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Abstract. In recent years, IoT malware has become a significant threat
to the IoT infrastructure, to the point where it even hinders the deploy-
ment of this promising technology. A distinctive aspect of this threat is
its reliance on vulnerabilities as an infection vector. Many of these vulner-
abilities are CVEs (Common Vulnerability Enumeration) selected from
the National Vulnerability Database (NVD). In this study, we investigate
the use of CVEs by IoT malware, with the ultimate aim of predicting
which CVEs are more likely to be targeted by malware developers. Our
results show that the CVEs exploited by IoT malware developers are
sufficiently distinguished from those CVEs that IoT developers refrain
from using to permit effective automated prediction. We detail these
differences, develop other observations about the use of vulnerabilities
by IoT malware and compile data on this topic that may be useful to
security researchers.
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1 Introduction

The last ten years have seen an exponential rise in the use of IoT devices:
mechanical or digital devices that are connected to a network and can send
and receive information without interaction from a user[46]. Unfortunately, this
growth has been matched with a corresponding growth in IoT malware, i.e.
malware that has been specifically designed to target IoT connected devices. The
fact that it is often difficult to update the firmware in such devices makes them
a particularly inviting target for malware developers.

Previous research [58] showed that while IoT malware seems to be developed in
isolation from malware targeting other device platforms, IoT malware developers
borrow freely from each other, re-using code as well as broad features such as
infection strategies. A particularly important aspect of the latter is the use of
CVEs as an infection vector. CVEs (for Common Vulnerabilities and Exposures)
are software vulnerabilities that are documented and given a unique ID for future
reference. The National Vulnerability Database (NVD), a database of all CVEs,
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is publicly available and maintained by the National Institute of Standards and
Technology [43].

In this paper, we investigate the use CVEs as an infection vector by IoT
malware. We examine how this infection strategy compares to other strategies
employed by IoT malware designers to achieve their nefarious aims, as well as how
CVEs are chosen for exploitation. Answers to these questions will allow developers
and system managers to better protect their devices against the scourge of IoT
malware, for instance by prioritizing CVEs that are more likely to be exploited.

In particular, we attempt to answer the following 3 research questions.

RQ1: What trends are detectable in the use of CVEs by IoT malware?
We first attempt to determine how the use of CVEs as an infection vector
compares to other infection strategies employed by IoT malware developers.
In particular, investigate if the use of CVEs has increased over time; if
the certain classes of IoT malware are more likely to employ CVEs, and
if vulnerabilities are more likely to be exploited if they are indexed by the
NVD.

RQ2: What types of CVEs are targeted by IoT developers?

Next, we determine how malware developers choose the CVE entries that are
incorporated in their code. We find that CVEs that are chosen by malware
developers differs from the broader NVD in several respects, notably w.r.t.
impact, complexity, type and date.

RQ3: Can we predict which CVEs will be used by a given malware?
Finally, drawing upon the insights gleaned in answering RQ2, we attempt
to predict which CVEs are more likely to be exploited in the future using a
machine learning process.

The main contribution of this paper is provide answers to the above questions. In
addition, we list every CVE exploited by IoT malware during a ten year horizon,
and compile other information about the exploitation of vulnerabilities by IoT
malware that may be useful to security researchers.

The remainder of this paper is organized as follows: Section 2 presents
background about the dataset we utilized. Sections 3, 4, and 5 address RQs 1, 2
and 3 respectively. Section 6 discusses threats to the validity of our conclusions,
followed by related works in Section 7. Concluding remarks are given in Section
8.

2 Description of the data

The National Vulnerability Database (NVD) is a freely available database of
vulnerabilities, maintained by the National Institute of Standards and Technology,
an agency of the United States Department of Commerce [43]. Each entry, called
a CVE, captures a single vulnerability, in a any system, and presents it in a
standardized format. The NVD contains over 140 000 entries.

The NVD provides standardized information about each entry by way of
the Common Vulnerability Scoring System(CVSS). Two versions of the CVSS
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are currently in use: Version 2 (V2) introduced in 2007 [32] and Versions 3,
introduced in 2015 [18].

Amongst the information provided by the CVSS, the following are particularly
relevant to the topic of this study:

Attack Vector Indicates the context by which exploitation can occurs. In the
V2 score, this metric ranges over the values ‘local’, ‘adjacent network’, and
‘network’. The V3 scores adds a fourth value: ‘physical’.

