
 1

Checking Service Instance Protection for AMF Configurations

P. Salehi, F. Khendek M. Toeroe A. Hamou-Lhadj, A. Gherbi
ECE Department, Concordia University Ericsson Canada Inc. ECE Department, Concordia University

 Montréal, Canada Montréal, Canada Montréal, Canada

{pe_saleh, khendek}@ece.concordia.ca Maria.Toeroe@ericsson.com {abdelw, gherbi}@ece.concordia.ca

Abstract - An AMF configuration is a logical organization of

resources, components and Service Units (SUs) into Service

Groups (SGs), for providing and protecting services defined as

Service Instances (SIs). The assignment of SIs to SUs is a

runtime operation performed by a middleware implementing the

AMF service. However, ensuring the capability of the

provisioning and the protection of the SIs by the configured

application is a configuration issue. In other words, a

configuration is valid if and only if it is capable of providing and

protecting the services as required and according to the specified

redundancy model. Ensuring this may require the exploration of

all possible SI-SU assignments and in some cases different

combinations of SIs, a complex procedure in most redundancy

models defined in the AMF standard specification. In this paper,

we explore the problem of SI protection at configuration time;

we investigate and discuss its complexity and identify some

special and more tractable cases.

Keywords - Availability Management Framework, Configurations,

Service Instance Protection, Validation, Complexity.

I. INTRODUTION

High availability is a requirement for services in several

domains including banking and telecommunications.

Traditionally, high-availability has been achieved with

proprietary solutions. Service Availability Forum (SAF) [1]

is defining and standardizing high availability solutions for

systems and services. Among others, SAF has developed

the Application Interface Specification (AIS), which

includes the Availability Management r mework

 [2]. The role of AMF is to manage the availability of the

service provided by an application. This consists in

managing the redundant components composing an

application and in shifting dynamically the workload

assigned to a faulty component to a redundant and healthy

one when a fault is detected. In order for AMF to manage

the availability of the services delivered by an application

under its control, it requires a configuration.

An AMF configuration [2] for a given application is a

logical organization of resources for providing and

protecting services. An AMF configuration consists of

components grouped into service units (SUs), which are

grouped into services groups (SGs). An application may

consist of one or several SGs to provide and protect

services defined in terms of service instances (SIs)

composed of component service instances (CSIs). At

runtime, for each SI, the middleware implementing the

AMF service assigns the active and standby high

availability (HA) states to SUs, according to the

redundancy models. The AMF specification defines five

redundancy models [2]: the No-redundancy, the 2N, the

N+M, the NWayActive and the NWay redundancy models.

The problem of ensuring SI protection does not occur

when configurations are generated automatically to provide

and protect the required services [5, 6], but when

configurations are designed in ad hoc manner and the

question of SI protection arises afterwards. In other

situations, new or additional services may be required

afterwards and the question of providing and protecting all

the services with the current configuration may arise.

We have been developing an UML profile for AMF [3]

and used the domain model for the validation of AMF

configurations [3], for example ones that are created by

designers using traditional tools. The issue of validating the

capability of the provisioning and the protection of the

services aroused in this case as well. Indeed a configuration

is AMF compliant if and only if it meets all the AMF

requirements including the protection of services as

required. Validating the protection of services as requested

may require the exploration of all possible SI combinations

and SI-SU assignments. This is a combinatorial and

complex problem in general. In this paper we explore and

discuss this issue for the redundancy models defined in the

AMF specification [2]. We discuss its complexity and

identify some specific cases where the problem can be

solved efficiently and complexity overcome.

The rest of this paper is organized as follows. In Section

2, we introduce some definitions and notations used

throughout the paper. We discuss the 2N and the No-

redundancy model and propose solutions for deciding about

the SI protection for these two cases in Section 3. In

Section 4, we explore the case of the N+M redundancy

model and show the complexity of the SI protection

problem in this case. In Section 5, we briefly discuss

NWayActive and NWay redundancy models before

identifying in Section 6 some special cases where

complexity can be overcome. We conclude in Section 7.

