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Abstract—Studies have shown that understanding of inter-

process communication patterns is an enabler to effective analysis 

of high performance computing (HPC) applications. In previous 

work, we presented an algorithm for recovering communication 

patterns from traces of HPC systems. The algorithm worked well 

on small cases but it suffered from low accuracy when applied to 

large (and most interesting) traces. We believe that this was due 

to the fact that we viewed the trace as a mere string of operations 

of inter-process communication. That is, we did not take into 

account program control flow information. In this paper, we 

improve the detection accuracy by using function calls to serve as 

a context to guide the pattern extraction process. When applied to 

traces generated from two HPC benchmark applications, we 

demonstrate that this contextual approach improves precision 

and recall by an average of 56% and 66% respectively over the 

non-contextual method. 

Index Terms—Dynamic Analysis, High Performance 

Computing, Inter-Process Communication Patterns, Reverse 

Engineering. 

I. INTRODUCTION 

A confluence of trends has led to an increasing demand for 

High Performance Computing (HPC) systems. The need to 

process complex scientific problems in record time plays an 

important role. The emergence of new and powerful 

computing platforms is also a significant factor.  

While HPC systems offer tremendous benefits to users, 

they pose real challenges to developers. They tend to be 

difficult to debug and analyze. HPC systems differ from 

traditional software in terms of their form, structure, and 

behaviour [7]. Typical systems involve a large number of 

processes interacting with each other following various 

communication patterns (see next section for examples).  

As an HPC application undergoes several ad-hoc 

maintenance activities, it becomes challenging to know which 

communication patterns the application supports. Without this 

knowledge, it is difficult for software engineers to debug and 

analyze the application. Communication patterns are useful in 

revealing the program’s parallel structure and communication 

topology [2], which can in turn help in many software 

maintenance tasks including debugging [22], refactoring and 

optimization [18]. Communication patterns can also be used to 

validate whether the actual program behaves according to the 

intended design or not. Rendered as event graphs (see Figures 

1 and 2 for examples), they are used as documentation that 

guides further changes made to the system. 

It is therefore essential to investigate techniques and tools 

that can automatically identify communication patterns from 

HPC systems. In previous work, we presented an approach 

that aims to do just that by mining execution traces [1]. The 

approach, however, suffers from low accuracy, especially 

when applied to large systems. After a careful analysis of 

several HPC traces using trace analyzers such as the Vampir 

trace analysis tool [28], we found that this limitation was 

mainly due to the fact that we viewed a trace as a mere stream 

of MPI
1
 events independently from where these events appear 

in the program. We observed that patterns rarely appear 

outside the boundaries of user-defined program functions. We 

therefore decided to investigate if and how user-defined 

functions can be used as a context that guides the detection of 

communication patterns. We also propose an improved pattern 

detection algorithm that scales up to so large traces. This is 

important because of the size overhead added when tracing 

user-defined functions along with MPI calls.  

When applied to traces generated from two HPC systems, 

we found that the contextual approach (presented in this 

paper) performs in average 56% to 66% better than the 

previous approach without penalizing performance. 

The remaining parts of the paper are organized as follows: 

In Section II, we provide background information on HPC 

systems. In Section III, we present our approach and discuss 

its components. In Section IV, we show the effectiveness of 

our approach by applying it to traces generated from two HPC 

systems. We continue the paper by presenting the threats to 

validity in Section V. Related work is described in Section VI.  

We conclude the paper in Section VII. 

 

                                                 
1MPI stands for Message Passing Interface, a standard for inter-

process communication [8]. 



II. BACKGROUND 

HPC benefits from parallel computing in order to solve 

computation-intensive scientific problems. As opposed to 

sequential computing, parallel computing decomposes the 

problem into sub-problems that run on different computational 

units in order to solve the problem in a reasonable amount of 

time. In most cases, the computational units need to 

collaborate in order to complete a specific task. This 

collaboration is achieved either through shared memory or 

inter-process communication. In the latter case, which is the 

focus of this paper, typical HPC programs may involve a large 

number of processes that coordinate their efforts to solve a 

specific large scale problem. This is performed usually 

through well-known communication patterns. 

An example of a communication pattern is shown in Figure 

1. The figure depicts a sample trace generated from running 

four processes in parallel. A horizontal line represents the 

events from a particular process. When matching the MPI 

events on the partner processes, a communication pattern will 

be generated. The figure shows a 2D-nearest-neighbour 

communication pattern (with a 4 x 1 process topology) that is 

repeated three times at different locations in the graph. Non-

MPI events are represented using dark bars. The graph that we 

used to depict the communication events is called the event 

graph [16] where time is on the x-axis and the events flow 

from left to right. 

