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Abstract—Logging is an essential software practice that is used
by developers to debug, diagnose and audit software systems.
Despite the advantages of logging, poor logging practices can
potentially leak sensitive data. The problem of data leakage is
more severe in applications that run on mobile devices, since
these devices carry sensitive identification information ranging
from physical device identifiers (e.g., IMEI MAC address) to
communications network identifiers (e.g., SIM, IP, Bluetooth
ID), and application-specific identifiers related to the location
and the users’ accounts. This preliminary study explores the
impact of logging practices on data leakage of such sensitive
information. Particularly, we want to investigate whether log-
related statements inserted into an application code could lead
to data leakage. While studying logging practices in mobile
applications is an active research area, to our knowledge, this
is the first study that explores the interplay between logging
and security in the context of mobile applications for Android.
We propose an approach called MobiLogLeak, an approach that
identifies log statements in deployed apps that leak sensitive data.
MobiLogLeak relies on taint flow analysis. Among 5,000 Android
apps that we studied, we found that 200 apps leak sensitive data
through logging.

Index Terms—Taint Flow Analysis, Mobile Applications, Data
Leakage, Logging Practices

I. INTRODUCTION

As in other software applications, mobile developers use
logging to gain insight into the behavior of the application
at runtime [1]. Log messages printed during the execution
of a program are often the only data source available for
developers to diagnose program failures [2]. Logs are also used
by DevOps analysts to determine the root cause of problems
that occur at the operational level such as finding the causes
behind security attacks, hardware failures, and configuration
issues. However, as stated in the android developer guide
“verbose logging should never be compiled into an applica-
tion except during development” [3]. Verbose logging may
make debugging inefficient and unproductive. Despite all the
warnings, poor logging is still a common practice in mobile
development [4].

There exist studies that examine the practice of logging in
mobile development with a focus on examining the perva-
siveness of logging in traditional and mobile applications, the
evolution of logging, logging anti-patterns and bad smells, etc.
[5] [6] [7]. In this paper, we argue that poor logging practices
may lead to a more serious problem, which is exposing user

Fig. 1. MobiLogLeak Approach Overview

private personal information and leak sensitive data that can be
a source of privacy and security vulnerabilities. While studying
logging practices in mobile applications is an active research
area, to our knowledge, this is the first study that explores the
interplay between logging and security (more precisely data
privacy) in the context of mobile applications for Android.

II. MOBILOGLEAK APPROACH

This paper focuses on studying potential data leakage due
to poor logging practices in released Android mobile appli-
cations. Fig. 1 shows an overview of our approach. In Step
1, we need to convert the Android APK to Jimple Code in
order to be able to analyse it. Then, in Step 2, we apply taint
analysis to the Jimple Code to find the taint flow paths in
each application. In our work, we focus only on apps with
taint flows as those are the potential sources for data leakage.
Moreover, since this study focuses on data leakage as a result
of poor logging practices, in Step 3, we prune paths that are
not log-related. To do that, we use source-sink paths generated
through taint flow analysis, and search the sinks for possible
log related statements. The results will be log specific taint
flow paths. In Step 4, to obtain a better understanding of these
generated log related flows, we perform context analysis to
analyze the code structure in order to study, which Android
component has the most log related flows. Finally, in Step 5,
we manually inspect each of the taint flow paths to understand
the type of the possible data leakage cases. We elaborate on
each step in the subsequent subsections.



A. Step 1: From APK to Jimple Code

Since we are interested in analyzing log statements in
deployed apps, we cannot assume the presence of the source
code. We therefore need to reverse engineer the app APK to an
intermediate representation that we can analyze. To this end,
we turn to the Soot framework [8], which is a framework for
analyzing and transforming Java and Android applications to
Jimple, a code format between source code and Bytecode that
is commonly used in program analysis [8].

Although Jimple is more cumbersome than normal source
code, it maintains the required program constructs needed for
program analysis, such as the function names, classes and code
statements. Hence, it can be used to identify the log statements.
The following listing shows an example of a Jimple code
snippet of a log statement that is generated from an APK
using Soot.

1 staticinvoke <android.util.Log: int d(java.lang.
String,java.lang.String)>("deviceIMEI", $r6);

B. Step 2: Taint Flow Analysis

Our main focus in this work is to identify sources of data
leaks that are related to log statements. One way to identify
data leaks is through taint flow analysis. The goal of taint
flow analysis is to check whether sensitive data remains within
expected application’s boundaries [9]. Taint analysis can be
either static or dynamic. In this paper, we apply static taint
flow analysis on the generated Jimple Code from Step 1. This
is performed using Flowdroid [10], which is a static analysis
tool built on Soot that allows us to retrieve the data flow
between sources and sinks, hence uncovering all the paths that
are related to data leaks.

