
A Contextual Approach for Effective Recovery of

Inter-process Communication Patterns from HPC

Traces
1,2
Luay Alawneh,

1
Abdelwahab Hamou-Lhadj,

1
Syed Shariyar Murtaza, and

1
Yan Liu

1
Software Behaviour Analysis (SBA) Research Lab

Department of Electrical and Computer Engineering

Concordia University, Montreal, QC, Canada
2
Jordan University of Science & Technology,

Faculty of Computer & IT, Software Engineering Department, Jordan

{l_alawne, abdelw, smurtaza}@ece.concordia.ca and {yan.liu@concordia.ca}

Abstract—Studies have shown that understanding of inter-

process communication patterns is an enabler to effective analysis

of high performance computing (HPC) applications. In previous

work, we presented an algorithm for recovering communication

patterns from traces of HPC systems. The algorithm worked well

on small cases but it suffered from low accuracy when applied to

large (and most interesting) traces. We believe that this was due

to the fact that we viewed the trace as a mere string of operations

of inter-process communication. That is, we did not take into

account program control flow information. In this paper, we

improve the detection accuracy by using function calls to serve as

a context to guide the pattern extraction process. When applied to

traces generated from two HPC benchmark applications, we

demonstrate that this contextual approach improves precision

and recall by an average of 56% and 66% respectively over the

non-contextual method.

Index Terms—Dynamic Analysis, High Performance

Computing, Inter-Process Communication Patterns, Reverse

Engineering.

I. INTRODUCTION

A confluence of trends has led to an increasing demand for

High Performance Computing (HPC) systems. The need to

process complex scientific problems in record time plays an

important role. The emergence of new and powerful

computing platforms is also a significant factor.

While HPC systems offer tremendous benefits to users,

they pose real challenges to developers. They tend to be

difficult to debug and analyze. HPC systems differ from

traditional software in terms of their form, structure, and

behaviour [7]. Typical systems involve a large number of

processes interacting with each other following various

communication patterns (see next section for examples).

As an HPC application undergoes several ad-hoc

maintenance activities, it becomes challenging to know which

communication patterns the application supports. Without this

knowledge, it is difficult for software engineers to debug and

analyze the application. Communication patterns are useful in

revealing the program’s parallel structure and communication

topology [2], which can in turn help in many software

maintenance tasks including debugging [22], refactoring and

optimization [18]. Communication patterns can also be used to

validate whether the actual program behaves according to the

intended design or not. Rendered as event graphs (see Figures

1 and 2 for examples), they are used as documentation that

guides further changes made to the system.

It is therefore essential to investigate techniques and tools

that can automatically identify communication patterns from

HPC systems. In previous work, we presented an approach

that aims to do just that by mining execution traces [1]. The

approach, however, suffers from low accuracy, especially

when applied to large systems. After a careful analysis of

several HPC traces using trace analyzers such as the Vampir

trace analysis tool [28], we found that this limitation was

mainly due to the fact that we viewed a trace as a mere stream

of MPI
1
 events independently from where these events appear

in the program. We observed that patterns rarely appear

outside the boundaries of user-defined program functions. We

therefore decided to investigate if and how user-defined

functions can be used as a context that guides the detection of

communication patterns. We also propose an improved pattern

detection algorithm that scales up to so large traces. This is

important because of the size overhead added when tracing

user-defined functions along with MPI calls.

When applied to traces generated from two HPC systems,

we found that the contextual approach (presented in this

paper) performs in average 56% to 66% better than the

previous approach without penalizing performance.

The remaining parts of the paper are organized as follows:

In Section II, we provide background information on HPC

systems. In Section III, we present our approach and discuss

its components. In Section IV, we show the effectiveness of

our approach by applying it to traces generated from two HPC

systems. We continue the paper by presenting the threats to

validity in Section V. Related work is described in Section VI.

We conclude the paper in Section VII.

1MPI stands for Message Passing Interface, a standard for inter-

process communication [8].

II. BACKGROUND

HPC benefits from parallel computing in order to solve

computation-intensive scientific problems. As opposed to

sequential computing, parallel computing decomposes the

problem into sub-problems that run on different computational

units in order to solve the problem in a reasonable amount of

time. In most cases, the computational units need to

collaborate in order to complete a specific task. This

collaboration is achieved either through shared memory or

inter-process communication. In the latter case, which is the

focus of this paper, typical HPC programs may involve a large

number of processes that coordinate their efforts to solve a

specific large scale problem. This is performed usually

through well-known communication patterns.

An example of a communication pattern is shown in Figure

1. The figure depicts a sample trace generated from running

four processes in parallel. A horizontal line represents the

events from a particular process. When matching the MPI

events on the partner processes, a communication pattern will

be generated. The figure shows a 2D-nearest-neighbour

communication pattern (with a 4 x 1 process topology) that is

repeated three times at different locations in the graph. Non-

MPI events are represented using dark bars. The graph that we

used to depict the communication events is called the event

graph [16] where time is on the x-axis and the events flow

from left to right.

Fig. 1. Repeating Communication Pattern

A process topology is the way the processes are

represented on a grid (Cartesian) or a graph structure. For

example, in Figure 1 (right), the process topology is a 4x1

grid. The same system can have different process topologies.

