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Software Maintenance 

• is defined as the modification of a software system after 

delivery  

• accounts for 75% of the time of the software life cycle 

• tends to be a human resource intensive process 

• incurs very high costs: SW maintenance is estimated to 

a multi-billion dollar market 
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Issues with exiting software 

• More than 100 billion lines of code in production in the 

world 

• A large portion of it is unstructured, patched, and badly 

documented 

• Initial design and architecture can no longer be trusted 

• High turn-over causes initial developers to move from 

one company to another 

• SW industry tends to be a poorly regulated industry 
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As a result 

Software engineers must spent a considerable 

amount of time to understand the system 

before making any changes to it 
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How do programmers understand 

programs?  
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Understanding System 

Behavior Using Trace Analysis 

7 

Instrumented 

System 

 

Execution  

Traces 

Trace  

Analyzers  

Target 

System 



Examples of execution traces 

• Traces of routine (method) calls 

• Traces of inter-process communication 

• Traces of statement execution 

• Traces of communication among subsystems 

• Etc. 
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Trace Analysis (cont’d) 

• Advantages: 

– High focus and resolution 

– Mapping of program inputs to outputs 

– Source code is not needed 

• Challenges: 

– Tracing adds overhead to the system 

– Traces are overwhelmingly large 

– Different types of traces may require different  

     processing techniques 
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Applications of Trace Analysis: 

Industrial Projects 

Project 1: Tracing and Monitoring Tools for Distributed 

 Multi-Core Systems 

Project 2: Diagnostics for Real Time Distributed 

 Multi-Core Architecture in Avionics 

Project 3: Finding Faulty Functions from Traces of 

 Field Failures 
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Tracing and Monitoring Tools for 

Distributed Multi-Core Systems 

Develop techniques and algorithms to provide a 

software architecture for low overhead trace 

generation and analysis tools for complex 
distributed multi-core systems 
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Project Partners 
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Trace Generation 

• Research thread led by Dr. Michel Dagenais 

from Polytech de Montreal 

• Objectives: 

– Build a tracer with low overhead and no disturbance 

on the system 

– Offer support for synchronisation in a multi-core 

environment 

– Offer support for system and user space tracing 
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LTTng: Linux Trace Toolkit New 

Generation 

• Instruments the Linux kernel  

• Adds 2% overhead to the kernel in the worst 

case scenario 

• Is free and open source 

• Is being integrated with the Linux kernel 
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Trace Analysis 

• Objectives: 

– Simplify the understanding and analysis of very 

large traces 

– Extract high-level views from raw events 

– Identify the main components that implement the 

traced scenario 

– Correlate user space and system space traces  
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Motivating example 

• A trace generated from a compiler: 

– parsing, preprocessing, lexical analysis, semantic 

analysis 

• In most trace visualization tools, it will look like: 

 

 

• But how can we tell what happens where?  
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An execution phase based view 
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Same problem, different domain: 

The human perception system 

… yet the brain can quickly identify parts of a scene, 

group them into shapes, and interpret the shapes 
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 Segmentation: 

 The perceptual system segments local elements against 

their context and integrates them as objects and regions 

 

 Global Perception: 

 The segmented scene is then quickly scanned with eye 

movements so as the brain obtains an overall impression 

of it 

 

 Preattentive Process:  

 The scene is analyzed in more detail by visiting the 

regions in a certain order. The pop-out effect is an 

important factor in this process 
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Gestalt Laws 
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Trace abstraction framework 
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H. Pirzadeh, A. Hamou-Lhadj, ICSE 2010, ICPC 2011, ICECCS 2011 



Trace abstraction framework 
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Repositioning trace events using 

similarity principle 
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Repositioning trace events using 

good continuation principle 
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Good continuation (cont.) 
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Evaluation 

• Target System: ArgoUML 

• Scenario: Starting up ArgoUML, drawing a class 

diagram, quitting ArgoUML 

• Trace size: Hundred of thousands of function calls  

• Number of distinct routines 2331 = ~33% 
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Dense groups of methods 

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

Starting up ArgoUML  Drawing a class diagram  Quitting ArgoUML 

Application of trace segmentation 
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Starting up ArgoUML  Drawing a class diagram  Quitting ArgoUML 
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Starting up ArgoUML  Drawing a class diagram   Quitting ArgoUML 

Phase 3: Add a class diagram 
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Starting up ArgoUML   Drawing a class diagram  Quitting ArgoUML 

