@Concordia

IIIIIIIIII

On the Relationship Between AlOps and
Systems Engineering

Wahab Hamou-Lhadj, PhD
Concordia University
Montréal, QC, Canada

wahab.hamou-lhadj@Concordia.ca

NASA JPL, Pasadena, CA, USA

= April 10, 2023

What is AlOps?

= AIOps is the application of Al to enhance IT operations
= An important enabler of digital transformation

= AIOps relies heavily on observability mechanisms to collect
operational data
= Data is collected automatically from
devices, IT platforms, applications
with no direct user intervention

= Three main applications:
= |mproving quality of service
= Regulatory compliance
= Operational intelligence

“———f

Industries

Telecom

Healthcare

Energy

Defense

Manufacturing

Finance

Aerospace

Education

and more

Scope of AlOps

Fault Diagnosis Failure Operational
& Repair Prediction Intelligence
Anomaly Cvb " Compliance
Detection ybersecurity Management

Storage, Processing, Data Analytics, Al,

Visualization, Etc.

Data Merging, Fusion, Abstraction

Logs, Traces, Metrics, Incident Reports

System of Systems

u——f

E.g. Applications

Technology and Processes

Why AlOps?

= QOperational complexity of today’s highly distributed and dynamic
systems

= A 2022 study by AppDynamics shows that 91% of participants believe that
gaining full observability into their systems would be revolutionary for their
business?

= A VMware report shows that traditional monitoring tools are not enough to
understand today’s complexity of large-scale systems

= Panoply of tools

= A typical company uses hundreds of tools for all sort of IT-related tasks

= Challenges hiring and retaining workforce

= 4.3 million people quit jobs in August 2021 — about 2.9 percent of the
workforce. The NY Times, 20213

“———'—f

Software Observability

= |n control theory:

= Observability is “a measure of how well internal
states of a system can be inferred from knowledge of
its external outputs” [Wikipedia]

= Software Observability:

= A set of end-to-end techniques and processes that
allow us to reason about what a software system
IS doing and why by analyzing its external outputs.

Monitoring vs Observability

= Monitoring:
= Tracks known metrics and raises alerts when thresholds are

not met (e.g., 4 golden signals of Google SRE: latency, traffic,
errors, and saturation)

= Answers the question: “how is the system doing?”
= Helps diagnose known problems

= Observability:
= Answers the question: “what is the system doing and why?”
= Enables to reason about the system by observing its outputs
= Helps diagnose known and unknown problems

b———"

Building Blocks

Distributed and
Complex Systems <
in Operation

oy core e [V 11584] e e e s

Data_ Execution
Collection Profile

Analytics

Offline and/or real-time analytics

B————'

Telemetry Data

= Logs:
= Records of events generated from logging statements inserted in
the code to track system execution, errors, failures, etc.

= Different types of logs: system logs, application logs, event logs,
etc.

= Traces:

= Records of events showing execution flow of a service or a
(distributed) system with causal relationship

= Require additional instrumentation mechanisms

= Profiling Metrics:

= Aggregate measurements over a period of time (e.g., CPU usage,
number of user requests, etc.)

u———'

Challenges

= Standards and Best Practices:

= |Lack of guidelines and best practices for logging,
tracing, and profiling

» Lack of standards for representing logs, traces, and
metrics (not the OpenTelemetry initiative)

» Data Characteristics
= Mainly unstructured data
= Size is a problem
= Not all data is useful
= High velocity

u———’

Challenges

= Analytics and Tools:
= Mainly descriptive analytics
= Predictive analytics not fully explored
= Mainly offline analysis techniques
» Lack of usable end-to-end observability tools

= Cost and Management Aspects
= Cost vs. benefits not well understood
= No clear alignment of observability with other initiatives
= Roles and responsibilities are not well defined

_———’

Current Projects

= ULP: Universe Log Parser

= A unified framework to extract structured information from
unstructured logs using ML

= Incident Report Triaging

= A set of techniques for reducing lead time of fixing crashed and
system failures

= TotalADS: Anomaly Detection

= An adaptable anomaly detection framework based on Boolean
combination of classifiers

= ClusterCommit: Predicting buggy code commits using Al

= A framework for predicting bugs as developers commit code
based on historical commits

u———’

ULP: Universe Log Parser

(iEsEp

| HTIP SERVER PROJECT

ULP :,1> Terr%;gl%tes

&
<)

HPC SYSTEM

141

openstack. Raw
Logs
@ Proxifier

u——'—'