C. Step 3: Generate the Source-Sink Log-Related Paths

The paths that are generated in Step 2 include all sources of
data leaks. In this step, we refine the list of path, by focusing
only on paths that are related to log statements. In other words,
the goal is to retrieve only paths whose sinks contain a logging
related statement.

In Jimple, log statements are accompanied with their library
classes (e.g., android.util.Log), making it easy to filter the
generated taint flow analysis paths by keeping only those that
contain log statements as their sink. A simple string match
search looking for the log related libraries in the sink for the
taint flow paths suffices. The result of this step are all the taint
flow paths that are related to log statements. In the rest of this
paper, we refer to these paths as ALRS (App Logging Related
Sinks).

D. Step 4: Context Analysis of Logging Related Data Leakage

In this step, we measure different aspects related to ’bad’ log
statements (logs that appear on the taint flow analysis paths).

First we compare the practices of log statements in ap-
plications with poor logging (ALRS) and those where no
taint flow paths were discovered. Second, we compare the
context, in which the log statements appear, in other words, the

distribution of log statements in the different Android compo-
nents: Activities, Services, Content Providers, and Broadcast
Receivers.

For this, we use DroidFax [11], a software toolkit that is
designed to assist developers in program comprehension of
Android applications. Particularly, DroidFax provides all sorts
of statistics about an Android app for quality assessment.

To measure the density of poor logging, we used the
following equation:

Density =
LLOC

SLOC

where LLOC refers to the total number of log statements of
Jimple Code and SLOC refers to the total number of Source
lines of Jimple Code.

E. Step 5: Types of Logging Related Data Leakage

The aim of this step is to categorize logging related data
leakage cases. To this ends, we manually inspect each of the
taint flow paths generated in Step 3 and categorize them into
four identified data leak types, which are database related,
network related, location related, and account related.

III. PRELIMINARY EVALUATION

A. Dataset

We applied MobiLogLeak to a randomly collected sample
of 5,000 Android applications from AndroZoo [12] (2,500
apps were published in 2017 and the other 2,500 are from
2018). We converted their APKs to Jimple Code and used
Flowdroid to apply taint flow analysis. We found taint flow
paths in 276 apps. We pruned paths that are not log-related,
by searching the sink paths for log related statements. This
resulted in 200 applications with taint flow paths that have log-
related sinks. The final refined dataset includes apps that cover
various app categories including music, finance, education,
fitness, etc. Some of these applications are highly popular,
more particularly, 29 of these apps were installed more than
100,000 times.

B. Results

1) Logging Practice Statistics: Table I shows the results
of comparing the logging density between applications with
logging related taint flows (ALRS) and those without (referred
to as ’Good’ apps).

TABLE I
LOG PRACTICES IN ANDROID

Dataset SLOC LLOC Density

Good
4,800 APKs 436,167,099 1,205,557 1/362

ALRS
200 APKs 34,686,096 64,296 1/539

The table shows that ’good’ apps have higher log density.
At the first glace, this looks as a surprising result. To further



explore this, we separated the data into two datasets; each
consists of 2,500 apps from the same year of publication and
recalculate the density. The results were consistent with the
previous findings. One possible explanation for this is that
log heavy applications are those that are normally written
by experienced developers, who also apply good logging
practices, such as removing log statements that could reveal
sensitive data, but also use more logs for exception handling
and explaining errors. Further analysis is required to draw a
firm conclusion.

TABLE II
LOG DISTRIBUTION IN ANDROID COMPONENT

Component
Good

4,800 APKs
ALRS

200 APKs

Activity 96.25% 98.5%

Service 0.29% 0%

Broadcast Receiver 0.13% 0.5%

Content Provider 0% 0%

Other 3.33% 1%

Table II shows the results of comparing the context in
which the log statements appear (i.e., the distribution of log
statements in different Android components). The results show
that most logging occur in Activity components, with almost
no logging in content provider (zero in our case). The most
remarkable result is that the Service components can be used as
a determinant feature to indicate good logging practices. Again
this was consistent when we applied the analysis on the 5,000
applications and when we separate them into two datasets
(each consisting of 2,500 apps) in a random manner. Similar to
the previous result, this finding requires further investigation.
However, it also draws attention to the differences in the
behaviour in poor and good logging practices. It is worth
mentioning that in the case of poor logging (ALRS), the
dataset contains 200 apps with 293 log-related sinks. All of
them are in Activity components.

As part of this analysis, we studied if sinks can appear
in in reflective methods and exception blocks as those two
constructs normally contain log statements (i.e., we reported
a consistent percentage of 25% of the total log statements
are in the exception blocks and reflection methods). No poor
logging (i.e., sink related log statements) was reported in those
two constructs.