For example, a 4x4 grid topology will have 16 processes that

are arranged on a square grid. Similarly a 4x4x2 grid topology

would involve processes that are arranged on two superposed

2D, forming a 3D grid.

When detecting communication patterns, we are interested

in the way the program processes are communicating and not

what data they are exchanging. For example, each pattern in

Figure 1 may involve different data (messages exchanged

among processes) but the processes are still communicating

based on the same pattern.

Several communication patterns for distributed systems are

reported in the literature [21]. They are used as guidelines for

the proper way to implement an inter-process communication

mechanism (for more details about the list of documented

communication patterns, please refer to [21]). Figure 2 depicts

an example of two communication patterns used in

implementing collective communications. The Binary Tree

pattern (Figure 2a) is used to implement All-to-One MPI

collective operations. For example, the MPI_Reduce operation

is implemented using this pattern. The Butterfly pattern,

shown in Figure 2b, is a communication pattern that is used to

implement All-to-All MPI collective operations.

Fig. 2. Examples of communication patterns

A simple way to recover communication patterns is to

consider each process trace as a string of MPI operations (e.g.,

send, receive, etc.) and apply a pattern recognition algorithm

(see [1] for an example). The main advantage of this approach

is that it only needs to trace the MPI operations. This results in

a smaller trace than a trace containing other types of

information such as routine calls. Also, many HPC trace

analyzers offer views that only handle inter-process

communication operations, making them a good candidate for

supporting this method.

However, this approach (as we will show in the case

studies) results in a large number of patterns among which

many of them are false positives. They do not represent the

communication pattern intended during the design. This

approach also results in overlapping patterns, making it

difficult to know the beginning and end of patterns.

Sequence: (mirrors a process trace generated from Sweep3D)

abababacacacbdbdbdadadadabababacacacbdbdbdadadadabababacac

acbdbdbdadadad

Detected Patterns: Number in brackets shows how many times the

pattern occurs in the sequence above.

a (27), aba (9), ababa (6), abababacacacbdbdbdadadad (3), ac (9),

acac (6), b (18), bd (9), bdbd (6), da (11), dad (9), dada (8), dadad

(6), dadada (5), d (18),

abababacacacbdbdbdadadadabababacacacbdbdbdadadad (2)

Valid Patterns: ab (9), ac (9), bd (9), ad (9),

abababacacacbdbdbdadadad (3)

Fig. 3. Pattern Detection Based on Syntactic Methods

Some of these limitations can be illustrated in the example

of Figure 3, which is taken from a real system execution. The

presented sequence simulates a large trace that is generated

from running the Sweep3D [26] HPC program. We denote the

MPI events using alphabet characters to avoid clutter. The

communication patterns intended for this application are

documented in [26]. Sweep3D implements a wavefront pattern

with a sweep from each corner in the process topology to its

opposite corner. The example shows that 16 patterns were

detected when using a technique that only uses MPI operations

(b) Butterfly Pattern

P1

P2

P3

P4

P5

P6

P7

P8

(a) Binary Tree Pattern

P1

P2

P3

P4

Process Topology

P2 P3 P4 P1

despite the fact that only five patterns are valid patterns

according to the system’s documentation. In addition, the

approach missed two valid patterns ‘ab’ and ‘ad’. It is clear

that a better and more accurate approach is needed.

III. APPROACH

Our approach for detecting communication patterns in

HPC traces is shown in Figure 4. For simplicity reasons, we

refer to a trace of one process as a process trace and we use the

term ‘trace’ alone when referring to the whole program trace

(multiple processes). We refer to patterns that are repeated in

one process trace as process patterns. A communication

pattern is then a collection of process patterns.

 Fig. 4. Pattern Detection Approach

The first step of our approach is to collect traces of routine

calls along with MPI operations and divide them into process

traces. Then, we remove contiguous repetitions to reduce the

trace size. The next two steps, which represent the core of the

approach, focus on the detection of communication patterns.

The final step is a validation step in which we semi-

automatically analyze the quality of the extracted patterns. We

discuss each step in more details in the subsequent sections.

A. Trace Generation

We generate traces using source code instrumentation by

automatically inserting probes in places of interest. There exist

several tools that automatically instrument MPI applications

such as VampirTrace [28]. An alternative approach, in the

absence of the source code, would be to instrument the

operating environment such as the operating system or the

virtual machine. This technique usually has a lower overhead

on the system than a pure application instrumentation

technique. An example of an efficient tool that could be used

for Linux-like systems is LTTng (Linux Tracing Toolkit) [5].

We generate a trace by exercising a specific scenario and

providing the input parameters. HPC applications also

necessitate that we specify the number of processes and

process topology. We can vary the process counts to increase

or decrease the processing power. This is constrained by the

capabilities of the host node. An example of a process

topology is a 2x3 topology, which means that there are 6

processes mapped to a 2x3 matrix. A process topology can

also be three dimensional.

Once the trace is generated, we create a process trace for

each process by simply parsing the trace and saving process

information in different files.

B. Removal of Contiguous Repetitions

Contiguous repetitions of events (also called tandem

repeats) exist in a trace mainly due to the presence of loops,

recursion, or the way the system is exercised. The size of the

trace can be significantly reduced by removing the contiguous

repeats before the pattern detection process takes place as

noted by Hamou-Lhadj in [10]. Also, we found that another

advantage of removing contiguous repeats is that it enables the

detection of patterns in their compact form. For example,

‘ababcdcdefef’ can be represented as ‘abcdef’, which is more

reflective in the cases we saw than having repetitions within a

pattern. We do not keep track of the number of tandem

repeats.

