The Role of Software Tracing in
Software Maintenance

Abdelwahab Hamou-Lhadj, PhD.
Software Behaviour Analysis (SBA) Research Lab
Department of Electrical and Computer Engineering
Concordia University, Montreal, QC, Canada
www.ece.concordia.ca/~abdelw

ClIA’1 3, Saida, Algeria
May 5, 2013

||||||||||

%‘_c

[T

http://www.ece.concordia.ca/~abdelw

Software Maintenance

Is defined as the modification of a software system after
delivery

accounts for 75% of the time of the software life cycle
tends to be a human resource intensive process

Incurs very high costs: SW maintenance is estimated to
a multi-billion dollar market

¥ C

Issues with exiting software

More than 100 billion lines of code in production in the
world

A large portion of it is unstructured, patched, and badly
documented

Initial design and architecture can no longer be trusted

High turn-over causes initial developers to move from
one company to another

SW industry tends to be a poorly regulated industry

As aresult

Software engineers must spent a considerable
amount of time to understand the system
before making any changes to it

Q

>

As aresult

Software engineers must spent a considerable
amount of time to understand the system
before making any changes to it

Q

(>

How do programmers understand
programs?

Program Comprehension Models

High-Level
Concepts

i

Low-Level
Artifacts

High-Level
Concepts

!

High-Level
Concepts

Low-Level
Artifacts

id

Low-Level
Artifacts

Understanding System
Behavior Using Trace Analysis

Instrumented Execution Trace I8 =8
System Traces | L Analyzers :D | RTA i
9

\/ %

Examples of execution traces

* Traces of routine (method) calls

« Traces of inter-process communication

* Traces of statement execution

« Traces of communication among subsystems
« Etc.

Trace Analysis (cont’d)

« Advantages:
— High focus and resolution
— Mapping of program inputs to outputs
— Source code is not needed

« Challenges:
— Tracing adds overhead to the system
— Traces are overwhelmingly large
— Different types of traces may require different
processing techniques

%‘_c

Applications of Trace Analysis:
Industrial Projects

Project 1. Tracing and Monitoring Tools for Distributed
Multi-Core Systems

Project 2: Diagnostics for Real Time Distributed
Multi-Core Architecture in Avionics

Project 3: Finding Faulty Functions from Traces of
Field Failures

Tracing and Monitoring Tools for
Distributed Multi-Core Systems

Develop technigues and algorithms to provide a
software architecture for low overhead trace
generation and analysis tools for complex
distributed multi-core systems

g(:oncnrdia

Wl EEIT ¥

Project Partners

Y NSERC
DEFENCE ’\‘:J DEFENSE CRSNG
ERICSSON il

® _ |

e ECOLE
POLYTECHNIOUE C COHCO l'd ld u Ottawa
MONTREAL ‘

L’Université canadienne
Canada's university

ol UNIVERSITE
s LAVAL

nnnnnnnnnnn

Trace Generation

* Research thread led by Dr. Michel Dagenais
from Polytech de Montreal

* Objectives:

— Build a tracer with low overhead and no disturbance
on the system

— Offer support for synchronisation in a multi-core
environment

— Offer support for system and user space tracing

LTTng: Linux Trace Toolkit New
Generation

Instruments the Linux kernel

Adds 2% overhead to the kernel in the worst
case scenario

 |s free and open source
* |s being integrated with the Linux kernel

Trace Analysis

* Objectives:

— Simplify the understanding and analysis of very
large traces

— Extract high-level views from raw events

— ldentify the main components that implement the
traced scenario

— Correlate user space and system space traces

%‘_c

Motivating example

« A trace generated from a compiler:

— parsing, preprocessing, lexical analysis, semantic
analysis

* |n most trace visualization tools, it will look like:

An execution phase based view

Init Parsing Preprocessing Lexical Analysis Semantic Analysis

I 1
‘\ Pl 4

II II II [

~
~

\s—‘
,——\
' 'U

\~—’

,——\
\~—’
/’"
\s—‘
/’"

e

Init Parsing Preprocessing Lexical Analysis Semantic Analysis

Phase
P3.1

y Concordia

Same problem, different domain:
The human perception system

s2eee o

... yet the brain can quickly identify parts of a scene,
group them into shapes, and interpret the shapes

Segmentation:

The perceptual system segments local elements against
their context and integrates them as objects and regions

