
Improving Software Quality Using Machine
Learning and AI

Wahab Hamou-Lhadj, PhD

Université Concordia
Montréal, QC, Canada

wahab.hamou-lhadj@concordia.ca

ISCLP, Toulouse, France
16-17 octobre 2019

Software Development Challenges

 Increased complexity

 Heavy reliance on people

 Lack of automated tools

 Time to market pressure

 Emerging technologies

 QA trade-offs

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)2

Software Maintenance

3 Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)

70% of the overall development cost

Up to 50% of maintenance cost is on fixing bugs

Bugs may have serious consequences

Defects cost the economy billions of $ annually

Emergence of Software Analytics

 Data-driven SW development

and maintenance

 Big Data: source code, bug

reports, test cases, logs, user

feedback, etc.

 Predictive analytics using ML,

DL, CI, and PR

 Information visualization of

large-scale data

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)4

Defect Detection/Prediction

Research

 Defect Prediction

 Statistical analysis

 Call-graph analysis

 Analysis of code changes

 Leverage of historical data

 Automated Patch Generation

 Development of fixing patterns

 Reuse of human written patches

 Directed patches towards specific bug types

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)5

Problems with existing techniques

 Offline processing (after the

code is built)

 Presence of the entire

source code

 Extensive setup and high

learning curve

 Lack of clear actions to

developers

 High rate of false positives

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)6

Our solution: CommitAssistant

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)7

 A prototype tool resulting from an NSERC

research project between my research lab at

Concordia University and Ubisoft Laforge

 Main Features:

 Detection of bugs at commit-time, i.e., as

programmers write code

 Supports multiple programming languages

 No external tools or setup required

 Leverage of historical bugs and fixes

 High TRL

8 Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)

1
Train models of historical defect and healthy

commits and associated code

2Intercept and analyze developers’ commits
before they reach the central code repository

3
Notify developers and propose fixes for risky

commits

CommitAssistant Phases

Step 1: Train models

9

Issue reporting and
code versioning

systems

Feature ExtractionCOMMITASSISTANT

Model Training

Metrics and
code blocks

Training Models

Commits
Issue reports

Code
blocks

Step 1: Train models

10

Issue reporting and
code versioning

systems

Feature ExtractionCOMMITASSISTANT

Model Training

Metrics and
code blocks

Training Models

Commits
Issue reports

Code
blocks

Code Metrics

 Lines added/deleted

 # of modified files

 # of modified subsystems

 # of modified directories

 Distribution of modified code

across each file

 # of developers

 Etc.

Process Metrics

 Experience des developers

 # of commits of a developers

 # of bugs introduced in the past

 Commit time an days

 Etc

Steps 2, 3: Analyze

commits and

propose fixes

11

Developers

Code
Commits

Central Code
Repository

Notify users and
propose Fixes

1 2

3

4

5

Training Models

OK

NOT OK

COMMITASSISTANT

Evaluation

 42 open source projects

 Precision = 90%

 Recall: 37%

 79% of the proposed fixes are accurate

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)12

Project Clustering

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)

We can improve the detection accuracy if we search
within inter-related projects

13

Evaluation of CommitAssistant at

Ubisoft

 12 Ubisoft AAA games

 10+ millions of LOCs

 Precision = 79%

 Recall = 65%

 67% of the fixes were deemed acceptable

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)14

Impact

 Commit-Assistant is designed to integrate well with

the workflow of Ubisoft developers

 Clever-Commit (production version of Commit-

Assistant) is widely deployed at Ubisoft

 Ubisoft announced in a press release that Commit-

Assistant can cut the bug fixing time by 20%

 Mozilla announced that it is working with Ubisoft to

use Clever-Commit in the development of Firefox

Dr. Wahab Hamou-Lhadj (wahab.hamou-lhadj@concordia.ca)15

16

Coding
Styles

Quality
Metrics

Bug
Prediction

Prediction of
vulnerabilities

Compliance &
Certification

Other Applications

CommitAssistant as JIT

Monitoring Tool

Analyzing commits provides

real-time view of code quality:

 # of introduced bugs

 File metrics

 Subsystem metrics

 Code change density

 Code complexity

 Number of fixes

 Etc.

17

Open Questions

 How to reuse this technology in other areas such as

avionics and aerospace?

 How can we apply CommitAssistant to embedded and

critical safety systems?

 What is the interplay between commit analysis,

testing, operational intelligence, etc.?

 Can this technology help with certification and

compliance of software?

 Is this technology certifiable?

18

Conclusion

 Machine learning and AI are needed to reduce

overhead of bug fixing

 CommitAssistant:

 reuses existing knowledge and AI to improve new code

 improves quality by providing early feedback to

developers

 assists developers on how to fix risky commits

 works well on Ubisoft systems

19

