Q/ﬂConcordia

IIIIIIIIII

Data Analytics for Software Systems
Observability: Challenges and
Opportunities

Prof. Wahab Hamou-Lhadj
Concordia University

Montréal, QC, Canada
wahab.hamou-lhadj@concordia.ca

Keynote Presentation
IEEE 22nd International Conference on
Information Reuse and Integration for Data Science (IRI'21)
August 11, 2021




User vs. Operational Data

= User data describes information
about users.

= E.g. social media data, user
preferences, geo-location data,
Images, etc.

= Applications include marketing
campaigns, fraud detection, image
recognition, etc.




User vs. Operational Data

= QOperational (machine) data
describes information about a
system (or a machine)

* |tis collected automatically from
devices, IT platforms, applications
with no direct user intervention.

= Useful for diagnosing service
problems, ensuring reliability,
detecting security threats,
Improving operations, and so on.
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Operational Data for Software-
Intensive Systems

= The proper functioning of software-intensive systems
relies heavily on operational data to diagnose and
prevent problems.

= New trends in SW dev. make this
challenging:
= Highly distributed and parallel systems
= Micro-service architectures
= Virtualisation and containerization
= Device connectivity and 10T
= Cyber physical systems
» Intelligent and autonomous systems

= Agile, DevOps, and continuous
delivery processes
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Operational Data for Software-
Intensive Systems

= The proper functioning of software-intensive systems
relies heavily on operational data to diagnose and
prevent problems.

1 We need better runtime system analysis and fault diagnosis and
prediction methods that provide full visibility of a system’s internal
states.
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= Virtualisation and containerization

= Device connectivity and 10T

= Cyber physical systems

» Intelligent and autonomous systems

= Agile, DevOps, and continuous
delivery processes
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Software Observability

= |n control theory:

= Observability is “a measure of how well internal
states of a system can be inferred from knowledge of
its external outputs” [Wikipedia]

= Software Observability:

= A set of end-to-end techniques and processes that
allow us to reason about what a software system
IS doing and why by analyzing its external outputs.
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Monitoring vs Observability

= Monitoring:
= Tracks known metrics and raises alerts when thresholds are

not met (e.g., 4 golden signals of Google SRE: latency, traffic,
errors, and saturation)

= Answers the question: “how is the system doing?”
= Helps diagnose known problems

= Observability:
= Answers the question: “what is the system doing and why?”
= Enables to reason about the system by observing its outputs
= Helps diagnose known and unknown problems

b——"




Building Blocks
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Operational Data

= Logs:
= Records of events generated from logging statements inserted
In the code to track system execution, errors, failures, etc.

= Different types of logs: system logs, application logs, event
logs, etc.

= Traces:

= Records of events showing execution flow of a service or a
(distributed) system with causal relationship

= Require additional instrumentation mechanisms

= Profiling Metrics:

= Aggregate measurements over a period of time (e.g., CPU
usage, number of user requests, etc.)
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2815-18-18 12:81:47,978 INFO [maln] crg.apache.hadoop.mapreduce.vi.app.MRAppMaster: Created MRAppMaster for application appattempt_1445144423722 g828_ge28el

2815-18-18 12:81:48,963 INFO [main] org.apache.hadoop.mapreduce.vi.app.MRAppMaster: Executing with tokens:

2815-18-18 18:81:48,963 INFO [main] crg.apache.hadeop.mapreduce.v2.app.MRAppMaster: Kind: YARN_AM RM_TOKEN, Service: , Ident: (appattemptid { application_id { id: 28 clus
2@15-1@-18 18:81:49,228 INFO [main] crg.apache.hadcop.mapreduce.v2.app.MRAppMaster: Using mapred newApiCommitter.

2@15-18-12 18:81:58,353 INFO [main] erg.apache.hadeop.mapreduce.vi.app.MRAppMaster: CutputCommitter set in config null