Global Perception:

The segmented scene is then quickly scanned with eye
movements so as the brain obtains an overall impression
of it

Preattentive Process:

The scene is analyzed in more detalil by visiting the
regions in a certain order. The pop-out effect is an
Important factor in this process

%Cﬂncordia

Wl EEIT ¥

Gestalt Laws

Law of Similarity

Law of Pragnanz

J:
®e ‘:\.‘ &
@

Law of Continuity

Law of Proximity

_rdia

WM EWEEEITF

Trace abstraction framework

Performs Performs Performs Perlorms
g X ¥ 3 z W
I
|
' (D))
I @
i
1
! 4
1

Content Prioritization \

-

<

-

Trace Segmentation

Extracting Relevant
[nformation

Application of
Giravitational

S

with dense
groups of

BIC-supported
k-mieans

=/

T

Schemes Tt Clustering Detecting
- elements Removing Element E *q;im.]m-lﬁ
utilities Weighting Phasas

2

=/

IYE A

. L
H. Pirzadeh, A. Hamou-Lhadj, ICSE 2010, ICPC 2011, ICECCS 2011 {qv Conc

WM WEEEIT Y

Trace abstraction framework

Performs Performs Performs Perlorms
g X ¥ 3 z W
I
. I
i
1
: 4

1/~ Trace Segmentation \
I

g Content Prioritization

Extracting Relevant
[nformation

Application of

l

l

l

I pplicati BIC-supported [| | 3 =

T I N “g:rl..[it.:zimj k-means I T T

l
l
l

with dense
groups of

elements

utilities Weighting Phascs

Clustering —p Detecting >

Removing Element Similar
s S G DS DEE DEE DEE DS DS S e e .

\ ~/

Repositioning trace events using
similarity principle

b a b a b ¢ d ¢ d ¢ d

1 2 3 4 5 6 7 8 9 10 11 12

Repositioning trace events using
good continuation principle

Good continuation (cont.)

|

g(:oncnrdia

Evaluation

« Target System: ArgoUML

« Scenario: Starting up ArgoUML, drawing a class
diagram, quitting ArgoUML

 Trace size: Hundred of thousands of function calls
« Number of distinct routines 2331 = ~33%

Starting up ArgoUML

Application of trace segmentation

Drawing a class diagram — Quitting ArgoUML

300

Histogram

250
200

£
2 10
-3

=
™
00

20

Dense groups of methods

5001 10001 100 20001 25001 30001 35001

—

S B

" Y

Phase 1

Vs

Phase 2

Y

Phase 3 Phaoss

=

\JF

Starting up ArgoUML Drawing a class diagram — Quitting ArgoUML

\ \\

/

v A >, Y,
Initialization of the system Loading modules Addaclass 5| S 2 <
behind the splash screen from input string diagram 2 = E S
~ 15000 calls ~ 10000 calls 5000 calls | @R | &R
|_
0 0
5001 10001 im/ \‘ 20001 l} f1 30691 35001
Y Y Y L |

Phase 1 Phase 2 Phase 3 Phase4 Phaseb5

Starting up ArgoUML Drawing a class diagram — Quitting ArgoUML

Phase 3: Add a class diagram

A
'z e N

250 I
200
1HBO
100 -
o .J:ﬂ.l’ . . | . I 1 . 0
O 500 1000 1500 2000 2500 3000 3500 4000

E UHIFE BT .
\J el

Starting up ArgoUML Drawing a class diagram — Quitting ArgoUML

Phase 3: Add a class diagram

A
= e N

250

200 - Create a node Check the well-formedness Select the
__ | [ffrom the UML model . and show the property panel added
subsystem 1 element

Add a representation
to the screen

J

\ 500 1000 1500 2000 2500 3000 3500 4000

Y

Sub-phase 1 Sub-phase 2 Sub-phase 3 Sub-phase 4

Phase flow diagram

g \ / ’ \ N
{Pl; i p2) {PB { P4 3 P5
__/’ __/ __/ __/’ Sa=?”