II. DEFINITIONS AND NOTATIONS

Provided services from the provider perspective, or

requested services from the requester perspective, can be

defined in terms of component service types (CSTs) and the

number of CSIs of each CST provided or requested,

respectively. We therefore define a capacity, for a

component, SU or an SI, as a set of pairs of elements (cst,

 2

i), where cst and i define a CST and an integer referring to

the capacity in terms of CSIs, respectively.

The capacity of an SU, for instance, is an aggregation of

the capacities of the different components composing the

SU. Some of these components may be overlapping in

service provisioning, i.e. may support the same CST;

similarly for an SI. Therefore the definition of the capacity

of an SU or an SI is not a simple union of the capacities of

the components or CSIs composing the SU or the SI,

respectively, but it is defined as a cumulative union where

capacities referring to the same CST are added together as

defined in part 1 of Equation 1. For simplicity, the

cumulative union is defined only for two sets of capacities

in this equation, but applies for n (n>2) sets of capacities,

where the cumulative union of the first k-1 sets is

cumulated with the set k, in a recursive manner.

In the following sections, we also need to compare

capacities provided by SUs against capacities requested by

SIs. A capacity A is higher than a capacity B, if and only if

for every pair (cst, b) in B there exist a pair (cst, a) in A

referring to the same CST with a higher than b. The

comparison of capacities is formally defined in part 2 of

Equation 1, while division between capacities is defined in

part 3 of Equation 1.

 

AyxCzx if

AzyxCzx if

 Byxiff C div BA

bA|aa)(cstB (cst,b)B iff A

 B))}(a,v)C (a,b) ((

 C))or(a,w)B (a,b) ((

y)) orx(bC)(a,y)) B (a,x){(a,b)| ((A

C where
CUM

BA

capacity:CB,A,

















),(),(

)/,(),(

,),(.3

,.2

.1

;



Equation 1. Cumulative union, comparison and division of capacities.

In an AMF configuration, SUs are grouped into SGs.

We refer to the set of SUs in an SG with SUSet and use

SISet for the set of SIs protected by the SG. We denote by

ActiveCapacity(x) for an SU x the total capacity the SU x

can support in the active role. Similarly,

StandbyCapacity(x) denotes the total capacity the SU x can

support in the standby role. The active capacity required by

an SI y is denoted by RequiredActiveCapacity(y). The total

active capacity required from an SU x in a given SU-SI

assignment A is denoted by

RequiredActiveCapacityFrom(x) and is defined by the

cumulative union of all the required active capacities of the

SIs associated to x through assignment A. Similarly, the

standby capacity required by an SI y is denoted by

RequiredStandbyCapacity(y) and the total standby capacity

required from an SU x in a given SU-SI assignment A is

denoted by RequiredStandbyCapacityFrom(x) and is

defined by the cumulative union of all the required standby

capacities of SIs associated to x through assignment A.

For purpose of clarity, we briefly remind, in Table 1,

the reader of some mathematical notations used throughout

this paper and where R is a relation between two sets X and

Y.

TABLE 1. Some mathematical notations.

Notation Meaning

Domain(R) The set of elements in X that are in a

pair in R, i.e. {x |  (x, y)  R)

Range(R) The set of elements in Y that are in a

pair in R, i.e. {y |  (x, y)  R)

|X| The cardinality (the size) of set X.

! There exists one and only one

We also remind the reader that the AMF specification

[2] requires that any SU in an SG must be able to protect

any of the SIs protected by the SG. Furthermore, we make

the reasonable assumption that all SUs in an SG are

identical, i.e. they have identical capacity with respect to

the SIs.

III. SERVICE INSTANCE PROTECTION FOR THE 2N

AND NO-REDUNDANCY MODELS

In an SG with the 2N redundancy model, at most one

SU will have the active HA state for all SIs and is referred

to as the active SU, and at most one SU will have the

standby HA state for all SIs and is usually called the

standby SU. Any SU should be capable of taking the active

or the standby role for all SIs [2].

