UNIVERSITE

@Concordla

UNI'YVERSITY

An Industrial Case Study on Predicting and
Detecting Faulty Programs Using Machine
Learning

Wahab Hamou-Lhadj

Université Concordia
Montréal, QC, Canada
wahab.hamou-lhadj@concordia.ca

FETCH’20, Montreal, QC, Canada

= February 12, 2020

Software Development Challenges

* |Increased complexity

= Heavy reliance on people
= Lack of automated tools

* Time to market pressure

= Emerging technologies
= QA trade-offs

Software Maintenance

C) 70% of the overall development cost

C) Up to 50% of maintenance cost is on fixing bugs

C) Bugs may have severe consequences

C) Defects cost the economy billions of $ annually

b———’

Emergence of Software Analytics

= Data-driven SW development
and maintenance

= Big Data: source code, bug
reports, test cases, logs, user
feedback, etc.

= Predictive analytics using ML,
DL, CI, and PR

= |nformation visualization of
large-scale data

u——f

@)

Defect Detection/Prediction
Research

= Defect Prediction
= Statistical analysis
= Call-graph analysis
» Analysis of code changes
» |everage of historical data

= Automated Patch Generation
= Development of fixing patterns
» Reuse of human written patches
» Directed patches towards specific bug types

u————"

&)

Problems with existing techniques

= Offline processing (after the

code is built) ©
= Presence of the entire c@@oo
source code
. . °0 c%Dog
= Extensive setup and high Oo
learning curve B 2
= Lack of clear actions to e’ J-g” gox}
o0 9% o
developers

= High rate of false positives

b———i

Our solution: CommitAssistant

= A prototype tool resulting from an NSERC
research project between my research lab at
Concordia University and Ubisoft Laforge

= Main Features:

= Detection of bugs at commit-time, i.e., as
programmers write code

= Supports multiple programming languages
No external tools or setup required

» | everage of historical bugs and fixes

= High TRL

“—-———’

@

CommitAssistant Phases

Train models of historical defect and healthy
commits and associated code

Intercept and analyze developers’ commits @
before they reach the central code repository

Notify developers and propose fixes for risky
commits

u————’

@)

Step 1: Train models

O GitHub

—

@Bugzilla

COMMITASSISTANT

Commits
Issue reports

{) SOURCEFORGE

‘ -
< Jira —_—

Issue reporting and
code versioning
systems

Code
blocks

—) [Feature Extraction]

1

[Model Training]

1

.. '
| e
e bl

Training Models

E"Cénéordia

Step 1: Train models

Issu
Cd

Commits

{¥> SOURCEFORGE

COMMITASSISTANT | =——>

Code Metrics
= Lines added/deleted

= # of modified files

= # of modified subsystems
= # of modified directories

= Distribution of modified code
across each file

= # of developers
= Etc.

Process Metrics

= Etc

= Experience des developers

» # of commits of a developers

» # of bugs introduced in the past

= Commit time an days

e —

t @ blocks

Training Models

ECdnéglrd_ia

Steps 2, 3: Analyze
commits and
propose fixes

4 Training Models I

a8

O

COMMITASSISTANT | =————>

2

\ o
O O @ Code I @
f“ﬁ M w— | Commits r—
o |

2

\ o

Notify users and

Developers

propose Fixes

u———f

NOT OK

&)

Central Code

Repository

TABLE 3: BIANCA results in terms of urﬁam.-'atl-.:un]:lm]i.rt name, a short description, number of class, number of commits, number of defect introduding commits, number of risky

commit detected, precision (%), ecall (%
detected and original

), Fi-measure (%), the average similarity of first 3 and 5§ proposed fives with the actual fix and the average time difference between

bug lop 5 Top 3
Orrzanization Project Name Short Description Mol #Commits Introducing Detected Precision Hecall Fy Faxes Finas
Comumit Similarity Swmilarby
druid Dratabase conmection pool 3309 1775 1.260 TE ERE] t2 4 73 B I6 &%
Alibab dubbo RPC framework 1715 1,83 119 &1 G672 5126 &7 G001 57.14
= fastjson 150N pamser/ penerator 200z 1749 516 573 w571 72 B2AT7 1819 15.73
e
2]
Apa o
tll.li H k2
- Evaluation i
Felif i
Exei 1k}
Facel [
1 H R
= 42 open source projects o
Goo i
= = Precision = 90% —
1Tl -— g
Jan o -
IE'I R
i) 5
et I I . 3 0/ ol
—Op] " Re Call: 7 o W
Cipe il
T T8
Uirie] o ° Ci]
= = 79% of the proposed fixes are accurate v
e
Fob]
Lo i
R | i
7
]
T okhttp HTTP+HTTF/ 2 client ERE 2649 42 474 ENIE] BLOT BEOT patl) e |
: okio 10 APL for Java W 433 40 4 1ML GO0 7500 s 35.50
re:
okt Cuavabased svent bus B4 il | 15 15 9333 00 9655 5411 4994
metrofit Ty pe-sate HTTP client 2012 1,349 151 111 5.0 7351 8441 4468 154k
Stephane Micolas robospice Android Hbrany 4il BLS 113 KT B7 18 M5l 4wds [IEET) Ba.04
TThinkA we fius titan Graph Database 2015 144 163 g iy k] 125 75 | LXE SIL5%
Katortiio pdis Redis clent 203 1370 25 23 Y204 7hibl HiE2 25,64 215
Yahod antheliomn Phagan for A pache Mubch 1,620 7 [1] - - - - - -
L Exing 10y 20 barcode image 3060 3,253 71 13 31 1555 2670 035 3796
Total 06, 003 165,912 41,235 15316 .75 315 5272 40,78 4417
D———/ Yconcordia

Project Clustering

We can improve the detection accuracy if we search
within inter-related projects

Evaluation of CommitAssistant at
Ubisoft

= 12 Ubisoft AAA games

= 10+ millions of LOCs

= Precision =79%

» Recall = 65%

* 67% of the fixes were deemed acceptable

Impact

= Commit-Assistant is designed to integrate well with
the workflow of Ubisoft developers

= Clever-Commit (production version of Commit-
Assistant) is widely deployed at Ubisoft

» Ubisoft announced in a press release that Commit-
Assistant can cut the bug fixing time by 20%

= Mozilla announced that it is working with Ubisoft to
use Clever-Commit in the development of Firefox

u—-———"

&)

Other Applications

ompliance &
‘Prediction of Certification

‘ vulnerabilities
Bug

Prediction

.Quality
Metrics

Coding
Styles

CommitAssistant as JIT
Monitoring Tool

Analyzing commits provides
real-time view of code gquality:

= Num. of introduced bugs
* File metrics

= Subsystem metrics

= Code change density

= Code complexity

= Number of fixes

= Eftc.

D—'

Open Questions

= How can we apply
CommitAssistant to embedded
and critical safety systems?

= What is the relationship between
commit analysis, testing, tracing
and logging, operational
Intelligence, etc.?

Engineering Complex
Preponderant Software Systems
- _ _ Toulouse, France
certification and compliance of October 16-17, 2019

software?

= Can this technology help with

» |s this technology certifiable?

u——/ ¥ Concordia

Conclusion

= Machine learning and Al are needed to reduce
overhead of bug fixing

» CommitAssistant:
* reuses existing knowledge and Al to improve new code

* improves quality by providing early feedback to
developers

= assists developers on how to fix risky commits
= works well on Ubisoft systems

@

u—-———’

COINC OR DIIA.C A