2) Analyzing the Types of Logging: In this section, we show
by example, how we manually inspect each of the taint flow
paths generated in Step 3, in order to categorise the log-related
leakage cases based on the types of leakage.

Recall that each taint flow path consists of a sink and a
source. In our manual analysis, we start from the source and
then we find the corresponding API that is related to that

Fig. 2. API: GetDeviceId

source. Using the description of the API, we can identify the
actual data leaked in the corresponding taint flow path.

For example, in the listing below, the method getDeviceId()
in line 4 is a source that is related to the log-relate sink
that leaks the device IMEI in line 6. To obtain the API
that corresponds to the source, we can look up the method
"getDeviceId" in the list of APIs provided by the Android
software development kit (SDK).

1 public static java.lang.String i(android.content.
Context)

2 { ...
3 label05:
4 $r3 = virtualinvoke $r2.<android.telephony.

TelephonyManager: java.lang.String
getDeviceId()>();

5 ...
6 staticinvoke <android.util.Log: int d(java.

lang.String,java.lang.String)>("deviceIMEI
", $r6);

7 ...
8 }

Listing 1. Code Snippet: Taint Flow Example of Device ID

Fig. 2 shows the description of the API and the actual data
retrieved by calling getDeviceID, which will be then leaked
through the log statement at the sink. In this case, it is the IMEI
for GSM. Based on the API description, we can categorize
the leakage into one of the following four categories. For the
previous example, the data leakage is related to Network.

• Network: Mac Address, Device Id, Sim Serial Number,
Country and Package Manager.

• Account: Name and Size.
• Location: Latitude, Longitude, and Last Know Location.
• Database: ID, Password, Subdomain, Website Link

Name, etc.
The process described so far can help in retrieving the

corresponding API of a source (hence the actual data) where
the leakage is related to network, account, or location type.
Unfortunately, this process may not work in more complex



situations, such as in the case of the database leakage type.
In such scenarios, the path from the source to the sink is
normally long and can take several alternatives. Moreover,
the automatically identified source (by Flowdroid) does not
provide us with enough information about the real source of
the data that is leaked. Hence, the analysis normally includes
tracking the real source. For example, in the following listing,
starting from the source in line 32, Flowdroid pointed to a
source for a database leakage. In order to identify the actual
data leaked, a thorough analysis is required starting from the
log statement at the sink to the actual source. Once we identify
the real source, based on the parameters, we can find which
query the source used and what are the fields in that query.

1 private boolean a(java.lang.String)
2 {
3 ...
4
5 $r3 = specialinvoke $r0.<net.intricare.

gobrowserkiosklockdown.firebasenotify.
MyFirebaseMessagingService: java.lang.
String a()>();

6
7 ...
8
9 staticinvoke <android.util.Log: int i(java.

lang.String,java.lang.String)>("
MyFirebaseMsgService", $r3);

10
11 staticinvoke <android.util.Log: int i(java.

lang.String,java.lang.String)>("
MyFirebaseMsgService", "oldpassword and
newpassword matches. save new password");

12
13 ...
14 }
15 ------------------------------------------------
16 private java.lang.String a()
17 {
18 ...
19
20 $r1 = virtualinvoke $r2.<net.intricare.

gobrowserkiosklockdown.b.b: java.lang.
String e()>();

21
22 return $r1;
23 }
24
25 ------------------------------------------------
26 public java.lang.String e()
27 {
28 ...
29
30 $i0 = interfaceinvoke $r3.<android.database

.Cursor: int getColumnIndex(java.lang.
String)>("password");

31
32 $r4 = interfaceinvoke $r3.<android.database

.Cursor: java.lang.String getString(int)>(
$i0);

33
34 return $r4;
35 ...
36 }

Listing 2. Code Snippet: Sink Example of Database(Password)

For example, in Listing 2, to track the data and confirm
the real path, we start from the sink in line 9 in Listing 2.

It is the log statement that contains the variable $r3. We go
back and look for the value of $r3 and in line 5, we find it is
from the function, private boolean a(java.lang.String). Then,
we go to this function and check it. We know the final return
value is $r1 in line 22. It comes from the function ’public
java.lang.String e()’ in line 20. Then we trace this function
shown at the line 26. In the function, public java.lang.String
e(), we could find the final return value is $r4. Based on
FlowDroid, the source is in line 32.

However, if we stop here, we only could know the data
is from the database. What is the real source? Which part
value is leaked in the database? To solve these kinds of
confusion, we read this function and check it again. Luckily,
we find the $r4 is from the query operation, getColumnIn-
dex(java.lang.String)>("password") in line 30.