2815-1@-18 18:81:58,58% INFO [main] crg.apache.hadeop.mapreduce.v2.app.MRAppMaster: cutputCommitter is erg.apache.hadoop.mapreduce.lib.cutput.FilegutputCommitter
2@15-18-18 18:81:58,556 INFO [main] crg.apache.hadcop.yarn.event.Asynchispatcher: Registering class org.apache.hadoop.mapreduce.jobhistory.EventType for class org.apache.
2@15-18-12 18:81:58,556 INFO [main] crg.apache.hadeoop.yarn.event.Asynchispatcher: Registering class org.apache.hadeop.mapreduce.v2.app.job.event.lobEventType for class or
2815-1€-18 18:81:58,556 INFO [main] crg.apache.hadeop.yarn.event.Asynchispatcher: Registering class org.apache.hadoop.mapreduce.v2.app.job.event.TaskEventType for class ¢
2@15-1@-18 18:81:58,556 INFO [main] erg.apache.hadcop.yarn.event.Asynchispatcher: Registering class org.apache.hadoop.mapreduce.v2.app.job.event.TaskattemptEventType for
2815-1@-18 18:81:58,572 INFO [main] crg.apache.hadeop.yarn.event.Asynchispatcher: Registering class org.apache.hadeop.mapreduce.v2.app.commit.CommittereventType for class
2@15-1@-18 18:81:58,572 INFO [main] crg.apache.hadoop.yarn.event.Asynchispatcher: Registering class org.apache.hadoop.mapreduce.v2.app.speculate.SpeculatoriEventType for
2815-18-18 12:81:58,572 INFO [main] crg.apache.hadeoop.yarn.event.Asynchispatcher: Registering class org.apache.hadeop.mapreduce.v2.app.rm.Containerallocator$EventType for
2815-18-18 18:81:58,588 INFO [main] crg.apache.hadeop.yarn.event.Asynchispatcher: Registering class org.apache.hadeop.mapreduce.v2.app.launcher.ContainerLauncherdEventTyp
2@15-1@8-18 18:81:58,534 INFO [main] org.apache.hadcop.mapreduce.v2.jobhistory.JobHistoryUtils: Default file system [hdfs://msra-sa-41:9ee8]

2815-18-12 18:81:58,666 INFO [main] crg.apache.hadeoop.mapreduce.vi.jobhistory.lobHistoryUtils: Default file system [hdfs://msra-sa-41:9828]

2815-1€-18 18:81:58,713 INFO [main] erg.apache.hadeop.mapreduce.va. jobhistory.lobdistoryUtils: pefault file system [hdfs://msra-sa-41:9e28]

2@15-1@-18 18:81:58,728 INFO [main] erg.apache.hadcop.mapreduce.jobhistory.JobHistoryEventHandler: Emitting job histery data to the timeline server is not enabled
2@15-18-12 12:81:58,386 INFO [main] crg.apache.hadeoop.yarn.event.Asynchispatcher: Registering class org.apache.hadeop.mapreduce.v2.app.job.event.lobFinishEventsType for ¢
2@15-18-18 18:81:51,197 INFO [main] erg.apache.hadeop.metrics2. impl.MetricsConfig: loaded preperties from hadoop-metrics2.properties

2@15-1@8-18 18:81:51,385 INFO [main] org.apache.hadcop.metrics2.impl.MetricsSystemImpl: Scheduled snapshot pericd at 1@ second(s).

2815-1@-13 18:81:51,386 INFO [main] org.apache.hadeop.metrics2.impl.MetricssystemImpl: MRAppMaster metrics system started

2@15-1@-18 18:81:51,322 INFO [main] crg.apache.hadcop.mapreduce.v2.app.job.impl.JobImpl: Adding jeob token for job 1445144473722 @@2e to jobTokenSecretmanager

2815-18-12 18:81:51,61% INFO [main] crg.apache.hadeop.mapreduce.vi.app.job.impl.JobImpl: Mot uberizing job_1445144423722 8828 because: not enabled; too many maps; too muc
2815-18-18 18:81:51,658 INFO [main] org.apache.hadoop.mapreduce.vi.app.job.impl.JobImpl: Input size for job job 1445144423722 8228 = 1256521728, Number of splits = 18
2@15-1@-18 18:81:51,558 INFO [main] org.apache.hadcop.mapreduce.v2.app.job.impl.JobImpl: Number of reduces for job job_1445144423732 @828 = 1

2@15-18-12 18:81:51,658 INFO [main] crg.apache.hadeop.mapreduce.vi.app.job.impl.lobImpl: job_1445144423722 8828Job Transitioned from HEW to INITED

2815-18-13 18:81:51,658 INFO [main] crg.apache.hadeop.mapreduce.va.app.MRAppMaster: MRAppMaster launching normal, nen-uberized, multi-container job job_ 1445144423722 ag2g
2@15-1@-18 18:81:51,713 INFO [main] erg.apache.hadoop.ipc.CallgueuveManager: Using callQueue class java.util.concurrent.LinkedBleckingQueue

2815-18-18 18:81:51,775 INFO [Socket Reader #1 for port 62282] org.apache.hadoop.ipc.Server: Starting Socket Reader #1 for port 622682

