
The Role of Software Tracing in
Software Maintenance

 Abdelwahab Hamou-Lhadj, PhD.

Software Behaviour Analysis (SBA) Research Lab

Department of Electrical and Computer Engineering

Concordia University, Montreal, QC, Canada

www.ece.concordia.ca/~abdelw

CIIA’13, Saida, Algeria

May 5, 2013

http://www.ece.concordia.ca/~abdelw

Software Maintenance

• is defined as the modification of a software system after

delivery

• accounts for 75% of the time of the software life cycle

• tends to be a human resource intensive process

• incurs very high costs: SW maintenance is estimated to

a multi-billion dollar market

 2

Issues with exiting software

• More than 100 billion lines of code in production in the

world

• A large portion of it is unstructured, patched, and badly

documented

• Initial design and architecture can no longer be trusted

• High turn-over causes initial developers to move from

one company to another

• SW industry tends to be a poorly regulated industry

 3

As a result

Software engineers must spent a considerable

amount of time to understand the system

before making any changes to it

4

As a result

Software engineers must spent a considerable

amount of time to understand the system

before making any changes to it

5

How do programmers understand

programs?

Low-Level

Artifacts

High-Level

Concepts

Low-Level

Artifacts

High-Level

Concepts

Low-Level

Artifacts

High-Level

Concepts

Program Comprehension Models

6

Understanding System

Behavior Using Trace Analysis

7

Instrumented

System

Execution

Traces

Trace

Analyzers

Target

System

Examples of execution traces

• Traces of routine (method) calls

• Traces of inter-process communication

• Traces of statement execution

• Traces of communication among subsystems

• Etc.

8

Trace Analysis (cont’d)

• Advantages:

– High focus and resolution

– Mapping of program inputs to outputs

– Source code is not needed

• Challenges:

– Tracing adds overhead to the system

– Traces are overwhelmingly large

– Different types of traces may require different

 processing techniques

 9

Applications of Trace Analysis:

Industrial Projects

Project 1: Tracing and Monitoring Tools for Distributed

 Multi-Core Systems

Project 2: Diagnostics for Real Time Distributed

 Multi-Core Architecture in Avionics

Project 3: Finding Faulty Functions from Traces of

 Field Failures

10

Tracing and Monitoring Tools for

Distributed Multi-Core Systems

Develop techniques and algorithms to provide a

software architecture for low overhead trace

generation and analysis tools for complex
distributed multi-core systems

11

Project Partners

12

Trace Generation

• Research thread led by Dr. Michel Dagenais

from Polytech de Montreal

• Objectives:

– Build a tracer with low overhead and no disturbance

on the system

– Offer support for synchronisation in a multi-core

environment

– Offer support for system and user space tracing

13

LTTng: Linux Trace Toolkit New

Generation

• Instruments the Linux kernel

• Adds 2% overhead to the kernel in the worst

case scenario

• Is free and open source

• Is being integrated with the Linux kernel

14

Trace Analysis

• Objectives:

– Simplify the understanding and analysis of very

large traces

– Extract high-level views from raw events

– Identify the main components that implement the

traced scenario

– Correlate user space and system space traces

15

Motivating example

• A trace generated from a compiler:

– parsing, preprocessing, lexical analysis, semantic

analysis

• In most trace visualization tools, it will look like:

• But how can we tell what happens where?

16

An execution phase based view

Parsing Preprocessing Lexical Analysis Semantic Analysis Init

 P1 P2 P3 P4 P5

17

Parsing Preprocessing Lexical Analysis Semantic Analysis Init

 P1 P2 P3 P4 P5

Phase

P3.1

Phase

P3.2

Phase

P3.3

Phase

P3.4

18

Same problem, different domain:

The human perception system

… yet the brain can quickly identify parts of a scene,

group them into shapes, and interpret the shapes

19

 Segmentation:

 The perceptual system segments local elements against

their context and integrates them as objects and regions

 Global Perception:

 The segmented scene is then quickly scanned with eye

movements so as the brain obtains an overall impression

of it

 Preattentive Process:

 The scene is analyzed in more detail by visiting the

regions in a certain order. The pop-out effect is an

important factor in this process

20

Gestalt Laws

21

Trace abstraction framework

22

H. Pirzadeh, A. Hamou-Lhadj, ICSE 2010, ICPC 2011, ICECCS 2011

Trace abstraction framework

23

Repositioning trace events using

similarity principle

24

Repositioning trace events using

good continuation principle

25

Good continuation (cont.)