 

Fig. 1. Repeating Communication Pattern 

A process topology is the way the processes are 

represented on a grid (Cartesian) or a graph structure. For 

example, in Figure 1 (right), the process topology is a 4x1 

grid. The same system can have different process topologies. 

For example, a 4x4 grid topology will have 16 processes that 

are arranged on a square grid. Similarly a 4x4x2 grid topology 

would involve processes that are arranged on two superposed 

2D, forming a 3D grid. 

When detecting communication patterns, we are interested 

in the way the program processes are communicating and not 

what data they are exchanging. For example, each pattern in 

Figure 1 may involve different data (messages exchanged 

among processes) but the processes are still communicating 

based on the same pattern.   

Several communication patterns for distributed systems are 

reported in the literature [21]. They are used as guidelines for 

the proper way to implement an inter-process communication 

mechanism (for more details about the list of documented 

communication patterns, please refer to [21]). Figure 2 depicts 

an example of two communication patterns used in 

implementing collective communications. The Binary Tree 

pattern (Figure 2a) is used to implement All-to-One MPI 

collective operations. For example, the MPI_Reduce operation 

is implemented using this pattern. The Butterfly pattern, 

shown in Figure 2b, is a communication pattern that is used to 

implement All-to-All MPI collective operations. 

 

Fig. 2. Examples of communication patterns 

A simple way to recover communication patterns is to 

consider each process trace as a string of MPI operations (e.g., 

send, receive, etc.) and apply a pattern recognition algorithm 

(see [1] for an example). The main advantage of this approach 

is that it only needs to trace the MPI operations. This results in 

a smaller trace than a trace containing other types of 

information such as routine calls. Also, many HPC trace 

analyzers offer views that only handle inter-process 

communication operations, making them a good candidate for 

supporting this method.  

However, this approach (as we will show in the case 

studies) results in a large number of patterns among which 

many of them are false positives. They do not represent the 

communication pattern intended during the design. This 

approach also results in overlapping patterns, making it 

difficult to know the beginning and end of patterns. 

Sequence: (mirrors a process trace generated from Sweep3D) 

abababacacacbdbdbdadadadabababacacacbdbdbdadadadabababacac

acbdbdbdadadad 

 

Detected Patterns: Number in brackets shows how many times the 

pattern occurs in the sequence above. 

 

a (27), aba (9), ababa (6), abababacacacbdbdbdadadad (3), ac (9), 

acac  (6), b (18), bd (9), bdbd (6), da (11), dad (9), dada (8), dadad 

(6), dadada (5), d (18), 

abababacacacbdbdbdadadadabababacacacbdbdbdadadad (2) 

 

Valid Patterns: ab (9), ac (9), bd (9), ad (9), 

abababacacacbdbdbdadadad (3) 

Fig. 3. Pattern Detection Based on Syntactic Methods 

Some of these limitations can be illustrated in the example 

of Figure 3, which is taken from a real system execution. The 

presented sequence simulates a large trace that is generated 

from running the Sweep3D [26] HPC program. We denote the 

MPI events using alphabet characters to avoid clutter. The 

communication patterns intended for this application are 

documented in [26]. Sweep3D implements a wavefront pattern 

with a sweep from each corner in the process topology to its 

opposite corner. The example shows that 16 patterns were 

detected when using a technique that only uses MPI operations 
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despite the fact that only five patterns are valid patterns 

according to the system’s documentation. In addition, the 

approach missed two valid patterns ‘ab’ and ‘ad’.  It is clear 

that a better and more accurate approach is needed. 

III. APPROACH 

Our approach for detecting communication patterns in 

HPC traces is shown in Figure 4. For simplicity reasons, we 

refer to a trace of one process as a process trace and we use the 

term ‘trace’ alone when referring to the whole program trace 

(multiple processes). We refer to patterns that are repeated in 

one process trace as process patterns. A communication 

pattern is then a collection of process patterns. 

 

 Fig. 4. Pattern Detection Approach 

The first step of our approach is to collect traces of routine 

calls along with MPI operations and divide them into process 

traces. Then, we remove contiguous repetitions to reduce the 

trace size. The next two steps, which represent the core of the 

approach, focus on the detection of communication patterns. 

The final step is a validation step in which we semi-

automatically analyze the quality of the extracted patterns. We 

discuss each step in more details in the subsequent sections. 