2@15-1@-12 18:81:51,791 INFO [main] erg.apache.hadeop.yarn.factories.impl.pb.RpcserverFactoryPBImpl: Adding proteocel org.apache.hadoop.mapreduce.v2.api.MrclientrrotocolrPe
2@15-1@-18 18:81:51,791 INFO [main] crg.apache.hadcop.mapreduce.v2.app.client.MRClientService: Instantiated MRClientService at MININT-FMANLIS.fareast.corp.microsoft.com/1
2815-18-13 18:81:51,386 INFO [IPC server Respender] org.apache.hadoop.ipc.server: IPC Server Responder: starting

2@15-1@8-18 18:81:51,886 INFO [IPC Server listener on £2268] org.apache.hadoop.ipc.Server: IPC Server listener on 62268: starting

A21C_ 1812 12-81-C1 286 TMEA mainl arc marthav laos Iaooine ta aro 2145 dmnl | aocddl nooerddantearinare marthary Tagt wia arc marthavy Tao S1F451 no

Source: https://github.com/logpai/loghub/blob/master/Hadoop/Hadoop_2k.log




Scope of Observability
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Emergence of Al for IT Operations

= AIOps is the application of Al to enhance IT operations
= An important enabler for digital transformation

Building Blocks:

= Data collection and aggregation
= Pattern recognition

= Predictive analytics

= Visualization

Applications:

= Fault detection and prediction
Root cause analysis
Security
Regulatory compliance
Operational intelligence
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Beyond Software Systems

» Using machine data analytics to drive
operational efficiency (a Splunk success
story)

= Dubai airport uses machine data to
Increase airport capacity

= Machine data sources:
= Flight schedules,
= Wi-Fi network data
= Metal detector data
= Baggage system
= Sensor data (doors, faucets, etc.)

Source: https://www.splunk.com/en_us/customers/success-stories/dubai-airports.html
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Characteristics of Logs and Traces

= Velocity: the data (in some cases) must be processed in
real time

= Volume: mountain ranges of historical data
= Variety: captured data can be structured or unstructured
= Veracity: captured data must be cleaned

= Value: not all captured data is useful

&)
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A Quick Look at Log Analytics Research

= A good list of recent studies is maintained on LOGPAI
Github repository:

= https://github.com/logpai/awesome-log-analysis

= Focus:

= Anomaly detection, data leakage analysis, failure
prediction, failure diagnosis, regulatory compliance
(GDPR), log abstraction and parsing

= Techniques:

= Deep learning, NLP, taint flow analysis, machine learning,

statistical methods, latent error prediction, mining software
repositories, etc.
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Our Past and Current Projects

= Md Shariful Islam, "On the use of Software Tracing and Boolean
Combination of Ensemble Classifiers to Support Software Reliability and
Security Tasks," Ph.D. Dissertation, 2021.

= Korosh K. Sabor, "Automatic Bug Triaging Techniques Using Machine
Learning and Stack Traces," Ph.D. Dissertation, 2020.

= Neda E. Koopaei, "Machine Learning and Deep Learning Based
Approaches for Detecting Duplicate Bug Reports with Stack Traces," Ph.D.
Dissertation, 2019.

» Fazilat Hojaji, "Techniques to Compact Model Execution Traces in Model
Driven Approach,” Ph.D. Dissertation, 2019.

» Heidar Pirzadeh, "Trace Abstraction Framework and Techniques," Ph.D.
Dissertation, 2012.

= Luay Alawneh, "Techniques to Facilitate the Understanding of Inter-process
Communication Traces," Ph.D. Dissertation, 2012.

http://www.ece.concordia.ca/~abdelw/publications.htmi
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Software Tracing and Boolean Combination of
Ensemble Classifiers to Support Software
Reliability and Security Tasks

« PhD Thesis of Shariful Islam in collaboration with Postdoc
Wael Khreich

e Contributions:

« WPIBC: A weighted pruning ensemble of homogeneous
classifiers (HMMs) applied to anomaly detection

« EnHMM: Ensemble HMMs and stack traces to predict the
reassignment of bug report fields

« MASKED: A MapReduce solution for the Kappa-pruned
ensemble-based anomaly detection system

u——' Yconcordia



WPIBC Using Ensemble HMMs Based on
Boolean Combination
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TotalADS: Total Anomaly Detection
System Architecture

Data Centers
Radio Stations
Smart Grids
loT Devices

S. Murtaza, A. Hamou-Lhadj, W. Khreich, M. Couture, "TotalADS: Automated Software Anomaly Detection System," In

m
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https://users.encs.concordia.ca/~abdelw/papers/SCAM14-SCAM.pdf

Automatic Crash/Bug Triaging Techniques
Using Machine Learning and Stack Traces

= PhD Thesis of
Korosh System
Koochekian
Sabor
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Automatic Crash Triaging Techniques Using
Machine Learning and Stack Traces
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Automatic Crash Triaging Techniques Using
Machine Learning and Stack Traces
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Automatic Crash Triaging Techniques Using
Machine Learning and Stack Traces
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Detection of Duplicate Bug Reports with
Stack Traces and Sequential Learners

= PhD Thesis of Neda E. Koopael Generalizable
1 Aut mata
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Trace Abstraction Framework and
Techniques for Program Comprehension

= PhD Thesis of Heidar (Amir) Pirzadeh

= Goal: To reduce the size of traces while keeping as
much of their content as possible.