Access Complexity This metric captures the presence of conditions beyond
the control of the attacker that are nonetheless required to successfully exploit
the vulnerability. It ranges over ‘low’ , ‘med’ and ‘high’ in the V2 score, and
over ‘low’ and ‘high’ in the V3 score.

User Interaction Indicates if user interaction is required in order to successfully
exploit the vulnerability. This value ranges over ‘true’ and ‘false’ in the V2
score, and over ‘none’ and ‘required’ in the V3 score.

Impact score (called impact sub-score in the version 2) A value in the 0-10
range that captures the impact that exploiting the vulnerability may have
on the targeted organization.

Exploitability score (called exploitability sub-score in CVSS version 2). It
consists in a value in the 0-10 range that captures how vulnerable the system
is to attack.

Base score A value in the 0-10 range that captures the severity of the vulnera-
bility. It is derived from the Impact score and Exploitability score using a
algorithmic method.

Each CVE possesses a timestamp of the date of publication of the vulnerability
and a unique identifier in the format CVE-YYYY-#### where ###F# is a
sequential number. Each CVE also associates a a list of products and vendors
that are affected by it. Note that each CVE may be associated with multiple
different products, from multiple different vendors.

3 Research Question 1

What trends are detectable in the use of CVEs by IoT malware? We
begin by examining what patterns can be discerned in the use of CVEs as an
exploitation vector by IoT malware, as opposed to other attack vectors such as
credential attacks.

We examined 27 IoT malware, spanning the period 2008 to present. These
include every IoT malware that has been studied in the academic literature
during this time period. Of these, 13 do not exploit vulnerabilities as part of
their infection strategy, opting for other infection mechanisms such as common
credentials dictionaries. A single one, Aidra, uses only a single vulnerability not
recorded in the CVE database. An additional 6 rely exclusively on vulnerabilities
reported in the CVE database while the final 4 rely both on reported and
unreported vulnerabilities. For vulnerabilities not present in the CVE, it is not
certain how the malware developer became aware of the vulnerability.
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No of
Year of . . No of
Malware Creation Objective CVE used non-CVE
vuln. used
Hydra 2008 D 0 0
Psybot 2009 D 0 1
Chuck Norris| 2009 D 0 0
Tsunami 2010 D 0 0
Aidra 2012 D 0 1
Carna 2012 - 0 0
Bashlite 2014 D 0 0
Darlloz 2014 1 1 0
Spike 2014 D 0 0
TheMoonl 2014 - 0 0
Wifatch 2014 - 0 0
XOR 2014 D 0 0
Elknot 2015 D 0 0
Remaiten 2016 D 0 0
Hajime 2016 - 4 0
Mirai 2016 D 0 0
NewAidra 2016 D 0 0
LuaBot 2016 D 0 0
Amnesia 2017 D 1 0
BrickerBot 2017 S 0 0
IoTReaper 2017 D 9 4
Persirai 2017 D 2 0
Satori 2017 D 1 1
JenX 2018 D 3 0
TheMoon2 2018 P,S 4 0
VPNFilter 2018 S 14 3
Hide’n Seek 2018 S,ILM 10 3
Echobot 2019 D 73 19

Table 1. Recent loT malware, their type and number of vulnerabilities exploited by
each

The data we gathered is summarized in Tables 1 and 4.

Table 1 records every malware studied, and identifies for each how many
vulnerabilities it exploits as part of its attack strategy, distinguishing vulnera-
bilities for which there exists a CVE record from those for which there are not.
Table 1 also records the main objective of each IoT malware. These objectives
are taken from a survey by Vignau et al. [58] and range over Denial of service
attacks (D), Physical destruction of the target devise (P), income generation (i.e.
cryptomining) (I), Spying (S) and Malware dissemination (M).

A number of observations are immediately obvious from an inspection of
this data. As can be seen in Table 1, early IoT rarely exploited vulnerabilities,
and never exploited multiple vulnerabilities. Starting in 2016, the use of vulner-
abilities became more common, and some malware started exploiting multiple
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vulnerabilities. This trend reached an apex with Echobot, a highly dynamic
malware whose code is regularly updated with the inclusion of new exploits.

