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Abstract - An AMF configuration is a logical organization of 

resources, components and Service Units (SUs) into Service 

Groups (SGs), for providing and protecting services defined as 

Service Instances (SIs). The assignment of SIs to SUs is a 

runtime operation performed by a middleware implementing the 

AMF service. However, ensuring the capability of the 

provisioning and the protection of the SIs by the configured 

application is a configuration issue. In other words, a 

configuration is valid if and only if it is capable of providing and 

protecting the services as required and according to the specified 

redundancy model. Ensuring this may require the exploration of 

all possible SI-SU assignments and in some cases different 

combinations of SIs, a complex procedure in most redundancy 

models defined in the AMF standard specification. In this paper, 

we explore the problem of SI protection at configuration time; 

we investigate and discuss its complexity and identify some 

special and more tractable cases. 
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I.  INTRODUTION 

High availability is a requirement for services in several 

domains including banking and telecommunications. 

Traditionally, high-availability has been achieved with 

proprietary solutions. Service Availability Forum (SAF) [1] 

is defining and standardizing high availability solutions for 

systems and services. Among others, SAF has developed 

the Application Interface Specification (AIS), which 

includes the Availability Management  r mework       

 [2]. The role of AMF is to manage the availability of the 

service provided by an application. This consists in 

managing the redundant components composing an 

application and in shifting dynamically the workload 

assigned to a faulty component to a redundant and healthy 

one when a fault is detected. In order for AMF to manage 

the availability of the services delivered by an application 

under its control, it requires a configuration. 

An AMF configuration [2] for a given application is a 

logical organization of resources for providing and 

protecting services. An AMF configuration consists of 

components grouped into service units (SUs), which are 

grouped into services groups (SGs). An application may 

consist of one or several SGs to provide and protect 

services defined in terms of service instances (SIs) 

composed of component service instances (CSIs). At 

runtime, for each SI, the middleware implementing the 

AMF service assigns the active and standby high 

availability (HA) states to SUs, according to the 

redundancy models. The AMF specification defines five 

redundancy models [2]: the No-redundancy, the 2N, the 

N+M, the NWayActive and the NWay redundancy models. 

The problem of ensuring SI protection does not occur 

when configurations are generated automatically to provide 

and protect the required services [5, 6], but when 

configurations are designed in ad hoc manner and the 

question of SI protection arises afterwards.  In other 

situations, new or additional services may be required 

afterwards and the question of providing and protecting all 

the services with the current configuration may arise.  

We have been developing an UML profile for AMF [3] 

and used the domain model for the validation of AMF 

configurations [3], for example ones that are created by 

designers using traditional tools. The issue of validating the 

capability of the provisioning and the protection of the 

services aroused in this case as well. Indeed a configuration 

is AMF compliant if and only if it meets all the AMF 

requirements including the protection of services as 

required. Validating the protection of services as requested 

may require the exploration of all possible SI combinations 

and SI-SU assignments. This is a combinatorial and 

complex problem in general.  In this paper we explore and 

discuss this issue for the redundancy models defined in the 

AMF specification [2]. We discuss its complexity and 

identify some specific cases where the problem can be 

solved efficiently and complexity overcome.  

The rest of this paper is organized as follows. In Section 

2, we introduce some definitions and notations used 

throughout the paper. We discuss the 2N and the No-

redundancy model and propose solutions for deciding about 

the SI protection for these two cases in Section 3. In 

Section 4, we explore the case of the N+M redundancy 

model and show the complexity of the SI protection 

problem in this case. In Section 5, we briefly discuss 

NWayActive and NWay redundancy models before 

identifying in Section 6 some special cases where 

complexity can be overcome. We conclude in Section 7. 

II.  DEFINITIONS AND NOTATIONS 

Provided services from the provider perspective, or 

requested services from the requester perspective, can be 

defined in terms of component service types (CSTs) and the 

number of CSIs of each CST provided or requested, 

respectively. We therefore define a capacity, for a 

component, SU or an SI, as a set of pairs of elements (cst, 
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i), where cst and i define a CST and an integer referring to 

the capacity in terms of CSIs, respectively.   