A. Trace Generation 

We generate traces using source code instrumentation by 

automatically inserting probes in places of interest. There exist 

several tools that automatically instrument MPI applications 

such as VampirTrace [28]. An alternative approach, in the 

absence of the source code, would be to instrument the 

operating environment such as the operating system or the 

virtual machine. This technique usually has a lower overhead 

on the system than a pure application instrumentation 

technique. An example of an efficient tool that could be used 

for Linux-like systems is LTTng (Linux Tracing Toolkit) [5]. 

We generate a trace by exercising a specific scenario and 

providing the input parameters. HPC applications also 

necessitate that we specify the number of processes and 

process topology. We can vary the process counts to increase 

or decrease the processing power. This is constrained by the 

capabilities of the host node. An example of a process 

topology is a 2x3 topology, which means that there are 6 

processes mapped to a 2x3 matrix. A process topology can 

also be three dimensional.  

Once the trace is generated, we create a process trace for 

each process by simply parsing the trace and saving process 

information in different files.  

B. Removal of Contiguous Repetitions 

Contiguous repetitions of events (also called tandem 

repeats) exist in a trace mainly due to the presence of loops, 

recursion, or the way the system is exercised. The size of the 

trace can be significantly reduced by removing the contiguous 

repeats before the pattern detection process takes place as 

noted by Hamou-Lhadj in [10]. Also, we found that another 

advantage of removing contiguous repeats is that it enables the 

detection of patterns in their compact form. For example, 

‘ababcdcdefef’ can be represented as ‘abcdef’, which is more 

reflective in the cases we saw than having repetitions within a 

pattern. We do not keep track of the number of tandem 

repeats.  

C. Detection of Communication Patterns 

This phase is composed of two steps. The first one is to 

detect patterns that appear within each process. The second 

step is to assemble these patterns to form the final 

communication patterns using a pattern construction 

algorithm. This two-step process was first introduced by 

Preissl et al. [22]. It is intended to simplify the detection 

mechanism; it would be unnecessarily complex to proceed in 

one phase. 

Fig. 5. Sample Traces from four Parallel Processes 

We use the fictive trace illustrated in Figure 5 as a running 

example to explain the pattern detection algorithm. In this 

example, we have four processes that communicate with each 

other to execute functions F1 to F3. The MPI operations used 

in this example are simple Send (represented by S) and 

Receive (represented by R). The numbers between brackets 

represent the position of an MPI operation in a process trace. 

They are added here for clarity. In this example, Process P1 

Generate process traces 

Remove contiguous repetitions from each Ti  

Detect per-process patterns in each T’i 

Analyze the extracted patterns 

   T1             . . .                   Ti                           . . .                    Tn 

   T’1        .  . . . .           T’i                            . . .  . . .           T’n 

Construct global communication patterns 

{PL1}     . . . .     {PLi}            .....                {PLn} 

    {CPm} 

Generate a trace of routine calls along with MPI operations 
from an HPC system 

T 



executes function M which calls F1, F2, and F3. In F1, P1 

sends a message to Process P2, then sends a message to P3, 

etc. We only consider Send and Receive operations for 

simplicity reasons but in fact any MPI operation can be used. 

The messages and the timestamps are omitted from this figure. 

Step 1: Detection of per-process patterns 

In this step, we detect patterns of MPI operations in each 

process separately. A pattern is a maximal repeat that can be 

extended neither to the left nor to the right. More formally, 

given a string S of length n, a maximal repeat in S is a tuple 

(p1, p2, l) such that: 

    ∃S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and    

       S[p1 + l] ≠ S[p2+ l]  and S[p1 - 1] ≠  S[p2 - 1] 

The pattern detection algorithm we propose in this paper is 

an improvement of an earlier algorithm that we presented in 

[1]. The algorithm is based on the concept of n-gram 

extraction. In this new version, we use a bi-grams table of all 

bi-gram occurrences in the trace. This helps in eliminating the 

positions in the trace that do not correspond to repeating 

patterns. In addition, we perform forward and reverse pattern 

lookup as opposed to the previous method where we only used 

reverse pattern lookup. Also, we modified the previous 

algorithm to take into account the function calls, which are 

now used as a context that delimits the scope of a pattern.  

That is, we do not consider patterns that are formed across 

functions.  Note that the algorithm is performed recursively 

over the call tree all sub-trees. 

We recognize that determining a pattern’s context is not 

that straightforward. In theory, there might be situations where 

the context spreads over multiple cohesive functions. 