In order to capture unambiguously the meaning of the

2N redundancy model for an SG, we define it formally as

shown in Equation 2. We consider any two different SUs in

the SG, x and y, and define two relations; the first one is for

the active assignment while the second one is for the

standby assignment. gnmentActiveAssi and

StandbyAssignment are defined as relations between one

SU and the set SISet of SIs, with the following properties:

 ActiveAssignment relation is defined as a set of

pairs with a range equal to the set SISet. Similarly,

for StandbyAssignment relation. Therefore, each SI

is taken care of once and only once, for both the

active and the standby assignments.

 The capacity required, from an SU, does not

exceed the SU capacity, for both the active and the

standby assignments, as specified in

RequiredActiveCapacity(x) ≤ ActiveCapacity(x)

for the active part, and in

 3

RequiredStandbyCapacity(y) ≤

StandbyCapacity(y) for the standby part.

 Only one SU, x, is assigned the active role for all

SIs and only one SU, y, is assigned the standby

role for all SIs, and they are different.

Having assumed that all SUs in the SG are identical, the

properties specified by Equation 2 will be satisfied by a

configuration, if and only if the SG consists of at least two

SUs and anyone of these SUs is capable of taking the active

or the standby role for all SIs. These necessary and

sufficient conditions, summarized by Equation 3, can be

checked easily.

)

)(

 with},(

)

)(

 with }(

, assuch ,,

acity(y))StandbyCap

)cityFrom(ytandbyCapa(RequiredS

and

SISetignmentStandbyAssRange

SISetu) | u {(ysignment StandbyAs

and

city(x))ActiveCapa

ityFrom(x)ctiveCapac(RequiredA

and

SISetgnmentActiveAssiRange

SISetu {(x,u) | ignment ActiveAss

yxSUSetyx















Equation 2. Formal specification of the 2N redundancy model.

acity(x)StandbyCap

SISetsisiityandbyCapacRequiredSt

and

city(x)ActiveCapa

SISetsisitytiveCapaciRequiredAc

SUSetx

andSUSet

CUM

CUM









}|)({

}|)({

,let

,2||





Equation 3. Necessary and sufficient conditions for the 2N redundancy

model.

The No-redundancy model is used for non-critical

applications and components [2]. An SU is assigned the

active HA state for at most one SI. An SI can be assigned

to only one SU at a time. All SIs should be assigned if the

number of SUs in service permits. An SU is never assigned

the standby HA state for any SI. The No-redundancy model

is formalized by Equation 4, where ActiveAssignment is

simply a bijective relation between SUSet and SISet.

gnment)}ActiveAssi (k,z) SUSet k(

and

gnment)ActiveAssi (k,z) SISet z

and

city(x)ActiveCapaity(y)ctiveCapac(RequiredA

SISet | SUSet, yx {(x,y) | ignment ActiveAss









!,

!,(

)

Equation 4. Formal specification of the No-redundancy model.

Knowing from [2] that any SU in the SG should be

capable of protecting any SI that is protected by the SG and

assuming this condition, modeled here with

city(x)ActiveCapaty(y)tiveCapaciRequiredAc  , is

checked a priori, the only necessary and sufficient

condition for an ActiveAssignment relation with the

specified properties to exist is to have at least as many SUs

in SUSet than SIs in SISet.

IV. SERVICE INSTANCE PROTECTION FOR THE

N+M REDUNDANCY MODEL

An SG with the N+M redundancy model has N+M SUs.

An SU can be active for all SIs assigned to it or standby for

all SIs assigned to it. In other words, no SU can be

simultaneously active for some SIs and standby for some

other SIs [2]. On the service hand, for each SI there is one

and only one SU that is assigned the active HA state and

one and only one SU that is assigned the standby HA state.

A. Formal Definition of the N+M Redundancy Model

In order to capture the characteristics of the N+M

redundancy model in a precise manner, a formal

specification of an SG with the N+M redundancy model is

given by Equation 5. As for the case of the 2N redundancy

model, we can distinguish two parts for expressing

separately the active and the standby assignments.

The 2N and the N+M redundancy models share several

properties. In both cases, the SUs can only be either active

or standby, and from the service side each SI should only

have one active assignment and only one standby

assignment. The difference is that for the N+M redundancy

model, the number of SUs that are assigned the active HA

state or the standby HA state is not limited to one for each.