The capacity of an SU, for instance, is an aggregation of 

the capacities of the different components composing the 

SU. Some of these components may be overlapping in 

service provisioning, i.e. may support the same CST; 

similarly for an SI. Therefore the definition of the capacity 

of an SU or an SI is not a simple union of the capacities of 

the components or CSIs composing the SU or the SI, 

respectively, but it is defined as a cumulative union where 

capacities referring to the same CST are added together as 

defined in part 1 of Equation 1.  For simplicity, the 

cumulative union is defined only for two sets of capacities 

in this equation, but applies for n (n>2) sets of capacities,  

where the cumulative union of the first k-1 sets is 

cumulated with the set k, in a recursive manner. 

In the following sections, we also need to compare 

capacities provided by SUs against capacities requested by 

SIs.  A capacity A is higher than a capacity B, if and only if 

for every pair (cst, b) in B there exist a pair (cst, a) in A 

referring to the same CST with a higher than b. The 

comparison of capacities is formally defined in part 2 of 

Equation 1, while division between capacities is defined in 

part 3 of Equation 1. 

 

 

AyxCzx if 

AzyxCzx if

 Byxiff C div BA

bA|aa)(cstB  (cst,b)B iff A

 B))}(a,v)C (a,b)  ((

 C))or(a,w)B (a,b)  ((

y)) orx(bC)(a,y))  B  (a,x){(a,b)| ((A

C  where
CUM

BA

capacity:CB,A,

















),(),(

)/,(),(

,),(.3

,.2

.1

;



Equation 1. Cumulative union, comparison and division of capacities. 

 
In an AMF configuration, SUs are grouped into SGs. 

We refer to the set of SUs in an SG with SUSet and use 

SISet for the set of SIs protected by the SG. We denote by 

ActiveCapacity(x) for an SU x the total capacity the SU x 

can support in the active role. Similarly, 

StandbyCapacity(x) denotes the total capacity the SU x can 

support in the standby role. The active capacity required by 

an SI y is denoted by RequiredActiveCapacity(y). The total 

active capacity required from an SU x in a given SU-SI 

assignment A is denoted by 

RequiredActiveCapacityFrom(x) and is defined by the 

cumulative union of all the required active capacities of the 

SIs associated to x through assignment A.  Similarly, the 

standby capacity required by an SI y is denoted by 

RequiredStandbyCapacity(y) and the total standby capacity 

required from an SU x in a given SU-SI assignment A is 

denoted by RequiredStandbyCapacityFrom(x) and is 

defined by the cumulative union of all the required standby 

capacities of SIs associated to x through assignment A. 

For purpose of clarity, we briefly remind, in Table 1, 

the reader of some mathematical notations used throughout 

this paper and where R is a relation between two sets X and 

Y. 

 
TABLE 1.  Some mathematical notations. 

Notation Meaning 

Domain(R)  The set of elements in X that are in a 

pair in R, i.e. {x |  (x, y)  R) 

Range(R)  The set of elements in Y that are in a 

pair in R, i.e. {y |   (x, y)  R) 

|X| The cardinality (the size) of set X. 

! There exists one and only one 

 
We also remind the reader that the AMF specification 

[2] requires that any SU in an SG must be able to protect 

any of the SIs protected by the SG. Furthermore, we make 

the reasonable assumption that all SUs in an SG are 

identical, i.e. they have identical capacity with respect to 

the SIs. 

III.  SERVICE INSTANCE PROTECTION FOR THE 2N 

AND NO-REDUNDANCY MODELS 

In an SG with the 2N redundancy model, at most one 

SU will have the active HA state for all SIs and is referred 

to as the active SU, and at most one SU will have the 

standby HA state for all SIs and is usually called the 

standby SU.  Any SU should be capable of taking the active 

or the standby role for all SIs [2]. 

In order to capture unambiguously the meaning of the 

2N redundancy model for an SG, we define it formally as 

shown in Equation 2. We consider any two different SUs in 

the SG, x and y, and define two relations; the first one is for 

the active assignment while the second one is for the 

standby assignment. gnmentActiveAssi and 

StandbyAssignment are defined as relations between one 

SU and the set SISet of SIs, with the following properties:  

 ActiveAssignment relation is defined as a set of 

pairs with a range equal to the set SISet.  Similarly, 

for StandbyAssignment relation. Therefore, each SI 

is taken care of once and only once, for both the 

active and the standby assignments. 

 The capacity required, from an SU, does not 

exceed the SU capacity, for both the active and the 

standby assignments, as specified in 

RequiredActiveCapacity(x) ≤ ActiveCapacity(x)  

for the active part, and in 
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RequiredStandbyCapacity(y) ≤ 

StandbyCapacity(y)  for the standby part. 