However, in most benchmark systems that we have analyzed, 

such as the ones presented in the case study, we found that by 

simply considering each function as a unique context, we 

could significantly improve the accuracy of the pattern 

detection process. Perhaps, this is due to the fact that, unlike 

traditional systems, HPC systems (more particularly the ones 

used for scientific computations) rely on a set of key functions 

that handle most of the computations; each function is 

dedicated to one important cohesive computation [7].  

However, given the noticeable increase in using the HPC 

paradigm in other application domains, triggered mainly by 

the emergence of multi-core and cloud computing platforms, 

we anticipate that HPC systems will increase in complexity. It 

is therefore recommended that future work should be directed 

towards investigating ways to determine the context (e.g., 

using clustering or other similar techniques). We also suggest 

that tools that support the analysis of HPC traces provide the 

users with enough flexibility to define the context, for 

example, by grouping functions using domain knowledge. We 

believe that this domain knowledge (if available) can further 

enhance the pattern detection process. 

Another change we made to the previous algorithm is to 

improve its performance by adopting an n-gram construction 

process borrowed from the Lempel-Ziv-Welch data 

compression algorithm [29]. The new algorithm performs 

reverse and forward lookup of the pattern table, which reduces 

the number of lookups as opposed to the old way. In the new 

algorithm, as we move forward in the trace we already have 

the patterns detected as a result of performing forward lookup. 

The details of the algorithms are presented in the next 

paragraphs. A performance gain is particularly important since 

the approach presented in this paper relies on additional 

information (functions calls), which result in larger traces than 

when simply processing MPI events. Other pattern detection 

algorithms (e.g., [1, 14, 22]) can also be used as long as they 

can scale up to large traces.  

The algorithm presented in this paper starts by identifying 

the bi-grams that are repeated more than once in a process 

trace and saves them in a hash table along with their positions.  

Again, the events of an n-gram must appear within the same 

function call since the function calls are used as a context.  

The position of an n-gram is the position of its first MPI 

event. We also keep the frequency (note that the frequency can 

be inferred from the positions -we used it here for illustration 

purposes). We only save the bi-grams that appear more than 

once since these are the ones with the potential of forming a 

pattern. For example, the bi-gram table of process P1 is: 

2-gram Position    Frequency 

S2S3 1, 7, 9 3 

S3R2 2, 10 2 

R2R3 3, 11 2 

 

The next step is to take each bi-gram, appends to it the next 

event appearing in the trace, and check if the resulting n-gram 

also appears in the other positions. For example, the resulting 

3-grams that is formed by appending the next event that 

appears in the trace to bi-grams S2S3 appearing at positions 1, 

7, and 9 are S2S3R2, S2S3 (no more MPI events are found in 

the function), and S2S3R2 respectively. We create a 3-gram 

table based on that by again keeping the position and the 

frequency of the new formed 3-grams. We also update the bi-

gram table by modifying the frequency of the sequences that 

contributed to the formation of a larger pattern (in this case 

S2S3R2).  The frequency of S2S3 in the bi-gram table will be 

changed to 1 since two of its occurrences led to the formation 

of a larger pattern. The 3-gram table is shown below. It should 

be noted that, in practice, we do not need to keep multiple 

tables; it is sufficient to use one table and augment the 

algorithm with simple checks.  

3-gram Position    Frequency 

S2S3R2 1, 9 2 

S3R2R3 2, 10 2 

By continuing this process, another repetitive 4-gram is 

formed, which is S2S3R2R4. No more n-grams can be 

constructed from this since we depleted all the events in the 

functions. The final step is to revisit the tables, take the n-

grams that have a frequency greater than 1, and prune the ones 

that have fully served in the formation of larger n-grams. For 

example, both occurrences of R2R3 were used to form 

S2R2R3. We do not need to keep R2R3.  



The final patterns that are extracted from processes P1, P2, 

P3, and P4 are as follows: 

P1: PT1 = S2S3R2R3     

P2: PT2 = S1R1   

P3: PT3 = R1S4S1   

P4: No patterns 

 
It should be noted that we do not need to keep track of 

patterns of length 1 (such as the case of R3 in P4) to save 

processing time. These patterns will be integrated during the 

construction of global communication patterns anyway as we 

will show in Step 2. 