C. Detection of Communication Patterns

This phase is composed of two steps. The first one is to

detect patterns that appear within each process. The second

step is to assemble these patterns to form the final

communication patterns using a pattern construction

algorithm. This two-step process was first introduced by

Preissl et al. [22]. It is intended to simplify the detection

mechanism; it would be unnecessarily complex to proceed in

one phase.

Fig. 5. Sample Traces from four Parallel Processes

We use the fictive trace illustrated in Figure 5 as a running

example to explain the pattern detection algorithm. In this

example, we have four processes that communicate with each

other to execute functions F1 to F3. The MPI operations used

in this example are simple Send (represented by S) and

Receive (represented by R). The numbers between brackets

represent the position of an MPI operation in a process trace.

They are added here for clarity. In this example, Process P1

Generate process traces

Remove contiguous repetitions from each Ti

Detect per-process patterns in each T’i

Analyze the extracted patterns

 T1 . . . Ti . . . Tn

 T’1 T’i T’n

Construct global communication patterns

{PL1} {PLi} {PLn}

 {CPm}

Generate a trace of routine calls along with MPI operations
from an HPC system

T

executes function M which calls F1, F2, and F3. In F1, P1

sends a message to Process P2, then sends a message to P3,

etc. We only consider Send and Receive operations for

simplicity reasons but in fact any MPI operation can be used.

The messages and the timestamps are omitted from this figure.

Step 1: Detection of per-process patterns

In this step, we detect patterns of MPI operations in each

process separately. A pattern is a maximal repeat that can be

extended neither to the left nor to the right. More formally,

given a string S of length n, a maximal repeat in S is a tuple

(p1, p2, l) such that:

 ∃S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and

 S[p1 + l] ≠ S[p2+ l] and S[p1 - 1] ≠ S[p2 - 1]

The pattern detection algorithm we propose in this paper is

an improvement of an earlier algorithm that we presented in

[1]. The algorithm is based on the concept of n-gram

extraction. In this new version, we use a bi-grams table of all

bi-gram occurrences in the trace. This helps in eliminating the

positions in the trace that do not correspond to repeating

patterns. In addition, we perform forward and reverse pattern

lookup as opposed to the previous method where we only used

reverse pattern lookup. Also, we modified the previous

algorithm to take into account the function calls, which are

now used as a context that delimits the scope of a pattern.

That is, we do not consider patterns that are formed across

functions. Note that the algorithm is performed recursively

over the call tree all sub-trees.

We recognize that determining a pattern’s context is not

that straightforward. In theory, there might be situations where

the context spreads over multiple cohesive functions.

However, in most benchmark systems that we have analyzed,

such as the ones presented in the case study, we found that by

simply considering each function as a unique context, we

could significantly improve the accuracy of the pattern

detection process. Perhaps, this is due to the fact that, unlike

traditional systems, HPC systems (more particularly the ones

used for scientific computations) rely on a set of key functions

that handle most of the computations; each function is

dedicated to one important cohesive computation [7].

However, given the noticeable increase in using the HPC

paradigm in other application domains, triggered mainly by

the emergence of multi-core and cloud computing platforms,

we anticipate that HPC systems will increase in complexity. It

is therefore recommended that future work should be directed

towards investigating ways to determine the context (e.g.,

using clustering or other similar techniques). We also suggest

that tools that support the analysis of HPC traces provide the

users with enough flexibility to define the context, for

example, by grouping functions using domain knowledge. We

believe that this domain knowledge (if available) can further

enhance the pattern detection process.

Another change we made to the previous algorithm is to

improve its performance by adopting an n-gram construction

process borrowed from the Lempel-Ziv-Welch data

compression algorithm [29]. The new algorithm performs

reverse and forward lookup of the pattern table, which reduces

the number of lookups as opposed to the old way. In the new

algorithm, as we move forward in the trace we already have

the patterns detected as a result of performing forward lookup.

The details of the algorithms are presented in the next

paragraphs. A performance gain is particularly important since

the approach presented in this paper relies on additional

information (functions calls), which result in larger traces than

when simply processing MPI events. Other pattern detection

algorithms (e.g., [1, 14, 22]) can also be used as long as they

can scale up to large traces.

The algorithm presented in this paper starts by identifying

the bi-grams that are repeated more than once in a process

trace and saves them in a hash table along with their positions.

Again, the events of an n-gram must appear within the same

function call since the function calls are used as a context.

The position of an n-gram is the position of its first MPI

event. We also keep the frequency (note that the frequency can

be inferred from the positions -we used it here for illustration

purposes). We only save the bi-grams that appear more than

once since these are the ones with the potential of forming a

pattern. For example, the bi-gram table of process P1 is:

2-gram Position Frequency

S2S3 1, 7, 9 3

S3R2 2, 10 2

R2R3 3, 11 2

The next step is to take each bi-gram, appends to it the next

event appearing in the trace, and check if the resulting n-gram

also appears in the other positions. For example, the resulting

3-grams that is formed by appending the next event that

appears in the trace to bi-grams S2S3 appearing at positions 1,

7, and 9 are S2S3R2, S2S3 (no more MPI events are found in

the function), and S2S3R2 respectively. We create a 3-gram

table based on that by again keeping the position and the

frequency of the new formed 3-grams. We also update the bi-

gram table by modifying the frequency of the sequences that

contributed to the formation of a larger pattern (in this case

S2S3R2). The frequency of S2S3 in the bi-gram table will be

changed to 1 since two of its occurrences led to the formation

of a larger pattern. The 3-gram table is shown below. It should

be noted that, in practice, we do not need to keep multiple

tables; it is sufficient to use one table and augment the

algorithm with simple checks.