Vulnerabilities recorded in the NVD (those for which a CVE entry exists)
outnumber unlisted vulnerabilities by a factor of 4, hinting that the NVD database
is the preferred venue of malware developers to select exploitable vulnerabilities.
However, in this respect, it is important to stress that some vulnerabilities only
acquired a CVE entry after it appeared that IoT malware were exploiting these
vulnerabilities [10]. A complete listing of every CVE exploited by each IoT that
made use of recorded vulnerabilities is given in Table 3. The right-most column
of the table identifies the references listing the vulnerabilities exploited by each
malware.

It does not appear that the objective of the malware correlates with it’s use
of vulnerabilities as an infection vector, thought the limited size of the malware
sample, as well as the fact that certain objectives are more common in later
malware, makes a definitive determination difficult. In particular, spying and
malware dissemination only occur in a single IoT malware each, both of them
towards the end of the period of our study when the use of vulnerabilities had
become more commonplace.

IoT malware increasingly rely on exploiting vulnerabilities as part of their
infection strategy. Recent malware is also much more likely to exploit
multiple vulnerabilities. There is not enough evidence to conclude that
malware with a specific objective is more likely to adopt this infection
strategy. The NVD seems to be the preferred venue for malware developers
to search for and find exploitable vulnerabilities.

4 Research Question 2

What types of CVEs are targeted by IoT malware developers?

In this section, we seek to determine if the CVEs targeted by IoT malware
developers share distinctive characteristics that can help predict which CVEs are
more likely to be targeted.

We found that 11 different malware made use of 99 CVEs a total 128 times
(counting each use of a CVE by a different malware as distinct). Of these, 98
posses a CVSS V2 score and 64 possess a CVSS V3 score®. An analysis of this data
indicates that the vulnerabilities targeted by IoT malware developers distinguish
themselves in several ways.

Unsurprisingly, CVEs employed by IoT malware developers exclusively employ
the ‘Network’ access vector, meaning that the vulnerable component is connected

3 The only CVE for which no information was available, CVE-2013-5759, is a duplicate
of CVE-2013-5758.
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Table 2. CVEs exploited by each IoT botnet

Malware

Exploited CVEs References

Darlloz

CVE-2012-1823 (3], [8], [48], [59]

Hajime

CVE-2016-10372, CVE-2018-10561, CVE-2018-10562,
CVE-2015-4464, CVE-2018-7445, CVE-2018-14847, CVE-2013-6023 [65),[47], [22], [17] [25] [57]

Amnesia

CVE-2013-6023 [19] [63]

TIoTReaper

CVE-2017-8225, CVE-2017-18377, CVE-2013-2678,
CVE-2018-14933, CVE-2018-15716, CVE-2017-18378, 33] [52], [49],[64],9], [44]
CVE-2013-4980 CVE-2013-4981, CVE-2013-4982

Persirai

CVE-2017-8225, CVE-2017-18377 13],[54]

Satori

CVE-2014-8361 39] [37] [36]

JenX

TheMoon2

[

[
CVE-2017-18368, CVE-2017-17215, CVE-2014-8361 [45],[14]
CVE-2018-1056, CVE-2018-14847, CVE-2018-10561, 26]. 53], [2]
CVE-2018-10562 r199);

VPNFilter

CVE-2015-7261, CVE-2011-4723, CVE-2014-9583,

CVE-2013-2678, CVE-2013-0229, CVE-2013-0230,

CVE-2017-6361, CVE-2017-8877, CVE-2017-5521, [50] [27],[28],[15],[1]
CVE-2012-5958, CVE-2012-5959, CVE-2016-6277,

CVE-2017-6549, CVE-2013-2679

Hide'n Seek

CVE-2016-10401, CVE-2017-8225, CVE-2017-18377,
CVE-2018-14933, CVE-2018-15716, CVE-2017-18378,
CVE-2013-4980,CVE-2013-4981, CVE-2013-4982,
CVE-2013-2678

(7),[55],[4],[12],[5],[31]