Consequently, in Equation 5, gnmentActiveAssi

relation is a relation between a set of SUs and a set of SIs;

similarly for ignmentStandbyAss relation. It is well

known that the 2N redundancy model is a special case of

the N+M redundancy model, i.e. the 2N redundancy model

can be identified as the 1+1 redundancy model.

 4















ment)ndbyAssignDomain(Staent)iveAssignmDomain(Act

and

acity(w))}StandbyCap

)cityFrom(wtandbyCapa RequiredS SUSet w(

and

ignment)StandbyAss (k,z) SISet z(

SISet | SUSet, yx {(x,y) | signment StandbyAs

and

city(w))}ActiveCapa

ityFrom(w)ctiveCapac RequiredA SUSet w(

and

gnment)ActiveAssi (k,z) SISet z(

SISet | SUSet, yx {(x,y) | ignment ActiveAss



,

!

,

!

Equation 5. Formal specification of the N+M redundancy model.

B. Checking SI Protection for an SG with the N+M

Redundancy Model

In order to ensure SI protection at configuration when

this is not achieved by design, we need to verify the

configuration against the specification given in Equation 5.

We need a procedure to check for the properties stated in

this equation. Such as procedure may have to consider all

the possible combinations of SIs to assign to the SUs, and

obviously it will be a complex procedure in general. In the

case of the 2N redundancy model, there was only one

combination of SIs, i.e. SIs are assigned all together to one

SU for the active role, and all together to another SU for the

standby role.

The complexity of the problem for the case of N+M is

due to the different possible combinations of SIs we may

have to consider in order to find an ActiveAssignment or a

StandbyAssignment relation that satisfies the properties.

We will here show that the SI protection problem for

the N+M redundancy model is an NP-hard problem.

Therefore there is no polynomial order algorithm to solve it

[7]. According to the NP-hardness theory, a problem H is

NP-hard if and only if there is an NP-complete problem L

that is polynomial time Turing-reducible to an instance of

H [7]. Therefore, in order to prove the NP-hardness of SI

protection problem, we have to find an NP-complete

problem and reduce it to an instance of the SI protection

problem.

For the N+M redundancy model, there is N active SUs

and M standby SUs. The active and standby capacities of

SUs are independent of each others, since different SUs

take these different roles. Consequently, without loss of

generality, we will consider here the active part only. The

proof for NP-hardness for the active part can be likewise

applied for the standby part. If an NP-complete problem

reduces to an instance of the SI protection problem in

polynomial time, the NP-hardness of the SI protection

problem will be established. For this purpose, let us

consider the Subset Sum problem, which is known to be

NP-complete [7].The Subset Sum problem can be defined

as follows [7]: “Given a set of positive integers (I) and a

positive integer (t), does the sum of some non-empty subset

equal exactly to t?”. To prove the NP-hardness of the SI

protection problem, let us now consider a specific case in

which the number of active SUs is 2 and each SU support

only one CST. We refer to this problem as the (2,1)-

assignment problem. We show the problem is NP-hard in

this case; hence NP-hardness of the general SI protection

problem. We hereafter, present a reduction of the Subset

Some Problem to the (2,1)-assignment problem.

Theorem 1: The Subset Sum problem reduces to the (2,1)-

assignment problem in polynomial time.

Consider an instance)},t..a,.........{a(I 1p1 of the

Subset sum problem. Let  be the sum of members of I.

Define 12 tt  . Observe that for 02 t , the answer to

the problem is No and for 02 t , the answer is Yes. These

are trivial cases. Now, let 2t be greater than 0 (positive).

We need to define an instance of the (2,1)-assignment

problem. So, we have only two active SUs and the capacity

of protected SIs can be represented as positive integers

(they can only support one specific CST). Let us define the

capacity of SUs as),tmax(tt 21max  . Also, let the SIs

have weights), β,......a(a p1 in which

),tmin(ttβ 21max  (obviously they consist of CSIs of

one CST).

Lemma 1: If the answer to the Subset sum problem is Yes,

then the answer to the (2,1)-assignment problem is also

Yes.

Lemma 2: If the answer to the (2,1)-assignment problem is

Yes, then the answer to Subset sum problem is also Yes.