3-gram Position Frequency

S2S3R2 1, 9 2

S3R2R3 2, 10 2

By continuing this process, another repetitive 4-gram is

formed, which is S2S3R2R4. No more n-grams can be

constructed from this since we depleted all the events in the

functions. The final step is to revisit the tables, take the n-

grams that have a frequency greater than 1, and prune the ones

that have fully served in the formation of larger n-grams. For

example, both occurrences of R2R3 were used to form

S2R2R3. We do not need to keep R2R3.

The final patterns that are extracted from processes P1, P2,

P3, and P4 are as follows:

P1: PT1 = S2S3R2R3

P2: PT2 = S1R1

P3: PT3 = R1S4S1

P4: No patterns

It should be noted that we do not need to keep track of

patterns of length 1 (such as the case of R3 in P4) to save

processing time. These patterns will be integrated during the

construction of global communication patterns anyway as we

will show in Step 2.

Step 2: Formation of final communication patterns

Once all per-process patterns are detected, we assemble

them to form the final communication patterns. The

construction process iterates through the per-process patterns

and maps the MPI operations with the ones of the partner

processes. For a pattern p1, its corresponding partners are those

that have matching events with p1. For example, the matching

events of PT1: S2S3R2R3 are R1 in Process P2 (to match S2),

R1 in Process P3 to match S3, S1 in P2 to match R2, and

finally S1 in P3 to match R3. The construction process

continues until all MPI operations are matched. Note that,

sometimes, we might not find the matching event since we do

not keep track of single events as part of the repeats (e.g., R3

in P4). In this case, we simply add it to the construction

process. The final global communication pattern of the trace in

Figure 5 is shown in Figure 6.

Fig. 5. Detected communication pattern

D. Validating the Patterns

In this step, we verify the accuracy of the detected patterns.

This step is done semi-automatically using a trace analysis

tool. We map the patterns to the original trace to make sure

that all contributing processes are covered. We check that the

routines are indeed responsible for the patterns. We do this by

referring to the source code or any available documentation.

We use documented systems in our case studies to validate the

results in the absence of software engineers. If the patterns are

not correct then we examine the causes by further exploring

the trace. Sometimes, the cause might be due to some noise in

the data such as the presence of utility routines. The objective

of this step is also to learn about ways to improve the approach

for future studies.

IV. CASE STUDY

We show the effectiveness of our approach by applying it

to two HPC benchmark systems, Sweep3D [26] and

SMG2000 [25]. We compare the approach presented in this

paper (that we refer to as Contextual Technique) with the one

presented in our previous work which does not use any

contextual information [1] (we refer to it as Non-Contextual

Technique). Because the contextual approach uses additional

information (i.e., function calls), we also examine the time

efficiency of both approaches.

It is worth noting that we also attempted to compare our

method with other researchers’ approaches. The closest study

is the one by Preissl et al. [22, 23]. The authors proposed an

approach for detecting communication patterns using the

concept of seed functions augmented with static analysis (see

Related Work). The authors’ work was described in a less

granular manner, limiting our ability to make direct

comparison between the two approaches.

A. Description of the Target Systems

Sweep3D [26] is part of the ASCI Blue Benchmark Suite.

It models a 3D discrete ordinates neutron transport and

represents the heart of a real ASCI application. Sweep3D

includes the streaming and the scattering operators. The

streaming operator is solved by sweeps from each angle to the

opposite angle in the grid. The scattering operator is solved

iteratively.

SMG2000 [25] is a parallel semi-coarsening multi-grid

solver for the linear systems arising from finite difference,

finite volume, or finite element discretization of the diffusion

equation on logically rectangular grids. It uses a complex

communication pattern [9]. The parallelism in SMG2000 is

achieved by data decomposition. SMG2000 performs a large

number of non-nearest-neighbour point-to-point

communication operations and can be considered a stress test

for the network subsystems of a machine as shown in [30].

B. Quality of Pattern Detection

We use precision and recall to measure the effectiveness of

both approaches, which we define as follows. Both metrics

vary from 0 (worst results) to 100% (best results).

��������	 = 	
�
����	��	�����	������	�	�ℎ��	���	��������

�����		
����	��	���	��������	������	�

������ = 	
�
����	��	�����	������	�	�ℎ��	���	��������

�����		
����	��	�����	������	�	��	�ℎ�	������

Sweep3D: by referring to Sweep3D documentation, we

found that the system uses a series of wavefront

communication patterns as the main inter-process

communication mechanism. We used this information to

validate our results.

Fig. 7. Wavefront Pattern (2x3 Process Topology)

P2 P1

P4 P3

P6 P5

P1 P2

P3 P4

P5 P6

P2 P1

P4 P3

P6 P5

P2 P1

P4 P3

P6 P5

(a) (b) (c) (d)

P1

P2

P3

P4

S1 R1

R1 S4

S1

R3 R2 S2 S3

R3

Figure 7 shows the four sweeps in a 2x3 process topology.