Phase 1 Phase 2 Phase 3 Phases 4, 5

-...«-‘

\

d kernel space

ining user an

Comb

Threads

A

t4

Concordia

s

Threads
tl|{pa}
t2

t3

t4

Adding state information

|CPUJ: 2

|[PID|: 15

|FDJ]: 12
|PageFault|: 200
Ratio: 15.03%
CPU usage: 5%

|CPUJ: 2
|PID|: 17
|FDJ: 16
|PageFault|: 526

Ratio: 15.03%
CPU usage: 40%

AT

v

Trace abstraction framework

Performs Performs Performs Perlorms
e X ¥ 3 z w

OO0 04D 8

r——_—————

//_ Trace Segmentation \ l ,/_ Cuntent Prioritization 1\ I
L
l Extracting Relevant I
I Information |
.-"'..pplzi.tmilun of with dense BIC-supported T I
T {":‘.’}l,[l_a,t,:nim] groups of :;ﬁ;.t::c:il::. T | Detecti L >
chemes i e slering _ etecting
> elements I Removing Element R Sjmﬂm'l} |
utilities Weighting Phases I
h —_— _— —_— _— —_— _— —_— _— —_— _— l

Extracting relevant components

Trace T
(| =
; » |dea: Elements that are repeated in a phase but are
UE not much shared between phases indicate their
BT relevance to the phase
t_l = This is similar to the concept of term frequency
Inverse document frequency in the text mining
L=
{11 Document 1: Shipment of gold damaged in a fire
= ||e Document 2: Delivery of silver arrived in a silver truck
: : Document 3: Shipment of gold arrived in a truck
\| ©
|
;
& |la
. ¥’ C
e

ldentifying main content

Threads |ICPUI: 2
A |PID|: 15
|FD|: 14
N |PageFault|: 453
tl|{p1) Ratio: 60.06 % |CPU[: 2
Y CPU Usage: 5% |PID|: 17
\ |FDJ: 16
QL, . P N N RN |PageFault|: 526
N SN SN S N SN Ratio: 15.03%
Ip2)1 P31 1 P4 v I P51 I PG IO Ll
t2 o/ ‘_ / ‘_ v ‘\~ ./ ‘_ I CPU usage: 40%
(-/H \\
\
WY
relayMessage YN TN TN
t3 measureOverhead VP71 L P8 L PI
reducelLoad R
createComm \
changeUser |
/’ ‘\\ /’ ‘\\ /’ ‘\‘
t4 \ Y, \P13} (P14} {P15]

\HEmEsie i

Abstraction of System Call

System level
Trace

J'. I
it
¥ 1

sys1
sys2
sys3
sys4
sys5
sys2
sys1
sys3
sys4
sys5
sys6
sys2
sys1
sys2

Traces

Trace Abstraction
Algorithm

read from file
write to file
read from file

write to file

VNIYERRIT

%‘_Concoraia

Wl EEIT ¥

Fault Tolerance: Redundancy
and Diversity

S
=il

=3

/

iy (Ep
[-1

Behavior Correlation

—

‘1‘,1_, Concordia

Wl EEIT ¥

OS Diversity

HP/UX Openview
Server

Solaris/Enterprise
Server

—— Abstraction — Correlation — Report

Windows NT/
IS Server

Linux/Apache

IYERENT

WM L]
| = H
A. Hamou-Lhadj et al., CISDA'12 ¥ Concordia

WM WEEEIT Y

Kernel-Level Trace Abstraction

Trace Generated

from |:> Trace Abstraction I:> High-Level

Host System Algorithm Trace
Sample LTTng T
Traces % N~

] o <:| Linux Kernel
atern Documentation

Library

v
Expert %

Knowledge

%Cﬂncordia

WM WEEEIT Y

syscal

File Read & Write Patterns

%(UESR_MODE_FILE_OPENED)

syscall_entry(sys_read)

(SYSCALL_R EAD]

read

|_exit J/

(SYSCALL_DATA_R EAD)

Write to File

syscal

%[UESR_MODE_HLE_OPENED)

|_exit

syscall_entry(sys_write)

(SYSCALL_WRITE)

write

(SYSCALL_DATA_WRITTEN)

iFEmgiT A

ordia

%C::;n

C

iv A BIT¥

Evaluation

« Two nodes: Linux and BSD
 Failures are simulated on BSD
« We are able to detect and recover from most failures

