
1

Effective Exploration and Visualization of Large Execution Traces

Abdelwahab Hamou-Lhadj
ECE, Concordia University

1455 Maisonneuve West, Montreal, Quebec, Canada
abdelw@ece.concordia.ca

Abstract

Understanding the behaviour of a software system can be
made easier if dynamic analysis techniques are used. Run-
time information is typically represented in the form of
execution traces. Raw traces, however, can be extremely
large - often millions of lines long. In previous work, we
presented a tool called SEAT (Software Exploration and
Analysis Tool), which is a trace visualization tool that
supports several features for rapid exploration of lengthy
traces. In this paper, we present the new features supported
by SEAT, namely, the ability to plug-in new trace filtering
algorithms, a usable control widget called PictureTree for
displaying traces, and several new views that display useful
information about the trace under study.

Keywords: Reverse engineering, dynamic analysis, design
recovery, program comprehension.

1. Introduction

Understanding the behaviour of software systems is an
important aspect in developing effective strategies and tools
for program comprehension. The behaviour of a software
system is typically represented using execution traces. Raw
traces, however, tend to be overwhelmingly large, which has
led to the development of many trace analysis tools (e.g. [1,
4]). In [3], we surveyed a large number of tools and found
them limited in the way they handle large and most complex
traces.

In previous work [2], we presented an Eclipse plug-in
tool called SEAT (Software Exploration and Analysis Tool),
which is designed to help software engineers manipulate
traces of routine (method) calls. With SEAT, a software
engineer can collapse/expand parts of the trace, detect
patterns of execution, search for specific components,
reduce the size of the trace by collapsing similar (but not
necessarily identical) sequences of calls, etc.

We have improved SEAT by redesigning its user
interface and adding new features, among which the most
interesting ones consist of a new control widget called
PictureTree for efficient display of the trace content, the
ability to plug-in third-party trace filtering algorithms, and
several supporting views that aim at providing guidance to
software engineers during the exploration of the trace
content.

2. SEAT

A snapshot of the new graphical user interface of SEAT
is shown in Figure 1; we can see that the workbench is
divided into four parts. The upper left is the navigator where
the traces as well as the system from which they are
generated are displayed making it possible for software
engineers to explore the traces at the same time as other
system’s artefacts. The upper right area is the default editor
area; a trace can be explored in several independent
explorations using a multiple-page editor. In SEAT, traces
are displayed as tree structures using an innovative tree
widget called PictureTree that is described in Section 2.2.
The lower left area consists of a control panel used to
display properties such as statistical information of the trace
under exploration and the current node. The lower right area
is a set of auxiliary views used to view different entities
such as the results of a search query, trace patterns, etc.

Figure 1. Snapshot of SEAT’s enhanced user interface

New Trace Filtering Algorithms

SEAT supports several trace filtering techniques to help
make a trace appear simpler and smaller. The most
important ones are based on criteria by which various parts
of a trace can be treated as the same pattern. The tool also
has built-in algorithms that automatically hide various low-
level implementation constructs such as accessing methods,
methods of inner classes, constructors, etc.

2

We have improved SEAT in such a way that new trace
filtering algorithms can be added easily. We achieved this
by providing a well defined framework for trace filtering
algorithms. The framework requires that a newly developed
algorithm implement an interface called IAlgorithm so it can
both apply and revoke the filtering algorithm. An abstract
class, called Algorithm, that implements IAlgorithm, is
provided to ease the integration of a new algorithm into the
framework.

After the algorithm has been developed, the next step is
to describe its attributes and parameters according to an
Eclipse extension point called “seat.algorithm” that is
provided with SEAT (the schema of this extension point is
not provided here owing to limited space). The basic
attributes of an algorithm include a unique identifier, name,
implementation class, icon, description, etc. An optional
attribute for an algorithm is parameter, with which a user
can define several input parameters for a given algorithm.

PictureTree: A Usable Trace View

Traditionally a non-leaf tree node has two states:
expanded or collapsed. In our trace exploration context,
because various filtering algorithms can be applied to the
trace, some nodes in the trace can be hidden if they meet
certain criteria. As a result, in a certain exploration point, a
non-leaf node can have the following expanded states: fully
expanded, that is, all the nodes are shown; and partially
expanded, meaning some or all the children are hidden by
some filtering algorithms, so only part of children are
currently displayed. Existing tree widgets either expand or
collapse the entire subtree. To address this issue, we created
a new tree widget called PictureTree that works as follows:

Figure 2. A Snapshot of PictureTree

When a subtree is first displayed, it is in collapsed state,
indicated by the icon ‘+’. When a user wants to expand the
subtree to visit its children nodes, the icon that represents
the new state will change to either ‘–‘ icon or ‘~’ icon
depending on whether there are children nodes being hidden
by any filtering algorithms. If no children nodes are marked
filtered, ‘-‘ icon will be displayed for the subtree.
Otherwise, ‘~’ icon will be used to indicate that some
children cannot be seen. By using Ctrl+Click, the user can
switch between these two icons, and refresh children nodes
respectively. Figure 2 shows an example of using

PictureTree. The node labelled “evaluateModel” is partially
expanded, i.e., the subtree rooted at this node contains nodes
that are hidden.

Support of Multiple Exploration Views

SEAT supports several new views that can help speed up
the process of exploring the content of a trace. These views
are:

 The Model View: It is used to display the distinct
elements invoked in the trace.

 The Search View: It provides the result of a search
query. Search history is recorded automatically and the
user can easily return to a previous result.

 A Bookmark View: It provides the user with the ability
to record the locations in the trace previously visited
and return to it when necessary.

 The Pattern View: It displays patterns of executions in a
list, from which the user can select the patterns that
need to be analyzed.

 The Utility View: It contains the components that are
considered by software engineers as utilities.

3. Conclusions and Future Directions

In this paper, we presented the new features supported by
our trace analysis tool, SEAT. The objective is to help
software engineers effectively and efficiently explore the
content of large execution traces.

Future directions should focus primarily on the
evaluation of SEAT by experimenting with large traces.
There is also a need to investigate how the proposed
techniques can be applied to other types of traces such as
inter-process communication.

References

[1] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, and J.
Vlissides, J. Yang, “Visualizing the Execution of Java
programs”, In Proc. of the International Seminar on
Software Visualization, LNCS 2269, Springer-Verlag,
2002, pp. 151-162.

[2] A. Hamou-Lhadj, T. Lethbridge, and L. Fu, "SEAT: A
Usable Trace Analysis Tool", In Proc. of the 13th
International Workshop on Program Comprehension,
IEEE CS, 2005, pp. 157-160.

[3] A. Hamou-Lhadj and T. Lethbridge, “A Survey of
Trace Exploration Tools and Techniques”, In Proc. of
the 14th IBM Conference of the Centre for Advanced
Studies on Collaborative Research, IBM Press, pages
42-55, 2004.

[4] D. Jerding, and S. Rugaber, "Using Visualization for
Architecture Localization and Extraction", In Proc. of
the 4th Working Conference on Reverse Engineering,
1997, pp. 219-234.

