually more desirable than an offline
approach since the users can see the results early and may
need to make decisions based on this early feedback without
having to wait until the entire trace is generated.

There are a number of open questions about the two
parameters of our phase finder algorithm. For example,
what chunk size should be used? What is a good threshold
to find phases in a program? Determining appropriate
parameter that balances the computation overhead with the
accuracy of the approach is a topic that we intend to tackle
in the future.

REFERENCES
[1] I. Carmichael, V. Tzerpos, and R. C. Holt, “Design

Maintenance: Unexpected Architectural Interactions
(Experience Report)”, In Proceedings of the International
Conference on Software Maintenance, pp. 134-137, 1995.

[2] O. Greevy, and S. Ducasse, “Correlating features and code
using a compact two-sided trace analysis approach”, In
Proceedings of CSMR 2005 (9th European Conference on
Software Maintenance and Reengineering, pp. 314–323,
2005.

[3] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge,
“Recovering behavioral design models from execution
traces”, In Proceedings of the 9th European Conference on
Software Maintenance and Reengineering, pp. 112 – 121,
2005.

[4] A. Zaidman and S. Demeyer, “Managing trace data volume
through a heuristical clustering process based on event
execution frequency”, In Proceedings of the 8th European

Conference on Software Maintenance and Reengineering, pp.
329–338, 2004.

[5] W. De Pauw, D. Lorenz, J. Vlissides, M. Wegman,
"Execution Patternsin Object Oriented Visualization", In
Proceedings of the 4th Conference on Object Oriented
Technologies and Systems, pp.219-234, 1998.

[6] D. Jerding, J. Stasko, and T. Ball, "Visualizing Interactions in
Program Executions", In Proceedings of the 19th
International Conference on Software Engineering, pp. 360-
370, 1997.

[7] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van
Deursen, A. J.J. van Wijk, "Execution trace analysis through
massive sequence and circular bundle views", The Journal of
Systems & Software, 81(12), pp 2252-2268, 2008.

[8] JHOTDRAW website: http://www.jhotdraw.org/.

[9] A. Hamou-Lhadj, “Techniques to simplify the analysis of
execution traces for program comprehension”, Ph.D.
Dissertation, School of Information Technology and
Engineering, University of Ottawa, 2005.

[10] M. Hind, V. T. Rajan, and P. F. Sweeney, “Phase Shift
Detection: A Problem Classification” IBM Research Report #
22887, 2003.

[11] P. Nagpurkar, M. Hind, K. Chandra, P. F. Sweeney, and V. T.
Rajan, “Online Phase Detection Algorithms”, In Proceedings
of the International Symposium on Code Generation and
Optimization, pp. 111 - 123, 2006.

[12] D. Gu, C. A. Verbrugge, “A Survey of Phase Analysis:
Techniques, Evaluation and Applications”, Sable Technical
Report No. 2006-1, 2006.

[13] S. P. Reiss, “Dynamic detection and visualization of software
phases”, In Proceedings of the 3rd ICSE Workshop on
Dynamic analysis (WODA), pp. 1–6, 2005.

[14] S. P. Reiss, “Visual representations of executing programs”,
Journal of Visual Languages and Computing 18, 2, 2007.