Echobot

CVE-2003-0050, CVE-2005-0116, CVE-2005-2773,
CVE-2005-2847, CVE-2005-2848, CVE-2006-2237,
CVE-2006-4000, CVE-2007-3010, CVE-2008-3922,
CVE-2009-0545, CVE-2009-2288, CVE-2009-2765,
CVE-2009-5156, CVE-2009-5157, CVE-2010-5330,
CVE-2011-3587, CVE-2011-5010, CVE-2012-0262,
CVE-2012-4869, CVE-2013-3568,, CVE-2013-4863,
CVE-2013-5758, CVE-2013-5759, CVE-2013-5912,
CVE-2013-5948, CVE-2013-7471, CVE-2014-3914,
CVE-2014-8361,CVE-2015-2208, CVE-2015-4051,
CVE-2016-0752, CVE-2016-10760, CVE-2016-1555,
CVE-2016-6255, CVE-2016-6277, CVE-2017-14127,
CVE-2017-14135, CVE-2017-16602, CVE-2017-16608, [24],[42],[10],[23][40],[16],[11].
CVE-2017-18377, CVE-2017-5173, CVE-2017-5174,
CVE-2017-6316, CVE-2017-6884, CVE-2017-8221,
CVE-2017-8222, CVE-2017-8223, CVE-2017-8224,
CVE-2017-8225, CVE-2018-1056, CVE-2018-10561,
CVE-2018-10562, CVE-2018-11138, CVE-2018-11510,
CVE-2018-14847, CVE-2018-14933, CVE-2018-15887,
CVE-2018-17173, CVE-2018-20841, CVE-2018-6961,
CVE-2018-7297, CVE-2018-7841, CVE-2019-12780,
CVE-2019-12989, CVE-2019-12991, CVE-2019-14927,
CVE-2019-14931, CVE-2019-15107, CVE-2019-16072,
CVE-2019-17270 CVE-2019-18396 ,CVE-2019-2725,
CVE-2019-3929.
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to the network stack. The alternative classifications are ‘local’, ‘Adjacent Network’
and ‘Physical’.

The V2 scoring provides a 3-valued verdict as to the difficulty of exploiting
each vulnerability. Performing a standard Khi-square test, we find with strong
confidence (p<.01) that the selection of CVEs by malware creators is skewed
towards easier CVEs. This result is even starker when considering the V3 scoring
of this same element: only 3 out of 64(4.7%) CVEs for which a V3 score of
complexity is provided are rated as ‘HIGH’ difficulty, versus 8.6% in the NVD
database in general.

In addition to selecting attacks of lower complexity, IoT malware designers
seem to prefer vulnerabilities with higher impact scores, as recorded in the
V2 and V3 impact score metric. The average V2 and V3 impact scores for
vulnerabilities exploited by IoT malware are 8.17 and 5.6 respectively, higher
that the corresponding averages of 6.0 and 4.4 for the NVD database as a whole.
Performing a standard Z-test [21] confirms that attackers indeed select CVE with
high scores, for both V2 and V3.

The exploited CVEs also skew heavily towards CVEs that do not require
user interaction : 93.8% of the exploited CVEs for which a V2 ranking of user
interaction is provided do not require it, versus 68.6% for the NVD in general.
Once again, a standard Z-test confirm the statistical significance of this result.
The same result holds when considering the V3 score for user interaction: 92.1%
of exploited malware did not require explicit user interaction versus 36.9% for
the broader NVD.

Each CVE entry identifies a single CWE (Common Weakness Identification),
that pinpoints the type of vulnerability in question. Once again, a Khi-square
test indicates that the distribution of vulnerability types is not random, but
seems to be skewed towards specific CWE types. The top six CWE types most
frequently targeted by IoT malware developers are CWE-20 (Improper Input
Validation), CWE-94 (Improper Control of Generation of Code), CWE-78 (Im-
proper Neutralization of Special Elements used in an OS Command), CWE-77
(Improper Neutralization of Special Elements used in a Command), CWE-119
(Improper Restriction of Operations within the Bounds of a Memory Buffer) and
CWE-287(Improper Authentication); together accounting for 67% of exploited
vulnerabilities. Table 3 shows the top six most common CWE exploited by IoT
malware, alongside with their frequency of occurrence among exploited CVEs
and in the entire NVD database. Note that all six of these weaknesses are either
input validation errors or authentication errors.

This result, however, should be qualified. Unlike the other information recorded
in CVE entries, the proportion of CWE of each times varies widely from year to
year, a factor we were unable to account for. Other limitations of the dataset are
discussed in Section 6.