Each sweep sends data from a corner to its opposite corner in

the grid. In case of a 3D grid, Sweep3D employs eight sweeps

(originating from each corner) per iteration.

We tested our approach on six traces generated from

running the program using different process topologies and a

number of iterations (iteration is just an input parameter for

the program, needed to solve the problem implemented in

Sweep3D). In all cases, Sweep3D had the same

communication behaviour, i.e., wavefront pattern. The global

communication pattern (composition of all wavefront patterns)

was repeated the same number of times as the number of

iterations. Table 1 shows the result of comparing the two

approaches on a trace from a 2x3 process topology.

TABLE 1. NUMBER OF DETECTED COMMUNICATION PATTERNS IN A
SWEEP3D TRACE (2X3 TOPOLOGY AND 12 ITERATIONS)

Pattern Detection

Technique
Patterns Precision Recall

Non-Contextual 2 100% 40%

Contextual 4 100% 80%

As shown in Figure 8, the total number of communication

patterns in Sweep3D is four wavefront patterns and a global

communication pattern which can be seen as the composition

of these four patterns. In total, there are five valid patterns.

Table 1 shows that when using the non-contextual

approach only two valid communication patterns were

detected. The first pattern is the one shown in Figure 8a and

the second one is the global communication pattern (the

composition of the four wavefronts). The precision of the non-

contextual approach in this scenario was 100% however the

recall was only 40%.

Fig. 8. Detected Communication Patterns

When applying the contextual approach, we were able to

detect all the wavefront patterns. However, the global

communication pattern was not detected. This is expected

because we only detected patterns within specific functions.

To detect the global communication pattern (i.e., the repetition

of the four patterns), we would need to change the context.

This is like considering the function M (Figure 5 Process P1)

as a context instead of F1, F2, and F3. The precision for the

contextual approach is 100% and recall of 80%.

SMG2000: We tested our approach on a trace generated

from exercising a scenario with an 8x1x1 process topology

and a 2x2x2 problem size. Based on the system

documentation, SMG200 supports eight communication

patterns (see Figure 9). We used this knowledge to validate

our approach.

(i)

Fig. 9. SMG2000 Communication Patterns (Topology: 8x1x1 -
Problem Size: 2x2x2)

Table 2 shows the results of applying the contextual and

non-contextual approaches. When applying the non-contextual

approach, the total number of detected patterns was 42 with

only four valid communication patterns (9a, 9b, 9d and 9e) - a

precision of around 10% (4/42) and a recall of 50% (4/8).

Using the contextual approach, the number of detected

patterns was reduced to nine, among which we detected seven

valid patterns - precision of 78% (7/9) and recall of 87% (7/8).

It should be noted that the difference in results obtained

between analyzing Sweep3D and SMG2000 can be explained

by the fact that these systems vary in complexity. Sweep3D

uses only one communication patterns whereas SMG2000

uses eight.

TABLE 2. NUMBER OF DETECTED COMMUNICATION PATTERNS FOR
SMG2000 TRACE (8X1X1 PROCESS TOPOLOGY; 2X2X2 INPUT)

Pattern Detection

Technique
Patterns Precision Recall

Non-Contextual 42 10% 50%

Contextual 9 78% 87%

The pattern that was not detected is Pattern 9(i) (Figure 9).

We analyzed one of the process traces to see where the

algorithm failed. We picked Process P2. We found that the

function hypre_InitializeCommunication was called twice by

hypre_SMGResidual and later by the function

hypre_BoxGetStrideSize. In both cases, the first occurrence of

hypre_InitializeCommunication called S3S1 whereas the

second occurrence called R1R3 MPI operations. We treated

these two calls as independent calls, which led to two different

contexts. Had we consider the same function as one context

(independently from the MPI calls it makes) we would have

detected the pattern. This is an interesting case which clearly

stresses the need for further studies to investigate a better way

of defining a context than considering each function as a

unique context.

P1
P2
P3
P4

P5

P6
P7
P8

(a) (b) (c) (d) (e)

P1
P2
P3
P4

P5

P6
P7
P8

(f) (g)

(a) P6 to P1
30 times

(b) P2 to P5
30 times

(c) P5 to P2
30 times

(d) P1 to P6
30 times

12 Occurrences = number of iterations

P1

P2

P3

P4

P5

P6

In another scenario where we used a 2x2x2 process

topology (3D mesh) and a 2x2x2 problem size, we were able

to detect another set of patterns that the non-contextual

approach was not able to detect. Table 3 shows the precision

and recall values for both approaches. In this scenario, there

are 13 valid communication patterns. In the non-contextual

approach, we were able to detect seven valid patterns out of

the 50 detected patterns, whereas using the contextual

approach we were able to detect 12 valid patterns out of 17.

Again, the pattern that was not detected was due to the

hypre_InitializeCommunication function.

TABLE 3. NUMBER OF DETECTED COMMUNICATION PATTERNS FOR
SMG2000 TRACE (2X2X2 PROCESS TOPOLOGY; 2X2X2 INPUT)

Pattern Detection

Technique
Patterns Precision Recall

Non-Contextual 50 14% 55%

Contextual 17 70% 92%

In Table 4, we show another example for another

SMG2000 scenario. In this scenario, there are 29 valid

communication patterns. Using the Non-contextual approach,

we were able to detect 20 valid patterns. When applying our

contextual approach, we were able to detect 27 valid

communication patterns.