Phase 3: Add a class diagram 
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Phase flow diagram 

   

Phase 1 Phase 2 Phase 3 Phases 4, 5 

   

     P1 P2 P3 P4 P5 
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Combining user and kernel space 
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Adding state information 
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|CPU|: 2 

|PID|: 15 

|FD|: 12 

|PageFault|: 200 

Ratio: 15.03% 

CPU usage: 5% 

 



Trace abstraction framework 
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Extracting relevant components 

 Idea: Elements that are repeated in a phase but are 

not much shared between phases indicate their 

relevance to the phase 

 

 This is similar to the concept of term frequency 

inverse document frequency in the text mining 
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Identifying main content 
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Abstraction of System Call 

Traces 
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Behavior Correlation 
 

Traces 

Fault Tolerance: Redundancy 

and Diversity 
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OS Diversity 

Abstraction Correlation Report 
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A. Hamou-Lhadj et al., CISDA’12 



Kernel-Level Trace Abstraction 

Linux Kernel

Documentation
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SYSCALL_READ

SYSCALL_DATA_READ

syscall_entry(sys_read) 

read 
syscall_exit 

UESR_MODE_FILE_OPENED

SYSCALL_WRITE

SYSCALL_DATA_WRITTEN

syscall_entry(sys_write) 

syscall_exit 

UESR_MODE_FILE_OPENED

write 

Write to File Read from File 

File Read & Write Patterns 



Evaluation 

• Two nodes: Linux and BSD 

• Failures are simulated on BSD 

• We are able to detect and recover from most failures 

• Abstraction is a crucial step for behavior correlation to be 

effective 

• Similarity based on pattern detection provides accurate 

measures 

 

 

43 



Tracing and Monitoring Framework 
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Users: Ericsson, Google, IBM, and many more 



Diagnostics for Real Time Distributed 

Multi-Core Architecture in Avionics 

Build efficient algorithms for low overhead, low 

disturbance tracing of real-time embedded 

multi-core systems and simulators 

Develop special purpose performance analysis 

debugging, and feature location modules for 

avionic systems 
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Project Partners 
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Motivating scenario 
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Motivating scenario 
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FSS 
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Debuggers 
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   Need: Automatic identification of CDB 

values for a specific failure 
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Proposed Solution 
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Evaluation 

Scenario Aircraft 

 Condition 

Trace size 
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# CDB vars 
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TAWS 

Mode4A 

 

Altitude: 400 feet 

Airspeed: 50 knots 

Gears Position: up 

Flaps Position: landing 
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Finding Faulty Functions from the 

Traces of Field Failures 

Improve the troubleshooting process to 

increase the productivity of software engineers 

by reducing the number of field reports to be 

analysed 
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Finding Faulty Functions from the 

Traces of Field Failures 
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Approach 

Train models using one-against-all approach on 

trace patterns to predict faulty functions in new 

failed traces 

Machine 

Learning 

Models 
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Application to the IBM system 

57 

20+ million LOC, 300+ components, approx. 200 K+ 
functions, traces of size up to 4GB (44 million 

function-calls), and 82% rediscoveries of field faults. 

# Failed 
Traces 

# Faulty 
Comp. 

# Faulty 
Func. 

Release 1 269 52 65 

Release 2 337 35 47 

Release 3 99 30 31 

Total Distinct Faults 
(Union) 

65 103 



Results on the IBM system 
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On reviewing 1% of the program’s 

functions, faulty functions in up to 

80% of the failed traces were 

discovered. 



From Data To Knowledge for Better 

System Maintenance - D2K Project 

Enable and implement efficient use of 

analytical techniques to achieve revenue 

targets within risk limits by continuously 

improving the end-to-end software 

maintenance process 
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D2K Objectives 

1. Identify changes to improve current software 

maintenance process and information flow 

2. Investigate automated solutions for fault discovery, 

diagnosis, and prediction 

3. Provide better analysis capabilities to software 

engineers  

4. Help software engineers focus on the real problem 

rather than spending time on irrelevant information 
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Conclusion 

Trace analysis is useful for many software 

engineering applications including software 

maintenance and evolution, performance analysis, 

software resilience, and cyber security 
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Future 

Invest in an end-to-end Enterprise Tracing 

Platform (ETP) for trace generation, modeling, 

abstraction, and analytics to support forward and 

background engineering tasks 
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