The proof for both lemmas is straightforward. With

these lemmas and based on NP-hardness theory, the NP-

hardness of (2,1)-assignment problem is proven. Therefore,

the NP-hardness of SI protection problem for the N+M

redundancy model is established.

V. THE NWAYACTIVE AND NWAY REDUNDANCY

MODELS

An SG with the NWayActive redundancy model

contains N SUs. Each SU has to be active for all SIs

assigned to it. An SU is never assigned the standby HA

state for any SI. From the service side, for each SI, one, or

multiple SUs can be assigned the active HA state according

 5

to the preferred number of assignment configured for the

SI.

For the NWay redundancy model, the SG also contains

N SUs that protect multiple SIs. An SU can simultaneously

be assigned active HA state for some SIs and standby HA

state for some other SIs. At most, one SU may have the

active HA state for an SI, but one, or multiple SUs may

have standby HA state for the same SI. No SU is assigned

active HA state and standby HA state for the same SI.

The issue of considering different combinations of SIs

remains the same as for the N+M redundancy model.

Moreover, the NwayActive and NWay redundancy models

allow for multiple assignments of SIs to SUs. Therefore the

SI protection problem for both of them is at least as

complex as for the N+M redundancy model. Similar proof

of NP-hardness can be conducted for these two redundancy

models. Therefore, the SI protection problem for the

NWayActive and NWay redundancy models is also NP-

hard.

VI. OVERCOMING COMPLEXITY

We will explore here how to reduce the complexity of

the SI protection problem in the case of the N+M

redundancy model. Let us consider the case where SISet

can be partitioned into subsets of identical SIs and the SIs

of any pair of different subsets do not have any CST in

common. We refer to this as the case of CST_Disjoint

subsets of identical SIs. More precisely, SISet can be

partitioned into SISet1, SISet2, …, nd SISetn, where each

SISeti contains only identical SIs and SISeti and SISetj do

not have any CST in common when i ≠ j.

For the N+M redundancy model, any SU in the SG can

either be assigned the active or standby HA state. From the

service perspective, for each SI, we only have one active

assignment and one standby assignment. Consequently, we

can divide the set of SUs into two partitions: the active and

standby partitions. Any SU in the active partition acts only

as active and any SU in the standby partition acts only as

standby.

We assumed that SUs in an SG are all identical, which

means they all have the same number of components of the

same component types. We have so far defined and

discussed the capacity in terms of CSTs, we will here

define another capacity for an SU with respect to SIs as the

number of SIs that the SU can provide service for at the

same time. In fact, each SU can have an active capacity and

a standby capacity with respect to each SI. We determine

the active and standby capacity of an SU with respect to

each SI using the division operation introduced in Section 2

as given by Equation 6.

Min(Cap)c

tDivisionSeCapCap and t, yDivisionSe(x,y) | t(Integer)Let Cap:Se

(si)byCapacityuiredStand div Reqpacity(su) StandbyCa onSet:CSetLet Divisi

SU,si:SI)pacity(su::StandbyCaInteger c

Min(Cap)c

tDivisionSe Cap and Cap y t,DivisionSey)(x, r)Set(Intege:Cap Let

i)Capacity(siredActive div Requacity(su) ActiveCap onSet:CSetLet Divisi

U,si:SI)acity(su:S:ActiveCapInteger c













||||

;

|||||

Equation 6. Active/Standby capacity of an SU w.r.t. to an SI.

The set of protected SIs, SISet, is partitioned into

CST_Disjoint subsets of identical SIs. By calculating the

capacity of one SU for one of the SIs of each partition we

will have the capacities of any SU in the SG regarding any

SI in the SISet. We know that

n21 Set.......SubSubSet SubSetSISet  , and

each iSubSet is CST_Disjoint with the other subsets.

Consequently, we can define an ordered set of n integers

for an SU in the SG: }.ac,.........,ac{ac n21 , in which

iac represents the active capacity of the SU with respect to

the SIs in iSubSet . Similarly, we define a set of integers

for each SU in the SG as }.sc,.........,sc{sc n21 , in which

isc represents the standby capacity of the SU with respect

to the SIs in iSubSet . Now, we have all required

information in order to check whether an SG with the N+M

redundancy model is capable of protecting the set of SIs it

is configured for, or not.

