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Software Maintenance

Is defined as the modification of a software system after
delivery

accounts for 75% of the time of the software life cycle
tends to be a human resource intensive process

Incurs very high costs: SW maintenance is estimated to
a multi-billion dollar market
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Issues with exiting software

More than 100 billion lines of code in production in the
world

A large portion of it is unstructured, patched, and badly
documented

Initial design and architecture can no longer be trusted

High turn-over causes initial developers to move from
one company to another

SW industry tends to be a poorly regulated industry




As aresult

Software engineers must spent a considerable
amount of time to understand the system
before making any changes to it
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How do programmers understand
programs?

Program Comprehension Models

High-Level
Concepts
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Low-Level
Artifacts

High-Level
Concepts

!

High-Level
Concepts

Low-Level
Artifacts

id

Low-Level
Artifacts




Understanding System
Behavior Using Trace Analysis

Instrumented Execution Trace I8 =8
System Traces | L Analyzers :D | RTA i
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Examples of execution traces

* Traces of routine (method) calls

« Traces of inter-process communication

* Traces of statement execution

« Traces of communication among subsystems
« Etc.




Trace Analysis (cont’d)

« Advantages:
— High focus and resolution
— Mapping of program inputs to outputs
— Source code is not needed

« Challenges:
— Tracing adds overhead to the system
— Traces are overwhelmingly large
— Different types of traces may require different
processing techniques

%‘_c




Applications of Trace Analysis:
Industrial Projects

Project 1. Tracing and Monitoring Tools for Distributed
Multi-Core Systems

Project 2: Diagnostics for Real Time Distributed
Multi-Core Architecture in Avionics

Project 3: Finding Faulty Functions from Traces of
Field Failures




Tracing and Monitoring Tools for
Distributed Multi-Core Systems

Develop technigues and algorithms to provide a
software architecture for low overhead trace
generation and analysis tools for complex
distributed multi-core systems
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Trace Generation

* Research thread led by Dr. Michel Dagenais
from Polytech de Montreal

* Objectives:

— Build a tracer with low overhead and no disturbance
on the system

— Offer support for synchronisation in a multi-core
environment

— Offer support for system and user space tracing




LTTng: Linux Trace Toolkit New
Generation

Instruments the Linux kernel

Adds 2% overhead to the kernel in the worst
case scenario

 |s free and open source
* |s being integrated with the Linux kernel




Trace Analysis

* Objectives:

— Simplify the understanding and analysis of very
large traces

— Extract high-level views from raw events

— ldentify the main components that implement the
traced scenario

— Correlate user space and system space traces

%‘_c




Motivating example

« A trace generated from a compiler:

— parsing, preprocessing, lexical analysis, semantic
analysis

* |n most trace visualization tools, it will look like:




An execution phase based view

Init Parsing Preprocessing  Lexical Analysis Semantic Analysis
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Init Parsing Preprocessing  Lexical Analysis Semantic Analysis

Phase
P3.1
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Same problem, different domain:
The human perception system
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... yet the brain can quickly identify parts of a scene,
group them into shapes, and interpret the shapes




Segmentation:

The perceptual system segments local elements against
their context and integrates them as objects and regions

Global Perception:

The segmented scene is then quickly scanned with eye
movements so as the brain obtains an overall impression
of it

Preattentive Process:

The scene is analyzed in more detalil by visiting the
regions in a certain order. The pop-out effect is an
Important factor in this process
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Gestalt Laws

Law of Similarity

Law of Pragnanz
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Trace abstraction framework
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Trace abstraction framework
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Repositioning trace events using
similarity principle
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Repositioning trace events using
good continuation principle




Good continuation (cont.)
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Evaluation

« Target System: ArgoUML

« Scenario: Starting up ArgoUML, drawing a class
diagram, quitting ArgoUML

 Trace size: Hundred of thousands of function calls
« Number of distinct routines 2331 = ~33%




Starting up ArgoUML

Application of trace segmentation

Drawing a class diagram — Quitting ArgoUML
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Starting up ArgoUML Drawing a class diagram — Quitting ArgoUML
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Starting up ArgoUML Drawing a class diagram — Quitting ArgoUML

Phase 3: Add a class diagram
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Starting up ArgoUML Drawing a class diagram — Quitting ArgoUML

Phase 3: Add a class diagram
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Phase flow diagram
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Threads
tl|{pa}
t2

t3

t4

Adding state information

|CPUJ: 2

|[PID|: 15

|FDJ]: 12
|PageFault|: 200
Ratio: 15.03%
CPU usage: 5%

|CPUJ: 2
|PID|: 17
|FDJ: 16
|PageFault|: 526

Ratio: 15.03%
CPU usage: 40%
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Trace abstraction framework
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Extracting relevant components

Trace T
(| =
; » |dea: Elements that are repeated in a phase but are
UE not much shared between phases indicate their
BT relevance to the phase
t_l = This is similar to the concept of term frequency
Inverse document frequency in the text mining
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ldentifying main content
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Abstraction of System Call

System level
Trace
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sys1
sys2
sys3
sys4
sys5
sys2
sys1
sys3
sys4
sys5
sys6
sys2
sys1
sys2

Traces

Trace Abstraction
Algorithm

read from file
write to file
read from file

write to file
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Fault Tolerance: Redundancy
and Diversity
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OS Diversity