« Abstraction is a crucial step for behavior correlation to be
effective

« Similarity based on pattern detection provides accurate
measures

%‘_c

Tracing and Monitoring Framewor

&5 () LTTng Kernel - Eclipse SDK ® @
File Edit Nawvigate Search Project Run Window Help
B4 - Q - - 5= & Java R Tracing | ITTng Kernel |
[Project Ex 82 = & b Control Flow £3 Resources Statistics E | M ew a4 ® e =0
Es - |Process TID PTID Birth time Trace TR e e =
< =l le project firefox 13933 | 13931 | 09:40:25049060594 | firefox3
~ ®Experiments [1] sed 13933 | 13931 | 09:40.25.049060594 | firefox3
0 = run-mozilla sh 13920 | 2491 09:40:24 975926686 | firefox3
~ 2% Traces [5] run-mozilla.sh 13934 : 13920 ; 09:40:25.053350530 : firefox3
%ﬁrefox 3-kernel basename 13934 : 13920 | 09:40:25.053350530 ! firefox3 IEI
£ firefox3-ust run-mozilla.sh 13935 : 13920 ; 09:40:25.054641343 : firefox3
%hlghusage dirname 13935 : 13920 | 09:40:25.054641343 ! firefox3
W kernel run-mozilla.sh 13936 : 13920 ; 09:40:25.057221574 : firefox3
B mutex - firefox 13920 | 2491 00:40:24 975926686 | firefox3 IR |7 I | 1 P T | O
firefox 13939 : 13920 | 09:40:25.159793507 : firefox3
firefox 13940 : 13920 ; 09:40:25.160759787 | firefox3
firefox 13941 : 13920 | 09:40:25.161889701 : firefox3 [~]
=1 B [Em] BJ
i= Ewvents - firefox3 2 = 0
|T|mestamp |£ource |Type |Fi|e =
Users:- 1, (*Janalnanylnome
(=] [T} 1 =] e r prio=20, prev_ti
5= Control 53 = =3 kernelch ret=0
kernelc ret=24
kernelch rmtp=0, whi C 52
5 timeout_mse -1, ufds=140
=1 I &+l
Al Histogram 22 Bookmarks Filters = 0

58
Current Event {sec)

1339422025.087422965

Window Span (sec)
0.002814750

IR TR ATATTTTIN Y PR

1329422025.086848215

15273

1329422022.020496225

J rociasdhial .. .JI.LMIMH Jl

1329422025.089566041

1229422028.340212464

| =

‘\/.

Concordia

[T

WEEITY

Diagnostics for Real Time Distributed
Multi-Core Architecture in Avionics

Build efficient algorithms for low overhead, low
disturbance tracing of real-time embedded
multi-core systems and simulators

Develop special purpose performance analysis
debugging, and feature location modules for
avionic systems

g(:oncnrdia

Wl EEIT ¥

Project Partners

B

NSERC
CRSNG

(@}

8 P.A L =R T

/-" ﬁ . P
Pt . Y o 1 eisre ECOLE
—y GHJ/. \ \/COHCOlea POLYTECHNIQUE
N www.criaq.a{e\r‘o MONTREAL

Motivating scenario

Height
above
ground

Mormally 10S

FLOA:
Warning Obstacle

FLOA:
Avoid Obstacle

vertical closing speed

p—
|-

\/_.

Motivating scenario

Height
above
ground

Normally I0S

FLOA:
Warning Obstacle

FLOA:
Avoid Obstacle

vertical closing speed

p—
|-

\/_.

CAE - Architecture

‘ Initialize

> CDB

Dispatcher |

Entry
Point

Entry
Point

Entry
Point

¢
<,
———
FSS <
«

NAV

AREO <«

read/write

read/write

read/write

E

\J

(it
= variables?
- r=ja

i
-

Problem in
the execution .
scenario

-

qM

T

4
9 AS AN AN AS

!
?
!
-

AN AR AN S A A AS
: : ”

Ask questions Configuration -
Tools HICH
Very large

?
configuration
"—\ "—» files

\ rdia

Need: Automatic identification of CDB
values for a specific failure

Configuration
Files
= CDB values
® —— Suggestion
Execution Set
Information 7

Problem in

the execution
scenario

Source
Code

¥

¥ Concordia

Proposed Solution

FSS
NAV
AERO
FMS
others

Tracing Framework

Source
I Code
[SR
|
v =
: Config -%_
Execution File = CDB SET
Trace . =
/
Trace Relevant
Filterer Functions
/

Query
(I10S Msg)