As mentioned earlier, in the N+M redundancy model,

we have N SUs and M SUs that are taking the active

assignments and standby assignments, respectively. From

the service perspective, SISet, the set of protected SIs, is

partitioned into n CST_Disjoint subsets of identical SIs. In

this specific situation, the conditions specified in Equation

7 represent the necessary and sufficient conditions for the

SG to protect the set of SIs it is configured for.

 6

| |SubSetMn, sci1

and

| |SubSetNn, aci1

ii

ii





Equation 7. Necessary and sufficient conditions for the N+M
redundancy model.

Intuitively, | |SubSetNn, aci1 ii  , states

that there is enough capacity in the SUs of the SG to protect

all the SIs in iSubSet , each SI once. Since the iSubSet

are CST_Disjoint with each other, each SU will be able to

provide service for all the subsets simultaneously. The

same reasoning applies for the standby part. Moreover, the

last property of the N+M redundancy model is satisfied,

since we handle active and standby SUs separately. A

simple procedure can be written for checking the conditions

in Equation 7. Similar conditions and reasoning can be

followed for the NWayActive and NWay redundancy

models.

VII. CONCLUSION

In this paper, we discussed the complexity of the

problem of deciding for SI protection for an AMF

configuration. To the best of our knowledge, except for the

traditional work on complexity [7], we are not aware of

related work tackling SI protection and taking into account

the specificities of the domain as specified in the AMF

standard [2].

The work has been done under the reasonable

assumption that all SUs in the SG are identical. In the case

of the 2N redundancy model and the No-redundancy

model, we have identified necessary and sufficient

conditions that can be checked with simple algorithms.

However, the problem is in general NP-hard for the N+M,

the NWayActive, and the NWay redundancy models. For

overcoming this complexity, due mainly to the

consideration of all possible combinations of SIs to assign

to SUs, we have characterized a special set of SIs, where

necessary and sufficient conditions have been defined and

can be checked with simple algorithms.

If we remove the assumption of identical SUs in the SG,

the problem remains tractable for the 2N and the No-

redundancy models because of their respective specificities,

and it remains NP-hard for the other redundancy models.

Moreover, the solution, discussed in Section 6, for the

special set of SIs remains valid only in the case of the N+M

redundancy model.

Checking for SI protection is important for the

validation of configurations for compliance with the AMF

specification. However, we believe that ensuring the

compliance to the standard by construction is the best

approach, as we have presented solutions in [5, 6].

ACKNOWLEDGEMENTS

This work has been partially supported by the Natural

Sciences and Engineering Research Council of Canada

(NSERC) and Ericsson Software Research.

REFERENCES

1. Service v il bility orum™, URL: http://www.s forum.org

2. Service Availability Forum, Application Interface

Specification. Availability Management Framework SAI-AIS-

AMF-B.04.01.

3. A. Gherbi, P. Salehi, F. Khendek, A. Hamou-Lh dj, “Tow rds

UML Profile for AM Configur tions odeling nd n lysis”,

Technical Report , ECE dept, Concordia U., Jan. 2009,

4. OMG, Unified Modeling Language (OMG UML),

Infrastructure, V2.1.2, OMG Document Number: formal/2007-

11-04, 2007.

5. A. Kanso, M. Toeroe, F. Khendek, A. Hamou-Lhadj,

“ utom tic Gener tion of Compli nt Configur tions”,

Proceedings of the International Symposium on Service

Availability (ISAS), Tokyo, Japan, May 19-21, 2008, Lecture

Notes in Computer Science, Vol. 5017, pp.155-170.

6. A. Kanso, M. Toeroe, A. Hamou-Lhadj, F. Khendek,

“Gener ting Configur tions from Softw re Vendor

Constr ints nd User Requirements”, Proceedings of the Fourth

International Conference on Availability, Reliability and

Security (ARES), Fukuoka, Japan, March 2009.

7. M. R. Garey and D. S. Johnson, “Computers nd Intr ct bility;

A Guide to the Theory of NP-Completeness”, W. H. reem n

& Co., New York, NY, USA, 1990.