As can be seen in Table , some malware developers often look back several years
in search of exploitable vulnerabilities. Notably, Echobot, discovered in June 2019,
employed a vulnerability first uncovered in 2003. However, our analysis shows
that most IoT malware tends towards the exploitation of recent vulnerabilities.
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Proportion in |Proportion in

CWE IoT malware NVD
CWE-78 (23.0% 8.6%

CWE-77 [14.9% 2.5%

CWE-20 [9.2% 1.1%

CWE-94 |5.7% 0.5%
CWE-119(6.9% 12.5%
CWE-287(6.9% 2.1%

Table 3. Most frequently exploited CWE

In order to investigate further how the vulnerabilities exploited by IoT malware
relate to the time of publication of the corresponding CVE entries, we computed
the timespan that separates the public divulgation of a vulnerability and it’s
incorporation in IoT malware, for every CVE for which this information was
available.

Unfortunately, only partial data was available in this regard. A malware
may be updated multiple times, making it difficult to determine exactly when
a given vulnerability was incorporated into its code. In fact, only for Echobot
were we able to find multiple descriptions of the CVEs it exploits along with the
exploitation date, allowing us to assign different CVEs to different versions of the
malware. Furthermore, as discussed above, some vulnerabilities only received a
CVE entry after it was found that a malware exploited this vulnerability. These
and other limitations of the data are discussed in the Section 6. Nonetheless, the
data that is available seems sufficient to draw broad conclusions.

Table 4 details the timespan, in months, that separates the publication of a
CVE in the NVD database from its introduction in a malware. IoT malware for
which this information could not be ascertained with sufficient confidence are
omitted from the table. The information is grouped into the intervals of months
given in the left most column. The center column gives the total number CVEs
whose age was contained in each interval at the moment of their introduction in
a malware while the right-most column breaks down this number by malware,
using the following key : E: Echobot, D:Darlloz, A: Amnesia, V: VPNFilter.

In a December 2019 blogpost [41], Ruchna Nigam suggested that Echobot may
be aiming at a ‘sweetspot’ of vulnerability exploitation by selecting both very
recent vulnerabilities, for which the patch may not have been applied yet, as well
as much older vulnerabilities, targeting systems that are not longer maintained.
The data we gathered bears this analysis. Only 23% of the CVE for which we
were able to obtain data were more than 6 months old, but less than 2 years old.

This infection strategy, however, seems unique to the concepts of Echobot,
and every other IoT malware for which data was available seems to have picked
vulnerabilities whose date of publication falls inside a fairly narrow range.

It is also noteworthy to see that multiple CVEs are exploited by several
different IoT bots. Indeed, of the 98 CVEs in our corpus, 13 are exploited at
least twice, 8 are exploited at least three times and 2 are exploited four times.
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Time Interval Number of CVEs [Number of CVEs
(number of months) (total) by malware
<5 12 E: 12
6-12 1 E:1
13-24 12 D:1E:TM:4
25-72 19 A:1S:1E:10V:7
73+ 9 V5E 4

Table 4. Number of months that separate the publication of CVEs from their exploita-
tion by IoT malaware.

This phenomenon is likely due to the large amount of code reused between IoT
malware [58] and highlights the need for the prompt applications of security
updates. Since the NVD database contains upwards of 6800 entries for software
and firmware used by IoT devices, a CVE that has been exploited in the past is
more than 8 times more likely to be exploited again in a different IoT malware.

Malware developers are more likely to use CVE with high exploitability
score, and low exploit difficulty. CWEs related to input validation errors or
authentication errors are more likely to be targeted, with a small number
of CWEs accounting for the plurality of exploited vulnerabilities. Malware
developers tend to prefer recent CVEs, and are likely to reuse CVEs that
have been targeted by other malware developers in the past.

5 Research Question 3

Drawing on the results of the previous section, we attempt to automatically
ascertain which CVE are more likely to be targeted by IoT malware developers
using a machine learning process. A successful classification will enable IoT
developers and sysadmins to prioritize CVEs in the design and application of
patches, proactively focusing on CVEs with a high likelihood of being incorporated
into malware.

We performed a first filter over the NVD, eliminating any CVE whose associ-
ated products were not IoT devices. For this purpose, we compiled a list of any
product that figures in any CVE exploited by any of the IoT malware in our
dataset and excluded CVEs that did not include any product in the target list.
At the end of this process, we had 6 300 entries.