1p81109
2 881109
3881109
4881109
5881109
6 881109
7 881109
8 881109
9 881109
10 881109
11 881109
12 881109
13 081109
14 881109
15 081109
16 881109
17 881109
13 881109
19 881109
20 881109
)1 881109
)2 881109
)3 081109
24 881109
)5 881109
)6 881109
)7 881109
)8 081109
29 881109
30 881109
31 081109
32 881109
33 081109
34 081109
35 881109
36 081109
17 881109

283615
203807
2@4085
204015
204106
204132
204324
204453
204525
204655
204722
204815
204842
2@4908
204925
285835
285856
285157
285315
205489
205412
285632
285739
285742
285746
285749
285754
205858
285931
210822
210837
210248
21e4e7
210458
218551
210637
210656

148 INFO dfs.DataMode$PacketResponder: PacketResponder 1 for block blk_388650849864139660 terminating

222 INFO dfs.DataNode$PacketResponder: PacketResponder @ for block blk_-6952295868487656571 terminating

35 INFO dfs.FSNamesystem: BLOCK+ NameSystem.addStoredBlock: blockMap updated: 18.251.73.228:500190 is added to blk_7128370237687728475
388 INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block blk_B8229193883249955061 terminating

329 INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block blk_-6678958622368987959 terminating

26 INFO dfs.FSNamesystem: BLOCK+ MameSystem.addStoredBlock: blockMap updated: 18.251.43.115:50010 is added to blk_3858920587428879149
34 INFO dfs.FSNamesystem: BLOCK+ NameSystem.addStoredBlock: blockMap updated: 18.251.203.80:50010 is added to blk_7888946331804732825
34 INFO dfs.FSNamesystem: BLOCK+ NameSystem.addStoredBlock: blockMap updated: 10.250.11.85:5001@ is added to blk_237715026@0128098806 :
512 INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block blk_572492839287299681 terminating

556 INFO dfs.DataMNode$PacketResponder: Received block blk_3587508140851953248 of size 67108864 from /10.251.42.84

567 INFO dfs.DataNode$PacketResponder: Received block blk_54020@3568334525948 of size 67108864 from /1@.251.214.112

653 INFO dfs.DataModeg$DataXceiver: Receiving block blk_5792489080791696128 src: /108.251.30.6:33145 dest: /10.251.30.6:50010

663 INFO dfs.DataMode$DataXceiver: Receiving block blk_1724757848743533110 : /18.251.111.130:49851 /18.251.111.130:50010

31 INFO dfs.FSNamesystem: BLOCK+ MameSystem.addStoredBlock: blockMap updated: 18.251.110.8:5001@ is adde to blk_8015913224713845110

28 INFO dfs.FSNamesystem: BLOCK+ NameSystem.allocateBlock: fuser/root/rand/_temporary/_task _200811092030_0001_m_0@e590_o@/part-0e8590. |
718 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_5817373558217225674 terminating

752 INFO dfs.DataMNode$PacketResponder: Received block blk_9212264480425680329 of size 67108864 from /10.251.123.1

28 INFO dfs.FSNamesystem: BLOCK+ NameSystem.addStoredBlock: blockMap updated: 18.251.111.138:50018 is added to blk_456843418269316554
832 INFO dfs.DataMNode$PacketResponder: Received block blk_-5784899712662113150 of size 67108864 from /10.251.91.229

28 INFO dfs.FSNamesystem: BLOCK+ MameSystem.addStoredBlock: blockMap updated: 18.251.74.79:58010 is added to blk_-4794867979917102672
29 INFO dfs.FSNamesystem: BLOCK+ NameSystem.addStoredBlock: blockMap updated: 18.251.38.197:50010 is added to blk_8763662564934652249
1881 INFO dfs.DataNode$PacketResponder: Received block blk_-5861636720645142679 of size 67188864 from /19.251.70.211

29 INFD dfs.FSNamesystem: BLOCK+ MameSystem.addStoredBlock: blockMap updated: 18.251.74.134:50010 is added to blk _7453815855294711849

13 INFO dfs.DataBlockScanner: Verification succeeded for blk_-4988916519894289629

1118 INFO dfs.DataNode$PacketResponder: Received block blk_-5974833545991408899 of size 67188864 from /18.251.31.18@

1138 INFO dfs.DataNode$PacketResponder: Received block blk_6921674711959888870 of size 67188864 from /10.251.65.203

33 INFO dfs.FSNamesystem: BLOCK+ MameSystem.addStoredBlock: blockMap updated: 18.250.7.244:50010 is added to blk_5165786368127153975 @
1278 INFO dfs.DataNode$DataXceiver: Receiving block blk_293775897726929835@ src: /10.251.194.129:37476 dest: /18.251.194.129:58010

32 INFO dfs.FSNamesystem: BLOCK+ MameSystem.addStoredBlock: blockMap updated: 18.250.6.191:50010 is added to blk_673825774873966710 s:
1283 INFO dfs.DataNode$PacketResponder: Received block blk_-7526945448667194862 of size 67188864 from /18.251.203.80