= Contributions:

= Trace segmentation using clustering and Gestalt
principles

= Stratified sampling of execution traces

= |dentification of relevant events of a trace using trace
segmentation and NLP

= End-to-end trace abstraction framework
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Trace Abstraction Framework and Techniques
for Program Comprehension
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Trace Abstraction Framework and
Techniques for Program Comprehension
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Techniques to Facilitate the Understanding
of Inter-process Communication Traces

= PhD thesis of Luay Alawneh

= Contributions:
= MTF: A scalable exchange format for MPI Traces

= A techniques for extracting communication Patterns from
large MPI traces

= MPI Trace segmentation using execution phase detection




About the Practice of Logging
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Key Findings

» Software logging is pervasive (e.g., around 1 logging
statement in every 30 LOCSs).

= The average change rate of logging code is almost two
times compared to the entire code.

* Logging code is modified very often with one third of
the modifications are after-thoughts.

= Developers often have to adjust the verbosity level of
log messages.

= Developers do not seem to be aware of the cost of
logging.
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What about tracing?

= There are no known guidelines on when, how, and
where to trace.
* Tracing is like doing a detective’s job!

* Tracing incurs overhead and requires external
Instrumentation tools.
» |t is often done after the fact depending on the problem.

= Continuous tracing is not possible because of the huge
amount of data generated

= Sampling is commonly used to reduce the size but causes
other problems.
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Challenges

= Standards and Best Practices:

= |Lack of guidelines and best practices for logging,
tracing, and profiling

» Lack of standards for representing logs, traces, and
metrics (not the OpenTelemetry initiative)

» Data Characteristics
= Mainly unstructured data
= Size Is a problem
= Not all data is useful
= High velocity

u———’



Challenges

= Analytics and Tools:
= Mainly descriptive analytics
* Predictive analytics not fully explored
= Mainly offline analysis techniques
= Lack of usable end-to-end observability tools

= Cost and Management Aspects
= Cost vs. benefits not well understood
= No clear alignment of observability with other initiatives
* Roles and responsibilities are not well defined



Challenges

= Analytics and Tools:

There Is a need for systematic and engineering
approaches to software observability that promote best
practices throughout the entire software development
lifecycle

e uoustedru ividllayclliciit AspelLls
= Cost vs. benefits not well understood
= No clear alignment of observability with other initiatives
* Roles and responsibilities are not well defined
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Observability By Design

* Bringing observability to early stages of the software
development lifecycle.

» Defining a set of observability patterns, best
practices, and reusable solutions to be used as
guiding principles for developers.

= A systematic approach to tracing, logging and
profiling of software systems that considers different
phases of the software process.

@

u—————’




Observability By Design and SDLC
Bringing Requirement
observability to o Analysis ~

early stages of the

software

development Maintenance Design
lifecycle

Cost of ( [ OBSERVABILITY ] l

observability can
Deployment

be assessed during
project planning
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Observability By Design and SDLC

= Observability as a
non-functional Analysis
requirement g JaN

= What aspects of
system functional
requirements should
be observable and
how? (




Observability By Design and SDLC

Support of
observability at the
architectural level

Detailed design for
observability

Observability
patterns and best
practices
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Observability By Design and SDLC

What, where, and
how to log and/or
trace?

Use of libraries and
frameworks

Patterns and best
practices
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Implemen-
tation




Observability By Design and SDLC

= Testing and
Inspection strategies
for logging/tracing 7 N
code




Observability By Design and SDLC

= Deployment,
configuration, and
maintenance
aspects of
observability code
such as updates,
performance
analysis, testing,
persistence, etc.

N

Maintenance
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A Governance Framework for
Observability By Design

Goals and objectives, Strategic alignment, KPIs,

People

Training

Roles &
responsibilities
(observability
specialists)

Continuous
Improvement

u———’
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Conclusion

» Complex systems require sound mechanisms to ensure
that they operate as intended and to detect/predict
problems.

» | presented SW system observability as one such
mechanism.

= Observability relies on processing and analyzing
operational data

= The current practice is ad hoc and to take full advantage
of operational data, we need to move towards
systematic approaches for observability.

= Observability By Design with its governing framework is
one possible solution
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