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Software Development Challenges

* |Increased complexity

= Heavy reliance on people
= Lack of automated tools

* Time to market pressure

= Emerging technologies
= QA trade-offs




Software Maintenance

C) 70% of the overall development cost

C) Up to 50% of maintenance cost is on fixing bugs

C) Bugs may have severe consequences

C) Defects cost the economy billions of $ annually
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Emergence of Software Analytics

= Data-driven SW development
and maintenance

= Big Data: source code, bug
reports, test cases, logs, user
feedback, etc.

= Predictive analytics using ML,
DL, CI, and PR

= |nformation visualization of
large-scale data
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Defect Detection/Prediction
Research

= Defect Prediction
= Statistical analysis
= Call-graph analysis
» Analysis of code changes
» |everage of historical data

= Automated Patch Generation
= Development of fixing patterns
» Reuse of human written patches
» Directed patches towards specific bug types
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Problems with existing techniques

= Offline processing (after the

code is built) ©
= Presence of the entire c@@oo
source code
. . °0 c%Dog
= Extensive setup and high Oo
learning curve B 2
= Lack of clear actions to e’ J-g” gox}
o0 9% o
developers

= High rate of false positives
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Our solution: CommitAssistant

= A prototype tool resulting from an NSERC
research project between my research lab at
Concordia University and Ubisoft Laforge

= Main Features:

= Detection of bugs at commit-time, i.e., as
programmers write code

= Supports multiple programming languages
No external tools or setup required

» | everage of historical bugs and fixes

= High TRL
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CommitAssistant Phases

Train models of historical defect and healthy
commits and associated code

Intercept and analyze developers’ commits @
before they reach the central code repository

Notify developers and propose fixes for risky
commits
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Step 1: Train models
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Step 1: Train models

Issu
Cd

Commits
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COMMITASSISTANT | =——>

Code Metrics
= Lines added/deleted

= # of modified files

= # of modified subsystems
= # of modified directories

= Distribution of modified code
across each file

= # of developers
= Etc.

Process Metrics

= Etc

= Experience des developers

» # of commits of a developers

» # of bugs introduced in the past

=  Commit time an days
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Steps 2, 3: Analyze
commits and
propose fixes
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TABLE 3: BIANCA results in terms of urﬁam.-'atl-.:un ]:lm]i.rt name, a short description, number of class, number of commits, number of defect introduding commits, number of risky

commit detected, precision (%), ecall (%
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Project Clustering

We can improve the detection accuracy if we search
within inter-related projects




Evaluation of CommitAssistant at
Ubisoft

= 12 Ubisoft AAA games

= 10+ millions of LOCs

= Precision =79%

» Recall = 65%

* 67% of the fixes were deemed acceptable




Impact

= Commit-Assistant is designed to integrate well with
the workflow of Ubisoft developers

= Clever-Commit (production version of Commit-
Assistant) is widely deployed at Ubisoft

» Ubisoft announced in a press release that Commit-
Assistant can cut the bug fixing time by 20%

= Mozilla announced that it is working with Ubisoft to
use Clever-Commit in the development of Firefox
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Other Applications

ompliance &
‘Prediction of Certification

‘ vulnerabilities
Bug

Prediction

.Quality
Metrics

Coding
Styles



CommitAssistant as JIT
Monitoring Tool

Analyzing commits provides
real-time view of code gquality:

= Num. of introduced bugs
* File metrics

= Subsystem metrics

= Code change density

= Code complexity

= Number of fixes

= Eftc.
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Open Questions

= How can we apply
CommitAssistant to embedded
and critical safety systems?

= What is the relationship between
commit analysis, testing, tracing
and logging, operational
Intelligence, etc.?

Engineering Complex
Preponderant Software Systems
- _ _ Toulouse, France
certification and compliance of October 16-17, 2019

software?

= Can this technology help with

» |s this technology certifiable?
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Conclusion

= Machine learning and Al are needed to reduce
overhead of bug fixing

» CommitAssistant:
* reuses existing knowledge and Al to improve new code

* improves quality by providing early feedback to
developers

= assists developers on how to fix risky commits
= works well on Ubisoft systems
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