1334 INFO dfs.DataNode$PacketResponder: Received block blk_-2094397855762091248 of size 67188864 from /10.251.126.83

Log Template

[block namesystem.addstoredblock: blockmap updated: <®*> is added to <*> size <*>]

| packetresponder <®*> for block <®*> terminating |
[received block <*= of size <*> from f<*>]

[receiving block <®> sre: f<®> doest: f<®>]

[deleting block <*= file f<*=]

[block namesystem.allocateblock: f<*> <*>]
[<*= served block <*> to f<*>]
[<*=got exception while serving <*> to f<*=:]

|[verification succeeded for <®>)
[received block <*= sre: f<*> dest: f<*> of size <*>]

[block ask <*> to delete <®> <®> <®*> <®> <®> <% <%>» <®> <%> <> <%> <> <% %> %>

|[block ask <*> to delete <®>]
Grand Total

[block namesystem.delete: <®*> is added to invalidset of <®=>]

E L

Incident Reports Handling Process

[
Ay Ay ARy
Incident “ 1%t line “ 2"d fine ﬁ 3" line
Reports support support support

"

C

Development
Teams Log data
Memory dumps

Al-Driven Incident Report Triaging

Incident Repor
Repositori

Detection of
Duplicate
Reports

Building datasets of

incident reports Prediction of

Report
Severity

Automatic
Routing of
Incident Reports

TotalADS: Total Anomaly Detection
System Architecture

Data Centers
Radio Stations
Smart Grids
loT Devices

Control Center

Plots

Controllers

Statistics

Reports

Analysis

(%
i

IBM CASCON

PEOPLE’S CHOICE

AWARD

_———”

Machine Data Boolean Combination Engine

—> Management
) SVM NN KSM
>
[Controller
52 = g 0 3
€ ©
=
O = H
g g Loading @ @ 7N
£E |7
n Streaming RNN Others

—

4

What is the place of system
modeling in AlOps?

* Emerging technologies require system-wide
observability
* |ndustry 4.0, CPS, autonomous vehicles, IoT

= A model of the system in operation (digital twin?)

= A model of a system in operation can guide analysis for current
and future versions of the system

= Experimental vs. formal analysis

= System engineering offers the level of rigor needed for analysis
that is not found in experimental development

u

Brining observability to early stages
of the SDLC using Sys Eng.

" abserva
observability to Analysis
early stages of the g JaN
development
lifecycle Maintenance Design
= Cost of
observability can ([Observability] l
be assessed during

project planning

Implemen-

tation

Testing

Brining observability to early stages
of the SDLC using Sys Eng.

= Observability as a
non-functional Analysis
requirement g JaN

= What aspects of
system functional
requirements should

be observable and (

how?

Observability l

Brining observability to early stages
of the SDLC using Sys Eng.

= Support of

observability at the
architectural level

Detailed design for
observability

Observability
patterns and best
practices

e

N

Observability

|

Brining observability to early stages
of the SDLC using Sys Eng.

= What, where, and

how to log and/or
trace?

= Use of libraries and

frameworks

= Patterns and best
practices

e

N

Observability l

Implemen-
tation

o

Brining observability to early stages
of the SDLC using Sys Eng.

= Testing and
Inspection strategies
for logging/tracing 7 N
code

(Observability l

Testing

Brining observability to early stages
of the SDLC using Sys Eng.

= Deployment,
configuration, and
maintenance
aspects of
observability code
such as updates,
performance
analysis, testing,
persistence, etc.

N

Maintenance

e
(Observability l
™S

u———'

Open Questions?

What should a model of a system in operation look like?

Which aspects of MBSE we can easily leverage to support
system-wide observability and AlOps?

Should we start talking about model-driven AIOps?

Is ontology modeling and analysis the way to go?

Contact Information

Wahab Hamou-Lhadj, PhD, ing.
Concordia University
wahab.hamou-lhadj@concordia.ca
http://www.ece.concordia.ca/~abdelw

¥ Concordia

References

1. Linda Tong, "Momentum is building on the journey to observability," online:
https://www.appdynamics.com/blog/full-stack-observability/momentum-is-building-on-
thejourney-to-observability/

2. Stela Udovicic, "The State of Observability 2021: Key Findings," Retrieved online:
https://tanzu.vmware.com/content/blog/the-state-of-observability-2021-key-findings

3. https://mwww.nytimes.com/2021/10/12/business/economy/workers-quitting-august.html

https://www.appdynamics.com/blog/full-stack-observability/momentum-is-building-on-thejourney-to-observability/