WMIYERENT

%‘_Concoraia

Wl EEIT ¥

Scenario

TAWS
Model

TAWS
Mode4B

TAWS
Mode4dA

Aircraft

Condition

Altitude: 900 feet
Vertical speed:
-3000 feet/min

Altitude: 300 feet
Airspeed: 50 knots
Gears Position: down
Flaps Position: in flight

Altitude: 400 feet
Airspeed: 50 knots
Gears Position: up
Flaps Position: landing

Evaluation

Trace size # CDB vars Relevant Retrieved Precision Recall

(millions) in config. CDBs CDBs
20 1720 4 1 25% 50%
8 1620 4 19 21% 100%
4 1499 5 28 19% 100%

%Cancor&iia

Wl EEIT ¥

Finding Faulty Functions from the
Traces of Field Failures

Improve the troubleshooting process to
Increase the productivity of software engineers
by reducing the number of field reports to be
analysed

Western

|||||||||

[T

Finding Faulty Functions from the
Traces of Field Failures

Discover faulty
functions
Sequence of

function-calls ;

fooPrevious exit ®
| foo1 entry

| | foo2 entry

|]| foo3 entry
| | | foo3 exit

| | foo2 exit

| foo4 entry

| foo4 exit

| foo2 entry

Trace:

Trace <
Collection

Maintainer

(NN 2

1

Deployed Software

C@l:::
)

@ .

ovs 3 |

0

||||||||||

E

N -oneo

Approach

failed traces

Train models using one-against-all approach on
trace patterns to predict faulty functions in new

\
Ranking <
Function Probability
Rank 1 food 0.708
Rank 2 foo2 0.27 New field
Rank 3 foo1 0.08 failed trace
Rank 4 food 0.02 1 fool exit
2 fooentry
3 | fool0 entry
4 || fool entry
E— —Patterns
foo23
foo4
............................... f001
1 foo23 exit ﬁ :28339;0;30104
2 food entry foo23 : foo1 > foo4
3 | fool entry
4 foo4 entry

Machine
Learning
Models

||||||||

[T

Application to the IBM system

20+ million LOC, 300+ components, approx. 200 K+
functions, traces of size up to 4GB (44 million
function-calls), and 82% rediscoveries of field faults.

(Union)

Failed | # Faulty # Faulty

Traces Comp. Func.
Release 1 269 52 65
Release 2 337 35 47
Release 3 99 30 31
Total Distinct Faults 65 103

%‘_c

Results on the IBM system

Classification on individual releases

100 ;
On reviewing 1% of the program’s

I functions, faulty functions in up to
B0 e 80% of the failed traces were
4~ discovered

T | — N S S S -

o 0 O =~ S B O S e

40 {}-

Cumulative % of traces

30 {(= ¥ T

20 b I I L— L LN SRR SN S W S

10 {| b — — — — GG NN SO SN SN S—

o 05 1 15 2 25 3 35 4 45 5 55 &
% of program to be examined

= FOO7 on release 1 - FOO7 on release 2 = FOO7 on release 3
-+ Straw-man classification on release 1

Straw-man classification on release 2
- Straw-man classification on release 3

IYERENT

& Conc

WM WEEEIT Y

From Data To Knowledge for Better
System Maintenance - D2K Project

Enable and implement efficient use of
analytical techniques to achieve revenue
targets within risk limits by continuously

Improving the end-to-end software
maintenance process

-

’ M’.tacs \/Concordla

ERICSSON

|||||||||

D2K Objectives

. Identify changes to improve current software
maintenance process and information flow

. Investigate automated solutions for fault discovery,
diagnosis, and prediction

. Provide better analysis capabilities to software
engineers

. Help software engineers focus on the real problem
rather than spending time on irrelevant information

%‘_c

3
y 4 y 4 y 4 y 4
1st line 2nd |ine mmm) 3dline
CSR
support support support
Designer
@

Context/domain | patabase <:>

A]
= Contextual analysis
~
Patterns Correlated logs
Testcases D2K —
Trouble |
u report \
<> Trace logs
Duphcates TI"OUb|e Dumps ===
Similarities report Configuration
Database
v

IYERENT

N Con

Conclusion

Trace analysis Is useful for many software
engineering applications including software
maintenance and evolution, performance analysis,
software resilience, and cyber security

Future

Invest in an end-to-end Enterprise Tracing
Platform (ETP) for trace generation, modeling,
abstraction, and analytics to support forward and
background engineering tasks

—

| =

Mercl!

E

\JF