Step 2: Formation of final communication patterns 

Once all per-process patterns are detected, we assemble 

them to form the final communication patterns. The 

construction process iterates through the per-process patterns 

and maps the MPI operations with the ones of the partner 

processes. For a pattern p1, its corresponding partners are those 

that have matching events with p1. For example, the matching 

events of PT1: S2S3R2R3 are R1 in Process P2 (to match S2), 

R1 in Process P3 to match S3, S1 in P2 to match R2, and 

finally S1 in P3 to match R3. The construction process 

continues until all MPI operations are matched. Note that, 

sometimes, we might not find the matching event since we do 

not keep track of single events as part of the repeats (e.g., R3 

in P4). In this case, we simply add it to the construction 

process. The final global communication pattern of the trace in 

Figure 5 is shown in Figure 6. 

 

Fig. 5. Detected communication pattern 

D. Validating the Patterns 

In this step, we verify the accuracy of the detected patterns. 

This step is done semi-automatically using a trace analysis 

tool. We map the patterns to the original trace to make sure 

that all contributing processes are covered. We check that the 

routines are indeed responsible for the patterns. We do this by 

referring to the source code or any available documentation. 

We use documented systems in our case studies to validate the 

results in the absence of software engineers. If the patterns are 

not correct then we examine the causes by further exploring 

the trace. Sometimes, the cause might be due to some noise in 

the data such as the presence of utility routines. The objective 

of this step is also to learn about ways to improve the approach 

for future studies. 

IV. CASE STUDY 

We show the effectiveness of our approach by applying it 

to two HPC benchmark systems, Sweep3D [26] and 

SMG2000 [25]. We compare the approach presented in this 

paper (that we refer to as Contextual Technique) with the one 

presented in our previous work which does not use any 

contextual information [1] (we refer to it as Non-Contextual 

Technique). Because the contextual approach uses additional 

information (i.e., function calls), we also examine the time 

efficiency of both approaches.  

It is worth noting that we also attempted to compare our 

method with other researchers’ approaches. The closest study 

is the one by Preissl et al. [22, 23]. The authors proposed an 

approach for detecting communication patterns using the 

concept of seed functions augmented with static analysis (see 

Related Work). The authors’ work was described in a less 

granular manner, limiting our ability to make direct 

comparison between the two approaches.   

A. Description of the Target Systems 

Sweep3D [26] is part of the ASCI Blue Benchmark Suite. 

It models a 3D discrete ordinates neutron transport and 

represents the heart of a real ASCI application. Sweep3D 

includes the streaming and the scattering operators. The 

streaming operator is solved by sweeps from each angle to the 

opposite angle in the grid. The scattering operator is solved 

iteratively. 

SMG2000 [25] is a parallel semi-coarsening multi-grid 

solver for the linear systems arising from finite difference, 

finite volume, or finite element discretization of the diffusion 

equation on logically rectangular grids. It uses a complex 

communication pattern [9]. The parallelism in SMG2000 is 

achieved by data decomposition. SMG2000 performs a large 

number of non-nearest-neighbour point-to-point 

communication operations and can be considered a stress test 

for the network subsystems of a machine as shown in [30].  

B. Quality of Pattern Detection 

We use precision and recall to measure the effectiveness of 

both approaches, which we define as follows. Both metrics 

vary from 0 (worst results) to 100% (best results). 
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Sweep3D: by referring to Sweep3D documentation, we 

found that the system uses a series of wavefront 

communication patterns as the main inter-process 

communication mechanism. We used this information to 

validate our results.  

 

Fig. 7. Wavefront Pattern (2x3 Process Topology) 
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Figure 7 shows the four sweeps in a 2x3 process topology. 

Each sweep sends data from a corner to its opposite corner in 

the grid. In case of a 3D grid, Sweep3D employs eight sweeps 

(originating from each corner) per iteration. 

We tested our approach on six traces generated from 

running the program using different process topologies and a 

number of iterations (iteration is just an input parameter for 

the program, needed to solve the problem implemented in 

Sweep3D). In all cases, Sweep3D had the same 

communication behaviour, i.e., wavefront pattern.  The global 

communication pattern (composition of all wavefront patterns) 

was repeated the same number of times as the number of 

iterations. Table 1 shows the result of comparing the two 

approaches on a trace from a 2x3 process topology.  

TABLE 1. NUMBER OF DETECTED COMMUNICATION PATTERNS IN A 
SWEEP3D TRACE (2X3 TOPOLOGY AND 12 ITERATIONS)  

Pattern Detection 

Technique 
Patterns Precision Recall 

Non-Contextual  2 100%  40%  

Contextual 4 100%  80%  

As shown in Figure 8, the total number of communication 

patterns in Sweep3D is four wavefront patterns and a global 

communication pattern which can be seen as the composition 

of these four patterns. In total, there are five valid patterns. 