 Only one SU, x, is assigned the active role for all 

SIs and only one SU, y, is assigned the standby 

role for all SIs, and they are different. 

 

Having assumed that all SUs in the SG are identical, the 

properties specified by Equation 2 will be satisfied by a 

configuration, if and only if the SG consists of at least two 

SUs and anyone of these SUs is capable of taking the active 

or the standby role for all SIs. These necessary and 

sufficient conditions, summarized by Equation 3, can be 

checked easily. 
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Equation 2. Formal specification of the 2N redundancy model. 
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Equation 3. Necessary and sufficient conditions for the 2N redundancy 

model. 

 
The No-redundancy model is used for non-critical 

applications and components [2]. An SU is assigned the 

active HA state for at most one SI.  An SI can be assigned 

to only one SU at a time. All SIs should be assigned if the 

number of SUs in service permits. An SU is never assigned 

the standby HA state for any SI. The No-redundancy model 

is formalized by Equation 4, where ActiveAssignment is 

simply a bijective relation between SUSet and SISet. 
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Equation 4.  Formal specification of the No-redundancy model. 

 
Knowing from [2] that any SU in the SG should be 

capable of protecting any SI that is protected by the SG and 

assuming this condition, modeled here with 

city(x)ActiveCapaty(y)tiveCapaciRequiredAc  , is 

checked a priori, the only necessary and sufficient 

condition for an ActiveAssignment relation with the 

specified properties to exist is to have at least as many SUs 

in SUSet than SIs in SISet. 

IV.   SERVICE INSTANCE PROTECTION FOR THE 

N+M REDUNDANCY MODEL 

An SG with the N+M redundancy model has N+M SUs. 

An SU can be active for all SIs assigned to it or standby for 

all SIs assigned to it. In other words, no SU can be 

simultaneously active for some SIs and standby for some 

other SIs [2]. On the service hand, for each SI there is one 

and only one SU that is assigned the active HA state and 

one and only one SU that is assigned the standby HA state.   

A. Formal Definition of the N+M Redundancy Model 

In order to capture the characteristics of the N+M 

redundancy model in a precise manner, a formal 

specification of an SG with the N+M redundancy model is 

given by Equation 5. As for the case of the 2N redundancy 

model, we can distinguish two parts for expressing 

separately the active and the standby assignments. 

The 2N and the N+M redundancy models share several 

properties. In both cases, the SUs can only be either active 

or standby, and from the service side each SI should only 

have one active assignment and only one standby 

assignment. The difference is that for the N+M redundancy 

model, the number of SUs that are assigned the active HA 

state or the standby HA state is not limited to one for each.  

Consequently, in Equation 5, gnmentActiveAssi  

relation is a relation between a set of SUs and a set of SIs; 

similarly for ignmentStandbyAss  relation.   It is well 

known that the 2N redundancy model is a special case of 

the N+M redundancy model, i.e. the 2N redundancy model 

can be identified as the 1+1 redundancy model.    
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Equation 5. Formal specification of the N+M redundancy model. 

B. Checking SI Protection for an SG with the N+M 

Redundancy Model  

In order to ensure SI protection at configuration when 

this is not achieved by design, we need to verify the 

configuration against the specification given in Equation 5.  

We need a procedure to check for the properties stated in 

this equation. Such as procedure may have to consider all 

the possible combinations of SIs to assign to the SUs, and 

obviously it will be a complex procedure in general.  In the 

case of the 2N redundancy model, there was only one 

combination of SIs, i.e. SIs are assigned all together to one 

SU for the active role, and all together to another SU for the 

standby role. 

The complexity of the problem for the case of N+M  is 

due to the different possible combinations of SIs we may 

have to consider in order to find an ActiveAssignment or a 

StandbyAssignment relation that satisfies the  properties.  

We will here show that the SI protection problem for 

the N+M redundancy model is an NP-hard problem. 

Therefore there is no polynomial order algorithm to solve it 

[7].  According to the NP-hardness theory, a problem H is 

NP-hard if and only if there is an NP-complete problem L 

that is polynomial time Turing-reducible to an instance of 

H [7]. Therefore, in order to prove the NP-hardness of SI 

protection problem, we have to find an NP-complete 

problem and reduce it to an instance of the SI protection 

problem.  