In this case, the source is transformed in 2 other functions,
and we can check the static text of logging in line 11. It is
“oldpassword and newpassword matches. save new password”.
It means this logging happens during change the password.
As we mentioned before, most taint flows are most likely
caused by developers who use log for debugging during
development but forget to delete this type of log statement
before deployment.

We applied this manual analysis to the 200 apps with
Logging Related Sinks (ALRS). In total, there were 380
sources with elements of sensitive data, and 293 sinks with log
statements related to the data elements in the source. Out of
the 380 sources, 186 (49%) leaked network sensitive data, 170
(45%) leaked database sensitive data, 22 (5%) leaked location
sensitive data and 2 (0.5%) sources leaked user account data.

These results, although preliminary, clearly demonstrate that
logging, when not used carefully, may lead to the leakage
of sensitive information. There is a need to raise awareness
around this topic and start developing logging guidelines
to prevent these situations. We suspect that the cases we
found are caused by developers who may have needed these
logs during development, but omitted to remove them before
releasing the app. We need to dig further to understand (1) the
scale of this problem, and (2) the causes.

IV. RELATED WORK

Chen et al. [6] conducted a study focusing on Java systems.
The authors examined the logging practices in 21 Java projects
from the Apache Software Foundation. They addressed five
questions related to logging pervasiveness, bug reports, log
modification, characteristics of consistent updates and after-
thought updates. They set several criteria to filter the log
statements and calculated the log density, logging insertion,
log deletion, log move, and log update. Their research shows
that despite the pervasiveness of logging, the logging practice
remains ad hoc and arbitrary.

Zeng, Y et al. [13] did a research of the characteristics
of logging practices in 1,444 open source mobile apps from
the F-droid repository [7]. They checked the logging density,
rational behind logging, and performance impact. The author
compared the results to two previous studies [5] [6] focusing



on C++ and Java applications. They found that logs are less
in mobile apps than in server and desktop traditional software
projects. Then, they identified several reasons why developers
put the log statements in the code: Debug, Anomaly detection,
assisting in development, bookkeeping, performance, change
for consistency, customized logging library and from third-
party library.

Chen et al. [4] concentrated on the quality of logging and
identified logging anti-patterns. In their work, they identified
six types of misuse of logs, including null-able objects, explicit
cast, wrong verbosity level, logging code smells and mal-
formed output. In the logging code smells, they detected two
kind of duplications. They manually examined 352 pairs of
independently changed logging code snippets from ActiveMQ,
Hadoop, and Maven. They provided a tool called LCAnalyzer,
which helps detect these anti-patterns.

Khanmohammadi et al. [14] conducted research on Android
repackaged apps, which are considered as one the top 10 risks
in mobile security [15]. They tested more than 15,000 apps
from AndroZoo [12] and studied the motivation of developers
and users of repacked apps. Also, they detected the factors
which determine the apps to be repackaged and the ways how
these apps are repackaged. Their insights can be of a great help
to security experts. In addition, a novel app indexing scheme
was proposed to minimize the number of comparisons needed
to detect repackaged apps in app stores.

V. THREATS TO VALIDITY

Internal validity: We manually analyze all the taint flow
analysis paths that contain log statements as sinks. Three
authors checked the results. Because this is done manually,
errors may have occurred, which we recognize as a threat to
internal validity. Another threat is related to the selection of the
5,000 apps. We selected these apps randomly, but a different
set may lead to different results.

External validity: Software engineering studies suffer from
the variability of the real world, and the generalization problem
cannot be solved completely. Although we have used 5,000
apps in this study, our evaluation remains preliminary and
should be qualified as an Early Research. We need to experi-
ment with larger datasets.

VI. CONCLUSIONS

In this study, we investigated the impact of logging practices
on data leakage. Particularly, we explored how common are
poor logging practices in mobile applications and the effect
of not removing logs related to sensitive information before
releasing the application. Our preliminary results show that log
statements are common in the released mobile applications.
There is one log statement in each 362 lines of code. Not all
these logs are a result of bad logging practices. For example,
in our study on 5,000 mobile applications, non of the log-
statements in the exception blocks leaked sensitive data. On
the other hand, poor logging practices are also common in
mobile applications. Out of 276 apps with taint flows, 200
or around 72% leaked sensitive data due to poor logging

practices. We categorized the data leakages that are related
to logging practices into four types. The results demonstrate
that in the 200 apps that we manually analyzed, there were 380
sources of data leakage, 186 of these sources leaked network
sensitive data, 170 leaked database sensitive data, 22 leaked
location sensitive data and 2 sources leaked user account data.
Finally, our preliminary results suggest a correlation between
the context of logging practices and whether these practices are
good or poor, further investigation is required as part of future
work. Another interesting future direction is to automatically
classify the leaked data in the categories network, account,
location, and database.
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