Table 1 shows that when using the non-contextual 

approach only two valid communication patterns were 

detected. The first pattern is the one shown in Figure 8a and 

the second one is the global communication pattern (the 

composition of the four wavefronts). The precision of the non-

contextual approach in this scenario was 100% however the 

recall was only 40%. 

 
Fig. 8. Detected Communication Patterns 

When applying the contextual approach, we were able to 

detect all the wavefront patterns. However, the global 

communication pattern was not detected. This is expected 

because we only detected patterns within specific functions. 

To detect the global communication pattern (i.e., the repetition 

of the four patterns), we would need to change the context. 

This is like considering the function M (Figure 5 Process P1) 

as a context instead of F1, F2, and F3.  The precision for the 

contextual approach is 100% and recall of 80%. 

SMG2000: We tested our approach on a trace generated 

from exercising a scenario with an 8x1x1 process topology 

and a 2x2x2 problem size. Based on the system 

documentation, SMG200 supports eight communication 

patterns (see Figure 9). We used this knowledge to validate 

our approach. 

 

 
(i) 

Fig. 9. SMG2000 Communication Patterns (Topology: 8x1x1 - 
Problem Size: 2x2x2) 

Table 2 shows the results of applying the contextual and 

non-contextual approaches. When applying the non-contextual 

approach, the total number of detected patterns was 42 with 

only four valid communication patterns (9a, 9b, 9d and 9e) -  a 

precision of around 10% (4/42) and a recall of  50% (4/8). 

Using the contextual approach, the number of detected 

patterns was reduced to nine, among which we detected seven 

valid patterns - precision of 78% (7/9) and recall of 87% (7/8). 

It should be noted that the difference in results obtained 

between analyzing Sweep3D and SMG2000 can be explained 

by the fact that these systems vary in complexity. Sweep3D 

uses only one communication patterns whereas SMG2000 

uses eight. 

TABLE 2. NUMBER OF DETECTED COMMUNICATION PATTERNS FOR 
SMG2000 TRACE (8X1X1 PROCESS TOPOLOGY; 2X2X2 INPUT) 

Pattern Detection 

Technique 
Patterns Precision Recall 

Non-Contextual  42 10%  50%  

Contextual 9 78%  87%  

The pattern that was not detected is Pattern 9(i) (Figure 9). 

We analyzed one of the process traces to see where the 

algorithm failed. We picked Process P2. We found that the 

function hypre_InitializeCommunication was called twice by 

hypre_SMGResidual and later by the function 

hypre_BoxGetStrideSize. In both cases, the first occurrence of 

hypre_InitializeCommunication called S3S1 whereas the 

second occurrence called R1R3 MPI operations. We treated 

these two calls as independent calls, which led to two different 

contexts. Had we consider the same function as one context 

(independently from the MPI calls it makes) we would have 

detected the pattern. This is an interesting case which clearly 

stresses the need for further studies to investigate a better way 

of defining a context than considering each function as a 

unique context.   
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In another scenario where we used a 2x2x2 process 

topology (3D mesh) and a 2x2x2 problem size, we were able 

to detect another set of patterns that the non-contextual 

approach was not able to detect. Table 3 shows the precision 

and recall values for both approaches. In this scenario, there 

are 13 valid communication patterns. In the non-contextual 

approach, we were able to detect seven valid patterns out of 

the 50 detected patterns, whereas using the contextual 

approach we were able to detect 12 valid patterns out of 17. 

Again, the pattern that was not detected was due to the 

hypre_InitializeCommunication function. 

TABLE 3. NUMBER OF DETECTED COMMUNICATION PATTERNS FOR 
SMG2000 TRACE (2X2X2 PROCESS TOPOLOGY; 2X2X2 INPUT) 

Pattern Detection 

Technique 
Patterns Precision Recall 

Non-Contextual  50 14%  55%  

Contextual 17 70%  92%  

In Table 4, we show another example for another 

SMG2000 scenario. In this scenario, there are 29 valid 

communication patterns. Using the Non-contextual approach, 

we were able to detect 20 valid patterns. When applying our 

contextual approach, we were able to detect 27 valid 

communication patterns. 