For the N+M redundancy model, there is N active SUs 

and M standby SUs. The active and standby capacities of 

SUs are independent of each others, since different SUs 

take these different roles. Consequently, without loss of 

generality, we will consider here the active part only. The 

proof for NP-hardness for the active part can be likewise 

applied for the standby part. If an NP-complete problem 

reduces to an instance of the SI protection problem in 

polynomial time, the NP-hardness of the SI protection 

problem will be established. For this purpose, let us 

consider the Subset Sum problem, which is known to be 

NP-complete [7].The Subset Sum problem can be defined 

as follows [7]: “Given a set of positive integers (I) and a 

positive integer (t), does the sum of some non-empty subset 

equal exactly to t?”. To prove the NP-hardness of the SI 

protection problem, let us now consider a specific case in 

which the number of active SUs is 2 and each SU support 

only one CST. We refer to this problem as the (2,1)-

assignment problem. We show the problem is NP-hard in 

this case; hence NP-hardness of the general SI protection 

problem.  We hereafter, present a reduction of the Subset 

Some Problem to the (2,1)-assignment problem.  

 

Theorem 1: The Subset Sum problem reduces to the (2,1)-

assignment problem in polynomial time.  

 

Consider an instance )},t..a,.........{a(I 1p1  of the 

Subset sum problem. Let   be the sum of members of I. 

Define 12 tt  . Observe that for 02 t , the answer to 

the problem is No and for 02 t , the answer is Yes. These 

are trivial cases. Now, let 2t be greater than 0 (positive). 

We need to define an instance of the (2,1)-assignment 

problem. So, we have only two active SUs and the capacity 

of protected SIs can be represented as positive integers 

(they can only support one specific CST). Let us define the 

capacity of SUs as ),tmax(tt 21max  . Also, let the SIs 

have weights ), β,......a(a p1  in which 

),tmin(ttβ 21max  (obviously they consist of CSIs of 

one CST).   

 

Lemma 1: If the answer to the Subset sum problem is Yes, 

then the answer to the (2,1)-assignment problem is also 

Yes. 

 

Lemma 2: If the answer to the (2,1)-assignment problem is 

Yes, then the answer to Subset sum problem is also Yes. 

 

The proof for both lemmas is straightforward. With 

these lemmas and based on NP-hardness theory, the NP-

hardness of (2,1)-assignment problem is proven. Therefore, 

the NP-hardness of SI protection problem for the N+M 

redundancy model is established.   

V.  THE NWAYACTIVE AND NWAY REDUNDANCY 

MODELS 

An SG with the NWayActive redundancy model 

contains N SUs. Each SU has to be active for all SIs 

assigned to it. An SU is never assigned the standby HA 

state for any SI. From the service side, for each SI, one, or 

multiple SUs can be assigned the active HA state according 
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to the preferred number of assignment configured for the 

SI.   

For the NWay redundancy model, the SG also contains 

N SUs that protect multiple SIs. An SU can simultaneously 

be assigned active HA state for some SIs and standby HA 

state for some other SIs. At most, one SU may have the 

active HA state for an SI, but one, or multiple SUs may 

have standby HA state for the same SI.  No SU is assigned 

active HA state and standby HA state for the same SI. 

The issue of considering different combinations of SIs 

remains the same as for the N+M redundancy model.  

Moreover, the NwayActive and NWay redundancy models 

allow for multiple assignments of SIs to SUs. Therefore the 

SI protection problem for both of them is at least as 

complex as for the N+M redundancy model. Similar proof 

of NP-hardness can be conducted for these two redundancy 

models. Therefore, the SI protection problem for the 

NWayActive and NWay redundancy models is also NP-

hard.   

VI.  OVERCOMING COMPLEXITY 

We will explore here how to reduce the complexity of 

the SI protection problem in the case of the N+M 

redundancy model. Let us consider the case where SISet 

can be partitioned into subsets of identical SIs and the SIs 

of any pair of different subsets do not have any CST in 

common. We refer to this as the case of CST_Disjoint 

subsets of identical SIs. More precisely, SISet can be 

partitioned into SISet1, SISet2, …,  nd SISetn, where each 

SISeti contains only identical SIs and SISeti and SISetj do 

not have any CST in common when i ≠ j. 