For each of the remaining CVEs, we created a feature vector comprising the
following datum of information: year of publication, CWE, Access Complexity
(V2), Impact sub-score (V2), user interaction, exploitability Score (V2), and
impact score. Each vector also indicated whether the CVE exclusively concerned
products on the above mentioned list or additionally targeted products not listed.
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The two classes are ‘selected’, for the CVEs that malware designer elected to
target, and ‘unsued’, for other IoT vulnerabilities.

We used undersampling to overcome the unbalance in the dataset, aggregating
the 98 CVEs used throughout this study with 200 randomly selected entries. We
used 70% of the data for training and 30% for testing.

. Correctl Incorrectl ..
Algorithm Classified Insi’ances Classified Insthces Precision Recall
SVM 52 (81.25 %) 12 (18.75 %) 78.8% | 83.9%
Random Forest 50 (78.1 %) 14 (21.9%) 79.3 % | 74.2%
J48 53 (82.8 %) 11 (17.2 %) 83.3% | 80.6%

Table 5. Classifier Results

The results are reported in Table 5.

These results indicate that the CVEs targeted by malware designers are
sufficiently distinguished from those they avoid to allow automated detection
with reasonable effectiveness. The J48 algorithm was particularly effective at
predicting which CVEs will be selected while the other SVM was more effective at
at ruling out CVEs unlikely to be targeted. It’s clear that while the classification
provides useful and actionable information, more research is needed before security
researchers can confidently predict the future evolution of IoT malware.

Interestingly, we repeated the experiment with the elision of the ‘year’ datum
in the feature vector and obtained similar results to those reported in Table 5.
This indicates that the classification relies on core features of the CVEs, rather
than on time spans that separates the publication of a CVEs from the creation
of the malware studied.

Our use of undersampling to overcome the unbalance in the dataset is a threat
to the validity of this result. This problem can be corrected as more data becomes
available, a near certainty given the continued prevalence of IoT malware and
the resourcefulness of IoT malware developers.

The CVEs targeted by malware developers are sufficiently distinguished
from those they avoid to allow automated detection with reasonable
effectiveness, though more research is needed to refine the detection
process.

6 Threats to Validity

We opted to include the entire corpus of vulnerabilities present in the NVD
database in our analysis. A possible threat to validity derives from this decision,
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since the NVD database contains vulnerabilities dating back from as early as 2002,
and it is likely that most malware developers disregard such dated vulnerabilities.
That said, some bots do include vulnerabilities several years old, such Echobot,
deployed in 2019, which exploited a 16 year old vulnerability. We consequently
opted to include the entire dataset.

The incompleteness of the data is another threat to validity. As discussed
above, the V2 and V3 rating are not present for every vulnerability. Amongst the
vulnerabilities utilized by IoT malware developers, a single one, CVE-2013-5759,
utilized by Echobot, did not have either rating. Furthermore, a small number of
CVEs may be duplicates, a fact we ignored. For example, CVE-2019-18396 is a
duplicate report of the same vulnerability reported by CVE-2017-14127.

The fact that the average impact score, difficulty of exploitation and the
distribution of CWEs in the NVD varies from year to year is a threat to the
validity of the results presents in Section 4 since the vulnerabilities exploited by
IoT designers skew towards the more recent past. The differences we observed in
the CVSS scores and CWEs of exploited CVEs may be caused in part by drift in
the the values values over the years.

A treat to the validity of our results exists because some vulnerabilities received
a CVE entry only after they began to be exploited by an IoT malware, especially
Echobot (see for e.g. [10]). We were unable to identify these vulnerabilities with
certainty, and this fact may have led us to understate the number of vulnerabilities
without a corresponding NVD entry that are exploited by IoT malware (Section 3)
and to overstate the propensity of malware designer to target recent vulnerabilities
(Section 4).

As mentioned above, the unbalance present in the dataset, and our use of
undersampling to overcome it, is a threat to the validity of the results reported
in Section 5.

7 Related Works

Recently, Blinowski et al. [6] proposed a classification of vulnerabilities associated
with IoT devices, extracted from the NVD database. They manually grouped
vulnerability records into seven categories (Home, mobile devices, etc.). This
classification was used later to train an SVM to predict the category of new
vulnerabilities. Their approach achieves a precision and recall of 70%-80% for
categories for which they have a large number of vulnerabilities, and of 50%
accuracy or less for less-populated categories.