As the process topology becomes complex, the precision of 

our approach decreases. The recall seems to stay relatively the 

same, which is a good thing. At least, we are not missing 

many valid patterns. When we analyzed the traces, we noticed 

that the low precision was due to the inability for our pattern 

detection algorithm to deal with nesting patterns. Consider the 

following example: 

Function 2: R1R2R3 

Function 2: S1S2S3R1R2R3S1S2S3R1R2R3 

The algorithm will detect both R1R2R3 and 

S1S2S3R1R2R3 as patterns, whereas the valid pattern in this 

case is only S1S2S3R1R2R3. Therefore, we need to further 

fine-tune the algorithm to deal with nesting patterns. 

TABLE 4. NUMBER OF DETECTED COMMUNICATION PATTERNS FOR 
SMG2000 TRACE (4X4X1 PROCESS TOPOLOGY; 4X4X4 INPUT) 

Pattern Detection 

Technique 
Patterns Precision Recall 

Non-Contextual  78 25%  69%  

Contextual 42 64%  93%  

In summary, we have clearly demonstrated that the 

program functions, used as a context, can improve the 

automatic detection of valid inter-process communication 

patterns. The approach achieves a reasonably good precision 

and recall.  But clearly, we need to continue to experiments 

with larger systems for identifying opportunities to improve 

both measures. 

 

C. Performance Evaluation 

We also compared the performance of the two approaches 

in terms of processing time. In the following, we present the 

statistics from several process topologies from both Sweep3D 

and SMG2000. 

Our experiments are conducted on a 1.83 GHz Intel Core 2 

Duo CPU with 3.0 GB of RAM. It is worth mentioning that 

the pattern detection algorithm runs on each process trace 

separately (sequentially) and the execution times shown in this 

study are the sum of the execution times of all runs. 

Conducting the experiments in a parallel setting is expected to 

significantly improve the execution time. 

Sweep3D: We used different process topologies to vary the 

number of processes. As we can see in Table 5, the 

performance of the contextual approach is slightly lower than 

a non-contextual approach. This is expected since the 

contextual approach uses additional information (i.e., function 

call trees) which affects the processing time. The improvement 

we made to the performance of the previous algorithm, 

however, seems to bring its fruits since the performance gap 

between the two approaches is very small in all cases (average 

difference of around 3 seconds). 

SMG2000: Similar to Sweep3D, we did not find any 

significant difference in terms of performance between the 

contextual and the non-contextual approach as shown in Table 

6. 

TABLE 5. PERFORMANCE ANALYSIS FOR SWEEP3D TRACES 

Process 

Topology 
It. Messages 

Contextual 

(seconds) 

Non-contextual  

(seconds)  

2 x 3 12 20160 0.78 0.72 

6 x 3 12 51840 2.45 1.674 

5 x 5 40 256000 5.83 4.20 

7 x 4 74 532800 9.156 7.20 

8 x 8 120 2150400 28.74 22.27 

8 x 16 120 4454400 56.45 52.23 

  Average 17.24 14.71 

TABLE 6. PERFORMANCE ANALYSIS FOR SMG2000 TRACES 

Topology 
Problem 

Size 

MPI 

Events 

Contextual 

(seconds) 

Non-Contextual 

(seconds) 

8x1x1 2x2x2 9312 1.25 0.98 

2x2x2 2x2x2 25416 1.33 1.40 

4x4x2. 2x2x2 248768 12.56 10.82 

16x1x1 10x10x10 978296 73.98 68.71 

32x1x1. 10x10x10 2363156 162.14 147.65 

64x1x1. 10x10x10 5324304 359.54 354.32 

 Average 101.8 97.31 

V. THREATS TO VALIDITY 

A threat to the validity of our conclusions exists because 

we have only experimented with two systems. Though we 



agree that more experiments are needed, the systems used in 

this study are benchmark applications used also by other 

researchers [22, 23, 32].  

A threat to construct validity exists in the way we validated 

the results. We used system documentation to validate the 

detected patterns. We also looked at the source code of the 

target systems to understand the supported communication 

patterns. An ideal validation would be to conduct a formal 

experiment with software engineers. However, it was 

challenging to find HPC systems in which we had access to 

the developers. We mitigated this threat by choosing open 

source systems that are benchmark applications in the field, 

with adequate documentation.  

A threat to internal validity exists in the implementation of 

the programs to process trace information and to detect 

patterns. This is because we automated this procedure by 

writing shell scripts and Java code. We have minimized this 

threat by manually investigating the outputs, and making sure 

our results are valid and consistent.  