For the N+M redundancy model, any SU in the SG can 

either be assigned the active or standby HA state. From the 

service perspective, for each SI, we only have one active 

assignment and one standby assignment. Consequently, we 

can divide the set of SUs into two partitions: the active and 

standby partitions. Any SU in the active partition acts only 

as active and any SU in the standby partition acts only as 

standby.  

We assumed that SUs in an SG are all identical, which 

means they all have the same number of components of the 

same component types. We have so far defined and 

discussed the capacity in terms of CSTs, we will here 

define another capacity for an SU with respect to SIs as the 

number of SIs that the SU can provide service for at the 

same time. In fact, each SU can have an active capacity and 

a standby capacity with respect to each SI. We determine 

the active and standby capacity of an SU with respect to 

each SI using the division operation introduced in Section 2 

as given by Equation 6. 
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Equation 6. Active/Standby capacity of an SU w.r.t. to an SI. 

 

The set of protected SIs, SISet, is partitioned into 

CST_Disjoint subsets of identical SIs. By calculating the 

capacity of one SU for one of the SIs of each partition we 

will have the capacities of any SU in the SG regarding any 

SI in the SISet. We know that 

n21 Set.......SubSubSet  SubSetSISet  , and 

each iSubSet  is CST_Disjoint with the other subsets. 

Consequently, we can define an ordered set of n integers 

for an SU in the SG: }.ac,.........,ac{ac n21 , in which 

iac  represents the active capacity of the SU with respect to 

the SIs in iSubSet . Similarly, we define a set of integers 

for each SU in the SG as }.sc,.........,sc{sc n21 , in which 

isc  represents the standby capacity of the SU with respect 

to the SIs in iSubSet . Now, we have all required 

information in order to check whether an SG with the N+M 

redundancy model  is capable of protecting the set of SIs it 

is configured for, or not. 

As mentioned earlier, in the N+M redundancy model, 

we have N SUs and M SUs that are taking the active 

assignments and standby assignments, respectively. From 

the service perspective, SISet, the set of protected SIs, is 

partitioned into n CST_Disjoint subsets of identical SIs. In 

this specific situation, the conditions specified in Equation 

7 represent the necessary and sufficient conditions for the 

SG to protect the set of SIs it is configured for. 
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|  |SubSetNn,  aci1

ii

ii
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Equation 7. Necessary and sufficient conditions for the N+M 
redundancy model. 

 

Intuitively, |  |SubSetNn,  aci1 ii  , states 

that there is enough capacity in the SUs of the SG to protect 

all the SIs in iSubSet , each SI once.  Since the iSubSet  

are CST_Disjoint with each other, each SU will be able to 

provide service for all the subsets simultaneously.  The 

same reasoning applies for the standby part. Moreover, the 

last property of the N+M redundancy model is satisfied, 

since we handle active and standby SUs separately. A 

simple procedure can be written for checking the conditions 

in Equation 7.  Similar conditions and reasoning can be 

followed for the NWayActive and NWay redundancy 

models.   

VII.  CONCLUSION 

In this paper, we discussed the complexity of the 

problem of deciding for SI protection for an AMF 

configuration.  To the best of our knowledge, except for the 

traditional work on complexity [7], we are not aware of 

related work tackling SI protection and taking into account 

the specificities of the domain as specified in the AMF 

standard [2]. 

The work has been done under the reasonable 

assumption that all SUs in the SG are identical. In the case 

of the 2N redundancy model and the No-redundancy 

model, we have identified necessary and sufficient 

conditions that can be checked with simple algorithms. 

However, the problem is in general NP-hard for the N+M, 

the NWayActive, and the NWay redundancy models. For 

overcoming this complexity, due mainly to the 

consideration of all possible combinations of SIs to assign 

to SUs, we have characterized a special set of SIs, where 

necessary and sufficient conditions have been defined and 

can be checked with simple algorithms.  

If we remove the assumption of identical SUs in the SG, 

the problem remains tractable for the 2N and the No-

redundancy models because of their respective specificities, 

and it remains NP-hard for the other redundancy models. 

Moreover, the solution, discussed in Section 6, for the 

special set of SIs remains valid only in the case of the N+M 

redundancy model. 

Checking for SI protection is important for the 

validation of configurations for compliance with the AMF 

specification. However, we believe that ensuring the 

compliance to the standard by construction is the best 

approach, as we have presented solutions in [5, 6]. 
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