Li et al. [30] proposed a vulnerability mining algorithm to analyze and obtain
essential characteristics of software vulnerability-based data mining techniques.
Their algorithm was used on software vulnerabilities using the NVD dataset. When
applied to detecting vulnerabilities in three projects, their approach achieved a
recall of around 70% and precision of 60%.

Spanos and Angelis [51] presented a model that can automatically predict the
characteristics of vulnerabilities. This is an important task since the specification
of vulnerabilities is used to determine their severity, complexity, impact, and other
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characteristics, used by vulnerability scoring systems. Their model combines text
processing and multi-target classification technique. They applied their model
to a dataset of 99,000 vulnerability records from the NVD. The results vary
depending on the vulnerability characteristic that is the subject of prediction
and the algorithm used for classification, with an F-measure ranging between
42.88% and 67.91%.

Le et al. [29] proposed an approach to automatically assess software vulnerabil-
ities with concept drift using software vulnerability descriptions. Their approach
combines both character and word features. They applied their approach to
the prediction of seven vulnerability characteristics. They experimented with
more than 100,000 vulnerabilities from NVD and showed that their approach
can predict vulnerability effectively without having to retrain the models, which
suggest that their models can be used to overcome the problem of concept drift.

Wijayasekara et al. [61] focused on so-called hidden impact vulnerabilities,
i.e. vulnerabilities that appeared long after the associated bugs have been made
public. They develop a text mining classifier to identify hidden impact vulnera-
bilities from bug report databases. The authors extended this work in[60,62] by
using information gain and genetic algorithms [60] and three different classifiers
(NaiveBayes, Naive Bayes Multinomial, and C4.5 Decision Tree) [62].

Murtaza et al. [34] conducted an empirical study to understand the trends of
software vulnerabilities over time, the common patterns of software vulnerabilities,
and whether or not one can predict the type of vulnerability in a software
application. They used NVD and their main source of data to mine six years
of software vulnerabilities from 2009 to 2014. They found that the patterns
of vulnerability events follow the first order Markov property, i.e., the next
vulnerability can be predicted by the previous vulnerability. They also found
that the next vulnerability can be predicted with approximately 90% precision
and 80% recall, just by using the previous vulnerability. finally, they found
that collectively mobile applications have higher vulnerabilities than traditional
software applications.

Na et al. [35] proposed a classification method for categorizing CVE entries
into vulnerability type using naive Bayes classifiers. They showed that their
approach can analyze CVE entries that are not yet classified. Frei et al. [20]
conducted a study in which they examine the time of discovery of vulnerabilities,
the time of disclosure of attacks, and the time of availability of patches. Their
study uses mainly NVD data. They found that software vendors are slow to
provide patches despite the fact that attacks that exploit zero-day vulnerabilities
are an increasing trend. Neuhaus and Zimmermann [38] proposed an approach
to automatically categorize CVE vulnerabilities into vulnerability types by using
Latent Dirichlet Allocation (LDA).

Valente et al. [56] analyze various types of IoT devices and uncover the
vulnerabilities they contain. They found 9 new CVEs that can be employed to
perform new kinds of attacks including drone hijacking, remote sexual assault,
or harassment. They classify the CVEs exploited by IoT malware in 4 categories
depending on the interactions between the attackers and the IoT devices.



An analysis of the use of CVEs by IoT malware 13
8 Conclusions

In this study we investigated the use of CVEs by IoT malware developers. We
found that IoT malware increasingly relies upon the exploitation of vulnerabilities
as an infection vector, and that the NVD seems to be the preferred source to
obtain these vulnerabilities. We also found that the vulnerabilities selected by IoT
malware differ from the broader NVD in several respects. Notably, IoT malware
developers then to prefer vulnerabilities with lower than average exploitation
complexity and higher than average impact. Targeted vulnerabilities are remotely
exploitable and less likely to necessitate user interaction. Certain specific CWEs,
reflecting input validation and authentication errors, are also more likely to be
targeted. Indeed, the CVEs targeted by malware designer are sufficiently distinct
to permit automated prediction using machine learning algorithms.

In addition, we compiled data about the use of vulnerabilities by IoT malware,
which may be useful to security researchers in the future.
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