VI. RELATED WORK 

Trace analysis has been the topic of many studies (e.g. [4, 

11]) in the area of reverse engineering and program 

comprehension. Much of the research, however, focuses on 

single-threaded systems paying less attention to traces of 

distributed systems. The analysis of the dynamics of HPC 

systems, in particular, is still in its infancy. In this section, we 

report on the key studies that are related to this paper.  

Preissl et al. [22, 23] proposed an algorithm for the 

detection of inter-process communication patterns in MPI 

traces. Their approach was based on compressed suffix trees. 

They used MPI seed events and static analysis to determine 

areas in the code where communication patterns could occur. 

Using this approach, the authors were able to show how 

communication patterns, once detected properly, could be 

used to improve the program performance. Using static 

analysis, however, poses another set of challenges because of 

the parallel nature of HPC systems. In addition, static analysis 

requires building and storing a static model of the system, 

which adds complexity to the analysis technique. The main 

difference between the work presented in this paper and theirs 

is that we use a pure dynamic analysis technique, which we 

believe is more efficient and practical.  

Wolf et al. [32] used knowledge from virtual topologies to 

identify patterns of inefficient behaviour due to long wait 

states caused from inefficient application of the parallel 

programming model. The communication topology is used to 

identify the phases of inter-process communication in the 

program. This work is different from our work since it only 

looks for patterns of inefficient behaviour resulting from 

processes in long wait states and it does not aim at recovering 

inter-process communication patterns. Also, the authors 

assume that knowledge of the communication topology is 

available, which is not always the case.  

Knüpfer et al. [14] proposed an algorithm to remove 

contiguous repeating patterns from HPC traces to reduce the 

size of the trace. The algorithm is based on the compressed 

complete call graph (cCCG) and the pattern graph (a 

derivative of the cCCG). An advantage of using cCCG is that 

it references all call sequences that are equal with respect to a 

call structure and temporal behaviour, which improves trace 

compression. In their algorithm, they only detect contiguous 

pattern repetitions. This approach does not focus on detecting 

communication patterns. It only detects repeating patterns on 

each process trace separately represented by the different types 

of events collected in the trace. 

Kunz and Seuren [8] presented a technique based on finite 

state automata to find communication patterns in the trace that 

match an input pattern. The pattern matching algorithm is 

performed by determining the longest process pattern in the 

input communication pattern which will be used as the search 

string in the pattern matching algorithm. They start building 

the communication pattern by locating the partner events on 

the other process traces. This approach is only concerned with 

detecting patterns based on a predefined input pattern. In this 

paper, we propose an approach that finds repeating 

communication behaviour without prior knowledge of the type 

of communication used in the program. In our previous work, 

we presented an n-gram based approach that is used for 

locating a predefined communication pattern in an MPI trace 

[1]. 

Köckerbauer et al. [15] proposed the use of a pattern 

matching technique to simplify the debugging of large 

message passing parallel programs. This achieved this by 

identifying patterns in the trace file that are similar to a 

predefined pattern. First, the user specifies a description of the 

communication pattern to be searched for in the trace file. This 

pattern description is then translated to abstract syntax trees. 

The ASTs are then scaled up to the number of processes in the 

trace (or the number of the target processes in the trace). The 

pattern matching process is run on each process trace 

individually. In their work, they used a hash-based search to 

detect exact and similar patterns on each process trace. 

Finally, the matching patterns are merged to get the 

communication pattern which should be exact or a variation of 

the user’s specified pattern. In this work, we focus on 

detecting communication patterns in an MPI trace without 

prior knowledge of the communication patterns used in the 

program. 

Moore et al. [19] proposed a pattern matching method for 

detecting patterns of inefficient behaviour based on wait states 

in order to be used in KOJAK (a performance analysis tool for 

high performance parallel applications) [31]. These patterns of 

inefficient behaviour are identified by converting the trace into 

a compact call-path profile which classifies patterns based on 

the time spent in communication. This approach only looks for 

events that cause performance degradation and does not focus 

on inter-process communication patterns. 

VII. CONCLUSIONS AND FUTURE WORK 

We developed a contextual-based approach for detecting 

inter-process communication patterns from HPC traces. We 

applied this method to traces of two systems to test its 

effectiveness. We achieved a precision and recall superior to a 



simple non-contextual method. The key finding of this study is 

that function calls serve as a context to guide the pattern 

extraction process.  

To build on this work, we need to gain more 

comprehensive knowledge of the variables defining a 

communication context in HPC systems. This would help us 

design metrics of cohesiveness that would ultimately improve 

the detection precision and recall. We also need to better 

understand the relationship among patterns, especially for 

large topologies.  
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