As the process topology becomes complex, the precision of

our approach decreases. The recall seems to stay relatively the

same, which is a good thing. At least, we are not missing

many valid patterns. When we analyzed the traces, we noticed

that the low precision was due to the inability for our pattern

detection algorithm to deal with nesting patterns. Consider the

following example:

Function 2: R1R2R3

Function 2: S1S2S3R1R2R3S1S2S3R1R2R3

The algorithm will detect both R1R2R3 and

S1S2S3R1R2R3 as patterns, whereas the valid pattern in this

case is only S1S2S3R1R2R3. Therefore, we need to further

fine-tune the algorithm to deal with nesting patterns.

TABLE 4. NUMBER OF DETECTED COMMUNICATION PATTERNS FOR
SMG2000 TRACE (4X4X1 PROCESS TOPOLOGY; 4X4X4 INPUT)

Pattern Detection

Technique
Patterns Precision Recall

Non-Contextual 78 25% 69%

Contextual 42 64% 93%

In summary, we have clearly demonstrated that the

program functions, used as a context, can improve the

automatic detection of valid inter-process communication

patterns. The approach achieves a reasonably good precision

and recall. But clearly, we need to continue to experiments

with larger systems for identifying opportunities to improve

both measures.

C. Performance Evaluation

We also compared the performance of the two approaches

in terms of processing time. In the following, we present the

statistics from several process topologies from both Sweep3D

and SMG2000.

Our experiments are conducted on a 1.83 GHz Intel Core 2

Duo CPU with 3.0 GB of RAM. It is worth mentioning that

the pattern detection algorithm runs on each process trace

separately (sequentially) and the execution times shown in this

study are the sum of the execution times of all runs.

Conducting the experiments in a parallel setting is expected to

significantly improve the execution time.

Sweep3D: We used different process topologies to vary the

number of processes. As we can see in Table 5, the

performance of the contextual approach is slightly lower than

a non-contextual approach. This is expected since the

contextual approach uses additional information (i.e., function

call trees) which affects the processing time. The improvement

we made to the performance of the previous algorithm,

however, seems to bring its fruits since the performance gap

between the two approaches is very small in all cases (average

difference of around 3 seconds).

SMG2000: Similar to Sweep3D, we did not find any

significant difference in terms of performance between the

contextual and the non-contextual approach as shown in Table

6.

TABLE 5. PERFORMANCE ANALYSIS FOR SWEEP3D TRACES

Process

Topology
It. Messages

Contextual

(seconds)

Non-contextual

(seconds)

2 x 3 12 20160 0.78 0.72

6 x 3 12 51840 2.45 1.674

5 x 5 40 256000 5.83 4.20

7 x 4 74 532800 9.156 7.20

8 x 8 120 2150400 28.74 22.27

8 x 16 120 4454400 56.45 52.23

 Average 17.24 14.71

TABLE 6. PERFORMANCE ANALYSIS FOR SMG2000 TRACES

Topology
Problem

Size

MPI

Events

Contextual

(seconds)

Non-Contextual

(seconds)

8x1x1 2x2x2 9312 1.25 0.98

2x2x2 2x2x2 25416 1.33 1.40

4x4x2. 2x2x2 248768 12.56 10.82

16x1x1 10x10x10 978296 73.98 68.71

32x1x1. 10x10x10 2363156 162.14 147.65

64x1x1. 10x10x10 5324304 359.54 354.32

 Average 101.8 97.31

V. THREATS TO VALIDITY

A threat to the validity of our conclusions exists because

we have only experimented with two systems. Though we

agree that more experiments are needed, the systems used in

this study are benchmark applications used also by other

researchers [22, 23, 32].

A threat to construct validity exists in the way we validated

the results. We used system documentation to validate the

detected patterns. We also looked at the source code of the

target systems to understand the supported communication

patterns. An ideal validation would be to conduct a formal

experiment with software engineers. However, it was

challenging to find HPC systems in which we had access to

the developers. We mitigated this threat by choosing open

source systems that are benchmark applications in the field,

with adequate documentation.

A threat to internal validity exists in the implementation of

the programs to process trace information and to detect

patterns. This is because we automated this procedure by

writing shell scripts and Java code. We have minimized this

threat by manually investigating the outputs, and making sure

our results are valid and consistent.

VI. RELATED WORK

Trace analysis has been the topic of many studies (e.g. [4,

11]) in the area of reverse engineering and program

comprehension. Much of the research, however, focuses on

single-threaded systems paying less attention to traces of

distributed systems. The analysis of the dynamics of HPC

systems, in particular, is still in its infancy. In this section, we

report on the key studies that are related to this paper.

Preissl et al. [22, 23] proposed an algorithm for the

detection of inter-process communication patterns in MPI

traces. Their approach was based on compressed suffix trees.

They used MPI seed events and static analysis to determine

areas in the code where communication patterns could occur.

Using this approach, the authors were able to show how

communication patterns, once detected properly, could be

used to improve the program performance. Using static

analysis, however, poses another set of challenges because of

the parallel nature of HPC systems. In addition, static analysis

requires building and storing a static model of the system,

which adds complexity to the analysis technique. The main

difference between the work presented in this paper and theirs

is that we use a pure dynamic analysis technique, which we

believe is more efficient and practical.