HP/UX Openview
Server

Solaris/Enterprise
Server

—— Abstraction — Correlation — Report

Windows NT/
IS Server

Linux/Apache
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Kernel-Level Trace Abstraction

Trace Generated

from |:> Trace Abstraction I:> High-Level

Host System Algorithm Trace
Sample LTTng T
Traces % N~

] o <:| Linux Kernel
atern Documentation

Library

v
Expert %

Knowledge
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syscal

File Read & Write Patterns

%(UESR_MODE_FILE_OPENED)

syscall_entry(sys_read)

(SYSCALL_R EAD]

read

|_exit J/

(SYSCALL_DATA_R EAD)

Write to File

syscal

%[UESR_MODE_HLE_OPENED)

|_exit

syscall_entry(sys_write)

(SYSCALL_WRITE)

write

(SYSCALL_DATA_WRITTEN)
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Evaluation

« Two nodes: Linux and BSD
 Failures are simulated on BSD
« We are able to detect and recover from most failures

« Abstraction is a crucial step for behavior correlation to be
effective

« Similarity based on pattern detection provides accurate
measures
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Tracing and Monitoring Framewor
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Diagnostics for Real Time Distributed
Multi-Core Architecture in Avionics

Build efficient algorithms for low overhead, low
disturbance tracing of real-time embedded
multi-core systems and simulators

Develop special purpose performance analysis
debugging, and feature location modules for
avionic systems
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Motivating scenario

Height
above
ground

Mormally 10S

FLOA:
Warning Obstacle

FLOA:
Avoid Obstacle

vertical closing speed
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Motivating scenario

Height
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CAE - Architecture
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Entry
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Need: Automatic identification of CDB
values for a specific failure

Configuration
Files
= CDB values
® —— Suggestion
Execution Set
Information 7

Problem in

the execution
scenario

Source
Code
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Proposed Solution

FSS
NAV
AERO
FMS
others

Tracing Framework

Source
I Code
[ SR
|
v =
: Config -%_
Execution File = CDB SET
Trace . =
/
Trace Relevant
Filterer Functions
\_/_

Query
(I10S Msg)
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Scenario

TAWS
Model

TAWS
Mode4B

TAWS
Mode4dA

Aircraft

Condition

Altitude: 900 feet
Vertical speed:
-3000 feet/min

Altitude: 300 feet
Airspeed: 50 knots
Gears Position: down
Flaps Position: in flight

Altitude: 400 feet
Airspeed: 50 knots
Gears Position: up
Flaps Position: landing

Evaluation

Trace size # CDB vars Relevant Retrieved Precision Recall

(millions) in config. CDBs CDBs
20 1720 4 1 25% 50%
8 1620 4 19 21% 100%
4 1499 5 28 19% 100%
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Finding Faulty Functions from the
Traces of Field Failures

Improve the troubleshooting process to
Increase the productivity of software engineers
by reducing the number of field reports to be
analysed
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Finding Faulty Functions from the
Traces of Field Failures

Discover faulty
functions
Sequence of

function-calls ;

fooPrevious exit ®
| foo1 entry

| | foo2 entry

| ]| foo3 entry
| | | foo3 exit

| | foo2 exit

| foo4 entry

| foo4 exit

| foo2 entry

Trace:

Trace <
Collection

Maintainer

(NN 2

1

Deployed Software
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Approach

failed traces

Train models using one-against-all approach on
trace patterns to predict faulty functions in new

\
Ranking <
Function Probability
Rank 1 food 0.708
Rank 2 foo2 0.27 New field
Rank 3 foo1 0.08 failed trace
Rank 4 food 0.02 1 fool exit
2 fooentry
3 | fool0 entry
4 || fool entry
E— —Patterns
foo23
foo4
............................... f001
1 foo23 exit ﬁ :28339;0;30104
2 food entry foo23 : foo1 > foo4
3 | fool entry
4 foo4 entry

Machine
Learning
Models
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Application to the IBM system

20+ million LOC, 300+ components, approx. 200 K+
functions, traces of size up to 4GB (44 million
function-calls), and 82% rediscoveries of field faults.

(Union)

# Failed | # Faulty # Faulty

Traces Comp. Func.
Release 1 269 52 65
Release 2 337 35 47
Release 3 99 30 31
Total Distinct Faults 65 103
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Results on the IBM system

Classification on individual releases

100 ;
On reviewing 1% of the program’s

I functions, faulty functions in up to
B0 e 80% of the failed traces were
4~ discovered
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% of program to be examined

= FOO7 on release 1 - FOO7 on release 2 = FOO7 on release 3
-+ Straw-man classification on release 1

Straw-man classification on release 2
- Straw-man classification on release 3
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From Data To Knowledge for Better
System Maintenance - D2K Project

Enable and implement efficient use of
analytical techniques to achieve revenue
targets within risk limits by continuously

Improving the end-to-end software
maintenance process
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D2K Objectives

. Identify changes to improve current software
maintenance process and information flow

. Investigate automated solutions for fault discovery,
diagnosis, and prediction

. Provide better analysis capabilities to software
engineers

. Help software engineers focus on the real problem
rather than spending time on irrelevant information
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Conclusion

Trace analysis Is useful for many software
engineering applications including software
maintenance and evolution, performance analysis,
software resilience, and cyber security

Future

Invest in an end-to-end Enterprise Tracing
Platform (ETP) for trace generation, modeling,
abstraction, and analytics to support forward and
background engineering tasks
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