26

Evaluation

• Target System: ArgoUML

• Scenario: Starting up ArgoUML, drawing a class

diagram, quitting ArgoUML

• Trace size: Hundred of thousands of function calls

• Number of distinct routines 2331 = ~33%

27

Dense groups of methods

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Starting up ArgoUML Drawing a class diagram Quitting ArgoUML

Application of trace segmentation

28

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Initialization of the system

behind the splash screen

≈ 15000 calls

Loading modules

from input string

≈ 10000 calls

Add a class

diagram

≈ 5000 calls R
e
fr

e
s
h

≈
 2

5
0
0
 c

a
lls

T
e
rm

in
a
te

 ≈
 2

5
0
0
 c

a
lls

Starting up ArgoUML Drawing a class diagram Quitting ArgoUML

29

Starting up ArgoUML Drawing a class diagram Quitting ArgoUML

Phase 3: Add a class diagram

30

Starting up ArgoUML Drawing a class diagram Quitting ArgoUML

Phase 3: Add a class diagram

Sub-phase 1 Sub-phase 2 Sub-phase 3 Sub-phase 4

Create a node

from the UML model

subsystem
A

d
d
 a

 r
e

p
re

s
e
n
ta

ti
o
n

to
 t
h

e
 s

c
re

e
n

Check the well-formedness

and show the property panel

Select the

added

element

31

Phase flow diagram

Phase 1 Phase 2 Phase 3 Phases 4, 5

 P1 P2 P3 P4 P5

32

Combining user and kernel space

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

33

Adding state information

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

34

|CPU|: 2

|PID|: 15

|FD|: 12

|PageFault|: 200

Ratio: 15.03%

CPU usage: 5%

Trace abstraction framework

35

Extracting relevant components

 Idea: Elements that are repeated in a phase but are

not much shared between phases indicate their

relevance to the phase

 This is similar to the concept of term frequency

inverse document frequency in the text mining

36

Identifying main content

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

|CPU|: 2

|PID|: 15

|FD|: 14

|PageFault|: 453

Ratio: 60.06 %

CPU Usage: 5%

relayMessage

measureOverhead

reduceLoad

createComm

changeUser

37

Abstraction of System Call

Traces

38

write to file

write to file

read from file

read from file

sys1

sys2

sys3

sys4

sys5

sys2

sys1

sys3

sys4

sys5

sys6

sys2

sys1

sys2

sys3

Trace Abstraction

Algorithm

System level

Trace

Behavior Correlation

Traces

Fault Tolerance: Redundancy

and Diversity

39

OS Diversity

Abstraction Correlation Report

40

A. Hamou-Lhadj et al., CISDA’12

Kernel-Level Trace Abstraction

Linux Kernel

Documentation

Sample LTTng

Traces

Expert

Knowledge

Trace Generated

from

Host System

Trace Abstraction

Algorithm

High-Level

Trace

Pattern

Library

41

42

SYSCALL_READ

SYSCALL_DATA_READ

syscall_entry(sys_read)

read
syscall_exit

UESR_MODE_FILE_OPENED

SYSCALL_WRITE

SYSCALL_DATA_WRITTEN

syscall_entry(sys_write)