Wolf et al. [32] used knowledge from virtual topologies to

identify patterns of inefficient behaviour due to long wait

states caused from inefficient application of the parallel

programming model. The communication topology is used to

identify the phases of inter-process communication in the

program. This work is different from our work since it only

looks for patterns of inefficient behaviour resulting from

processes in long wait states and it does not aim at recovering

inter-process communication patterns. Also, the authors

assume that knowledge of the communication topology is

available, which is not always the case.

Knüpfer et al. [14] proposed an algorithm to remove

contiguous repeating patterns from HPC traces to reduce the

size of the trace. The algorithm is based on the compressed

complete call graph (cCCG) and the pattern graph (a

derivative of the cCCG). An advantage of using cCCG is that

it references all call sequences that are equal with respect to a

call structure and temporal behaviour, which improves trace

compression. In their algorithm, they only detect contiguous

pattern repetitions. This approach does not focus on detecting

communication patterns. It only detects repeating patterns on

each process trace separately represented by the different types

of events collected in the trace.

Kunz and Seuren [8] presented a technique based on finite

state automata to find communication patterns in the trace that

match an input pattern. The pattern matching algorithm is

performed by determining the longest process pattern in the

input communication pattern which will be used as the search

string in the pattern matching algorithm. They start building

the communication pattern by locating the partner events on

the other process traces. This approach is only concerned with

detecting patterns based on a predefined input pattern. In this

paper, we propose an approach that finds repeating

communication behaviour without prior knowledge of the type

of communication used in the program. In our previous work,

we presented an n-gram based approach that is used for

locating a predefined communication pattern in an MPI trace

[1].

Köckerbauer et al. [15] proposed the use of a pattern

matching technique to simplify the debugging of large

message passing parallel programs. This achieved this by

identifying patterns in the trace file that are similar to a

predefined pattern. First, the user specifies a description of the

communication pattern to be searched for in the trace file. This

pattern description is then translated to abstract syntax trees.

The ASTs are then scaled up to the number of processes in the

trace (or the number of the target processes in the trace). The

pattern matching process is run on each process trace

individually. In their work, they used a hash-based search to

detect exact and similar patterns on each process trace.

Finally, the matching patterns are merged to get the

communication pattern which should be exact or a variation of

the user’s specified pattern. In this work, we focus on

detecting communication patterns in an MPI trace without

prior knowledge of the communication patterns used in the

program.

Moore et al. [19] proposed a pattern matching method for

detecting patterns of inefficient behaviour based on wait states

in order to be used in KOJAK (a performance analysis tool for

high performance parallel applications) [31]. These patterns of

inefficient behaviour are identified by converting the trace into

a compact call-path profile which classifies patterns based on

the time spent in communication. This approach only looks for

events that cause performance degradation and does not focus

on inter-process communication patterns.

VII. CONCLUSIONS AND FUTURE WORK

We developed a contextual-based approach for detecting

inter-process communication patterns from HPC traces. We

applied this method to traces of two systems to test its

effectiveness. We achieved a precision and recall superior to a

simple non-contextual method. The key finding of this study is

that function calls serve as a context to guide the pattern

extraction process.

To build on this work, we need to gain more

comprehensive knowledge of the variables defining a

communication context in HPC systems. This would help us

design metrics of cohesiveness that would ultimately improve

the detection precision and recall. We also need to better

understand the relationship among patterns, especially for

large topologies.

ACKNOWLEDGMENT

This work is supported partly by NSERC (Natural Sciences

and Engineering Research Council of Canada).

REFERENCES

[1] L. Alawneh and A. Hamou-Lhadj, “Pattern Recognition

Techniques Applied to the Abstraction of Traces of Inter-

Process Communication,” In Proc. of the European Conf. on

Software Maintenance and Reengineering, pp. 111-120, 2011.

[2] L. Alawneh, A. Hamou-Lhadj, “Identifying Computational

Phases from Inter-Process Communication Traces of HPC

Applications,” In Proc. of the 20th International Conference on

Program Comprehension (ICPC), pp. 133-142, 2012.

[3] A. Chan, W. Gropp, and E. Lusk, “An efficient format for

nearly constant-time access to arbitrary time intervals in large

trace files,” Journal of Scientific Programming, 16(2-3), pp.

155–165, 2008.

[4] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R.

Koschke, “A Systematic Survey of Program Comprehension

through Dynamic Analysis,” IEEE Transactions on Software

Engineering (TSE), 35(5), pp. 684-702, 2009.

[5] M. Desnoyers and M. R. Dagenais, "Tracing for Hardware,

Driver, and Binary Reverse Engineering in Linux,” Code

Breakers Journal, 1(2), 2006.

[6] J. P. Downey, R. Sethi, and R. E. Tarjan, “Variations on the

Common Subexpression Problem,” Journal of the ACM, 27(4),

pp. 758-771, 1980.
[7] K. El Maghraoui, B. K. Szymanski, and C. A. Varela, “An Architecture

for Reconfigurable Iterative MPI Applications in Dynamic
Environments,” In Proc. of the 6th International Conference on
Parallel Processing and Applied Mathematics, number 3911 in LNCS,
pp. 258-271, 2005.