syscall_exit

UESR_MODE_FILE_OPENED

write

Write to File Read from File

File Read & Write Patterns

Evaluation

• Two nodes: Linux and BSD

• Failures are simulated on BSD

• We are able to detect and recover from most failures

• Abstraction is a crucial step for behavior correlation to be

effective

• Similarity based on pattern detection provides accurate

measures

43

Tracing and Monitoring Framework

44

Users: Ericsson, Google, IBM, and many more

Diagnostics for Real Time Distributed

Multi-Core Architecture in Avionics

Build efficient algorithms for low overhead, low

disturbance tracing of real-time embedded

multi-core systems and simulators

Develop special purpose performance analysis

debugging, and feature location modules for

avionic systems

45

Project Partners

46

Motivating scenario

47

Motivating scenario

48

FSS

CDB
 Initialize

Dispatcher

Entry

Point

Entry

Point

Entry

Point

AREO

NAV

read/write

read/write

read/write

CAE - Architecture

49

Debuggers

Ask questions
Configuration

Tools

Which

variables?

Very large

configuration

files

Problem in

the execution

scenario

50

 Need: Automatic identification of CDB

values for a specific failure

Configuration

Files

Execution

Information

Source

Code

CDB values

Suggestion

Set

Problem in

the execution

scenario

51

Proposed Solution

52

Query

(IOS Msg)

Trace

Filterer

M
a

p
p

in
g

Relevant

Functions

Execution

Trace

Source

Code

Config

File

CDB SET

F
S

S

Tracing Framework

N
A

V

A
E

R
O

F
M

S

o
th

e
rs

Evaluation

Scenario Aircraft

 Condition

Trace size

(millions)

CDB vars

in config.

Relevant

CDBs

Retrieved

CDBs

Precision Recall

TAWS

Mode1

Altitude: 900 feet

Vertical speed:

-3000 feet/min

20

1720

4

1

25%

50%

TAWS

Mode4B

Altitude: 300 feet

Airspeed: 50 knots

Gears Position: down

Flaps Position: in flight

8

1620

4

19

21%

100%

TAWS

Mode4A

Altitude: 400 feet

Airspeed: 50 knots

Gears Position: up

Flaps Position: landing

4

1499

5

28

19%

100%

53

Finding Faulty Functions from the

Traces of Field Failures

Improve the troubleshooting process to

increase the productivity of software engineers

by reducing the number of field reports to be

analysed

54

Finding Faulty Functions from the

Traces of Field Failures

55

Approach

Train models using one-against-all approach on

trace patterns to predict faulty functions in new

failed traces

Machine

Learning

Models

56

Application to the IBM system

57

20+ million LOC, 300+ components, approx. 200 K+
functions, traces of size up to 4GB (44 million

function-calls), and 82% rediscoveries of field faults.

Failed
Traces

Faulty
Comp.

Faulty
Func.

Release 1 269 52 65

Release 2 337 35 47

Release 3 99 30 31

Total Distinct Faults
(Union)

65 103

Results on the IBM system

58

On reviewing 1% of the program’s

functions, faulty functions in up to

80% of the failed traces were

discovered.

From Data To Knowledge for Better

System Maintenance - D2K Project

Enable and implement efficient use of

analytical techniques to achieve revenue

targets within risk limits by continuously

improving the end-to-end software

maintenance process

59

D2K Objectives

1. Identify changes to improve current software

maintenance process and information flow

2. Investigate automated solutions for fault discovery,

diagnosis, and prediction

3. Provide better analysis capabilities to software

engineers

4. Help software engineers focus on the real problem

rather than spending time on irrelevant information

60

CSR

Trouble

report

1st line

support

2nd line

support

3rd line

support

Designer

Trace logs

Dumps

Configuration

D2K

Database

Patterns

Testcases

Context/domain

Trouble

report

Database

Duplicates

Similarities

Contextual analysis

Correlated logs

61

Conclusion

Trace analysis is useful for many software

engineering applications including software

maintenance and evolution, performance analysis,

software resilience, and cyber security

62

Future

Invest in an end-to-end Enterprise Tracing

Platform (ETP) for trace generation, modeling,

abstraction, and analytics to support forward and

background engineering tasks

Merci!