[8] T. Kunz and M. F. H. Seuren, "Fast detection of

communication patterns in distributed executions,” In Proc. of

the Conference of the Centre for Advanced Studies on

Collaborative research (CASCON), 1997.

[9] M. Geimer, F. Wolf, B. J. N. Wylie and B. Mohr, “Scalable

parallel trace-based performance analysis,” In Proc. of the 13th

European PVM/MPI Users’ Group Meeting, vol. 4192 of

LNCS, pp. 303–312, 2006.

[10] A. Hamou-Lhadj, "Techniques to simplify the analysis of
execution traces for program comprehension," PhD thesis

dissertation, University of Ottawa, 2005

[11] A. Hamou-Lhadj A. and T. Lethbridge, "An Efficient
Algorithm for Detecting Patterns in Traces of Procedure Calls,"

In Proc. of the 1st ICSE Workshop on Dynamic Analysis

(WODA), 2003.

[12] A. Hamou-Lhadj and T. Lethbridge, “An Efficient Algorithm
for Detecting Patterns in Traces of Procedure Calls,” In Proc.

of the 1st ICSE International Workshop on Dynamic Analysis,

pp. 33-36, 2003.

[13] R. Karp, R. E. Miller, A. L. Rosenberg, “Rapid Identification
of Repeated Patterns in Strings, Trees and Arrays,” In Proc. of

4th Symposium of Theory of Computing, pp.125-136, 1972.

[14] A. Knüpfer, B. Voigt, W.E. Nagel, and H. Mix, “Visualization

of repetitive patterns in event traces,” In Proc. of the Workshop

on State-of-the-Art in Scientific and Parallel Computing, 2006.

[15] T. Köckerbauer, T. Klausecker and D. Kranzlmüller, “Scalable
Parallel Debugging with g-Eclipse,” Book Chapter, Springer

Berlin Heidelberg, 2010.

[16] D. Kranzlmüller, “Event Graph Analysis for Debugging
Massively Parallel Programs,” Ph.D. Dissertation, GUP Linz,

Johannes Kepler University Linz, Austria, 2000.

[17] C. Ma, Y. M. Teo, V. March, N. Xiong, I. R. Pop, Y. X. He,
and S. See, “An approach for matching communication patterns

in parallel applications,” In Proc. of the International Symp. on

Parallel & Distributed Processing, pp.1-12, 2009.

[18] MPI: A Message Passing Interface Standard, June 1995. URL:
http://www.mpi-forum.org.

[19] S. Moore, F. Wolf, J. Dongarra, S. Shende, A. Malony, and B.

Mohr. “A Scalable Approach to MPI Application Performance

Analysis,” In Proc. of the 12th European Conference on Recent

Advances in Parallel Virtual Machine and Message Passing

Interface, LNCS, 3666, pp. 309–316, 2005.

[20] OpenMP URL: http://openmp.org/wp/
[21] N. Palma, “Performance Evaluation of Interconnection

Networks using Simulation: Tools and Case Studies,” Ph.D.

Dissertation, Department of Computer Architecture and

Technology, University, Spain, 2009.

[22] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R.
de Supinski, and D. J. Quinlan, “Detecting patterns in MPI

communication traces,” In Proc. of the 37th International

Conference on Parallel Processing, pp. 230–237, 2008.

[23] R. Preissl, B. R. de Supinski, M. Schulz, D. J. Quinlan, D.
Kranzlmüller, T. Panas, “Exploitation of Dynamic

Communication Patterns through Static Analysis,” In Proc. of

International Conf. on Parallel Processing, pp. 51-60, 2010.

[24] K. Sadakane. “Compressed suffix trees with full functionality,”
Theory of Computing Systems, 2007.

[25] SMG200 Banchmark Code, URL:

http//www.llnl.gov/asc/purple/benchmarks/limited/smg/

[26] Sweep3D, Accelerated strategic computing initiative. The
ASCI Sweep3D Benchmark Code. URL:

http://public.lanl.gov/hjw/CODES/SWEEP3D/sweep3d.html,

LANL 1995.

[27] L. Uribe, P. Costanza, T. D'Hondt, "Adding data-movement
constructs to the PGAS parallel computing model," In Proc. of

the 7th ACM European Lisp Workshop, 2010.

[28] VampireTrace (The Vampir Performance Visualizer) Tool,
Available Online, URL: http://www.vampir.eu

[29] T. A. Welch, “A technique for high-performance data

compression,” IEEE Journal of Computer, 17(6), pp. 8-19,

1984.

[30] F. Wolf, D. Becker, M. Geimer, and B. J. N. Wylie, “Scalable

performance analysis methods for the next generation of

supercomputers,” In Proc. of the John von Neumann Institute

for Computing (NIC) Symposium, pp. 315 – 322, 2008.

[31] F. Wolf and B. Mohr. “KOJAK - A Tool Set for Automatic

Performance Analysis of Parallel Applications,” In Proc. of the

European Conference on Parallel Computing (Euro-Par),

volume 2790, LNCS, pp. 1301–1304, 2003.

[32] F. Wolf, B. Mohr, J. Dongarra and S. Moore, “Automatic

Search for Patterns of Inefficient Behavior in Parallel

Applications,” Wiley Journal on Concurrency Practice and

Experience, pp. 1481 - 1496, 2006.

